

Table of Contents

About the book 6 ..
About the author 7 ...
Sponsors 8 ..
Ebook PDF Generation Tool 10 ...
Ebook ePub Generation Tool 11 ...
Book Cover 12 ..
License 13 ..

Introduction to Git 14 ..

Version Control 16 ...

Installing Git 18 ..

Basic Shell Commands 21 ...

Git Configuration 25 ..

Introduction to GitHub 29 ...
GitHub Stars 33 ..

Initializing a Git project 35 ...

Git Status 37 ...

Git Add 39 ...

Git Commit 41 ...
Signing Commits 43 ...

Git Diff 48 ..

Git Log 51 ..

Gitignore 54 ..

SSH Keys 64 ..

Git Push 68 ..
Creating and Linking a Remote Repository 69
Pushing Commits 70 ...
Checking the Remote Repository 72 ..

Git Pull 73 ..

Git Branches 77 ..

Git Merge 85 ...

Reverting changes 92 ...
Resetting Changes (⚠️ Resetting Is Dangerous ⚠️) 93

Git Clone 97 ..

Forking in Git 99 ..

Git Workflow 102 ..

Pull Requests 104 ..

Git And VS Code 107 ..
Installing VS Code 108 ..
Cloning a repository in VS Code 110 ..
Create a branch 111 ...
Setup a commit message template 112 ...
Conclusion 113 ...
Additional sources: 114 ..

GitHub CLI 115 ..
GitHub CLI Installation 116 ...
Authentication 117 ...
Useful GitHub CLI commands 120 ..

Git Stash 123 ..
Stashing Your Work 124 ...
Restoring the Stashed Changes 126 ..
Handling Multiple Stashed Copies of Your Work 128

Git Alias 130 ..

Git Rebase 132 ...

Git Switch 139 ..

GitHub Markdown Cheatsheet 141 ...

Create your GitHub profile 149 ..

Git Cheat Sheet 156 ...

Conclusion 163 ...

6

About the book

This version was published on October 30 2023

This is an open-source introduction to Git and GitHub guide that will
help you learn the basics of version control and start using Git for your
SysOps, DevOps, and Dev projects. No matter if you are a
DevOps/SysOps engineer, developer, or just a Linux enthusiast, you can
use Git to track your code changes and collaborate with other members
of your team or open source maintainers.

The guide is suitable for anyone working as a developer, system
administrator, or a DevOps engineer and wants to learn the basics of
Git and GitHub.

7

About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps
Engineer since 2014. I am an avid Linux lover and supporter of the
open-source movement philosophy. I am always doing that which I
cannot do in order that I may learn how to do it, and I believe in sharing
knowledge.

I think it's essential always to keep professional and surround yourself
with good people, work hard, and be nice to everyone. You have to
perform at a consistently higher level than others. That's the mark of a
true professional.

For more information, please visit my blog at https://bobbyiliev.com,
follow me on Twitter @bobbyiliev_ and YouTube.

https://bobbyiliev.com
https://twitter.com/bobbyiliev_
https://www.youtube.com/channel/UCQWmdHTeAO0UvaNqve9udRw

8

Sponsors

This book is made possible thanks to these fantastic companies!

DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at
scale.

It provides highly available, secure, and scalable compute, storage, and
networking solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources
available.

For more information, please visit https://www.digitalocean.com or
follow @digitalocean on Twitter.

If you are new to DigitalOcean, you can get a free $200 credit and spin
up your own servers via this referral link here:

Free $200 Credit For DigitalOcean

DevDojo

The DevDojo is a resource to learn all things web development and web
design. Learn on your lunch break or wake up and enjoy a cup of coffee
with us to learn something new.

Join this developer community, and we can all learn together, build
together, and grow together.

https://www.digitalocean.com
https://twitter.com/digitalocean
https://m.do.co/c/2a9bba940f39

9

Join DevDojo

For more information, please visit https://www.devdojo.com or follow
@thedevdojo on Twitter.

https://devdojo.com?ref=bobbyiliev
https://www.devdojo.com?ref=bobbyiliev
https://twitter.com/thedevdojo

10

Ebook PDF Generation Tool

This ebook was generated by Ibis developed by Mohamed Said.

Ibis is a PHP tool that helps you write eBooks in markdown.

https://github.com/themsaid/ibis/
https://github.com/themsaid

11

Ebook ePub Generation Tool

The ePub version was generated by Pandoc.

https://pandoc.org/

12

Book Cover

The cover for this ebook was created with Canva.com.

If you ever need to create a graphic, poster, invitation, logo,
presentation – or anything that looks good — give Canva a go.

https://www.canva.com/join/determined-cork-learn

13

License

MIT License

Copyright (©) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

14

Introduction to Git

Welcome to this Git and GitHub basics training guide! In this Git crash
course, you will learn the basics of Git so you can use Git to track
your code changes and collaborate with other members of your team or
open source maintainers.

Whether you are a newcomer to programming, or an experienced one,
you have to know how to use Git. Most of the projects that a small or
big group of developers work on are done through GitHub or GitLab.

It makes working with other developers so much more exciting and
enjoyable, just by creating a new branch, adding all your brilliant ideas
to the code that can help the project, committing it, and then pushing it
to GitHub or GitLab. Then after the PR(pull request) has been opened,
reviewed, and then merged, you can get back to your code and
continue adding more awesome stuff. After pulling the changes from
the main/master branch, of course.

If what you just read doesn't make any sense to you, don't worry.
Everything will be explained in this eBook!

This eBook will show you the basics of how to start using Git and try to
help you get more comfortable with it.

It does look a bit scary in the beginning, but don't worry. It's not as
frightening as it seems, and hopefully, after reading this eBook, you can
get a bit more comfortable with Git.

Learning Git is essential for every programmer. Even some of the
biggest companies use GitHub for their projects. Remember that the
more you use it, the more you're going to get used to it.

15

Git is without a doubt the most popular open-source version control
system for tracking changes in source code out there.

The original author of git is Linus Torvalds, who is also the creator of
Linux.

Git is designed to help programmers coordinating work with each other.
Its goals include speed, data integrity, and support for distributed
workflows.

https://git-scm.com/
https://en.wikipedia.org/wiki/Linus_Torvalds

16

Version Control

Version control, also called Source control, allows you to track and
manage all of the changes to your code.

Why Use Version Control?

Multiple people could work on the same project simultaneously.
Serves simultaneously as a repository, project narrative,
communication medium, and team and product management tool.
Records all changes in a log
Allows team members to work concurrently and provides the
facility to merge that work back together.
Traces each change made to the software.
Data is transitory and can be lost easily.

What is Version Control System?

Also known as a source code manager (SCM) or a revision control
system (RCS), it is a system that keeps track of changes to a file or set
of files and in case of any problems, lets you go back in history,
comparing changes over time, and easily revert to a working state of
your source code. SVN, Mercurial, and the massively popular Git are
popular version control systems for developers. All of these are free and
open-source.

17

With distributed version control systems like Git, you would have your
source code stored on a remote repository like GitHub and also a local
repository stored on your computer.

You will learn more about remote and local repositories in the next few
chapters. Still, one of the main points for the moment is that your
source code would be stored on a remote repository, so in case that
something goes wrong with your laptop, you would not lose all of your
changes, but they will be safely stored on GitHub.

18

Installing Git

In order for you to be able to use Git on your local machine, you would
need to install it.

Depending on the operating system that you are using, you can follow
the steps here.

Install Git on Linux

With most Linux distributions, the Git command-line tool comes
installed out of the box.

If this is not the case for you, you can install Git with the following
command:

On RHEL Linux:

sudo dnf install git-all

On Debian based distributions including Ubuntu:

sudo apt install git-all

Install Git on Mac

If you are using Mac, Git should be available out of the box as well.
However, if this is not the case, there are 2 main ways of installing Git
on your Mac:

19

Using Homebrew: in case that you are using Homebrew, you can
open your terminal and run the following:

brew install git

Git installer: Alternatively, you could use the following installer:

git-osx-installer

I would personally stick to Homebrew.

Install Git on Windows

If you have a Windows PC, you can follow the steps on how to install Git
on Windows here:

Install Git on Windows

During the installation, make sure to choose the Git Bash option, as this
would provide you with a Git Bash terminal which you will use while
following along.

Check Git version

Once you have installed Git, in order to check the version of Git that
you have installed on your machine, you could use the following
command:

git --version

Example output:

https://sourceforge.net/projects/git-osx-installer/
https://git-scm.com/download/win

20

git version 2.25.1

In my case, I have Git 2.25.1 installed on my laptop.

21

Basic Shell Commands

As throughout this eBook, we will be using mainly Git via the command
line. It is important to know basic shell commands so that you could find
your way around the terminal.

So before we get started, let's go over a few basic shell commands!

The ls command

The ls command allows you to list the contents of a folder/directory. All
that you need to do in order to run the command is to open a terminal
and run the following:

ls

The output will show you all of the files and folders that are located in
your current directory. In my case, the output is the following:

CONTRIBUTING.md ebook README.md

For more information about the ls command, make sure to check out
this page here.

Note: This will work on a Linux/UNIX based systems. If you are on
Windows and if you are using the built-in CMD, you would have to use
the dir command.

https://devdojo.com/tnylea/ls-command?ref=bobbyiliev

22

The cd command

The cd command stands for Change Directory and allows you to
navigate through the filesystem of your computer or server. Let's say
that I wanted to go inside the ebook directory from the output above.
What I would need to do is to run the cd command followed by the
directory that I want to access:

cd ebook

If I wanted to go back one level up, I would use the cd .. command.

The pwd command

The pwd command stands for Print Working Directory which
essentially means that when you run the command, it will show you the
current directory that you are in.

Let's take the example from above. If I run the pwd command, I would
get the full path to the folder that I'm currently in:

pwd

Output:

/home/bobby/introduction-to-git

Then I could use the cd command and access the ebook directory:

cd ebook

And finally, if I was to run the pwd command again, I would see the

23

following output:

/home/bobby/introduction-to-git/ebook

Essentially what happened was that thanks to the pwd command, I was
able to see that I'm at the /home/bobby/introduction-to-git
directory and then after accessing the ebook directory, again by using
pwd I was able to see that my new current directory is
/home/bobby/introduction-to-git/ebook.

The rm command

The rm command stands for remove and allows you to delete files and
folders. Let's say that I wanted to delete the README.md file, what I
would have to do is run the following command:

rm README.md

In case that I had to delete a folder/directory, I would need to specify
the -r flag:

rm -r ebook

Note: keep in mind that the rm command would completely delete the
files and folders, and the action is irreversible, meaning that you can't
get them back.

The mkdir command

The mkdir command stands for make directory and is used for
creating one or more new directories. All you need to do in order to

24

create a new directory using this command is to open a terminal, cd
into desired location and run the following:

mkdir My_New_Directory

The above command will create a new, empty directory called
My_New_Directory.

You can also create serveral new directories by placing the names of
desired directories after each other:

mkdir My_New_Directory My_Another_New_Directory

The touch command

The touch command is used to update timestamps on files. A useful
feature of the touch command is that it will create an empty file. This is
useful if you want to create file in your directory that doesn't currently
exist

touch README.md

The above will create a new, empty file with the name README.md

One thing that you need to keep in mind is that all shell commands are
case sensitive, so if you type LS it would not work.

With that, now you know some basic shell commands which will be
beneficial for your day-to-day activities.

25

Git Configuration

The first time you set up Git on your machine, you would need to do
some initial configuration.

There are a few main things that you would need to configure:

Your details: like your name and email address
Your Git Editor
The default branch name: we will learn more about branches later
on

We can change all of those things by using the git config command.

Let's get started with the initial configuration!

The git config command

In order to configure your Git details like your user name and your email
address, you need to use the following command:

Configuring your Git user name:

git config --global user.name "Your Name"

Configuring your Git email address:

git config --global user.email johndoe@example.com

26

Usually, it is good to have a matching user name and email for your
local Git configuration and your GitHub profile details

Configuring your Git default editor

In some cases, when running Git commands via your terminal, an editor
will open where you could type a commit message, for example. To
specify your default editor, you need to run the following command:

git config --global core.editor nano

You can change the nano editor with another editor like vim or emacs
based on your personal preferences.

Configuring the default branch name

Whenever creating a new repository on your local machine, it gets
initialized with a specific branch name which might be different from
the default branch on GitHub. To make sure that the branch name on
your local machine matches the default branch name on GitHub, you
can use the following command:

git config --global init.defaultBranch main

Finally, once you are done with all changes, you can check your current
Git configuration with the following command:

git config --list

Example output:

27

user.name=Bobby Iliev
user.email=bobby@bobbyiliev.com
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

The ~/.gitconfig file

As we used the --global option in our commands, all of those Global
Git settings would be stored in a .gitconfig` file inside your home
directory.

We can use the cat command to check the content of the file:

cat ~/.gitconfig

Example output:

[user]
 name = Bobby Iliev
 email = bobby@bobbyiliev.com

You can even change the file manually with your favorite text editor,
but I personally prefer to use the git config command to prevent any
syntax problems.

Repository specific git configurations

So far we have been using the --global option with all of our changes
to our git configurations and this results in any configuration changes
applying to all repositories. You might however want to change the
configuration for only one specific repository. You can do this easily by

28

running the same git config commands mentioned earlier but with out
the --global option. This will save the changes for only the respository
you are crrently in and leave your global settings the same as they
were before.

The .git directory

Whenever you initialize a new project or clone one from GitHub, it
would have a .git directory where all of the Git commits would be
recorded at and also a config file where the configuration settings for
the particular project would be stored at.

You could use the ls command to check the contents of the .git
folder:

ls .git

Output:

COMMIT_EDITMSG HEAD branches config description hooks
index info logs objects refs

Note: Before running the command, you would need to be inside your
project's directory. We will learn about this in the next chapters when
we learn more about the git init command and cloning an existing
repository from GitHub with the git clone command.

29

Introduction to GitHub

Before we deep dive into all of the various Git commands, let's quickly
get familiar with GitHub.

Git is essentially the tool that you use to track your code changes, and
GitHub, on the other side, is a website where you can push your local
projects to.

This is essentially needed as it would act as a central hub where you
would store your projects and all of your teammates or other people
working on the same project as you would push their changes to.

GitHub Registration

Before you get started, you would need to create an account with
GitHub. You can do so via this link here:

Join GitHub

You will get to the following page where you will need to add your new
account details:

GitHub Profile

Once you've registered, you can go to
https://github.com/YOUR_USER_NAME, and you will be able to see your
public profile where you can add some information about yourself. Here
is an example profile which you can check: GitHub Profile

https://github.com/join
https://github.com/bobbyiliev

30

Creating a new repository

If you are not familiar with the word repository, you can think of it as a
project. It would hold all of the files of your application or website that
you are building. People usually call their repository a repo for short.

To create a new repository on GitHub, you have to click on the + sign on
the top right corner or click on the green NEW button in the top-left
where repositories are mentioned and then click on the New
Repository button:

After that, you'll get to a page where you can specify the information
for your new repository like:

The name of the project: Here, make sure to use something
descriptive
Some general description about the project and what it is about
Choose whether you want the repository to be Public or Private

Once you've added the necessary information and hit the create button,
you will get to a page with some instructions on how to push your local
project to GitHub:

We will go over those steps more in-depth in the next few chapters.

Public vs. Private repositories

Depending on the project and whether or not it is open source, you can
set your repository to be public or private.

31

The main difference is that, with a public repository anyone on the
internet can see that repository. Even though they'll be able to see the
repository and read the code, you will be the maintainer of the project,
and you will choose who can commit.

Whereas a private repository will only be accessible to you and those
you have invited.

Public repositories are used for open source projects.

Add colaborators to your projects

Colaborators are the people who actively work on the project, for
example if a company has taken up a project for which some x, y, z are
supposed to work, so these people are added as a colaborator by the
the company.

Select a GitHub repository and navigate to the settings tab, in the left
side menu bar there is an option Manage access, there you can add the
collaborators for your project.

The README.md file

The README.md file is an essential part of each project. The .md
extension stands for Markdown.

You can think of the README.md file as the introduction to your
repository. It's beneficial because while looking at someone's repo, you
can just scroll down to their README file and have a look at what their
project is all about.

And it is crucial that your project is properly introduced. Because if the
project itself isn't introduced properly, no one will spend their time
helping to improve it and try to develop it further.

32

That's why having a good README file is necessary and it shouldn't be
overlooked, and you should spend a considerable amount of your time
on it.

In this post, I am going to share some tips with you about how you can
improve your README file, and hopefully, it will help you with your
repositories.

For more information, make sure to check out this post on how to write
a good README.md file.

https://devdojo.com/bobbyiliev/quick-tips-for-writing-a-good-readme-file
https://devdojo.com/bobbyiliev/quick-tips-for-writing-a-good-readme-file

33

GitHub Stars

Let's start by answering the question why do we star a repository?

Firstly people star a repository for later use or maybe just to keep track
of it. I would basically star a repository because I might be needing it for
later use.

For instance repository like the introduction-to-git-and-github-ebook is
essential because you might get stuck on Git as a beginner and you can
just simply refer to it easily.

And secondly its used to show support to the creator and the
maintainers of the repository.

So lets use this eBook introduction-to-git-and-github-ebook as an
example to actually star a repository.

You have visit GitHub and find the introduction-to-git-and-github-ebook
reposotory via the search, or access the repository directly at:

https://github.com/bobbyiliev/introduction-to-git-and-github-ebook

Now while you are on the repository page on GitHub, at the top of the
page where the USERNAME/THE REPOSITORY NAME lies, you will find
some couple of icon:

https://github.com/bobbyiliev/introduction-to-git-and-github-ebook
https://github.com/bobbyiliev/introduction-to-git-and-github-ebook
https://github.com/bobbyiliev/introduction-to-git-and-github-ebook
https://github.com/bobbyiliev/introduction-to-git-and-github-ebook

34

Click on the star icon and you have successfuly starred the project.

Whenever you like a project and want to suport the creator, make sure
to click star the repository! Just like you would enjoy a video on
YouTube and hit the like button.

35

Initializing a Git project

If you are starting a new project or if you have an existing project which
you would like to add to Git and then push to GitHub, you need to
initialize a new Git project with the git init command.

To keep things simple, let's say that we want to start building a fresh
new project. The first thing that I would usually do is to create a new
folder where I would store my project files at. To do that, I can use the
mkdir command followed by the name of the folder, which will create a
new empty directory/folder:

mkdir new-project

The above command will create a folder called new-project. Then as
we learned in chapter 4, we can use the cd command to access the
directory:

cd new-project

After that, by using the ls command, we will be able to verify that the
directory is completely empty:

ls -lah

Then with that, we are ready to initialize a new Git project:

36

git init

You will get the following output:

Initialized empty Git repository in /home/devdojo/new-
project/.git/

As you can see, what the git init command does is to create a new
.git folder which we already discussed in chapter 5.

With that, you've successfully created a new empty Git project! Let's
move to the next chapter, where you will learn how to use the git
status command to check the current status of your repository.

37

Git Status

Whenever you make changes to your Git project, you would want to
verify what has changed before making a commit or before pushing
your changes to GitHub, for example.

To check the current status of your project, you can use the git status
command. If you run the git status command in the same directory
where you initialized your Git project from the last chapter, you will see
the following output:

On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to
track)

As this is a fresh new repository, there are no commits and no changes
yet. So let's go ahead and create a README.md file with some generic
content. We can run the following command to do so:

echo "# Demo Project" >> README.md

What this would do is to output the # Demo Project and store it in the
README.md file.

If you run git status again, you will then see the following output:

38

Untracked files:
 (use "git add <file>..." to include in what will be
committed)
 README.md
nothing added to commit but untracked files present (use "git
add" to track)

As you can see, Git is detecting that there is 1 new file that is not
tracked at the moment called README.md, which we just created. And
already, Git is prompting us to use the git add command to start
tracking the file. We will learn more about the git add command in the
next chapter!

We are going to be using the git status command throughout the
next few chapters a lot! This is particularly helpful, especially when
you've modified a lot of files and you want to check the current status
and see all of the modified, updated, or deleted files.

39

Git Add

By default, when you create a new file inside your Git project, it is not
being tracked by Git. So to tell git that it should start tracking the file,
you need to use the git add command.

The syntax is the following:

git add NAME_OF_FILE

In our case, we have only 1 filed inside our project called README.md, so
to add this file to Git, we can use the following command:

git add README.md

If you then run git status again, you will see a different output:

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: README.md

Here you would see that there are now some changes staged and ready
to be committed. Also, Git tells us that the README.md is a new file that
was just staged and has not been tracked before.

In case that you have a couple of files, you could list them all divided by
space after the git add command to stage them all rather than running
git add multiple times for each individual file:

40

git add file1.html file2.html file3.html

With the above, we will add the 3 files by running git add just once,
however in some cases, you might have a lot of new files, and adding
them one by one could be highly time-consuming.

So there is a way to stage absolutely all files in your current project,
and this is by specifying a dot after the git add command as follows:

git add .

Note: You need to be careful with this as in some cases, there might be
some files that you don't want to add to Git.

With that, we are ready to move on and learn about the git commit
command.

41

Git Commit

Once you have added/staged your files, the next step is actually to
commit the changes. So if you run git status again, you will be able to
see that Git tells us that there are changes to be committed:

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: README.md

In this case, it is only the README.md file that will be committed. So in
order to do so, we can run the following command:

git commit -m "Your Commit Message Here"

Rundown of the command:

git commit: here, we are telling git that we want to commit the
changes that we've staged with the git add command
-m: this flag indicates that we will specify our commit message
directly after that
Finally, in the quotes we've got our commit message, it is
important to write short and descriptive commit messages

In our case we could set our commit message to something like
"Initial commit" or "Add README.md" file, for example.

If you don't specify the -m flag, Git will open the default text editor that
we've configured in chapter 5 where you will be able to type the
commit message directly.

42

Committing directly without staging files:

If you have not already staged your changes using git add command
you can still directly commit all your changes using the following
command.

git commit -a -m "Your Commit Message Here"

The -a flag here will automatically stage all the changes and commit
them.

43

Signing Commits

Git allows you to sign your commits. Commits signed with a verified
signature in GitHub and GitLab display a verified label as shown below.

To sign commits, first you need to:

make sure that you have GNU GPG installed on your host.
Generate a GPG signing key pair if you don't already have

gpg --full-generate-key

Use the gpg --list-secret-keys --keyid-format=long
command to list the long form of the GPG keys

gpg --list-secret-keys --keyid-format=long
/Users/bobby/.gnupg/pubring.kbx

sec rsa4096/E630A0A00CAA7AAA 2021-10-01 [SC] [expires:
2026-10-01]
 5F1F417F8A043C8888888888E630F6D35CFA7ECD
uid [ultimate] Bobby Illiev (For signing git
commits) <bobby@bobbyiliev.com>
ssb rsa4096/46EE4AA180001AA6 2021-10-01 [E] [expires:
2026-10-01]

Copy the long form of the GPG key ID you'd like to use. In this
sample, the GPG key ID is E630A0A00CAA7AAA.
Export the public key:

gpg --armor --export E630A0A00CAA7AAA

44

Copy your GPG key, beginning with -----BEGIN PGP PUBLIC KEY
BLOCK----- and ending with -----END PGP PUBLIC KEY BLOCK---
--.
Login to GitHub or GitLab and add a new GPG key under settings:

45

Set your GPG signing key in Git: (If you intend to add the signing
key per repository, the omit the --global flag)

git config --global user.signingkey E630A0A00CAA7AAA

Enable automatic signing for all commits:

git config --global commit.gpgsign true

Or Sign per commit by passing -S option to git commit:

git commit -S -m "your commit message"

After running the git commit command, we can use the git status
command again to check the current status:

git status

46

Output:

On branch main
nothing to commit, working tree clean

As you can see, Git is telling us that there are no changes to be
committed as we've already committed them.

Let's go ahead and make another change to the README.md file. You can
open the file with your favorite text editor and make the change
directly, or you can run the following command:

echo "Git is awesome!" >> README.md

The above would add a new line at the bottom of the README.md file. So
if we were to run git status again, we will see the following output:

On branch main
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 modified: README.md

no changes added to commit (use "git add" and/or "git commit -
a")

As you can see, Git has detected that the README.md file has been
modified and is also prompting us to use the command that we've
learned to first stage/add the file!

In case that you wanted to change your last commit message, you can
run the git commit --amend command. This will open the default
editor where you can change your commit message. Also, this allows
you to change the commit changes.

47

The git status command gives us a great overview of the files that
have changed, but it does not show us what the changes actually are.
In the next chapter, we are going to learn how to check the differences
between the last commit and the current changes.

To check for commits that changed particular file you can use the --
follow flag:

git log --follow [file]

The above shows the commits that changed the file, even across
renames.

48

Git Diff

As mentioned in the last chapter, the git status command gives us a
great overview of the files that have changed, but it does not show us
what the changes actually are.

You can check the actual changes that were made with the git diff
command. If we were to run the command in our repository, we would
see the following output:

diff --git a/README.md b/README.md
index 9366068..2b14655 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,2 @@
 # Demo Project
+Git is awesome

As we only changed the README.md file, Git is showing us the following:

diff --git a/README.md b/README.md: here git indicates that it
shows the changes made to the README.md file since the last
commit compared to the current version of the file.
@@ -1 +1,2 @@: here git indicates that 1 new line was added
+Git is awesome: here, the important part is the +, which
indicates that this is a new line that was added. In case that we
remove a line, you would see a - sign instead.

In our case, as we only added 1 new line to the file, Git indicates that
only 1 file was changed and that only 1 new line was added.

Next, let's go ahead and stage that change and commit it with the

49

comments that we've learned from the previous chapters!

Stage the changed file:

git add README.md

Then again run git status to check the current status:

git status

The output would look like this, indicating that there is 1 modified file:

On branch main
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: README.md

Commit the changes:

git commit -m "Update README.md"

Finally, if you run git status again you will see that there are no
changes to be committed.

I always run git status and git diff before making any commits, just
so that I'm sure what has changed.

Note 1 : git diff --staged will only show the changes to the file in
"staged" area.

Note 2 : git diff HEAD will show all changes to tracked files(file in last
snapshot), if you have all the changes staged for commit then both the
commands give same output.

50

In some cases, you would like to see a list of the previous commits. We
will learn how to do that in the next chapter.

51

Git Log

In order to list all of the previous commits, you can use the following
command:

git log

This will provide you with your commit history, the output would look
like this:

commit da46ce39a3fd663ff802d013f834431d4b4159a5 (HEAD -> main)
Author: Bobby Iliev <bobby@bobbyiliev.com>
Date: Fri Mar 12 17:14:02 2021 +0000

 Update README.md

commit fa583473b4be2807b45f35b755aa84ac78922259
Author: Bobby Iliev <bobby@bobbyiliev.com>
Date: Fri Mar 12 17:01:17 2021 +0000

 Initial commit

The entries are listed, in order, from most recent to oldest.

Rundown of the output:

commit da46ce39a3fd663ff802d013f834431d4b4159a5: Here you
can see the specific commit ID
Author: Bobby Iliev... : Then you can see who created the
changes
Date: Fri Mar 12...: After that, you've got the exact time and
date when the commit was created

52

Finally, you have the commit message. This is one of the reasons
why it is important to write short and descriptive commit messages
so that later on, you could tell what changes were introduced by
the particular commit.

If you want to check the differences between the current state of your
repository and a particular commit, what you could do is use the git
diff command followed by the commit ID:

git diff fa583473b4be2807b45f35b755aa84ac78922259

In my case the output will be the following:

diff --git a/README.md b/README.md
index 9366068..2b14655 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,2 @@
 # Demo Project
+Git is awesome

So the difference between that specific commit and the current state of
the repository is the change in the README.md file.

In case that you wanted to see only the commit IDs and commit
messages on one line, you could add the --oneline argument:

git log --oneline

Output:

* da46ce3 (HEAD -> main) Update README.md
* fa58347 Initial commit

With that, you now know how to check your commit history! Next, let's

53

go ahead and learn how to exclude specific files from Git!

54

Gitignore

While working on a Git repository, you will often have files and
directories that you do not want to commit, so that they are not
available to others using the repository.

In some cases, you might not want to commit some of your files to Git
due to security reasons.

For example, if you have a config file that stores all of your database
credentials and other sensitive information, you should never add it to
Git and push it to GitHub as other people will be able to get hold of that
sensitive information.

Another case where you may not want to commit a file or directory, is
when those files are automatically generated and do not contain source
code, so that you don't clutter your repository. Also, sometimes it
makes sense not to commit certain files that contain environment
information, so that other people can use your code with their
environment files.

To prevent these types of files from being committed, you can create a
gitignore file which includes a list of all of the files and directories that
should be excluded from your Git repository. In this chapter, you will
learn how to do that!

Ignoring a specific file

Let's have a look at the following example if you had a PHP project and
a file called config.php, which stores your database connection string
details like username, password, host, etc.

55

To exclude that file from your git project, you could create a file called
.gitignore inside your project's directory:

touch .gitignore

Then inside that file, all that you need to add is the name of the file that
you want to ignore, so the content of the .gitignore file would look
like this:

config.php

That way, the next time you run git add . and then run git commit
and git push, the config.php file will be ignored and will not be added
nor pushed to your Github repository.

That way, you would keep your database credentials safe!

Ignoring a whole directory

In some cases, you might want to ignore a whole folder. For example, if
you have a huge node_modules folder, there is no need to add it and
commit it to your Git project, as that directory is generated
automatically whenever you run npm install.

The same would go for the vendor folder in Laravel. You should not add
the vendor folder to your Git project, as all of the content of that folder
is generated automatically whenever you run composer install.

So to ignore the vendors and node_modules folders, you could just add
them to your .gitignore file:

56

Ignored folders
/vendor/
node_modules/

Ignoring a whole directory except for a specific file

Sometimes, you want to ignore a directory except for one or a couple of
other files within that directory. It could be that the directory is required
for your application to run but the files created is not supposed to be
pushed to the remote repository or maybe you want to have a
README.md file inside the directory for some purpose. To achieve this,
your .gitignore file should like like this:

data/*
!data/README.md

The first line indicates that you want to ignore the data directory and all
files inside it. However, the second line provides the instruction that the
README.md is an exception.

Take note that the ordering is important in this case. Otherwise, it will
not work.

Getting a gitignore file for Laravel

To get a gitignore file for Laravel, you could get the file from [the
official Laravel Github repository]
here(https://github.com/laravel/laravel/).

The file would look something like this:

57

/node_modules
/public/hot
/public/storage
/storage/*.key
/vendor
.env
.env.backup
.phpunit.result.cache
Homestead.json
Homestead.yaml
npm-debug.log
yarn-error.log

It essentially includes all of the files and folders that are not needed to
get the application up and running.

Using gitignore.io

As the number of frameworks and application grows day by day, it
might be hard to keep your .gitignore files up to date or it could be
intimidating if you had to search for the correct .gitignore file for
every specific framework that you use.

I recently discovered an open-source project called gitignore.io. It is a
site and a CLI tool with a huge list of predefined gitignore files for
different frameworks.

All that you need to do is visit the site and search for the specific
framework that you are using.

For example, let's search for a .gitignore file for Node.js:

Then just hit the Create button and you would instantly get a well
documented .gitignore file for your Node.js project, which will look
like this:

https://www.toptal.com/developers/gitignore/

58

Created by
https://www.toptal.com/developers/gitignore/api/node
Edit at
https://www.toptal.com/developers/gitignore?templates=node

Node
Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
lerna-debug.log*

Diagnostic reports (https://nodejs.org/api/report.html)
report.[0-9]*.[0-9]*.[0-9]*.[0-9]*.json

Runtime data
pids
*.pid
*.seed
*.pid.lock

Directory for instrumented libs generated by
jscoverage/JSCover
lib-cov

Coverage directory used by tools like istanbul
coverage
*.lcov

nyc test coverage
.nyc_output

Grunt intermediate storage
(https://gruntjs.com/creating-plugins#storing-task-files)
.grunt

Bower dependency directory (https://bower.io/)
bower_components

node-waf configuration
.lock-wscript

Compiled binary addons (https://nodejs.org/api/addons.html)

59

build/Release

Dependency directories
node_modules/
jspm_packages/

TypeScript v1 declaration files
typings/

TypeScript cache
*.tsbuildinfo

Optional npm cache directory
.npm

Optional eslint cache
.eslintcache

Microbundle cache
.rpt2_cache/
.rts2_cache_cjs/
.rts2_cache_es/
.rts2_cache_umd/

Optional REPL history
.node_repl_history

Output of 'npm pack'
*.tgz

Yarn Integrity file
.yarn-integrity

dotenv environment variables file
.env
.env.test

parcel-bundler cache (https://parceljs.org/)
.cache

Next.js build output
.next

Nuxt.js build / generate output
.nuxt
dist

60

Gatsby files
.cache/
Comment in the public line in if your project uses Gatsby
and not Next.js
https://nextjs.org/blog/next-9-1#public-directory-support
public

vuepress build output
.vuepress/dist

Serverless directories
.serverless/

FuseBox cache
.fusebox/

DynamoDB Local files
.dynamodb/

TernJS port file
.tern-port

Stores VSCode versions used for testing VSCode extensions
.vscode-test

End of https://www.toptal.com/developers/gitignore/api/node

Using gitignore.io CLI

If you are a fan of the command-line, the gitignore.io project offers a CLI
version as well.

To get it installed on Linux, just run the following command:

git config --global alias.ignore \
'!gi() { curl -sL
https://www.toptal.com/developers/gitignore/api/$@ ;}; gi'

If you are using a different OS, I would recommend checking out the

61

documentation here on how to get it installed for your specific Shell or
OS.

Once you have the gi command installed, you could list all of the
available .gitignore files from gitignore.io by running the following
command:

gi list

For example, if you quickly needed a .gitignore file for Laravel, you
could just run:

gi laravel

And you would get a response back with a well-documented Laravel
.gitignore file:

https://docs.gitignore.io/install/command-line

62

Created by
https://www.toptal.com/developers/gitignore/api/laravel
Edit at
https://www.toptal.com/developers/gitignore?templates=laravel

Laravel
/vendor/
node_modules/
npm-debug.log
yarn-error.log

Laravel 4 specific
bootstrap/compiled.php
app/storage/

Laravel 5 & Lumen specific
public/storage
public/hot

Laravel 5 & Lumen specific with changed public path
public_html/storage
public_html/hot

storage/*.key
.env
Homestead.yaml
Homestead.json
/.vagrant
.phpunit.result.cache

Laravel IDE helper
.meta.
ide*

End of
https://www.toptal.com/developers/gitignore/api/laravel

Conclusion

Having a gitignore file is essential, it is great that you could use a tool
like the gitignore.io to generate your gitignore file automatically,

gitignore.io

63

depending on your project!

If you like the gitignore.io project, make sure to check out and
contribute to the project here.

https://github.com/toptal/gitignore.io

64

SSH Keys

There are a few ways to authenticate with GitHub. Essentially you would
need this so that you could push your local changes from your laptop to
your GitHub repository.

You could use one of the following methods:

HTTPS: Essentially, this would require your GitHub username and
password each time you try to push your changes
SSH: With SSH, you could generate an SSH Key pair and add your
public key to GitHub. That way, you would not be asked for your
username and password every time you push your changes to
GitHub.

One thing that you need to keep in mind is that the GitHub repository
URL is different depending on whether you are using SSH or HTTPS:

HTTPS: https://github.com/bobbyiliev/demo-repo.git
SSH: git@github.com:bobbyiliev/demo-repo.git

Note that when you choose SSH, the https:// part is changed with
git@, and you have : after github.com rather than /. This is important
as this defines how you would like to authenticate each time.

Generating SSH Keys

To generate a new SSH key pair in case that you don't have one, you
can run the following command:

65

ssh-keygen

For security reasons you can specify a passphrase, which essentially is
the password for your private SSH key.

The above would generate 2 files:

1 private SSH key and 1 public SSH key. The private key should
always be stored safely on your laptop, and you should not share it
with anyone.
1 public SSH key, which you need to upload to GitHub.

The two files will be automatically generated at the following folder:

~/.ssh

You can use the cd command to access the folder:

cd ~/.ssh

Then with ls you can check the content:

ls

Output:

id_rsa id_rsa.pub

The id_rsa is your private key, and again you should not share it with
anyone.

66

The id_rsa.pub is the public key that would need to be uploaded to
GitHub.

Adding the public SSH key to GitHub

Once you've created your SSH keys, you need to upload the public SSH
key to your GitHub account. To do so, you first need to get the content
of the file.

To get the content of the file, you can use the cat command:

cat ~/.ssh/id_rsa.pub

The output will look like this:

ssh-rsa AAB3NzaC1yc2EAAAADAQAB...... your_user@your_host

Copy the whole thing and then visit GitHub and follow these steps:

Click on your profile picture on the right top

Then click on settings

On the left, click on SSH and GPG Keys:

After that, click on the New SSH Key button

https://github.com

67

Then specify a title of the SSH key, it should be something
descriptive, for example: Work Laptop SSH Key. And in the Key
area, paste your public SSH key:

Finally click the Add SSH Key button at the bottom of the page

Conclusion

With that, you now have your SSH Keys generated and added to
GitHub. That way, you will be able to push your changes without having
to type your GitHub password and user each time.

For more information about SSH keys, make sure to check this tutorial
here.

https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-2

68

Git Push

Then finally, once you've made all of your changes, staged them with
the git add . command, and committed the changes with the git
commit command, you must push the committed changes from your
local repository to your remote GitHub repository. This ensures that the
remote repository is brought up-to-date with your local repository.

69

Creating and Linking a Remote Repository

Before you can push to your remote GitHub repository, you need to first
create your remote repository via GitHub as per Chapter 6.

Once you have your remote GitHub repository ready, you can add it to
your local project with the following command:

git remote add origin
git@github.com:your_username/your_repo_name.git

Note: Make sure to change the your_username and your_repo_name
details accordingly.

This is how you can link your local Git project with your remote GitHub
repository.

If you've read the previous chapter, you will most likely notice we are
using SSH as the authentication method.

However, if you did not follow the steps from the previous chapter, you
can use HTTPS rather than SSH:

git remote add origin
https://github.com/your_username/your_repo_name.git

To verify your remote repository, you can run the following command:

git remote -v

70

Pushing Commits

To push your committed changes to the linked remote repository, you
can use the git push command:

git push -u origin main

Note: In this command, -u origin main tells Git to set the main branch
of the remote repository as the upstream branch within the git push
command. This is the best practice when using Git as it allows the git
push and git pull commands to work as intended. Alternatively, you
can use --set-upstream origin main for this as well.

If you are using SSH with your SSH key uploaded to GitHub, the push
command will not ask you for a password and will push your changes to
GitHub straight away.

In case that you did not run the git remote add command as outlined
in earlier in this chapter, you will receive the following error:

fatal: 'origin' does not appear to be a git repository
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

This would mean that you've not added your GitHub repository as the
remote repository. This is why we run the git remote add command to
create that connection between your local repository and the remote
GitHub repository.

Note that the connection would be in place if you used the git clone
command to clone an existing repository from GitHub to your local

71

machine. We will go through the git pull command in the next few
chapters as well.

72

Checking the Remote Repository

After running the git push command, you can head over to your
GitHub project and you will be able to see the commits that you've
made locally present in remote repository on GitHub. If you were to
click on the commits link, you would be able to see all commits just as if
you were to run the git log command:

Now that you know how to push your latest changes from your local Git
project to your GitHub repository, it's time to learn how to pull the latest
changes from GitHub to your local project.

73

Git Pull

If you are working on a project with multiple people, the chances are
that the codebase will change very often. So you would need to have a
way to get the latest changes from the GitHub repository to your local
machine.

You already know that you can use the git push command to push
your latest commits, so to do the opposite and pull the latest commits
from GitHub to your local project, you need to use the git pull
command.

To test this, let's go ahead and make a change directly on GitHub
directly. Once you are there, click on the README.md file and then click
on the pencil icon to edit the file:

Make a minor change to the file, add a descriptive commit message and
click on the Commit Changes button:

74

With that, you've now made a commit directly on GitHub, so your local
repository will be behind the remote GitHub repository.

If you were to try and push a change now to that same branch, it would
fail with the following error:

75

 ! [rejected] main -> main (fetch first)
error: failed to push some refs to
'git@github.com:bobbyiliev/demo-repo.git'
hint: Updates were rejected because the remote contains work
that you do
hint: not have locally. This is usually caused by another
repository pushing
hint: to the same ref. You may want to first integrate the
remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help'
for details.

As stated in the output, the remote repository is ahead of your local
one, so you need to run the git pull command to get the latest
changes:

git pull origin main

The output that you will get will look like this:

remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), 646 bytes | 646.00 KiB/s, done.
From github.com:bobbyiliev/demo-repo
 * branch main -> FETCH_HEAD
 da46ce3..442afa5 main -> origin/main

 README.md | 3 ++-
 1 file changed, 2 insertions(+), 1 deletion(-)

We can see that the README.md file was changed and that there were 2
new lines added and 1 line deleted.

Now, if you were to run git log, you will see the commit that you've
made on GitHub available locally.

76

Of course, this is a simplified scenario. In the real world, you would not
make any changes directly to GitHub, but you would most likely work
with other people on the same project, and you would have to pull their
latest changes regularly.

You need to make sure that you pull the latest changes every time
before you try to push your changes.

Now that you know the basic Git commands let's go ahead and learn
what Git Branches are.

77

Git Branches

So far, we have been working only on our Main branch, which is created
by default when creating a new GitHub repository. In this chapter, you
will learn more about Git Branches. Why you need them and how to
work with them.

The official definition of a Git branch from the git-scm.com website is
the following:

A branch in Git is simply a lightweight movable pointer to one of these
commits.

This might be a bit confusing in case that you are just getting started.
So you could think of branches as a way to work on your project by
adding a new feature of bug fixes without affecting the Main branch.

That way, each new feature or bug fix that you are developing could
live on a separate branch, and later on, once you are ready and have
fully tested the changes, you can merge the new branch to your main
branch. You will learn more about merging in the next chapter!

If we look into the following illustration where we have a few branches,
you can see that it looks like a tree, hence the term branching:

78

Thanks to the multiple branches, you can have multiple people working
on different features or fixes at the same time each one working on
their own branch.

The image shows 3 branches:

The main branch
New Branch 1
New Branch 2

The main branch is the default branch that you are already familiar
with. We can consider the other two branches as two new features that
are being developed. One developer could be working on a new contact
form for your web application on branch #1, and another developer
could be working on a user registration form feature on branch #2.

Thanks to the separate branches, both developers can work on the
same project without getting into each others way.

Next, let's go ahead and learn how to create new branches and see this
in action!

79

Creating a new branch

Let's start by creating a new branch called newFeature. In order to
create the branch, you could use the following command:

git branch newFeature

Now, in order to switch to that new branch, you would need to run the
following command:

git checkout newFeature

Note: You can use the git checkout command to switch between
different branches.

The above two commands could be combined into 1, so that you don't
have to create the branch first and then switch to the new branch. You
could use this command instead, which would do both:

git checkout -b newFeature

Once you run this command, you will see the following output:

Switched to a new branch 'newFeature'

In order to check what branch you are currently on, you can use the
following command:

git branch

80

Output:

 main
* newFeature

We can tell that we have 2 branches: the main one and the newFeature
one that we just created. The star before the newFeature branch name
indicates that we are currently on the newFeature branch.

If you were to use the git checkout command to switch to the main
branch:

git checkout main

And then run git branch again. You will see the following output
indicating that you are now on the main branch:

* main
 newFeature

Making changes to the new branch

Now let's go ahead and make a change on the new feature branch. First
switch to the branch with the git checkout command:

git checkout newFeature

Note: we only need to add the -b argument when creating new
branches

Check that you've actually switched to the correct branch:

81

git branch

Output:

 main
* newFeature

Now let's create a new file with some demo content. You can do that
with the following command:

echo "<h1>My First Feature Branch</h1>" > feature1.html

The above will echo out the <h1>My First Feature Branch</h1> string
and store it in a new file called feature1.html.

After that, stage the file and commit the change:

git add feature1.html
git commit -m "Add feature1.html"

The new feature1.html file will only be present on the newFeature
branch. If you were to switch to the main branch and run the ls
command or check the git log, you will be able to see that the file is
not there.

You can check that by using the git log command:

git log

With that, we've used quite a bit of the commands that we've covered
in the previous chapters!

82

Compare branches

You can also compare two branches with the following commands.

Shows the commits on branchA that are not on branchB:

git log BranchA..BranchB

Shows the difference of what is in branchA but not in branchB:

git diff BranchB...BranchA

Renaming a branch

In case that you've created a branch with the wrong name or if you
think that the name could be improved as it is not descriptive enough,
you can rename a branch by running the following command:

git branch -m wrong-branch-name correct-branch-name

If you want to rename your current branch, you could just run the
following:

git branch -m my-branch-name

After that, if you run git branch again you will be able to see the
correct branch name.

83

Deleting a branch

If you wanted to completely delete a specific branch you could run the
following command:

git branch -d name_of_the_branch

This would only delete the branch from your local repository, in case
that you've already pushed the branch to GitHub, you can use the
following command to delete the remote branch:

git push origin --delete name_of_the_branch

If you wanted to synchronize your local branches with the remote
branches you could run the following command:

git fetch

Conclusion

With that, our newFeature branch is now ahead of the main branch with
1 commit. So in order to get that new changes over to the main branch,
we need to merge the newFeature branch into our main branch.

In the next chapter, you will learn how to merge your changes from one
branch to another!

One thing that you might want to keep in mind is that in the past when
creating a new GitHub repository the default branch name was called
master. However, new repositories created on GitHub use main instead
of master as the default branch name. This is part of GitHub's effort to

84

remove unnecessary references to slavery and replace them with more
inclusive terms.

85

Git Merge

Once the developers are ready with their changes, they can merge their
feature branches into the main branch and make those features live on
the website.

If you followed the steps from the previous chapter, then your
newFeature branch is now ahead of the main branch with 1 commit. So
in order to get that new changes over to the main branch, we need to
merge the newFeature branch into our main branch.

Merging a branch

You can do that by following these steps:

86

First switch to your main branch:

git checkout main

After that, in order to merge your newFeature branch and the
changes that we created in the last chapter, run the following git
merge command:

git merge newFeature

Output:

Updating ab1007b..a281d25
Fast-forward
 feature1.html | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 feature1.html

As you were on the main branch when you ran the git merge
command, Git will take all of the commits from that branch and merge
them into the main branch.

Now, if you run the ls command, you will be able to see the new
feature1.html file, and if you check the commit history with the git
log command, you will see the commit from the newFeature branch
present on your main branch.

Before doing the merge, you could again use the git diff command to
check the differences between your current branch and the branch that
you want to merge. For example, if you are currently on the main
branch, you could use the following:

87

git diff newFeature

In this case, the merge went through smoothly as there were no merge
conflicts. However, if you are working on a real project with multiple
people making changes, there might be some merge conflicts.
Essentially this happens when changes are made to the same line of a
file, or when one developer edits a file on one branch and another
developer deletes the same file.

Resolving conflicts

Let's simulate a conflict. To do so, create a new branch:

git checkout -b conflictDemo

Then edit the feature1.html file:

echo "<p>Conflict Demo</p>" >> feature1.html

The command above will echo out the <p>Conflict Demo</p> string,
and thanks to the double grater sign >>, the string will be added to the
bottom of the feature1.html file. You can check the content of the file
with the cat command:

cat feature1.html

Output:

88

<h1>My First Feature Branch</h1>
<p>Conflict Demo</p>

You can again run git status and git diff to check what exactly has
been modified before committing.

After that, go ahead and commit the change:

git commit -am "Conflict Demo 1"

Note that we did not run the git add command, but instead, we used
the -a flag, which stands for add. You can do that for files that have
been added to git and have just been modified. If you've added a new
file, then you would have to stage it first with the git add command.

Now go switch back to your main branch:

git checkout main

And now, if you check the feature1.html file, it will only have the
<h1>My First Feature Branch</h1> line as the change that we made
is still only present on the conflictDemo branch.

Now let's go ahead and make a change to the same file:

echo "<p>Conflict: change on main branch</p>" >> feature1.html

Now we are adding again a line to the bottom of the feature1.html file
with different content.

Go ahead and stage this and commit the change:

89

git commit -am "Conflict on main"

Now your main branch and the conflictDemo branch have changes to
the same file, on the same line. So let's run the git merge command
and see what happens:

git merge conflictDemo

Output:

Auto-merging feature1.html
CONFLICT (content): Merge conflict in feature1.html
Automatic merge failed; fix conflicts and then commit the
result.

As we can see from the output, the merge is failing as there were
changes to the same file on the same line, so Git is unsure which is the
correct change.

As always, there are multiple ways to fix conflicts. Here we will go
through one.

Now if you were to check the content of the feature1.html file you will
see the following output:

<h1>My First Feature Branch</h1>
<<<<<<< HEAD
<p>Conflict: change on main branch</p>
=======
<p>Conflict Demo</p>
>>>>>>> conflictDemo

Initially, it could be a little bit overwhelming, but let's quickly review it:

90

<<<<<<< HEAD: this part here indicates the start of the changes on
your current branch. In our case, the <p>Conflict: change on
main branch</p> line is present on the main branch, which is also
the branch that we've currently switched to.
=======: this line indicates where the changes from the current
branch end and where the changes from the new branch are
coming from. In our case, the change from the new branch is the
<p>Conflict Demo</p> line.
>>>>>>> conflictDemo: this indicates the name of the branch that
the changes are coming from.

You can resolve the conflict by manually removing the lines that are not
needed, so at the end, the file will look like this:

<h1>My First Feature Branch</h1>
<p>Conflict: change on main branch</p>

In case that you are using an IDE like VS Code, for example, it will allow
you to choose which changes to keep with a click of a button.

After resolving the conflict, you will need to make another commit as
the conflict is now resolved:

git commit -am "Resolve merge conflict"

Conclusion

Git branches and merges allow you to work on a project together with
other people. One important thing to keep in mind is to make sure that
you pull the changes to your local main branch on a regular basis so
that it does not get behind the remote one.

A few more commands which you might find useful once you feel

91

comfortable with what we've covered so far are the git rebase
command and the git cherry-pick command, which lets you pick
which commits from a specific branch you would like to carry over to
your current branch.

92

Reverting changes

As with everything, there are multiple ways to do a specific thing. But
what I would usually do in this case I want to undo my latest commit
and then commit my new changes is the following.

Let's say that you made some changes and you committed the
changes:

git commit -m "Committing the wrong changes"

After that if you run git log, you will see the history of everything
that has been committed to a repository.

Unfortunately, after you commit the wrong changes, you realize
that you forget to add files to the commit or forget to add a small
change to committed files.

To solve that all you need to do is make these changes and stage
them by running git add then you can amend the last commit by
running the following command:

git commit --amend

Note: The above command will also let you change the commit
message if you need.

93

Resetting Changes (⚠️ Resetting Is Dangerous ⚠️)

You need to be careful with resetting commands because this command
will erase commits from the repository and delete it from the history.

Example:

git reset --soft HEAD~1

The above command will reset back with 1 point.

Note: the above would undo your commit, but it would keep your code
changes if you would like to get rid of the changes as well, you need to
do a hard reset: git reset --hard HEAD~1

Syntax:

git reset [--soft|--hard] [<reference-to-commit>]

After that, make your new changes

Once you are done with the changes, run git add to add any of
the files that you would like to be included in the next commit:

git add .

Then use git commit as normal to commit your new changes:

94

git commit -m "Your new commit message"

After that, you could again check your history by running:

git log

Here's a screenshot of the process:

95

96

Note: You can reset your changes by more than one commit by using
the following syntax:

git reset --soft HEAD~n

where n is the number of commits you want to reset back.

Another approach would be to use git revert COMMIT_ID instead.

Here is a quick video demo on how to do the above:

Reverting changes

https://www.youtube.com/watch?v=54Hy6KnfbuY

97

Git Clone

More often than not, rather than starting a new project from scratch,
you would either join a company and start working on an existing
project, or you would contribute to an already established open source
project. So in this case, in order to get the repository from GitHub to
your local machine, you would need to use the git clone command.

The most straightforward way to clone your GitHub repository is to first
visit the repository in your browser, and then click on the green Code
button and choose the method that you want to use to clone the
repository:

In my case, I would go for the SSH method as I already have my SSH
keys configured as per chapter 14.

As I am cloning this repository here, the URL would look like this:

git@github.com:bobbyiliev/introduction-to-bash-scripting.git

https://github.com/bobbyiliev/introduction-to-bash-scripting

98

Once you have this in my clipboard, head back to your terminal, go to a
directory where you would like to clone the repository to and then run
the following command:

git clone git@github.com:bobbyiliev/introduction-to-bash-
scripting.git

The output that you would get will look like this:

Cloning into 'introduction-to-bash-scripting'...
remote: Enumerating objects: 21, done.
remote: Counting objects: 100% (21/21), done.
remote: Compressing objects: 100% (16/16), done.
remote: Total 215 (delta 7), reused 14 (delta 4), pack-reused
194
Receiving objects: 100% (215/215), 3.08 MiB | 5.38 MiB/s,
done.
Resolving deltas: 100% (114/114), done.

Essentially what the git clone command does is to more or less
download the repository from GitHub to your local folder.

Now you can start making the changes to the project by creating a new
branch, writing some code, and finally committing and pushing your
changes!

One important thing to keep in mind is that in case that you are not the
maintainer of the repository and do not have the right to push to the
repository, you would need to first fork the original repository and then
clone the forked repository from your account. In the next chapter, we
will go through the full process of forking a repository!

99

Forking in Git

When contributing to an open-source project, you will not be able to
make the changes directly to the project. Only the repository
maintainers have that privilege.

What you need to do instead is to fork the specific repository, make the
changes to the forked project and then submit a pull request to the
original project. You will learn more about pull requests in the next
chapters.

If you clone a repository that you don't have the access to and then try
to push the changes directly to that repository, you would get the
following error:

ERROR: Permission to laravel/laravel.git denied to bobbyiliev.
Fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

This is where Forks come into play!

In order to fork a repository, you need to visit the repository via your
browser and click on the Fork button on the top right:

100

Then choose the account that you want to fork the repository to:

Then it might take a few seconds for the repository to be forked under
your account:

With that, you would have an exact copy of the repository in question
under your account.

101

The benefit here is that you can now clone the forked repository under
your account, make the changes to that repository as normal, and then
once you are ready, you can submit a pull request to the original
repository contributing your changes.

As we've now mentioned submitting pull requests a few times already,
let's go ahead and learn more about pull requests in the next chapter!

102

Git Workflow

Now that you know the basic commands, let's put it all together and go
through a basic Git workflow.

Usually, the workflow looks something like this:

First, you clone an existing project with the git clone command,
or if you are starting a new project, you initialize it with the git
init command.

After that, before starting with your code changes, it's best to
create a new Git branch where you would work on. You can do that
with the git checkout -b YOUR_BRANCH_NAME command.

Once you have your branch ready, you would start making the
changes to your code.

Then, once you are ready with the changes, you need to stage
them with the git add command.

Then, to commit/save the changes to your local Git repository, you
need to run the git commit command and provide a descriptive
commit message.

To push your local changes to your remote GitHub project, you
would use the git push origin YOUR_BRANCH_NAME command

103

Finally, once you've pushed your changes, you would need to
submit a pull request (PR) from your branch to the main branch of
the repository.

It is considered good practice to add a couple of people as
reviewers and ask them to review the changes.

Finally, once the changes have been approved, the PR would get
merged into the main branch taking all of your changes from your
branch into the main branch.

The overall process will look like this:

My advice is to create a new repository and go over this process a few
times until you feel completely comfortable with all of the commands.

104

Pull Requests

You already know how to merge changes from one branch to another
on your local Git repository.

To do the same thing on GitHub, you would need to open a Pull Request
(or a Merge Request if you are using GitLab) or a PR for short and
request a merge from your feature branch to the main branch.

The steps that you would need to take to open a Pull Request are:

If you are working on an open-source project that you are not the
maintainer of, first fork the repository as per chapter 21. Skip this
step if you are the maintainer of the repository.
Then clone the repository locally with the git clone command:

git clone git@github.com:your_user/your_repo

Create a new branch with the git checkout command:

git checkout -b branch_name

Make your code changes

Stage the changes with git add

105

git add .

And then commit them with git commit:

git commit -m "Commit Message"

Then push your new branch to GitHub with git push:

git push origin branch_name

After that, visit the repository on GitHub and click on the Pull
Requests button and then click on the green New pull request
button:

In there, choose the branch that you want to merge to and the
branch that you want to merge from:

106

Then review the changes and add a title and description and hit
the create button
If you are working on a project with multiple contributors, make
sure to select a few reviewers. Essentially reviewers are people
who you would like to review your code before it gets merged to
the main branch.

For a visual representation of the whole process, make sure to check
out this step by step tutorial as well:

How to Submit Your First Pull Request on GitHub

https://www.digitalocean.com/community/tutorials/hacktoberfest-how-to-submit-your-first-pull-request-on-github

107

Git And VS Code

As much as I love to use the terminal to do my daily tasks in the end, I
would rather do multiple tasks within one window (GUI) or perform
everything from the terminal itself.

In the past, I was using the text editors (vim, nano, etc.) in my terminal
to edit the code in my repositories and then go along with the git client
to commit my changes. Still, then I switched to Visual Studio Code to
manage and develop my code.

I will recommend you to check this article on why you should use Visual
Studio. It is an article from Visual Studio's website itself.

Why you should use Visual Studio

Visual Studio Code has integrated source control management (SCM)
and includes Git support in-the-box. Many other source control
providers are available through extensions on the VS Code Marketplace.
It also has support for handling multiple Source Control providers
simultaneously so you can open all of your projects at the same time
and make changes whenever this is needed.

https://code.visualstudio.com/docs/editor/whyvscode

108

Installing VS Code

You need to install Visual Studio Code. It runs on the macOS, Linux, and
Windows operating systems.

Follow the platform-specific guides below:

macOS
Linux
Windows

You need to install Git first before you get these features. Make sure
you install at least version 2.0.0. If you do not have git installed on your
machine, feel free to check this really useful article on How to get
started with Git

You need to set your username and email in the Git configuration, or git
will fail back to using information from your local machine when you
commit. We need to provide this information because Git embeds this
information into each commit we do.

To set this, you can execute the following commands:

git config --global user.name "John Doe"
git config --global user.email "johnde@domain.com"

The information will be saved in your ~/.gitconfig file.

[user]
 name = John Doe
 email = johndoe@domain.com

With Git installed and set up on your local machine, you are now ready

https://code.visualstudio.com/docs/setup/mac
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/windows
https://www.digitalocean.com/community/tutorials/how-to-contribute-to-open-source-getting-started-with-git
https://www.digitalocean.com/community/tutorials/how-to-contribute-to-open-source-getting-started-with-git

109

to use Git for version control with Visual Studio or using the terminal.

110

Cloning a repository in VS Code

The good thing is that Visual Studio will auto-detect if you've opened a
folder that is a repository. If you've already opened a repository, it will
be visible in the Source Control View.

If you haven't opened a folder yet, the Source Control view will give you
the option to Open Folder from your local machine or Clone Repository.

If you select Clone Repository, you will be asked for the URL of the
remote repository (for example, on GitHub) and the parent directory
under which to put the local repository.

For a GitHub repository, you would find the URL from the GitHub Code
dialog.

111

Create a branch

To create a branch open the command pallet:

Windows: Ctrl + Shift + P
Linux: Ctrl + Shift _ P
MacOS: Shift + CMD + P

And select Git Create Branch...

Then you just need to enter a name for the branch. Keep in mind that in
the bottom left corner, you can see in which branch you are. The
default one will be the main, and if you successfully create the branch,
you should see the name of the newly created branch.

If you want to switch branches, you can open the command pallet and
search for Git checkout to and then select the main branch or switch
to a different branch.

112

Setup a commit message template

If you want to speed up the process and have a predefined template for
your commit messages, you can create a simple file that will contain
this information.

To do that, open your terminal if you're on Linux or macOS and create
the following file: .gitmessage in your home directory. To create the file,
you can open it in your favorite text editor and then simply put the
default content you would like and then just save and exit the file.
Example content is:

cat ~/.gitmessage

#Title

#Summary of the commit

#Include Co-authored-by for all contributors.

To tell Git to use it as the default message that appears in your editor
when you run git commit and set the commit.template configuration
value:

$ git config --global commit.template ~/.gitmessage
$ git commit

113

Conclusion

If you prefer to code in Visual Studio Code and you also use version
control, I will recommend you to give it a go and interact with the
repositories in VS code. I believe that everyone has their own style, and
they might do things differently depending on their mood as well. As
long as you can add/modify your code and then commit your changes
to the repository, there is no exactly correct/wrong way to achieve this.
For example, you can edit your code in vim and push the changes using
the git client in your terminal or do the coding in Visual Studio and then
commit the changes using the terminal as well. You're free to do it the
way you want it and the way you find it more convenient as well. I
believe that using git within VS code can make your workflow more
efficient and robust.

114

Additional sources:

Version Control - Read more about integrated Git support.
Setup Overview - Set up and start using VS Code.
GitHub with Visual Studio - Read more about the GitHub support in
VS code
You can also check this mini video tutorial on how to use the basics
of Git version control in Visual Studio Code

Source:

Contributed by: Alex Georgiev.
Initially posted here.

https://code.visualstudio.com/docs/editor/versioncontrol
https://code.visualstudio.com/docs/setup/setup-overview
https://www.notion.so/Git-version-control-with-Visual-Studio-Code-8de38af5cf324b9d89c4827e32dfe173
https://twitter.com/AlexGeorgiev17
https://devdojo.com/alexg/version-control-with-visual-studio-code-1

115

GitHub CLI

The GitHub CLI or gh is basically GitHub on command-line.

You can interact with your GitHub account directly through your
command line and manage things like pull requests, issues, and other
GitHub actions.

In this tutorial, I will give a quick overview of how to install gh and how
to use it!

116

GitHub CLI Installation

As I will be using Ubuntu, to install gh you need to run the following
commands:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-key
C99B11DEB97541F0
sudo apt-add-repository https://cli.github.com/packages
sudo apt update
sudo apt install gh

If you are on a Mac, you can install gh using Homebrew:

brew install gh

For any other operating systems, I recommend following the steps from
the official documentation here.

Once you have gh installed, you can verify that it works with the
following command:

gh --version

This would output the gh version:

gh version 1.0.0 (2020-09-16)
https://github.com/cli/cli/releases/tag/v1.0.0

In my case, I'm running the latest gh v1.0.0, which got released just a
couple of days ago.

https://github.com/cli/cli#installation

117

Authentication

Once you have gh installed, you need to login to your GitHub account.

To do so, you need to run the following command:

gh auth login

You will see the following output:

? What account do you want to log into? [Use arrows to move,
type to filter]
> GitHub.com
 GitHub Enterprise Server

You have an option to choose between GitHub.com or GitHub
Enterprise. Click enter and then follow the authentication process.

Another useful command is the gh help command. This will give you a
list with the available gh commands that you could use:

118

USAGE
 gh <command> <subcommand> [flags]

CORE COMMANDS
 gist: Create gists
 issue: Manage issues
 pr: Manage pull requests
 release: Manage GitHub releases
 repo: Create, clone, fork, and view repositories

ADDITIONAL COMMANDS
 alias: Create command shortcuts
 api: Make an authenticated GitHub API request
 auth: Login, logout, and refresh your authentication
 completion: Generate shell completion scripts
 config: Manage configuration for gh
 help: Help about any command

FLAGS
 --help Show help for command
 --version Show gh version

EXAMPLES
 $ gh issue create
 $ gh repo clone cli/cli
 $ gh pr checkout 321

ENVIRONMENT VARIABLES
 See 'gh help environment' for the list of supported
environment variables.

LEARN MORE
 Use 'gh <command> <subcommand> --help' for more information
about a command.
 Read the manual at https://cli.github.com/manual

FEEDBACK
 Open an issue using 'gh issue create -R cli/cli'

Then let's clone an existing project which we will use to play with. As an
example, we can use the LaraSail repository. Rather than cloning the
repository using the standard git clone command, we will use gh to do
so:

https://github.com/thedevdojo/larasail

119

gh repo clone thedevdojo/larasail

You will see the following output:

Cloning into 'larasail'...

After that cd into that folder:

cd larasail

We are now ready to move to some of the more useful gh commands!

120

Useful GitHub CLI commands

Using gh, you can pretty much get all of the information for your
repository on GitHub without having even to leave your terminal.

Here's a list of some useful commands:

Working with GitHub issues

To list all open issues, run:

gh issue list

The output that you will see is:

Showing 4 of 4 open issues in thedevdojo/larasail

#25 Add option to automatically create database
(enhancement) about 3 months ago
#22 Remove PHP mcrypt as it is no longer needed
about 3 months ago
#11 Add redis support
about 8 months ago
#10 Wondering about the security of storing root MySQL
password in /etc/.larasail/tmp/mysqlpass about
3 months ago

You can even create a new issue with the following command:

gh issue create --label bug

Or if you wanted to view an existing issue, you could just run:

121

gh issue view '#25'

This would return all of the information for that specific issue number:

Add option to automatically create a database
Open • bobbyiliev opened about 3 months ago • 0 comments

Labels: enhancement

 Add an option to automatically create a new database, a
database user and
 possibly update the database details in the .env file for a
specific project

View this issue on GitHub:
https://github.com/thedevdojo/larasail/issues/25

Working with your GitHub repository

You can use the gh repo command to create, clone, or view an existing
repository:

gh repo create
gh repo clone cli/cli
gh repo view --web

For example, if we ran the gh repo view, we would see the same
README information for our repository directly in our terminal.

Working with Pull requests

You can use the gh pr command with a set of arguments to fully

122

manage your pull requests.

Some of the available options are:

 checkout: Check out a pull request in git
 checks: Show CI status for a single pull request
 close: Close a pull request
 create: Create a pull request
 diff: View changes in a pull request
 list: List and filter pull requests in this repository
 merge: Merge a pull request
 ready: Mark a pull request as ready for review
 reopen: Reopen a pull request
 review: Add a review to a pull request
 status: Show status of relevant pull requests
 view: View a pull request

With the above commands, you are ready to execute some of the main
GitHub actions you would typically take directly in your terminal!

Conclusion

Now you know what the GitHub CLI tool is and how to use it! For more
information, I would recommend checking out the official
documentation here:

https://cli.github.com/manual/

I'm a big fan of all command-line tools! They can make your life easier
and automate a lot of the daily repetitive tasks!

Initially posted here: What is GitHub CLI and how to get started

https://cli.github.com/manual/
https://devdojo.com/bobbyiliev/what-is-github-cli-and-how-to-get-started

123

Git Stash

git stash is a handy command that helps you in cases where you
might need to stash away your local changes and reset your codebase
to the most recent commit in order to work on a more urgent
bug/feature.

In other words, this command allows you to revert your current working
directory to match the HEAD commit while keeping all the local
modifications safe.

Once you are ready to get back to working on the code you had stashed
away, just restore them with a single command!

124

Stashing Your Work

git stash

For example, consider a file named index.html which has been
modified since the last commit.

Notice that the running git status command says that there are no
new changes once the git stash command is executed!

Here WIP stands for Work-In-Progress and these are used to index the
various stashed copies of your work.

An important thing to keep in mind before stashing all new changes is
that, by default, git stash will not stash all the untracked and
ignored files. (Here, untracked files are the files that weren't part of
the last commit i.e, new files in your local repo)

In case you want to include these untracked files in the stash, you'll

125

need to add the -u option.

git stash -u

Similarly, all the files in the .gitignore file (i.e, the ignored files) will
also be excluded from your stash. But you can include them by using
the -a option

git stash -a

The following illustrations depict the behaviour of the git stash
command when the above two options are included:

126

Restoring the Stashed Changes

git stash apply

This command is used to reapply all the local modifications done before
that copy of the work was stashed.

Note that another command that can be used to achieve this is the git
stash pop command. Here popping refers to the process of removing
the most recent stash content and reapplying them to your working
copy.

The difference between these two commands is that the git stash pop
command will remove these particular changes from the stash
whereas the git stash apply command will retain those changes
in the stash even after restoring them.

Consider the previous example itself, in which the file index.html was
stashed. In the following image, you can see how restoring all those
changes affects your local repo.

But what if you have multiple stashes and aren't sure which one you

127

want to start working on? This is where the next command comes into
the picture!

128

Handling Multiple Stashed Copies of Your Work

Similar to the process involved in resetting the local repository to a
particular commit, the first step involved in handling multiple stashes is
to take a look at the various stashes available.

git stash list

This command shows an indexed list of all the available stashes along
with a message corresponding to their respective recent
commits.

Consider the following example wherein there are two available
stashes. One, when a new script file was added and another when this
script file was altered.

Note that the most recent stash is always indexed as 0.

Once you know which stash you want to restore to your local codebase,
the command used to restore those modifications is:

git stash apply n

The alternative syntax used to achieve this is as follows:

git stash apply "stash@{n}"

129

Here n is the index of the stash you want to restore.

130

Git Alias

If there is a common but complex Git command that you type
frequently, consider setting up a simple Git alias for it. Aliases enable
more efficient workflows by requiring fewer keystrokes to execute a
command. It is important to note that there is no direct git alias
command. Aliases are created through the use of the git config
command and the Git configuration files.

git config --global alias.co checkout

Now when I use the command git co, it is just as if I had typed that
longer git checkout command.

git co -b branch1

Output

Switched to a new branch 'branch1'

Creating the aliases will not modify the source commands. So git
checkout will still be available even though we now have the git co
alias.

git checkout -b branch2

Output

131

Switched to a new branch 'branch2'

Aliases can also be used to wrap a sequence of Git commands into new
Git command.

132

Git Rebase

Rebasing is often used as an alternative to merging. Rebasing a branch
updates one branch with another by applying the commits of one
branch on top of the commits of another branch. For example, if
working on a feature branch that is out of date with a dev branch,
rebasing the feature branch onto dev will allow all the new commits
from dev to be included in feature. Here’s what this looks like visually:

Visualization of the command :

Syntax :

git rebase feature dev

133

where branch1 is the branch we want to rebase to the master.

Difference between Merge and Rebase :

Many people think that Merge and Rebase commands perform the same
job but actually they are completely different and we will discuss this in
the following lines.

Merge :

This command is used to integrate changes from some branch to
another branch with keeping the merged branch at its base so you can
easily return to earlier version of code if you want and the following
picture show that :

typical use of rebasing

Updating a Feature Branch

Lets say you’re working away on a feature branch, minding your own

134

business.

Then you notice some new commits on dev that you’d like to have in
your feature branch, since the new commits may affect how you
implement the feature.

You decide to run git rebase dev from your feature branch to get up-to-
date with dev. However when you run the rebase command, there are
some conflicts between the changes you made on feature and the new
commits on dev. Thankfully, the rebase process goes through each
commit one at a time and so as soon as it notices a conflict on a
commit, git will provide a message in the terminal outlining what files
need to be resolved. Once you’ve resolved the conflict, you git add your
changes to the commit and run git rebase --continue to continue the
rebase process. If there are no more conflicts, you will have successfully
rebased your feature branch onto dev.

135

Now you can continue working on your feature with the latest commits
from dev included in feature and all is well again in the world. This
process can repeat itself if the dev branch is updated with additional
commits.

Rebase :

On the other hand Rebase command is used to transfer the base of
the branch to be based at the last commit of the current branch
which make them as one branch as shown in the picture at the top.

Rebasing interactively :

You can also rebase a branche on another interactively. This means
that you will be prompted for options. The basic command looks like
this:

git rebase -i feature main

This will open your favorite editor (probably vi or vscode).

Let's create an example:

git switch main
git checkout -b feature-interactive
echo "<p>Rebasing interactively is super cool</p>" >>
feature1.html
git commit -am "Commit to test Interactive Rebase"
echo "<p>With interactive rebasing you can do really cool
stuff</p>" >> feature1.html
git commit -am "Commit to test Interactive Rebase"

So you are now on the feature-interactive branch with a commit on
this branch that doesn't exist on the main branch, and there is a new

136

commit on the main that is not in your branch.

Now using the interactive rebase commande:

git rebase -i main

Your favorite editor (vi like here or vscode if you've set it up correctly)
should be open with something like this:

137

pick a21b178 Commit to test Interactive Rebase
pick cd3400c Commit to test Interactive Rebase

Rebase 1d152d4..a21b178 onto 1d152d4
#
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous
commit
f, fixup <commit> = like "squash", but discard this commit's
log message
x, exec <command> = run command (the rest of the line) using
shell
b, break = stop here (continue rebase later with 'git rebase
--continue')
d, drop <commit> = remove commit
l, label <label> = label current HEAD with a name
t, reset <label> = reset HEAD to a label
m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]
. create a merge commit using the original merge
commit's
. message (or the oneline, if no original merge commit
was
. specified). Use -c <commit> to reword the commit
message.
#
These lines can be re-ordered; they are executed from top to
bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be
aborted.
#
Note that empty commits are commented out

As you can see here, the first lines are the commits you made in this
feature-interactive branche. Then, the remaining of the file is the
help message. If you look at this help message closely, you will notice
that there are plenty of options. To use them all you need to do is to
prefix the commit line you want to work on by the name of the

138

command or its shortcut letter.

The basic command is pick, meaning that the current rebase will use
these two commits to do its work.

In our case, if you want to update the commit message of the second
commit, you would update this file like this (we just show the first lines
as the remaining are not updates):

pick a21b178 Commit to test Interactive Rebase
r cd3400c Commit to test Interactive Rebase

Rebase 1d152d4..a21b178 onto 1d152d4
#
...

Then you would save the file, as it is vi here, you would hit the key :
and type wq. You should now see another file opened in the same
editor, where you can edit your commit message, then save the file and
that's it.

You can look at the result with the following command:

git log

Now that you now the basics on how to use this command, take a look
at the help message. There are some usefull commend in there. My
favorites are the reword, fixup and drop but feel free to experiment by
yourself.

139

Git Switch

git switch is not a new feature but an additional command to
switch/change branch feature which is already available in the
overloaded git checkout command. That's why, pretty recently, the Git
community decided to publish a new command: git switch. As the
name implies.

Syntax :

git switch <branch-name>

Visualization of the command:

140

Difference between Switch and Checkout:

As you can see, its usage is very straightforward and similar to "git
checkout". But the huge advantage over the "checkout" command is
that "switch" does NOT have a million other meanings and capabilities.

As it is quite a new member of the Git command family, you should
check if your Git installation already includes it.

Switch Back and Forth Between Two Branches

In some scenarios, it might be necessary for you to switch back and
forth between two branches repeatedly. Instead of always writing out
the branch names in full, you can simply use the following shortcut:

Syntax :

git switch -

Using the dash character as its only parameter, the "git switch"
command will check out the previously active branch. As said, this can
come in very handy if you have to go back and forth between two
branches a bunch of times.

141

GitHub Markdown Cheatsheet

Heading 1

Markup : # Heading 1 #

-OR-

Markup : ============= (below H1 text)

Heading 2

Markup : ## Heading 2 ##

-OR-

Markup: --------------- (below H2 text)

Heading 3

Markup : ### Heading 3 ###

Heading 4

Markup : #### Heading 4 ####

142

Common text

Markup : Common text

Emphasized text

Markup : _Emphasized text_ or *Emphasized text*

~~Strikethrough text~~

Markup : ~~Strikethrough text~~

Strong text

Markup : __Strong text__ or **Strong text**

Strong emphasized text

Markup : ___Strong emphasized text___ or ***Strong emphasized
text***

Named Link and http://www.google.fr/ or
http://example.com/

http://www.google.fr/
http://example.com/

143

Markup : [Named Link](http://www.google.fr/ "Named link
title") and http://www.google.fr/ or <http://example.com/>

heading-1

Markup: [heading-1](#heading-1 "Goto heading-1")

Table, like this one :

First Header Second Header
Content Cell Content Cell
Content Cell Content Cell

First Header	Second Header
Content Cell | Content Cell
Content Cell | Content Cell

Adding a pipe | in a cell :

First Header Second Header
Content Cell Content Cell
Content Cell |

First Header	Second Header
Content Cell | Content Cell
Content Cell | \|

Left, right and center aligned table

Left aligned Header Right aligned
Header

Center aligned
Header

144

Left aligned Header Right aligned
Header

Center aligned
Header

Content Cell Content Cell Content Cell
Content Cell Content Cell Content Cell

Left aligned Header | Right aligned Header | Center aligned
Header
| :--- | ---: | :---:
Content Cell | Content Cell | Content Cell
Content Cell | Content Cell | Content Cell

code()

Markup : `code()`

 var specificLanguage_code =
 {
 "data": {
 "lookedUpPlatform": 1,
 "query": "Kasabian+Test+Transmission",
 "lookedUpItem": {
 "name": "Test Transmission",
 "artist": "Kasabian",
 "album": "Kasabian",
 "picture": null,
 "link":
"http://open.spotify.com/track/5jhJur5n4fasblLSCOcrTp"
 }
 }
 }

Markup : ```javascript
         ```



145

Unordered List

Bullet list
Nested bullet

Sub-nested bullet etc
Bullet list item 2

 Markup : * Bullet list
              * Nested bullet
                  * Sub-nested bullet etc
          * Bullet list item 2
-OR-
 Markup : - Bullet list
              - Nested bullet
                  - Sub-nested bullet etc
          - Bullet list item 2

Ordered List

A numbered list1.
A nested numbered list1.
Which is numbered2.

Which is numbered2.

 Markup : 1. A numbered list
              1. A nested numbered list
              2. Which is numbered
          2. Which is numbered

[ ] An uncompleted task
[x] A completed task



146

 Markup : - [ ] An uncompleted task
          - [x] A completed task

[ ] An uncompleted task
[ ] A subtask

 Markup : - [ ] An uncompleted task
              - [ ] A subtask

Blockquote
Nested blockquote Markup : > Blockquote >> Nested Blockquote

Horizontal line :

Markup :  - - - -

Image with alt :

Markup : ![picture alt](http://via.placeholder.com/200x150
"Title is optional")



147

Foldable text:

Title 1

Content 1 Content 1 Content 1 Content 1 Content 1

Title 2

Content 2 Content 2 Content 2 Content 2 Content 2

Markup : <details>
           <summary>Title 1</summary>
           <p>Content 1 Content 1 Content 1 Content 1 Content
1</p>
         </details>

<h3>HTML</h3>
<p> Some HTML code here </p>

Link to a specific part of the page:

Go To TOP

Markup : [text goes here](#section_name)
          section_title<a name="section_name"></a>

Hotkey:

⌘F

⇧⌘F



148

Markup : <kbd>⌘F</kbd>

Hotkey list:

Key Symbol
Option ⌥
Control ⌃
Command ⌘
Shift ⇧
Caps Lock ⇪
Tab ⇥
Esc ⎋
Power ⌽
Return ↩
Delete ⌫
Up ↑
Down ↓
Left ←
Right →

Emoji:

:exclamation: Use emoji icons to enhance text. :+1: Look up emoji
codes at emoji-cheat-sheet.com

Markup : Code appears between colons :EMOJICODE:

http://emoji-cheat-sheet.com/


149

Create your GitHub profile

Apart from looking awesome, a good GitHub profile shows people what
you can do and gives you a chance to show it off. Also, job applications
often include a section to add your GitHub profile link so this can be
your chance to shine �

View full profile

Markdown

To create a GitHub profile, you need to understand Markdown.
Markdown is a lightweight markup language for creating formatted text
using a plain-text editor. Check out this Markdown Cheatsheet.

https://github.com/elenajp
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet#images


150

Create a GitHub repository for your profile page

First of all you need to create a new repository. Use this link
https://github.com/new to do so. You must name your repository the
same as your GitHub username as shown below:

You will discover your secret/special repository! Make the repository
public and select add a README file. Then you are done creating your
repository. I recommend making your repository private whilst you work
on it and then making it public once complete. Now time to add content
and make it look awesome.

Tip: When working on a markdown file in your development
environment, you can preview what the page will look like by pressing
CMD+Shift+V or Ctrl+Shift+V

Adding a header

The first thing people on your profile notice is the header. Perhaps you
could add a photo of something you love, your hobby, art that inspires
you, an image of some code you worked on, etc. You could even have
your profile picture match it. I recommend an actual photo of yourself,



151

rather than a cartoon. The markdown needed is:

![Repository Banner](https://raw.githubusercontent.com/GITHUB-
USERNAME/GITHUB-USERNAME/banner_photo.png)

Here is a website that allows you to generate header images for your
GitHub profile READMEs. https://reheader.glitch.me/

Introduce yourself

Say hello to your visitors. Write an introductory paragraph. Tell them a
bit about yourself, where you are from, what inspires you. This section
is where you can let your personality shine though.

Mention what you are up to

You can show visitors to your profile what you are up to and what you
are working on. This is a great way for them to get to know a bit more
about you.

� I'm interested in...
� I’m currently working on...
� I’m currently studying...
� I’m looking to...
� I’m looking for help with...
� Ask me about...
⚡ Fun fact:...

Include statistics

You can display your GitHub stats on your profile. These include
displaying total commits made, total pull requests, total issues etc.
Check out these cool themes to display your statistics:



152

Click here to use one of these cool themes

Add social media buttons

Adding social media buttons is a great way to direct visitors or even
employers to your social media platforms. For example to add Twitter:

[![Twitter
URL](https://img.shields.io/twitter/url/https/twitter.com/USER
-
NAME.svg?style=social&label=Twitter)](https://twitter.com/USER
-NAME)

Pin repositories to your GitHub profile

As the number of repositories you've created or contributed to grows,
you might want to showcase a few of these repositories straight on your
profile. This feature is extra useful when you want to present your
portfolio to a potential employer and want them to see the work you are
proudest of first!

https://github.com/anuraghazra/github-readme-stats#themes
https://twitter.com/USER-NAME


153

This is how you do it:

In the top right corner, click on your profile photo and select "Your
profile" from the menu:

In the section saying "Popular repositories" or "Pinned", click on
"Customize your pins":

After the previous step, the "Edit pinned items" modal will open. Here,
you can choose a combination of up to six repositories and/or gists to
display:



154

Once you've decided which repositories you want to pin, click "Save
pins".

Get inspired

Check out these useful links to inspire you, to help you with your GitHub
profile:

https://github.com/abhisheknaiidu/awesome-github-profile-readme
https://github.com/elangosundar/awesome-README-templates

Be creative

This is a fun project to work on. Be creative! There is a lot more you can
add to your profile. From adding different statistics, technologies &
tools you use, emoji GIFs, etc. You can ask friends or other developers



155

their opinions of your GitHub profile. Remember don't overdo it. No one
wants super fast animations or flashing images that will hurt their eyes.
Think of nice color themes, what works well together, and add a nice
profile pic. Good luck!



156

Git Cheat Sheet

Here is a list of the Git commands mentioned throughout the eBook

Git Configuration

Before you initialize a new git repository or start making commits, you
should set up your git identity.

To change the name that is associated with your commits, you can use
the git config command:

git config --global user.name "Your Name"

The same would go for changing your email address associated with
your commits as well:

git config --global user.email "yourmail@example.com"

That way, once you have the above configured when you make a
commit and then check the git log, you will be able to see that the
commit is associated with the details that you've configured above.

git log

In my case the output looks like this:



157

commit 45f96b8c2ef143011f11b5f6cc7a3ae20db5349d (HEAD -> main,
origin/master, origin/HEAD)
Author: Bobby Iliev <bobby@bobbyiliev.com>
Date:   Fri Jun 19 17:03:53 2020 +0300

    Nginx server name for www version (#26)

Initializing a project

To initialize a new local git project, open your git or bash terminal, cd to
the directory that you would like your project to be stored at, and then
run:

git init .

If you already have an existing project in GitHub, for example, you can
clone it by using the git clone command:

git clone your_project_url

Current status

To check the current status of your local git repository, you need to use
the following command:

git status

This is probably one of the most used commands as you would need to
check the status of your local repository quite often to be able to tell
what files have been changed, staged, or deleted.



158

Add a file to the staging area

Let's say that you have a static HTML project, and you have already
initialized your git repository.

After that, at a later stage, you decide to add a new HTML file called
about-me.html, then you've added some HTML code in there already.
To add your new file so that it is also tracked in git, you first need to use
the git add command:

git add file_name

This will stage your new file, which essentially means that the next time
you make a commit, the change will be part of the commit.

To check that, you can again run the git status command:

git status

You will see the following output:

On branch main
Your branch is up to date with 'origin/main'.

Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

        new file:   about-me.html

Removing files

To remove a file from your git project, use the following command:



159

git rm some_file.txt

Then after that, if you run git status again, you will see that the
some_file.txt file has been deleted:

On branch main
Your branch is up to date with 'origin/main'.

Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

        deleted:    some_file.txt

Discard changes for a file

In case that you've made a mistake and you want to discard the
changes for a specific file and reset the content of that file as it was in
the latest commit, you need to use the command below:

git checkout -- file_name

This is a convenient command as you can quickly revert a file to its
original content.

Commit to local

Once you've made your changes and you've staged them with the git
add command, you need to commit your changes.

To do so, you have to use the git commit command:



160

git commit

This will open a text editor where you could type your commit message.

Instead, you could use the -m flag to specify the commit message
directly in your command:

git commit -m "Nice commit message here"

List branches

To list all of the available local branches, just run the following
command:

git branch -a

You would get a list of both local and remote branches, the output
would look like this:

  bugfix/nginx-www-server-name
  develop
* main
  remotes/origin/HEAD -> origin/master
  remotes/origin/bugfix/nginx-www-server-name
  remotes/origin/develop
  remotes/origin/main

The remotes keyword indicates that those branches are remote
branches.



161

Fetch changes from remote and merge the current
branch with upstream

If you are working together with a team of developers working on the
same project, more often than not, you would need to fetch the
changes that your colleagues have made to have them locally on your
PC.

To do that, all you need to do is to use the git pull command:

git pull origin branch_name

Note that this will also merge the new changes to the current branch
that you are checked into.

Create a new branch

To create a new branch, all you need to do is use the git branch
command:

git branch branch_name

Instead of the above, I prefer using the following command as it creates
a new branch and also switches you to the newly created branch:

git checkout -b branch_name

If the branch_name already exists, you would get a warning that the
branch name exists and you would not be checked out to it,



162

Push local changes to remote

Then finally, once you've made all of your changes, you've staged them
with the git add . command, and then you committed the changes
with the git commit command, you have to push those changes to the
remote git repository.

To do so, just use the git push command:

git push origin branch_name

Delete a branch

git branch -d branch_name

Switch to a new branch

git checkout branch_name

As mentioned above, if you add the -b flag, it would create the branch if
it does not exist.

Conclusion

Knowing the above commands will let you manage your project like a
pro!

If you are interested in improving your command line skills in general, I
strongly recommend this Linux Command-line basics course here!

https://devdojo.com/course/linux-command-line-basics


163

Conclusion

Congratulations! You have just completed the Git basics guide!

If you found this useful, be sure to star the project on GitHub!

If you have any suggestions for improvements, make sure to contribute
pull requests or open issues.

In this introduction to Git and GitHub eBook, we just covered the basics,
but you still have enough under your belt to start using Git and start
contributing to some awesome open source projects!

As the next step, try to create a GitHub project, clone it locally and push
a project that you've been working on to GitHub! I could also
recommend the following GitHub training here.

In case that this eBook inspired you to contribute to some amazing
open-source project, make sure to tweet about it and tag @bobbyiliev_
so that we can check it out!

Congrats again on completing this eBook!

https://github.com/bobbyiliev/introduction-to-git-and-github-ebook
https://training.github.com/
https://twitter.com

	Contents
	About the book
	About the author
	Sponsors
	Ebook PDF Generation Tool
	Ebook ePub Generation Tool
	Book Cover
	License

	Introduction to Git
	Version Control
	Installing Git
	Basic Shell Commands
	Git Configuration
	Introduction to GitHub
	GitHub Stars

	Initializing a Git project
	Git Status
	Git Add
	Git Commit
	Signing Commits

	Git Diff
	Git Log
	Gitignore
	SSH Keys
	Git Push
	Creating and Linking a Remote Repository
	Pushing Commits
	Checking the Remote Repository

	Git Pull
	Git Branches
	Git Merge
	Reverting changes
	Resetting Changes (⚠️ Resetting Is Dangerous ⚠️)

	Git Clone
	Forking in Git
	Git Workflow
	Pull Requests
	Git And VS Code
	Installing VS Code
	Cloning a repository in VS Code
	Create a branch
	Setup a commit message template
	Conclusion
	Additional sources:

	GitHub CLI
	GitHub CLI Installation
	Authentication
	Useful GitHub CLI commands

	Git Stash
	Stashing Your Work
	Restoring the Stashed Changes
	Handling Multiple Stashed Copies of Your Work

	Git Alias
	Git Rebase
	Git Switch
	GitHub Markdown Cheatsheet
	Create your GitHub profile
	Git Cheat Sheet
	Conclusion

