

Table of Contents

About the book 10 ...

About the author 11 ...

Sponsors 12 ..

Ebook PDF Generation Tool 14 ...

Book Cover 15 ..

License 16 ..

Chapter 1: Introduction to Docker 17 ...

What is Docker? 18 ..

Why Use Docker? 19 ..

Docker Architecture 20 ...

Containers vs. Virtual Machines 21 ..

Basic Docker Workflow 22 ..

Docker Components 23 ..

Use Cases for Docker 24 ..

Conclusion 25 ...

Chapter 2: Installing Docker 26 ...

Docker Editions 27 ...

Installing Docker on Linux 28 ...

Installing Docker on macOS 32 ..

Installing Docker on Windows 33 ..

Post-Installation Steps 34 ...

Docker Desktop vs Docker Engine 35 ...

Troubleshooting Common Installation Issues 36 ..

Updating Docker 37 ..

Uninstalling Docker 38 ...

Conclusion 39 ...

Chapter 3: Working with Docker Containers 40 ...

Running Your First Container 41 ...

Basic Docker Commands 42 ...

Running Containers in Different Modes 44 ...

Port Mapping 45 ...

Working with Container Logs 46 ...

Executing Commands in Running Containers 47 ..

Practical Example: Running an Apache Container 48 ...

Container Resource Management 49 ...

Container Networking 50 ..

Data Persistence with Volumes 51 ...

Container Health Checks 52 ...

Cleaning Up 53 ...

Conclusion 54 ...

Chapter 4: What are Docker Images 55 ...

Key Concepts 56 ...

Working with Docker Images 57 ...

Building Custom Images 59 ..

Image Tagging 60 ...

Pushing Images to Docker Hub 61 ..

Image Layers and Caching 62 ..

Multi-stage Builds 63 ..

Image Scanning and Security 64 ..

Best Practices for Working with Images 65 ..

Image Management and Cleanup 66 ..

Conclusion 67 ...

Chapter 5: What is a Dockerfile 68 ...

Anatomy of a Dockerfile 69 ..

Dockerfile Instructions 70 ...

Best Practices for Writing Dockerfiles 74 ..

Advanced Dockerfile Concepts 76 ..

Conclusion 77 ...

Chapter 6: Docker Networking 78 ...

Docker Network Drivers 79 ..

Working with Docker Networks 80 ...

Deep Dive into Network Drivers 82 ..

Network Troubleshooting 84 ..

Best Practices 85 ..

Advanced Topics 86 ...

Conclusion 87 ...

Chapter 7: Docker Volumes 88 ..

Why Use Docker Volumes? 89 ..

Types of Docker Volumes 90 ..

Working with Docker Volumes 92 ...

Volume Drivers 94 ..

Best Practices for Using Docker Volumes 95 ..

Advanced Volume Concepts 96 ..

Troubleshooting Volume Issues 97 ...

Conclusion 98 ...

Chapter 8: Docker Compose 99 ...

Key Benefits of Docker Compose 100 ..

The docker-compose.yml File 101 ..

Key Concepts in Docker Compose 102 ...

Basic Docker Compose Commands 103 ...

Advanced Docker Compose Features 104 ..

Practical Examples 106 ..

Best Practices for Docker Compose 111 ...

Scaling Services 112 ..

Networking in Docker Compose 113 ..

Volumes in Docker Compose 114 ...

Conclusion 115 ...

Chapter 9: Docker Security Best Practices 116 ..

1. Keep Docker Updated 117 ..

2. Use Official Images 118 ..

3. Scan Images for Vulnerabilities 119 ...

4. Limit Container Resources 120 ...

5. Use Non-Root Users 121 ...

6. Use Secret Management 122 ...

7. Enable Content Trust 123 ...

8. Use Read-Only Containers 124 ...

9. Implement Network Segmentation 125 ..

10. Regular Security Audits 126 ...

11. Use Security-Enhanced Linux (SELinux) or AppArmor 127

12. Implement Logging and Monitoring 128 ...

Conclusion 129 ...

Chapter 10: Docker in Production: Orchestration with Kubernetes 130

Key Kubernetes Concepts 131 ..

Setting Up a Kubernetes Cluster 132 ...

Deploying a Docker Container to Kubernetes 133 ..

Scaling in Kubernetes 135 ..

Rolling Updates 136 ...

Monitoring and Logging 137 ...

Kubernetes Dashboard 138 ..

Persistent Storage in Kubernetes 139 ..

Kubernetes Networking 140 ...

Kubernetes Secrets 141 ...

Helm: The Kubernetes Package Manager 142 ..

Best Practices for Kubernetes in Production 143 ..

Conclusion 144 ...

Chapter 11: Docker Performance Optimization 145 ..

1. Optimizing Docker Images 146 ..

2. Container Resource Management 148 ...

3. Networking Optimization 149 ...

4. Storage Optimization 150 ...

5. Logging and Monitoring 151 ...

6. Docker Daemon Optimization 152 ..

7. Application-Level Optimization 153 ..

8. Benchmarking and Profiling 154 ...

9. Orchestration-Level Optimization 155 ..

Conclusion 156 ...

Chapter 12: Docker Troubleshooting and Debugging 157

1. Container Lifecycle Issues 158 ...

2. Networking Issues 159 ...

3. Storage and Volume Issues 160 ...

4. Resource Constraints 161 ..

5. Image-related Issues 162 ...

6. Docker Daemon Issues 163 ..

7. Debugging Techniques 164 ..

8. Performance Debugging 165 ..

9. Docker Compose Troubleshooting 166 ...

Conclusion 167 ...

Chapter 13: Advanced Docker Concepts and Features 168

1. Multi-stage Builds 169 ..

2. Docker BuildKit 170 ..

3. Custom Bridge Networks 171 ...

4. Docker Contexts 172 ..

5. Docker Content Trust (DCT) 173 ..

6. Docker Secrets 174 ..

7. Docker Health Checks 175 ...

8. Docker Plugins 176 ...

9. Docker Experimental Features 177 ..

10. Container Escape Protection 178 ...

11. Custom Dockerfile Instructions 179 ..

12. Docker Manifest 180 ...

13. Docker Buildx 181 ..

14. Docker Compose Profiles 182 ...

Conclusion 183 ...

Chapter 14: Docker in CI/CD Pipelines 184 ..

1. Docker in Continuous Integration 185 ..

2. Docker in Continuous Deployment 186 ..

3. Docker Compose in CI/CD 188 ..

4. Security Scanning 189 ..

5. Performance Testing 190 ...

6. Environment-Specific Configurations 191 ...

7. Caching in CI/CD 192 ..

8. Blue-Green Deployments with Docker 193 ...

9. Monitoring and Logging in CI/CD 194 ...

Conclusion 195 ...

Chapter 15: Docker and Microservices Architecture 196 ..

1. Principles of Microservices 197 ..

2. Dockerizing Microservices 198 ...

3. Inter-service Communication 199 ..

4. Service Discovery 201 ..

5. API Gateway 202 ..

6. Data Management 203 ...

7. Monitoring Microservices 204 ...

8. Scaling Microservices 205 ..

9. Testing Microservices 206 ..

10. Deployment Strategies 207 ..

Conclusion 208 ...

Chapter 16: Docker for Data Science and Machine Learning 209

1. Setting Up a Data Science Environment 210 ..

2. Managing Dependencies with Docker 211 ...

3. GPU Support for Machine Learning 212 ..

4. Distributed Training with Docker Swarm 213 ...

5. MLOps with Docker 214 ..

6. Data Pipeline with Apache Airflow 215 ...

7. Reproducible Research with Docker 216 ..

8. Big Data Processing with Docker 217 ...

9. Automated Machine Learning (AutoML) with Docker 218

10. Hyperparameter Tuning at Scale 219 ...

Conclusion 220 ...

What is Docker Swarm mode 221 ...

Docker Services 222 ...

Building a Swarm 223 ...

Managing the cluster 225 ...

Promote a worker to manager 227 ...

Using Services 228 ...

Scaling a service 230 ...

Deleting a service 232 ..

Docker Swarm Knowledge Check 233 ..

Conclusion 234 ...

Other eBooks 235 ...

10

About the book

This version was published on August 19 2024

This is an introduction to Docker ebook that will help you learn the basics of Docker
and how to start using containers for your SysOps, DevOps, and Dev projects. No
matter if you are a DevOps/SysOps engineer, developer, or just a Linux enthusiast, you
will most likely have to use Docker at some point in your career.

The guide is suitable for anyone working as a developer, system administrator, or a
DevOps engineer and wants to learn the basics of Docker.

11

About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps Engineer since
2014. I am an avid Linux lover and supporter of the open-source movement philosophy.
I am always doing that which I cannot do in order that I may learn how to do it, and I
believe in sharing knowledge.

I think it's essential always to keep professional and surround yourself with good
people, work hard, and be nice to everyone. You have to perform at a consistently
higher level than others. That's the mark of a true professional.

For more information, please visit my blog at https://bobbyiliev.com, follow me on
Twitter @bobbyiliev_ and YouTube.

https://bobbyiliev.com
https://twitter.com/bobbyiliev_
https://www.youtube.com/channel/UCQWmdHTeAO0UvaNqve9udRw

12

Sponsors

This book is made possible thanks to these fantastic companies!

Materialize

The Streaming Database for Real-time Analytics.

Materialize is a reactive database that delivers incremental view updates. Materialize
helps developers easily build with streaming data using standard SQL.

DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity developers love and
businesses trust to run production applications at scale.

It provides highly available, secure, and scalable compute, storage, and networking
solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA, DigitalOcean offers
transparent and affordable pricing, an elegant user interface, and one of the largest
libraries of open source resources available.

For more information, please visit https://www.digitalocean.com or follow
@digitalocean on Twitter.

If you are new to DigitalOcean, you can get a free $100 credit and spin up your own
servers via this referral link here:

Free $200 Credit For DigitalOcean

DevDojo

The DevDojo is a resource to learn all things web development and web design. Learn
on your lunch break or wake up and enjoy a cup of coffee with us to learn something
new.

Join this developer community, and we can all learn together, build together, and grow
together.

Join DevDojo

https://materialize.com/
https://www.digitalocean.com
https://twitter.com/digitalocean
https://m.do.co/c/2a9bba940f39
https://devdojo.com?ref=bobbyiliev

13

For more information, please visit https://www.devdojo.com or follow @thedevdojo on
Twitter.

https://www.devdojo.com?ref=bobbyiliev
https://twitter.com/thedevdojo

14

Ebook PDF Generation Tool

This ebook was generated by Ibis developed by Mohamed Said.

Ibis is a PHP tool that helps you write eBooks in markdown.

https://github.com/themsaid/ibis/
https://github.com/themsaid

15

Book Cover

The cover for this ebook was created with Canva.com.

If you ever need to create a graphic, poster, invitation, logo, presentation – or anything
that looks good — give Canva a go.

https://www.canva.com/join/determined-cork-learn

16

License

MIT License

Copyright (c) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

17

Chapter 1: Introduction to
Docker

18

What is Docker?

Docker is an open-source platform that automates the deployment, scaling, and
management of applications using containerization technology. It allows developers to
package applications and their dependencies into standardized units called containers,
which can run consistently across different environments.

Key Concepts:

Containerization: A lightweight form of virtualization that packages1.
applications and their dependencies together.
Docker Engine: The runtime that allows you to build and run containers.2.
Docker Image: A read-only template used to create containers.3.
Docker Container: A runnable instance of a Docker image.4.
Docker Hub: A cloud-based registry for storing and sharing Docker images.5.

19

Why Use Docker?

Docker offers numerous advantages for developers and operations teams:

Consistency: Ensures applications run the same way in development, testing,1.
and production environments.
Isolation: Containers are isolated from each other and the host system,2.
improving security and reducing conflicts.
Portability: Containers can run on any system that supports Docker, regardless3.
of the underlying infrastructure.
Efficiency: Containers share the host system's OS kernel, making them more4.
lightweight than traditional virtual machines.
Scalability: Easy to scale applications horizontally by running multiple5.
containers.
Version Control: Docker images can be versioned, allowing for easy rollbacks6.
and updates.

20

Docker Architecture

Docker uses a client-server architecture:

Docker Client: The primary way users interact with Docker through the1.
command line interface (CLI).
Docker Host: The machine running the Docker daemon (dockerd).2.
Docker Daemon: Manages Docker objects like images, containers, networks,3.
and volumes.
Docker Registry: Stores Docker images (e.g., Docker Hub).4.

Here's a simplified diagram of the Docker architecture:

┌─────────────┐ ┌─────────────────────────────────────┐
│ Docker CLI │ │ Docker Host │
│ (docker) │◄───►│ ┌────────────┐ ┌───────────┐ │
└─────────────┘ │ │ Docker │ │ Containers│ │
 │ │ Daemon │◄────►│ and │ │
 │ │ (dockerd) │ │ Images │ │
 │ └────────────┘ └───────────┘ │
 └─────────────────────────────────────┘
 ▲
 │
 ▼
 ┌─────────────────────┐
 │ Docker Registry │
 │ (Docker Hub) │
 └─────────────────────┘

21

Containers vs. Virtual Machines

While both containers and virtual machines (VMs) are used for isolating applications,
they differ in several key aspects:

Aspect Containers Virtual Machines
OS Share host OS kernel Run full OS and kernel
Resource Usage Lightweight, minimal overhead Higher resource usage
Boot Time Seconds Minutes
Isolation Process-level isolation Full isolation
Portability Highly portable across different OSes Less portable, OS-dependent
Performance Near-native performance Slight performance overhead
Storage Typically smaller (MBs) Larger (GBs)

22

Basic Docker Workflow

Build: Create a Dockerfile that defines your application and its dependencies.1.
Ship: Push your Docker image to a registry like Docker Hub.2.
Run: Pull the image and run it as a container on any Docker-enabled host.3.

Here's a simple example of this workflow:

Build an image
docker build -t myapp:v1 .

Ship the image to Docker Hub
docker push username/myapp:v1

Run the container
docker run -d -p 8080:80 username/myapp:v1

23

Docker Components

Dockerfile: A text file containing instructions to build a Docker image.1.
Docker Compose: A tool for defining and running multi-container Docker2.
applications.
Docker Swarm: Docker's native clustering and orchestration solution.3.
Docker Network: Facilitates communication between Docker containers.4.
Docker Volume: Provides persistent storage for container data.5.

24

Use Cases for Docker

Microservices Architecture: Deploy and scale individual services1.
independently.
Continuous Integration/Continuous Deployment (CI/CD): Streamline2.
development and deployment processes.
Development Environments: Create consistent development environments3.
across teams.
Application Isolation: Run multiple versions of an application on the same host.4.
Legacy Application Migration: Containerize legacy applications for easier5.
management and deployment.

25

Conclusion

Docker has revolutionized how applications are developed, shipped, and run. By
providing a standardized way to package and deploy applications, Docker addresses
many of the challenges faced in modern software development and operations. As we
progress through this book, we'll dive deeper into each aspect of Docker, providing you
with the knowledge and skills to leverage this powerful technology effectively.

26

Chapter 2: Installing Docker

Installing Docker is the first step in your journey with containerization. This chapter
will guide you through the process of installing Docker on various operating systems,
troubleshooting common issues, and verifying your installation.

27

Docker Editions

Before we begin, it's important to understand the different Docker editions available:

Docker Engine - Community: Free, open-source Docker platform suitable for1.
developers and small teams.
Docker Engine - Enterprise: Designed for enterprise development and IT2.
teams building, running, and operating business-critical applications at scale.
Docker Desktop: An easy-to-install application for Mac or Windows3.
environments that includes Docker Engine, Docker CLI client, Docker Compose,
Docker Content Trust, Kubernetes, and Credential Helper.

For most users, Docker Engine - Community or Docker Desktop will be sufficient.

28

Installing Docker on Linux

Docker runs natively on Linux, making it the ideal platform for Docker containers.
There are two main methods to install Docker on Linux: using the convenience script or
manual installation for specific distributions.

Method 1: Using the Docker Installation Script
(Recommended for Quick Setup)

Docker provides a convenient script that automatically detects your Linux distribution
and installs Docker for you. This method is quick and works across many Linux
distributions:

Run the following command to download and execute the Docker installation1.
script:

wget -qO- https://get.docker.com | sh

Once the installation is complete, start the Docker service:2.

sudo systemctl start docker

Enable Docker to start on boot:3.

sudo systemctl enable docker

This method is ideal for quick setups and testing environments. However, for
production environments, you might want to consider the manual installation method
for more control over the process.

29

Method 2: Manual Installation for Specific Distributions

For more control over the installation process or if you prefer to follow distribution-
specific steps, you can manually install Docker. Here are instructions for popular Linux
distributions:

Docker runs natively on Linux, making it the ideal platform for Docker containers.
Here's how to install Docker on popular Linux distributions:

Ubuntu

Update your package index:1.

sudo apt-get update

Install prerequisites:2.

sudo apt-get install apt-transport-https ca-certificates
curl software-properties-common

Add Docker's official GPG key:3.

curl -fsSL https://download.docker.com/linux/ubuntu/gpg |
sudo apt-key add -

Set up the stable repository:4.

sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release -
cs) stable"

Update the package index again:5.

30

sudo apt-get update

Install Docker:6.

sudo apt-get install docker-ce docker-ce-cli containerd.io

CentOS

Install required packages:1.

sudo yum install -y yum-utils device-mapper-persistent-
data lvm2

Add Docker repository:2.

sudo yum-config-manager --add-repo
https://download.docker.com/linux/centos/docker-ce.repo

Install Docker:3.

sudo yum install docker-ce docker-ce-cli containerd.io

Start and enable Docker:4.

sudo systemctl start docker
sudo systemctl enable docker

31

Other Linux Distributions

For other Linux distributions, refer to the official Docker documentation:
https://docs.docker.com/engine/install/

32

Installing Docker on macOS

For macOS, the easiest way to install Docker is by using Docker Desktop:

Download Docker Desktop for Mac from the official Docker website:1.
https://www.docker.com/products/docker-desktop

Double-click the downloaded .dmg file and drag the Docker icon to your2.
Applications folder.

Open Docker from your Applications folder.3.

Follow the on-screen instructions to complete the installation.4.

33

Installing Docker on Windows

For Windows 10 Pro, Enterprise, or Education editions, you can install Docker Desktop:

Download Docker Desktop for Windows from the official Docker website:1.
https://www.docker.com/products/docker-desktop

Double-click the installer to run it.2.

Follow the installation wizard to complete the installation.3.

Once installed, Docker Desktop will start automatically.4.

For Windows 10 Home or older versions of Windows, you can use Docker Toolbox,
which uses Oracle VirtualBox to run Docker:

Download Docker Toolbox from: https://github.com/docker/toolbox/releases1.

Run the installer and follow the installation wizard.2.

Once installed, use the Docker Quickstart Terminal to interact with Docker.3.

34

Post-Installation Steps

After installing Docker, there are a few steps you should take:

Verify the installation:1.

docker version
docker run hello-world

Configure Docker to start on boot (Linux only):2.

sudo systemctl enable docker

Add your user to the docker group to run Docker commands without sudo (Linux3.
only):

sudo usermod -aG docker $USER

Note: You'll need to log out and back in for this change to take effect.

35

Docker Desktop vs Docker Engine

It's important to understand the difference between Docker Desktop and Docker
Engine:

Docker Desktop is a user-friendly application that includes Docker Engine,
Docker CLI client, Docker Compose, Docker Content Trust, Kubernetes, and
Credential Helper. It's designed for easy installation and use on Mac and
Windows.

Docker Engine is the core Docker runtime available for Linux systems. It
doesn't come with the additional tools included in Docker Desktop but can be
installed alongside them separately.

36

Troubleshooting Common Installation Issues

Permission denied: If you encounter "permission denied" errors, ensure you've1.
added your user to the docker group or are using sudo.

Docker daemon not running: On Linux, try starting the Docker service: sudo2.
systemctl start docker

Conflict with VirtualBox (Windows): Ensure Hyper-V is enabled for Docker3.
Desktop, or use Docker Toolbox if you need to keep using VirtualBox.

Insufficient system resources: Docker Desktop requires at least 4GB of RAM.4.
Increase your system's or virtual machine's allocated RAM if needed.

37

Updating Docker

To update Docker:

On Linux, use your package manager (e.g., apt-get upgrade docker-ce
on Ubuntu)
On Mac and Windows, Docker Desktop will notify you of updates automatically

38

Uninstalling Docker

If you need to uninstall Docker:

On Linux, use your package manager (e.g., sudo apt-get purge docker-
ce docker-ce-cli containerd.io on Ubuntu)
On Mac, remove Docker Desktop from the Applications folder
On Windows, uninstall Docker Desktop from the Control Panel

39

Conclusion

Installing Docker is generally a straightforward process, but it can vary depending on
your operating system. Always refer to the official Docker documentation for the most
up-to-date installation instructions for your specific system. With Docker successfully
installed, you're now ready to start exploring the world of containerization!

40

Chapter 3: Working with
Docker Containers

Docker containers are lightweight, standalone, and executable packages that include
everything needed to run a piece of software, including the code, runtime, system
tools, libraries, and settings. In this chapter, we'll explore how to work with Docker
containers effectively.

41

Running Your First Container

Let's start by running a simple container:

docker run hello-world

This command does the following:

Checks for the hello-world image locally1.
If not found, pulls the image from Docker Hub2.
Creates a container from the image3.
Runs the container, which prints a hello message4.
Exits the container5.

42

Basic Docker Commands

Here are some essential Docker commands for working with containers:

Listing Containers

To see all running containers:

docker ps

To see all containers (including stopped ones):

docker ps -a

Starting and Stopping Containers

To stop a running container:

docker stop <container_id_or_name>

To start a stopped container:

docker start <container_id_or_name>

To restart a container:

docker restart <container_id_or_name>

43

Removing Containers

To remove a stopped container:

docker rm <container_id_or_name>

To force remove a running container:

docker rm -f <container_id_or_name>

44

Running Containers in Different Modes

Detached Mode

Run a container in the background:

docker run -d <image_name>

Interactive Mode

Run a container and interact with it:

docker run -it <image_name> /bin/bash

45

Port Mapping

To map a container's port to the host:

docker run -p <host_port>:<container_port> <image_name>

Example:

docker run -d -p 80:80 nginx

46

Working with Container Logs

View container logs:

docker logs <container_id_or_name>

Follow container logs in real-time:

docker logs -f <container_id_or_name>

47

Executing Commands in Running Containers

To execute a command in a running container:

docker exec -it <container_id_or_name> <command>

Example:

docker exec -it my_container /bin/bash

48

Practical Example: Running an Apache Container

Let's run an Apache web server container:

Pull the image:1.

docker pull httpd

Run the container:2.

docker run -d --name my-apache -p 8080:80 httpd

Verify it's running:3.

docker ps

Access the default page by opening a web browser and navigating to4.
http://localhost:8080

Modify the default page:5.

docker exec -it my-apache /bin/bash
echo "<h1>Hello from my Apache container!</h1>" >
/usr/local/apache2/htdocs/index.html
exit

Refresh your browser to see the changes6.

49

Container Resource Management

Limiting Memory

Run a container with a memory limit:

docker run -d --memory=512m <image_name>

Limiting CPU

Run a container with CPU limit:

docker run -d --cpus=0.5 <image_name>

50

Container Networking

Listing Networks

docker network ls

Creating a Network

docker network create my_network

Connecting a Container to a Network

docker run -d --network my_network --name my_container
<image_name>

51

Data Persistence with Volumes

Creating a Volume

docker volume create my_volume

Running a Container with a Volume

docker run -d -v my_volume:/path/in/container <image_name>

52

Container Health Checks

Docker provides built-in health checking capabilities. You can define a health check in
your Dockerfile:

HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --
retries=3 \
 CMD curl -f http://localhost/ || exit 1

53

Cleaning Up

Remove all stopped containers:

docker container prune

Remove all unused resources (containers, networks, images):

docker system prune

54

Conclusion

Working with Docker containers involves a range of operations from basic running and
stopping to more advanced topics like resource management and networking. As you
become more comfortable with these operations, you'll be able to leverage Docker's
full potential in your development and deployment workflows.

Remember, containers are designed to be ephemeral. Always store important data in
volumes or use appropriate persistence mechanisms for your applications.

55

Chapter 4: What are Docker
Images

A Docker image is a lightweight, standalone, and executable package that includes
everything needed to run a piece of software, including the code, runtime, system
tools, libraries, and settings. Images are the building blocks of Docker containers.

56

Key Concepts

Layers: Images are composed of multiple layers, each representing a set of1.
changes to the filesystem.
Base Image: The foundation of an image, typically a minimal operating system.2.
Parent Image: An image that your image is built upon.3.
Image Tags: Labels used to version and identify images.4.
Image ID: A unique identifier for each image.5.

57

Working with Docker Images

Listing Images

To see all images on your local system:

docker images

Or use the more verbose command:

docker image ls

Pulling Images from Docker Hub

To download an image from Docker Hub:

docker pull <image_name>:<tag>

Example:

docker pull ubuntu:20.04

If no tag is specified, Docker will pull the latest tag by default.

Running Containers from Images

To run a container from an image:

docker run <image_name>:<tag>

Example:

58

docker run -it ubuntu:20.04 /bin/bash

Image Information

To get detailed information about an image:

docker inspect <image_name>:<tag>

Removing Images

To remove an image:

docker rmi <image_name>:<tag>

or

docker image rm <image_name>:<tag>

To remove all unused images:

docker image prune

59

Building Custom Images

Using a Dockerfile

Create a file named Dockerfile with no extension.1.
Define the instructions to build your image.2.

Example Dockerfile:

FROM ubuntu:20.04
RUN apt-get update && apt-get install -y nginx
COPY ./my-nginx.conf /etc/nginx/nginx.conf
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

Build the image:3.

docker build -t my-nginx:v1 .

Building from a Running Container

Make changes to a running container.1.
Create a new image from the container:2.

docker commit <container_id> my-new-image:tag

60

Image Tagging

To tag an existing image:

docker tag <source_image>:<tag> <target_image>:<tag>

Example:

docker tag my-nginx:v1 my-dockerhub-username/my-nginx:v1

61

Pushing Images to Docker Hub

Log in to Docker Hub:1.

docker login

Push the image:2.

docker push my-dockerhub-username/my-nginx:v1

62

Image Layers and Caching

Understanding layers is crucial for optimizing image builds:

Each instruction in a Dockerfile creates a new layer.1.
Layers are cached and reused in subsequent builds.2.
Ordering instructions from least to most frequently changing can speed up3.
builds.

Example of leveraging caching:

FROM ubuntu:20.04
RUN apt-get update && apt-get install -y nginx
COPY ./static-files /var/www/html
COPY ./config-files /etc/nginx

63

Multi-stage Builds

Multi-stage builds allow you to use multiple FROM statements in your Dockerfile. This
is useful for creating smaller production images.

Example:

Build stage
FROM golang:1.16 AS build
WORKDIR /app
COPY . .
RUN go build -o myapp

Production stage
FROM alpine:3.14
COPY --from=build /app/myapp /usr/local/bin/myapp
CMD ["myapp"]

64

Image Scanning and Security

Docker provides built-in image scanning capabilities:

docker scan <image_name>:<tag>

This helps identify vulnerabilities in your images.

65

Best Practices for Working with Images

Use specific tags instead of latest for reproducibility.1.
Keep images small by using minimal base images and multi-stage builds.2.
Use .dockerignore to exclude unnecessary files from the build context.3.
Leverage build cache by ordering Dockerfile instructions effectively.4.
Regularly update base images to get security patches.5.
Scan images for vulnerabilities before deployment.6.

66

Image Management and Cleanup

To manage disk space, regularly clean up unused images:

docker system prune -a

This removes all unused images, not just dangling ones.

67

Conclusion

Docker images are a fundamental concept in containerization. They provide a
consistent and portable way to package applications and their dependencies. By
mastering image creation, optimization, and management, you can significantly
improve your Docker workflows and application deployments.

68

Chapter 5: What is a
Dockerfile

A Dockerfile is a text document that contains a series of instructions and arguments.
These instructions are used to create a Docker image automatically. It's essentially a
script of successive commands Docker will run to assemble an image, automating the
image creation process.

69

Anatomy of a Dockerfile

A Dockerfile typically consists of the following components:

Base image declaration1.
Metadata and label information2.
Environment setup3.
File and directory operations4.
Dependency installation5.
Application code copying6.
Execution command specification7.

Let's dive deep into each of these components and the instructions used to implement
them.

70

Dockerfile Instructions

FROM

The FROM instruction initializes a new build stage and sets the base image for
subsequent instructions.

FROM ubuntu:20.04

This instruction is typically the first one in a Dockerfile. It's possible to have multiple
FROM instructions in a single Dockerfile for multi-stage builds.

LABEL

LABEL adds metadata to an image in key-value pair format.

LABEL version="1.0" maintainer="john@example.com"
description="This is a sample Docker image"

Labels are useful for image organization, licensing information, annotations, and other
metadata.

ENV

ENV sets environment variables in the image.

ENV APP_HOME=/app NODE_ENV=production

These variables persist when a container is run from the resulting image.

WORKDIR

WORKDIR sets the working directory for any subsequent RUN, CMD, ENTRYPOINT,

71

COPY, and ADD instructions.

WORKDIR /app

If the directory doesn't exist, it will be created.

COPY and ADD

Both COPY and ADD instructions copy files from the host into the image.

COPY package.json .
ADD https://example.com/big.tar.xz /usr/src/things/

COPY is generally preferred for its simplicity. ADD has some extra features like tar
extraction and remote URL support, but these can make build behavior less
predictable.

RUN

RUN executes commands in a new layer on top of the current image and commits the
results.

RUN apt-get update && apt-get install -y nodejs

It's a best practice to chain commands with && and clean up in the same RUN
instruction to keep layers small.

CMD

CMD provides defaults for an executing container. There can only be one CMD
instruction in a Dockerfile.

CMD ["node", "app.js"]

72

CMD can be overridden at runtime.

ENTRYPOINT

ENTRYPOINT configures a container that will run as an executable.

ENTRYPOINT ["nginx", "-g", "daemon off;"]

ENTRYPOINT is often used in combination with CMD, where ENTRYPOINT defines the
executable and CMD supplies default arguments.

EXPOSE

EXPOSE informs Docker that the container listens on specified network ports at
runtime.

EXPOSE 80 443

This doesn't actually publish the port; it functions as documentation between the
person who builds the image and the person who runs the container.

VOLUME

VOLUME creates a mount point and marks it as holding externally mounted volumes
from native host or other containers.

VOLUME /data

This is useful for any mutable and/or user-serviceable parts of your image.

ARG

ARG defines a variable that users can pass at build-time to the builder with the
docker build command.

73

ARG VERSION=latest

This allows for more flexible image builds.

74

Best Practices for Writing Dockerfiles

Use multi-stage builds: This helps create smaller final images by separating1.
build-time dependencies from runtime dependencies.

FROM node:14 AS build
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
RUN npm run build

FROM nginx:alpine
COPY --from=build /app/dist /usr/share/nginx/html

Minimize the number of layers: Combine commands where possible to reduce2.
the number of layers and image size.

Leverage build cache: Order instructions from least to most frequently3.
changing to maximize build cache usage.

Use .dockerignore: Exclude files not relevant to the build, similar to4.
.gitignore.

Don't install unnecessary packages: Keep the image lean and secure by only5.
installing what's needed.

Use specific tags: Avoid latest tag for base images to ensure reproducible6.
builds.

Set the WORKDIR: Always use WORKDIR instead of proliferating instructions7.
like RUN cd … && do-something.

Use COPY instead of ADD: Unless you explicitly need the extra functionality of8.
ADD, use COPY for transparency.

75

Use environment variables: Especially for version numbers and paths, making9.
the Dockerfile more flexible.

76

Advanced Dockerfile Concepts

Health Checks

You can use the HEALTHCHECK instruction to tell Docker how to test a container to
check that it's still working.

HEALTHCHECK --interval=30s --timeout=10s CMD curl -f
http://localhost/ || exit 1

Shell and Exec Forms

Many Dockerfile instructions can be specified in shell form or exec form:

Shell form: RUN apt-get install python3
Exec form: RUN ["apt-get", "install", "python3"]

The exec form is preferred as it's more explicit and avoids issues with shell string
munging.

BuildKit

BuildKit is a new backend for Docker builds that offers better performance, storage
management, and features. You can enable it by setting an environment variable:

export DOCKER_BUILDKIT=1

77

Conclusion

Dockerfiles are a powerful tool for creating reproducible, version-controlled Docker
images. By mastering Dockerfile instructions and best practices, you can create
efficient, secure, and portable applications. Remember that writing good Dockerfiles is
an iterative process – continually refine your Dockerfiles as you learn more about your
application's needs and Docker's capabilities.

78

Chapter 6: Docker Networking

Docker networking allows containers to communicate with each other and with the
outside world. It's a crucial aspect of Docker that enables the creation of complex,
multi-container applications and microservices architectures.

79

Docker Network Drivers

Docker uses a pluggable architecture for networking, offering several built-in network
drivers:

Bridge: The default network driver. It's suitable for standalone containers that1.
need to communicate.
Host: Removes network isolation between the container and the Docker host.2.
Overlay: Enables communication between containers across multiple Docker3.
daemon hosts.
MacVLAN: Assigns a MAC address to a container, making it appear as a physical4.
device on the network.
None: Disables all networking for a container.5.
Network plugins: Allow you to use third-party network drivers.6.

80

Working with Docker Networks

Listing Networks

To list all networks:

docker network ls

This command shows the network ID, name, driver, and scope for each network.

Inspecting Networks

To get detailed information about a network:

docker network inspect <network_name>

This provides information such as the network's subnet, gateway, connected
containers, and configuration options.

Creating a Network

To create a new network:

docker network create --driver <driver> <network_name>

Example:

docker network create --driver bridge my_custom_network

You can specify additional options like subnet, gateway, IP range, etc.:

81

docker network create --driver bridge --subnet 172.18.0.0/16 -
-gateway 172.18.0.1 my_custom_network

Connecting Containers to Networks

When running a container, you can specify which network it should connect to:

docker run --network <network_name> <image>

Example:

docker run --network my_custom_network --name container1 -d
nginx

You can also connect a running container to a network:

docker network connect <network_name> <container_name>

Disconnecting Containers from Networks

To disconnect a container from a network:

docker network disconnect <network_name> <container_name>

Removing Networks

To remove a network:

docker network rm <network_name>

82

Deep Dive into Network Drivers

Bridge Networks

Bridge networks are the most commonly used network type in Docker. They are
suitable for containers running on the same Docker daemon host.

Key points about bridge networks:

Each container connected to a bridge network is allocated a unique IP address.
Containers on the same bridge network can communicate with each other using
IP addresses.
The default bridge network has some limitations, so it's often better to create
custom bridge networks.

Example of creating and using a custom bridge network:

docker network create my_bridge
docker run --network my_bridge --name container1 -d nginx
docker run --network my_bridge --name container2 -d nginx

Now container1 and container2 can communicate with each other using their
container names as hostnames.

Host Networks

Host networking adds a container on the host's network stack. This offers the best
networking performance but sacrifices network isolation.

Example:

docker run --network host -d nginx

In this case, if the container exposes port 80, it will be accessible on port 80 of the host
machine directly.

83

Overlay Networks

Overlay networks are used in Docker Swarm mode to enable communication between
containers across multiple Docker daemon hosts.

To create an overlay network:

docker network create --driver overlay my_overlay

Then, when creating a service in swarm mode, you can attach it to this network:

docker service create --network my_overlay --name my_service
nginx

MacVLAN Networks

MacVLAN networks allow you to assign a MAC address to a container, making it
appear as a physical device on your network.

Example:

docker network create -d macvlan \
 --subnet=192.168.0.0/24 \
 --gateway=192.168.0.1 \
 -o parent=eth0 my_macvlan_net

Then run a container on this network:

docker run --network my_macvlan_net -d nginx

84

Network Troubleshooting

Container-to-Container Communication: Use the docker exec command1.
to get into a container and use tools like ping, curl, or wget to test
connectivity.

Network Inspection: Use docker network inspect to view detailed2.
information about a network.

Port Mapping: Use docker port <container> to see the port mappings3.
for a container.

DNS Issues: Check the /etc/resolv.conf file inside the container to verify4.
DNS settings.

Network Namespace: For advanced troubleshooting, you can enter the network5.
namespace of a container:

pid=$(docker inspect -f '{{.State.Pid}}' <container_name>)
nsenter -t $pid -n ip addr

85

Best Practices

Use custom bridge networks instead of the default bridge network for better1.
isolation and built-in DNS resolution.
Use overlay networks for multi-host communication in swarm mode.2.
Use host networking sparingly and only when high performance is required.3.
Be cautious with exposing ports, only expose what's necessary.4.
Use Docker Compose for managing multi-container applications and their5.
networks.

86

Advanced Topics

Network Encryption

For overlay networks, you can enable encryption to secure container-to-container
traffic:

docker network create --opt encrypted --driver overlay
my_secure_network

Network Plugins

Docker supports third-party network plugins. Popular options include Weave Net,
Calico, and Flannel. These can provide additional features like advanced routing,
network policies, and encryption.

Service Discovery

Docker provides built-in service discovery for containers on the same network.
Containers can reach each other using container names as hostnames. In swarm mode,
there's also built-in load balancing for services.

87

Conclusion

Networking is a critical component of Docker that enables complex, distributed
applications. By understanding and effectively using Docker's networking capabilities,
you can create secure, efficient, and scalable containerized applications. Always
consider your specific use case when choosing network drivers and configurations.

88

Chapter 7: Docker Volumes

Docker volumes are the preferred mechanism for persisting data generated by and
used by Docker containers. While containers can create, update, and delete files, those
changes are lost when the container is removed and all changes are isolated to that
container. Volumes provide the ability to connect specific filesystem paths of the
container back to the host machine. If a directory in the container is mounted, changes
in that directory are also seen on the host machine. If we mount that same directory
across container restarts, we'd see the same files.

89

Why Use Docker Volumes?

Data Persistence: Volumes allow you to persist data even when containers are1.
stopped or removed.
Data Sharing: Volumes can be shared and reused among multiple containers.2.
Performance: Volumes are stored on the host filesystem, which generally3.
provides better I/O performance, especially for databases.
Data Management: Volumes make it easier to backup, restore, and migrate4.
data.
Decoupling: Volumes decouple the configuration of the Docker host from the5.
container runtime.

90

Types of Docker Volumes

1. Named Volumes

Named volumes are the recommended way to persist data in Docker. They are
explicitly created and given a name.

Creating a named volume:

docker volume create my_volume

Using a named volume:

docker run -d --name devtest -v my_volume:/app nginx:latest

2. Anonymous Volumes

Anonymous volumes are automatically created by Docker and given a random name.
They're useful for temporary data that you don't need to persist beyond the life of the
container.

Using an anonymous volume:

docker run -d --name devtest -v /app nginx:latest

3. Bind Mounts

Bind mounts map a specific path of the host machine to a path in the container. They're
useful for development environments.

Using a bind mount:

91

docker run -d --name devtest -v /path/on/host:/app
nginx:latest

92

Working with Docker Volumes

Listing Volumes

To list all volumes:

docker volume ls

Inspecting Volumes

To get detailed information about a volume:

docker volume inspect my_volume

Removing Volumes

To remove a specific volume:

docker volume rm my_volume

To remove all unused volumes:

docker volume prune

Backing Up Volumes

To backup a volume:

93

docker run --rm -v my_volume:/source -v /path/on/host:/backup
ubuntu tar cvf /backup/backup.tar /source

Restoring Volumes

To restore a volume from a backup:

docker run --rm -v my_volume:/target -v /path/on/host:/backup
ubuntu tar xvf /backup/backup.tar -C /target --strip 1

94

Volume Drivers

Docker supports volume drivers, which allow you to store volumes on remote hosts or
cloud providers, among other options.

Some popular volume drivers include:

Local (default)
NFS
AWS EBS
Azure File Storage

To use a specific volume driver:

docker volume create --driver <driver_name> my_volume

95

Best Practices for Using Docker Volumes

Use named volumes: They're easier to manage and track than anonymous1.
volumes.

Don't use bind mounts in production: They're less portable and can pose2.
security risks.

Use volumes for databases: Databases require persistent storage and benefit3.
from the performance of volumes.

Be cautious with permissions: Ensure the processes in your containers have4.
the necessary permissions to read/write to volumes.

Clean up unused volumes: Regularly use docker volume prune to remove5.
unused volumes and free up space.

Use volume labels: Labels can help you organize and manage your volumes.6.

docker volume create --label project=myapp my_volume

Consider using Docker Compose: Docker Compose makes it easier to manage7.
volumes across multiple containers.

96

Advanced Volume Concepts

1. Read-Only Volumes

You can mount volumes as read-only to prevent containers from modifying the data:

docker run -d --name devtest -v my_volume:/app:ro nginx:latest

2. Tmpfs Mounts

Tmpfs mounts are stored in the host system's memory only, which can be useful for
storing sensitive information:

docker run -d --name tmptest --tmpfs /app nginx:latest

3. Sharing Volumes Between Containers

You can share a volume between multiple containers:

docker run -d --name container1 -v my_volume:/app nginx:latest
docker run -d --name container2 -v my_volume:/app nginx:latest

4. Volume Plugins

Docker supports third-party volume plugins that can provide additional functionality:

docker plugin install <plugin_name>
docker volume create -d <plugin_name> my_volume

97

Troubleshooting Volume Issues

Volume not persisting data: Ensure you're using the correct volume name and1.
mount path.

Permission issues: Check the permissions of the mounted directory both on the2.
host and in the container.

Volume not removing: Make sure no containers are using the volume before3.
trying to remove it.

Performance issues: If you're experiencing slow I/O, consider using a volume4.
driver optimized for your use case.

98

Conclusion

Docker volumes are a crucial component for managing data in Docker environments.
They provide a flexible and efficient way to persist and share data between containers
and the host system. By understanding how to create, manage, and use volumes
effectively, you can build more robust and maintainable containerized applications.

Remember that the choice between different types of volumes (named volumes, bind
mounts, or tmpfs mounts) depends on your specific use case. Always consider factors
like persistence needs, performance requirements, and security implications when
working with Docker volumes.

99

Chapter 8: Docker Compose

Docker Compose is a powerful tool for defining and running multi-container Docker
applications. With Compose, you use a YAML file to configure your application's
services, networks, and volumes. Then, with a single command, you create and start all
the services from your configuration.

Note: Docker Compose is now integrated into Docker CLI. The new command is
docker compose instead of docker-compose. We'll use the new command
throughout this chapter.

100

Key Benefits of Docker Compose

Simplicity: Define your entire application stack in a single file.1.
Reproducibility: Easily share and version control your application2.
configuration.
Scalability: Simple commands to scale services up or down.3.
Environment Consistency: Ensure development, staging, and production4.
environments are identical.
Workflow Improvement: Compose can be used throughout the development5.
cycle for testing, staging, and production.

101

The docker-compose.yml File

The docker-compose.yml file is the core of Docker Compose. It defines all the
components and configurations of your application. Here's a basic example:

version: '3.8'
services:
 web:
 build: .
 ports:
 - "5000:5000"
 volumes:
 - .:/code
 environment:
 FLASK_ENV: development
 redis:
 image: "redis:alpine"

Let's break down this example:

version: Specifies the Compose file format version.
services: Defines the containers that make up your app.
web: A service based on an image built from the Dockerfile in the current
directory.
redis: A service using the public Redis image.

102

Key Concepts in Docker Compose

Services: Containers that make up your application.1.
Networks: How your services communicate with each other.2.
Volumes: Where your services store and access data.3.

103

Basic Docker Compose Commands

docker compose up: Create and start containers

docker compose up -d # Run in detached mode

docker compose down: Stop and remove containers, networks, images, and
volumes

docker compose down --volumes # Also remove volumes

docker compose ps: List containers

docker compose logs: View output from containers

docker compose logs -f web # Follow logs for the web
service

104

Advanced Docker Compose Features

1. Environment Variables

You can use .env files or set them directly in the compose file:

version: '3.8'
services:
 web:
 image: "webapp:${TAG}"
 environment:
 - DEBUG=1

2. Extending Services

Use extends to share common configurations:

version: '3.8'
services:
 web:
 extends:
 file: common-services.yml
 service: webapp

3. Healthchecks

Ensure services are ready before starting dependent services:

105

version: '3.8'
services:
 web:
 image: "webapp:latest"
 healthcheck:
 test: ["CMD", "curl", "-f", "http://localhost"]
 interval: 1m30s
 timeout: 10s
 retries: 3
 start_period: 40s

106

Practical Examples

Example 1: WordPress with MySQL

version: '3.8'
services:
 db:
 image: mysql:5.7
 volumes:
 - db_data:/var/lib/mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: somewordpress
 MYSQL_DATABASE: wordpress
 MYSQL_USER: wordpress
 MYSQL_PASSWORD: wordpress

 wordpress:
 depends_on:
 - db
 image: wordpress:latest
 ports:
 - "8000:80"
 restart: always
 environment:
 WORDPRESS_DB_HOST: db:3306
 WORDPRESS_DB_USER: wordpress
 WORDPRESS_DB_PASSWORD: wordpress
 WORDPRESS_DB_NAME: wordpress

volumes:
 db_data: {}

Let's break this down in detail:

Version: version: '3.8' specifies the version of the Compose file format.1.
Version 3.8 is compatible with Docker Engine 19.03.0+.

Services: We define two services: db and wordpress.2.

107

a. db service:

image: mysql:5.7: Uses the official MySQL 5.7 image.
volumes: Creates a named volume db_data and mounts it to
/var/lib/mysql in the container. This ensures that the database data
persists even if the container is removed.
restart: always: Ensures that the container always restarts if it stops.
environment: Sets up the MySQL environment variables:

MYSQL_ROOT_PASSWORD: Sets the root password for MySQL.
MYSQL_DATABASE: Creates a database named "wordpress".
MYSQL_USER and MYSQL_PASSWORD: Creates a new user with the
specified password.

b. wordpress service:

depends_on: Ensures that the db service is started before the
wordpress service.
image: wordpress:latest: Uses the latest official WordPress image.
ports: Maps port 8000 on the host to port 80 in the container, where
WordPress runs.
restart: always: Ensures the container always restarts if it stops.
environment: Sets up WordPress environment variables:

WORDPRESS_DB_HOST: Specifies the database host. Note the use of
db:3306, where db is the service name of our MySQL container.
WORDPRESS_DB_USER, WORDPRESS_DB_PASSWORD,
WORDPRESS_DB_NAME: These match the MySQL settings we
defined in the db service.

Volumes: db_data: {}: This creates a named volume that Docker manages.3.
It's used to persist the MySQL data.

To run this setup:

Save the above YAML in a file named docker-compose.yml.1.
In the same directory, run docker compose up -d.2.
Once the containers are running, you can access WordPress by navigating to3.
http://localhost:8000 in your web browser.

This setup provides a complete WordPress environment with a MySQL database, all
configured and ready to use. The use of environment variables and volumes ensures
that the setup is both flexible and persistent.

108

Example 2: Flask App with Redis and Nginx

version: '3.8'
services:
 flask:
 build: ./flask
 environment:
 - FLASK_ENV=development
 volumes:
 - ./flask:/code

 redis:
 image: "redis:alpine"

 nginx:
 image: "nginx:alpine"
 volumes:
 - ./nginx.conf:/etc/nginx/nginx.conf:ro
 ports:
 - "80:80"
 depends_on:
 - flask

networks:
 frontend:
 backend:

volumes:
 db-data:

Let's break this down:

Version: As before, we're using version 3.8 of the Compose file format.1.

Services: We define three services: flask, redis, and nginx.2.

a. flask service:

build: ./flask: This tells Docker to build an image using the
Dockerfile in the ./flask directory.
environment: Sets FLASK_ENV=development, which enables debug

109

mode in Flask.
volumes: Mounts the local ./flask directory to /code in the
container. This is useful for development as it allows you to make changes
to your code without rebuilding the container.

b. redis service:

image: "redis:alpine": Uses the official Redis image based on
Alpine Linux, which is lightweight.

c. nginx service:

image: "nginx:alpine": Uses the official Nginx image based on
Alpine Linux.
volumes: Mounts a local nginx.conf file to
/etc/nginx/nginx.conf in the container. The :ro flag makes it read-
only.
ports: Maps port 80 on the host to port 80 in the container.
depends_on: Ensures that the flask service is started before Nginx.

Networks: We define two networks: frontend and backend. This allows us to3.
isolate our services. For example, we could put Nginx and Flask on the frontend
network, and Flask and Redis on the backend network.

Volumes: db-data: This creates a named volume. Although it's not used in this4.
configuration, it's available if we need persistent storage, perhaps for a database
service we might add later.

To use this setup:

You need a Flask application in a directory named flask, with a Dockerfile to1.
build it.
You need an nginx.conf file in the same directory as your docker-2.
compose.yml.
Run docker compose up -d to start the services.3.

This configuration sets up a Flask application server, with Redis available for caching
or as a message broker, and Nginx as a reverse proxy. The Flask code is mounted as a
volume, allowing for easy development. Nginx handles incoming requests and forwards
them to the Flask application.

The use of Alpine-based images for Redis and Nginx helps to keep the overall image
size small, which is beneficial for deployment and scaling.

110

This setup is particularly useful for developing and testing a Flask application in an
environment that closely mimics production, with a proper web server (Nginx) in front
of the application server (Flask) and a caching/messaging system (Redis) available.

111

Best Practices for Docker Compose

Use version control for your docker-compose.yml file.1.
Keep development, staging, and production environments as similar as possible.2.
Use build arguments and environment variables for flexibility.3.
Leverage healthchecks to ensure service dependencies are met.4.
Use .env files for environment-specific variables.5.
Optimize your images to keep them small and efficient.6.
Use docker-compose.override.yml for local development settings.7.

112

Scaling Services

Docker Compose can scale services with a single command:

docker compose up -d --scale web=3

This command would start 3 instances of the web service.

113

Networking in Docker Compose

By default, Compose sets up a single network for your app. Each container for a
service joins the default network and is both reachable by other containers on that
network, and discoverable by them at a hostname identical to the container name.

You can also specify custom networks:

version: '3.8'
services:
 web:
 networks:
 - frontend
 - backend
 db:
 networks:
 - backend

networks:
 frontend:
 backend:

114

Volumes in Docker Compose

Compose also lets you create named volumes that can be reused across multiple
services:

version: '3.8'
services:
 db:
 image: postgres
 volumes:
 - data:/var/lib/postgresql/data

volumes:
 data:

115

Conclusion

Docker Compose simplifies the process of managing multi-container applications,
making it an essential tool for developers working with Docker. By mastering Docker
Compose, you can streamline your development workflow, ensure consistency across
different environments, and easily manage complex applications with multiple
interconnected services.

Remember to always use the latest docker compose command instead of the older
docker-compose, as it's now integrated directly into Docker CLI and offers
improved functionality and performance.

116

Chapter 9: Docker Security
Best Practices

Security is a critical aspect of working with Docker, especially in production
environments. This chapter will cover essential security practices to help you build and
maintain secure Docker environments.

117

1. Keep Docker Updated

Always use the latest version of Docker to benefit from the most recent security
patches.

sudo apt-get update
sudo apt-get upgrade docker-ce

118

2. Use Official Images

Whenever possible, use official images from Docker Hub or trusted sources. These
images are regularly updated and scanned for vulnerabilities.

version: '3.8'
services:
 web:
 image: nginx:latest # Official Nginx image

119

3. Scan Images for Vulnerabilities

Use tools like Docker Scout or Trivy to scan your images for known vulnerabilities.

docker scout cve <image_name>

120

4. Limit Container Resources

Prevent Denial of Service attacks by limiting container resources:

version: '3.8'
services:
 web:
 image: nginx:latest
 deploy:
 resources:
 limits:
 cpus: '0.50'
 memory: 50M

121

5. Use Non-Root Users

Run containers as non-root users to limit the potential impact of a container breach:

FROM node:14
RUN groupadd -r myapp && useradd -r -g myapp myuser
USER myuser

122

6. Use Secret Management

For sensitive data like passwords and API keys, use Docker secrets:

echo "mysecretpassword" | docker secret create db_password -

Then in your docker-compose.yml:

version: '3.8'
services:
 db:
 image: mysql
 secrets:
 - db_password
secrets:
 db_password:
 external: true

123

7. Enable Content Trust

Sign and verify image tags:

export DOCKER_CONTENT_TRUST=1
docker push myrepo/myimage:latest

124

8. Use Read-Only Containers

When possible, run containers in read-only mode:

version: '3.8'
services:
 web:
 image: nginx
 read_only: true
 tmpfs:
 - /tmp
 - /var/cache/nginx

125

9. Implement Network Segmentation

Use Docker networks to isolate containers:

version: '3.8'
services:
 frontend:
 networks:
 - frontend
 backend:
 networks:
 - backend
networks:
 frontend:
 backend:

126

10. Regular Security Audits

Regularly audit your Docker environment using tools like Docker Bench for Security:

docker run -it --net host --pid host --userns host --cap-add
audit_control \
 -e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \
 -v /var/lib:/var/lib \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /usr/lib/systemd:/usr/lib/systemd \
 -v /etc:/etc --label docker_bench_security \
 docker/docker-bench-security

127

11. Use Security-Enhanced Linux (SELinux) or
AppArmor

These provide an additional layer of security. Ensure they're enabled and properly
configured on your host system.

128

12. Implement Logging and Monitoring

Use Docker's logging capabilities and consider integrating with external monitoring
tools:

version: '3.8'
services:
 web:
 image: nginx
 logging:
 driver: "json-file"
 options:
 max-size: "200k"
 max-file: "10"

129

Conclusion

Implementing these security best practices will significantly improve the security
posture of your Docker environments. Remember, security is an ongoing process, and
it's important to stay informed about the latest security threats and Docker security
features.

130

Chapter 10: Docker in
Production: Orchestration
with Kubernetes

Kubernetes (K8s) is an open-source container orchestration platform that automates
the deployment, scaling, and management of containerized applications. It works well
with Docker and provides a robust set of features for running containers in production.

Kubernetes is a topic of its own, but here are some key concepts and best practices for
using Kubernetes with Docker in production environments.

131

Key Kubernetes Concepts

Pods: The smallest deployable units in Kubernetes, containing one or more1.
containers.
Services: An abstract way to expose an application running on a set of Pods.2.
Deployments: Describe the desired state for Pods and ReplicaSets.3.
Namespaces: Virtual clusters within a physical cluster.4.

132

Setting Up a Kubernetes Cluster

You can set up a local Kubernetes cluster using Minikube:

minikube start

For production, consider managed Kubernetes services like Google Kubernetes Engine
(GKE), Amazon EKS, or Azure AKS.

133

Deploying a Docker Container to Kubernetes

Create a Deployment YAML file (deployment.yaml):1.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Apply the Deployment:2.

kubectl apply -f deployment.yaml

Create a Service to expose the Deployment (service.yaml):3.

134

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80
 type: LoadBalancer

Apply the Service:4.

kubectl apply -f service.yaml

135

Scaling in Kubernetes

Scale your deployment easily:

kubectl scale deployment nginx-deployment --replicas=5

136

Rolling Updates

Update your application without downtime:

kubectl set image deployment/nginx-deployment
nginx=nginx:1.16.1

137

Monitoring and Logging

View Pod logs:1.

kubectl logs <pod-name>

Use Prometheus and Grafana for monitoring:2.

helm install prometheus stable/prometheus
helm install grafana stable/grafana

138

Kubernetes Dashboard

Enable the Kubernetes Dashboard for a GUI:

minikube addons enable dashboard
minikube dashboard

139

Persistent Storage in Kubernetes

Use Persistent Volumes (PV) and Persistent Volume Claims (PVC):

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pv-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

140

Kubernetes Networking

ClusterIP: Exposes the Service on a cluster-internal IP.1.
NodePort: Exposes the Service on each Node's IP at a static port.2.
LoadBalancer: Exposes the Service externally using a cloud provider's load3.
balancer.

141

Kubernetes Secrets

Manage sensitive information:

kubectl create secret generic my-secret --from-
literal=password=mysecretpassword

Use in a Pod:

spec:
 containers:
 - name: myapp
 image: myapp
 env:
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: my-secret
 key: password

142

Helm: The Kubernetes Package Manager

Helm simplifies deploying complex applications:

helm repo add bitnami https://charts.bitnami.com/bitnami
helm install my-release bitnami/wordpress

143

Best Practices for Kubernetes in Production

Use namespaces to organize resources.1.
Implement resource requests and limits.2.
Use liveness and readiness probes.3.
Implement proper logging and monitoring.4.
Regularly update Kubernetes and your applications.5.
Use Network Policies for fine-grained network control.6.
Implement proper RBAC (Role-Based Access Control).7.

144

Conclusion

Kubernetes provides a powerful platform for orchestrating Docker containers in
production environments. It offers robust features for scaling, updating, and managing
containerized applications. While there's a learning curve, the benefits of using
Kubernetes for production Docker deployments are significant, especially for large,
complex applications.

145

Chapter 11: Docker
Performance Optimization

Optimizing Docker performance is crucial for efficient resource utilization and
improved application responsiveness. This chapter covers various techniques and best
practices to enhance the performance of your Docker containers and overall Docker
environment.

146

1. Optimizing Docker Images

Use Multi-Stage Builds

Multi-stage builds can significantly reduce the size of your final Docker image:

Build stage
FROM golang:1.16 AS builder
WORKDIR /app
COPY . .
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o
main .

Final stage
FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /app/main .
CMD ["./main"]

Minimize Layer Count

Combine commands to reduce the number of layers:

RUN apt-get update && apt-get install -y \
 package1 \
 package2 \
 package3 \
 && rm -rf /var/lib/apt/lists/*

Use .dockerignore

Create a .dockerignore file to exclude unnecessary files from the build context:

147

.git
*.md
*.log

148

2. Container Resource Management

Set Memory and CPU Limits

version: '3'
services:
 app:
 image: myapp
 deploy:
 resources:
 limits:
 cpus: '0.5'
 memory: 512M

Use --cpuset-cpus for CPU Pinning

docker run --cpuset-cpus="0,1" myapp

149

3. Networking Optimization

Use Host Networking Mode

For high-performance scenarios, consider using host networking:

docker run --network host myapp

Optimize DNS Resolution

If you're experiencing slow DNS resolution, you can use the --dns option:

docker run --dns 8.8.8.8 myapp

150

4. Storage Optimization

Use Volumes Instead of Bind Mounts

Volumes generally offer better performance than bind mounts:

version: '3'
services:
 db:
 image: postgres
 volumes:
 - postgres_data:/var/lib/postgresql/data

volumes:
 postgres_data:

Consider Using tmpfs Mounts

For ephemeral data, tmpfs mounts can improve I/O performance:

docker run --tmpfs /tmp myapp

151

5. Logging and Monitoring

Use the JSON-file Logging Driver with Limits

version: '3'
services:
 app:
 image: myapp
 logging:
 driver: "json-file"
 options:
 max-size: "10m"
 max-file: "3"

Implement Proper Monitoring

Use tools like Prometheus and Grafana for comprehensive monitoring:

version: '3'
services:
 prometheus:
 image: prom/prometheus
 volumes:
 - ./prometheus.yml:/etc/prometheus/prometheus.yml
 grafana:
 image: grafana/grafana
 ports:
 - "3000:3000"

152

6. Docker Daemon Optimization

Adjust the Storage Driver

Consider using overlay2 for better performance:

{
 "storage-driver": "overlay2"
}

Enable Live Restore

This allows containers to keep running even if the Docker daemon is unavailable:

{
 "live-restore": true
}

153

7. Application-Level Optimization

Use Alpine-Based Images

Alpine-based images are typically smaller and faster to pull:

FROM alpine:3.14
RUN apk add --no-cache python3

Optimize Your Application Code

Ensure your application is optimized for containerized environments:

Implement proper caching mechanisms
Optimize database queries
Use asynchronous processing where appropriate

154

8. Benchmarking and Profiling

Use Docker's Built-in Stats Command

docker stats

Benchmark with Tools Like Apache Bench

ab -n 1000 -c 100 http://localhost/

155

9. Orchestration-Level Optimization

When using orchestration tools like Kubernetes:

Use Horizontal Pod Autoscaler

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: myapp-hpa
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: myapp
 minReplicas: 2
 maxReplicas: 10
 metrics:
 - type: Resource
 resource:
 name: cpu
 targetAverageUtilization: 50

Implement Proper Liveness and Readiness Probes

livenessProbe:
 httpGet:
 path: /healthz
 port: 8080
 initialDelaySeconds: 3
 periodSeconds: 3

156

Conclusion

Optimizing Docker performance is an ongoing process that involves various aspects of
your Docker setup, from image building to runtime configuration and application-level
optimizations. By implementing these best practices and continuously monitoring your
Docker environment, you can significantly improve the performance and efficiency of
your containerized applications.

157

Chapter 12: Docker
Troubleshooting and
Debugging

Even with careful planning and best practices, issues can arise when working with
Docker. This chapter covers common problems you might encounter and provides
strategies for effective troubleshooting and debugging.

158

1. Container Lifecycle Issues

Container Won't Start

If a container fails to start, use these commands:

View container logs
docker logs <container_id>

Inspect container details
docker inspect <container_id>

Check container status
docker ps -a

Container Exits Immediately

For containers that exit right after starting:

Run the container in interactive mode
docker run -it --entrypoint /bin/sh <image_name>

Check the ENTRYPOINT and CMD in the Dockerfile
docker inspect --format='{{.Config.Entrypoint}}' <image_name>
docker inspect --format='{{.Config.Cmd}}' <image_name>

159

2. Networking Issues

Container Can't Connect to Network

To troubleshoot network connectivity:

Inspect network settings
docker network inspect <network_name>

Check container's network settings
docker inspect --format='{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}'
<container_id>

Use a network debugging container
docker run --net container:<container_id> nicolaka/netshoot

Port Mapping Issues

If you can't access a container's exposed port:

Check port mappings
docker port <container_id>

Verify host machine's firewall settings
sudo ufw status

Test the port directly on the container
docker exec <container_id> nc -zv localhost <port>

160

3. Storage and Volume Issues

Data Persistence Problems

For issues with data not persisting:

List volumes
docker volume ls

Inspect a volume
docker volume inspect <volume_name>

Check volume mounts in a container
docker inspect --format='{{range .Mounts}}{{.Source}} ->
{{.Destination}}{{"\n"}}{{end}}' <container_id>

Disk Space Issues

If you're running out of disk space:

Check Docker disk usage
docker system df

Remove unused data
docker system prune -a

Identify large images
docker images --format "{{.Size}}\t{{.Repository}}:{{.Tag}}" |
sort -h

161

4. Resource Constraints

Container Using Too Much CPU or Memory

To identify and address resource usage issues:

Monitor resource usage
docker stats

Set resource limits
docker run --memory=512m --cpus=0.5 <image_name>

Update limits for a running container
docker update --cpus=0.75 <container_id>

162

5. Image-related Issues

Image Pull Failures

If you can't pull an image:

Check Docker Hub status
curl -Is https://registry.hub.docker.com/v2/ | head -n 1

Verify your Docker login
docker login

Try pulling with verbose output
docker pull --verbose <image_name>

Image Build Failures

For issues during image builds:

Build with verbose output
docker build --progress=plain -t <image_name> .

Check for issues in the Dockerfile
docker build --no-cache -t <image_name> .

163

6. Docker Daemon Issues

Docker Daemon Won't Start

If the Docker daemon fails to start:

Check Docker daemon status
sudo systemctl status docker

View Docker daemon logs
sudo journalctl -u docker.service

Restart Docker daemon
sudo systemctl restart docker

164

7. Debugging Techniques

Interactive Debugging

To debug a running container interactively:

Start an interactive shell in a running container
docker exec -it <container_id> /bin/bash

Run a new container with a shell for debugging
docker run -it --entrypoint /bin/bash <image_name>

Using Docker Events

Monitor Docker events for troubleshooting:

docker events

Logging

Configure and view container logs:

View container logs
docker logs <container_id>

Follow log output
docker logs -f <container_id>

Adjust logging driver
docker run --log-driver json-file --log-opt max-size=10m
<image_name>

165

8. Performance Debugging

Identifying Performance Bottlenecks

Use these commands to identify performance issues:

Monitor container resource usage
docker stats

Profile container processes
docker top <container_id>

Use cAdvisor for more detailed metrics
docker run \
 --volume=/:/rootfs:ro \
 --volume=/var/run:/var/run:ro \
 --volume=/sys:/sys:ro \
 --volume=/var/lib/docker/:/var/lib/docker:ro \
 --volume=/dev/disk/:/dev/disk:ro \
 --publish=8080:8080 \
 --detach=true \
 --name=cadvisor \
 google/cadvisor:latest

166

9. Docker Compose Troubleshooting

For issues with Docker Compose:

View logs for all services
docker-compose logs

Rebuild and recreate containers
docker-compose up -d --build

Check the configuration
docker-compose config

167

Conclusion

Effective troubleshooting and debugging are essential skills for working with Docker.
By understanding these techniques and tools, you can quickly identify and resolve
issues in your Docker environment. Remember to always check the official Docker
documentation and community forums for the most up-to-date information and
solutions to common problems.

168

Chapter 13: Advanced Docker
Concepts and Features

As you become more proficient with Docker, you'll encounter more advanced concepts
and features. This chapter explores some of these topics to help you take your Docker
skills to the next level even though this is beyond the scope of this introductory ebook.

169

1. Multi-stage Builds

Multi-stage builds allow you to create more efficient Dockerfiles by using multiple
FROM statements in your Dockerfile.

Build stage
FROM golang:1.16 AS builder
WORKDIR /app
COPY . .
RUN go build -o main .

Final stage
FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /app/main .
CMD ["./main"]

This approach reduces the final image size by only including necessary artifacts from
the build stage.

170

2. Docker BuildKit

BuildKit is a next-generation build engine for Docker. Enable it by setting an
environment variable:

export DOCKER_BUILDKIT=1

BuildKit offers faster builds, better cache management, and advanced features like:

Concurrent dependency resolution
Efficient instruction caching
Automatic garbage collection

171

3. Custom Bridge Networks

Create isolated network environments for your containers:

docker network create --driver bridge isolated_network
docker run --network=isolated_network --name container1 -d
nginx
docker run --network=isolated_network --name container2 -d
nginx

Containers on this network can communicate using their names as hostnames.

172

4. Docker Contexts

Manage multiple Docker environments with contexts:

Create a new context
docker context create my-remote --docker
"host=ssh://user@remote-host"

List contexts
docker context ls

Switch context
docker context use my-remote

173

5. Docker Content Trust (DCT)

DCT provides a way to verify the integrity and publisher of images:

Enable DCT
export DOCKER_CONTENT_TRUST=1

Push a signed image
docker push myrepo/myimage:latest

174

6. Docker Secrets

Manage sensitive data with Docker secrets:

Create a secret
echo "mypassword" | docker secret create my_secret -

Use the secret in a service
docker service create --name myservice --secret my_secret
myimage

175

7. Docker Health Checks

Implement custom health checks in your Dockerfile:

HEALTHCHECK --interval=30s --timeout=10s CMD curl -f
http://localhost/ || exit 1

176

8. Docker Plugins

Extend Docker's functionality with plugins:

Install a plugin
docker plugin install vieux/sshfs

Use the plugin
docker volume create -d vieux/sshfs -o sshcmd=user@host:/path
sshvolume

177

9. Docker Experimental Features

Enable experimental features in your Docker daemon config
(/etc/docker/daemon.json):

{
 "experimental": true
}

This unlocks features like:

Checkpoint and restore
Rootless mode

178

10. Container Escape Protection

Use security options to prevent container escapes:

docker run --security-opt="no-new-privileges:true" --cap-
drop=ALL myimage

179

11. Custom Dockerfile Instructions

Create custom Dockerfile instructions using ONBUILD:

ONBUILD ADD . /app/src
ONBUILD RUN /usr/local/bin/python-build --dir /app/src

180

12. Docker Manifest

Create and push multi-architecture images:

docker manifest create myrepo/myimage myrepo/myimage:amd64
myrepo/myimage:arm64
docker manifest push myrepo/myimage

181

13. Docker Buildx

Buildx is a CLI plugin that extends the docker build command with the full support of
the features provided by BuildKit:

Create a new builder instance
docker buildx create --name mybuilder

Build and push multi-platform images
docker buildx build --platform linux/amd64,linux/arm64 -t
myrepo/myimage:latest --push .

182

14. Docker Compose Profiles

Use profiles in Docker Compose to selectively start services:

services:
 frontend:
 image: frontend
 profiles: ["frontend"]
 backend:
 image: backend
 profiles: ["backend"]

Start specific profiles:

docker-compose --profile frontend up -d

183

Conclusion

These advanced Docker concepts and features provide powerful tools for optimizing
your Docker workflows, improving security, and extending Docker's capabilities. As
you incorporate these techniques into your projects, you'll be able to create more
efficient, secure, and flexible Docker environments.

184

Chapter 14: Docker in CI/CD
Pipelines

Integrating Docker into Continuous Integration and Continuous Deployment (CI/CD)
pipelines can significantly streamline the development, testing, and deployment
processes. This chapter explores how to effectively use Docker in CI/CD workflows.

185

1. Docker in Continuous Integration

Automated Building and Testing

Use Docker to create consistent environments for building and testing your
application:

.gitlab-ci.yml example
build_and_test:
 image: docker:latest
 services:
 - docker:dind
 script:
 - docker build -t myapp:${CI_COMMIT_SHA} .
 - docker run myapp:${CI_COMMIT_SHA} npm test

Parallel Testing

Leverage Docker to run tests in parallel:

GitHub Actions example
jobs:
 test:
 runs-on: ubuntu-latest
 strategy:
 matrix:
 node-version: [12.x, 14.x, 16.x]
 steps:
 - uses: actions/checkout@v2
 - name: Test with Node.js ${{ matrix.node-version }}
 run: |
 docker build -t myapp:${{ matrix.node-version }} --
build-arg NODE_VERSION=${{ matrix.node-version }} .
 docker run myapp:${{ matrix.node-version }} npm test

186

2. Docker in Continuous Deployment

Pushing to Docker Registry

After successful tests, push your Docker image to a registry:

Jenkins pipeline example
pipeline {
 agent any
 stages {
 stage('Build and Push') {
 steps {
 script {
docker.withRegistry('https://registry.example.com',
'credentials-id') {
 def customImage = docker.build("my-
image:${env.BUILD_ID}")
 customImage.push()
 }
 }
 }
 }
 }
}

Deploying with Docker Swarm or Kubernetes

Use Docker Swarm or Kubernetes for orchestrating deployments:

Docker Swarm deployment in GitLab CI
deploy:
 stage: deploy
 script:
 - docker stack deploy -c docker-compose.yml myapp

For Kubernetes:

187

Kubernetes deployment in CircleCI
deployment:
 kubectl:
 command: |
 kubectl set image deployment/myapp
myapp=myrepo/myapp:${CIRCLE_SHA1}

188

3. Docker Compose in CI/CD

Use Docker Compose to manage multi-container applications in your CI/CD pipeline:

Travis CI example
services:
 - docker

before_install:
 - docker-compose up -d
 - docker-compose exec -T app npm install

script:
 - docker-compose exec -T app npm test

after_success:
 - docker-compose down

189

4. Security Scanning

Integrate security scanning into your pipeline:

GitLab CI with Trivy scanner
scan:
 image: aquasec/trivy:latest
 script:
 - trivy image myapp:${CI_COMMIT_SHA}

190

5. Performance Testing

Incorporate performance testing using Docker:

Jenkins pipeline with Apache JMeter
stage('Performance Tests') {
 steps {
 sh 'docker run -v ${WORKSPACE}:/jmeter apache/jmeter -
n -t test-plan.jmx -l results.jtl'
 perfReport 'results.jtl'
 }
}

191

6. Environment-Specific Configurations

Use Docker's environment variables and build arguments for environment-specific
configurations:

ARG CONFIG_FILE=default.conf
COPY config/${CONFIG_FILE} /app/config.conf

In your CI/CD pipeline:

build:
 script:
 - docker build --build-arg CONFIG_FILE=${ENV}.conf -t
myapp:${CI_COMMIT_SHA} .

192

7. Caching in CI/CD

Optimize build times by caching Docker layers:

GitHub Actions example with caching
jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - name: Cache Docker layers
 uses: actions/cache@v2
 with:
 path: /tmp/.buildx-cache
 key: ${{ runner.os }}-buildx-${{ github.sha }}
 restore-keys: |
 ${{ runner.os }}-buildx-
 - name: Build and push
 uses: docker/build-push-action@v2
 with:
 push: true
 tags: user/app:latest
 cache-from: type=local,src=/tmp/.buildx-cache
 cache-to: type=local,dest=/tmp/.buildx-cache

193

8. Blue-Green Deployments with Docker

Implement blue-green deployments using Docker:

Script for blue-green deployment
#!/bin/bash
docker service update --image myrepo/myapp:${NEW_VERSION}
myapp_blue
docker service scale myapp_blue=2 myapp_green=0

194

9. Monitoring and Logging in CI/CD

Integrate monitoring and logging solutions:

Docker Compose with ELK stack
version: '3'
services:
 app:
 image: myapp:latest
 logging:
 driver: "json-file"
 options:
 max-size: "200k"
 max-file: "10"
 elasticsearch:
 image:
docker.elastic.co/elasticsearch/elasticsearch:7.10.0
 logstash:
 image: docker.elastic.co/logstash/logstash:7.10.0
 kibana:
 image: docker.elastic.co/kibana/kibana:7.10.0

195

Conclusion

Integrating Docker into your CI/CD pipeline can greatly enhance your development and
deployment processes. It provides consistency across environments, improves testing
efficiency, and streamlines deployments. By leveraging Docker in your CI/CD
workflows, you can achieve faster, more reliable software delivery.

196

Chapter 15: Docker and
Microservices Architecture

Microservices architecture is an approach to developing a single application as a suite
of small services, each running in its own process and communicating with lightweight
mechanisms. Docker's containerization technology is an excellent fit for microservices,
providing isolation, portability, and scalability.

197

1. Principles of Microservices

Single Responsibility Principle
Decentralized Data Management
Failure Isolation
Scalability
Technology Diversity

198

2. Dockerizing Microservices

Sample Microservice Dockerfile

FROM node:14-alpine
WORKDIR /usr/src/app
COPY package*.json ./
RUN npm install
COPY . .
EXPOSE 3000
CMD ["node", "server.js"]

Building and Running

docker build -t my-microservice .
docker run -d -p 3000:3000 my-microservice

199

3. Inter-service Communication

REST API

// Express.js example
const express = require('express');
const app = express();

app.get('/api/data', (req, res) => {
 res.json({ message: 'Data from Microservice A' });
});

app.listen(3000, () => console.log('Microservice A listening
on port 3000'));

Message Queues

Using RabbitMQ:

Dockerfile
FROM node:14-alpine
RUN npm install amqplib
COPY . .
CMD ["node", "consumer.js"]

200

// consumer.js
const amqp = require('amqplib');

async function consume() {
 const connection = await amqp.connect('amqp://rabbitmq');
 const channel = await connection.createChannel();
 await channel.assertQueue('task_queue');
 channel.consume('task_queue', (msg) => {
 console.log("Received:", msg.content.toString());
 channel.ack(msg);
 });
}

consume();

201

4. Service Discovery

Using Consul:

version: '3'
services:
 consul:
 image: consul:latest
 ports:
 - "8500:8500"
 service-a:
 build: ./service-a
 environment:
 - CONSUL_HTTP_ADDR=consul:8500

 service-b:
 build: ./service-b
 environment:
 - CONSUL_HTTP_ADDR=consul:8500

202

5. API Gateway

Using NGINX as an API Gateway:

http {
 upstream service_a {
 server service-a:3000;
 }
 upstream service_b {
 server service-b:3000;
 }

 server {
 listen 80;

 location /api/service-a {
 proxy_pass http://service_a;
 }

 location /api/service-b {
 proxy_pass http://service_b;
 }
 }
}

203

6. Data Management

Database per Service

version: '3'
services:
 service-a:
 build: ./service-a
 depends_on:
 - db-a

 db-a:
 image: postgres:13
 environment:
 POSTGRES_DB: service_a_db
 POSTGRES_PASSWORD: password

 service-b:
 build: ./service-b
 depends_on:
 - db-b

 db-b:
 image: mysql:8
 environment:
 MYSQL_DATABASE: service_b_db
 MYSQL_ROOT_PASSWORD: password

204

7. Monitoring Microservices

Using Prometheus and Grafana:

version: '3'
services:
 prometheus:
 image: prom/prometheus
 volumes:
 - ./prometheus.yml:/etc/prometheus/prometheus.yml
 ports:
 - "9090:9090"

 grafana:
 image: grafana/grafana
 ports:
 - "3000:3000"
 depends_on:
 - prometheus

205

8. Scaling Microservices

Using Docker Swarm:

Initialize swarm
docker swarm init

Deploy stack
docker stack deploy -c docker-compose.yml myapp

Scale a service
docker service scale myapp_service-a=3

206

9. Testing Microservices

Unit Testing

// Jest example
test('API returns correct data', async () => {
 const response = await request(app).get('/api/data');
 expect(response.statusCode).toBe(200);
 expect(response.body).toHaveProperty('message');
});

Integration Testing

version: '3'
services:
 app:
 build: .
 depends_on:
 - test-db
 test-db:
 image: postgres:13
 environment:
 POSTGRES_DB: test_db
 POSTGRES_PASSWORD: test_password

 test:
 build:
 context: .
 dockerfile: Dockerfile.test
 depends_on:
 - app
 - test-db
 command: ["npm", "run", "test"]

207

10. Deployment Strategies

Blue-Green Deployment

Deploy new version (green)
docker service create --name myapp-green --replicas 2
myrepo/myapp:v2

Switch traffic to green
docker service update --network-add proxy-network myapp-green
docker service update --network-rm proxy-network myapp-blue

Remove old version (blue)
docker service rm myapp-blue

208

Conclusion

Docker provides an excellent platform for developing, deploying, and managing
microservices. It offers the necessary isolation, portability, and scalability that
microservices architecture demands. By leveraging Docker's features along with
complementary tools and services, you can build robust, scalable, and maintainable
microservices-based applications.

209

Chapter 16: Docker for Data
Science and Machine
Learning

Docker has become an essential tool in the data science and machine learning
ecosystem, providing reproducibility, portability, and scalability for complex data
processing and model training workflows.

210

1. Setting Up a Data Science Environment

Jupyter Notebook with Docker

FROM python:3.8
RUN pip install jupyter pandas numpy matplotlib scikit-learn
WORKDIR /notebooks
EXPOSE 8888
CMD ["jupyter", "notebook", "--ip='*'", "--port=8888", "--no-
browser", "--allow-root"]

Running the container:

docker run -p 8888:8888 -v $(pwd):/notebooks my-datascience-
notebook

211

2. Managing Dependencies with Docker

Using conda in Docker

FROM continuumio/miniconda3
COPY environment.yml .
RUN conda env create -f environment.yml
SHELL ["conda", "run", "-n", "myenv", "/bin/bash", "-c"]

212

3. GPU Support for Machine Learning

Using NVIDIA Docker

FROM nvidia/cuda:11.0-base
RUN pip install tensorflow-gpu
COPY train.py .
CMD ["python", "train.py"]

Running with GPU support:

docker run --gpus all my-gpu-ml-container

213

4. Distributed Training with Docker Swarm

version: '3'
services:
 trainer:
 image: my-ml-image
 deploy:
 replicas: 4
 command: ["python", "distributed_train.py"]

214

5. MLOps with Docker

Model Serving with Flask

from flask import Flask, request, jsonify
import pickle

app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))

@app.route('/predict', methods=['POST'])
def predict():
 data = request.json
 prediction = model.predict([data['features']])
 return jsonify({'prediction': prediction.tolist()})

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

Dockerfile for serving:

FROM python:3.8
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY app.py .
COPY model.pkl .
EXPOSE 5000
CMD ["python", "app.py"]

215

6. Data Pipeline with Apache Airflow

version: '3'
services:
 webserver:
 image: apache/airflow
 ports:
 - "8080:8080"
 volumes:
 - ./dags:/opt/airflow/dags
 command: webserver
 scheduler:
 image: apache/airflow
 volumes:
 - ./dags:/opt/airflow/dags
 command: scheduler

216

7. Reproducible Research with Docker

FROM rocker/rstudio
RUN R -e "install.packages(c('ggplot2', 'dplyr'))"
COPY analysis.R .
CMD ["R", "-e", "source('analysis.R')"]

217

8. Big Data Processing with Docker

Spark Cluster

version: '3'
services:
 spark-master:
 image: bitnami/spark:3
 environment:
 - SPARK_MODE=master
 ports:
 - "8080:8080"
 spark-worker:
 image: bitnami/spark:3
 environment:
 - SPARK_MODE=worker
 - SPARK_MASTER_URL=spark://spark-master:7077
 depends_on:
 - spark-master

218

9. Automated Machine Learning (AutoML) with
Docker

FROM python:3.8
RUN pip install auto-sklearn
COPY automl_script.py .
CMD ["python", "automl_script.py"]

219

10. Hyperparameter Tuning at Scale

Using Optuna with Docker Swarm:

version: '3'
services:
 optuna-worker:
 image: my-optuna-image
 deploy:
 replicas: 10
 command: ["python", "optimize.py"]
 optuna-dashboard:
 image: optuna/optuna-dashboard
 ports:
 - "8080:8080"

220

Conclusion

Docker provides powerful tools for creating reproducible, scalable, and portable
environments for data science and machine learning workflows. By leveraging Docker's
capabilities, data scientists and ML engineers can focus on their core tasks while
ensuring their work is easily shareable and deployable.

221

What is Docker Swarm mode

According to the official Docker docs, a swarm is a group of machines that are running
Docker and joined into a cluster. If you are running a Docker swarm your commands
would be executed on a cluster by a swarm manager. The machines in a swarm can be
physical or virtual. After joining a swarm, they are referred to as nodes. I would do a
quick demo shortly on my DigitalOcean account!

The Docker Swarm consists of manager nodes and worker nodes.

The manager nodes dispatch tasks to the worker nodes and on the other side Worker
nodes just execute those tasks. For High Availability, it is recommended to have 3 or 5
manager nodes.

222

Docker Services

To deploy an application image when Docker Engine is in swarm mode, you have
create a service. A service is a group of containers of the same image:tag. Services
make it simple to scale your application.

In order to have Docker services, you must first have your Docker swarm and nodes
ready.

223

Building a Swarm

I'll do a really quick demo on how to build a Docker swarm with 3 managers and 3
workers.

For that I'm going to deploy 6 droplets on DigitalOcean:

Then once you've got that ready, install docker just as we did in the Introduction to
Docker Part 1 and then just follow the steps here:

Step 1

Initialize the docker swarm on your first manager node:

docker swarm init --advertise-addr your_dorplet_ip_here

Step 2

Then to get the command that you need to join the rest of the managers simply run
this:

docker swarm join-token manager

Note: This would provide you with the exact command that you need to run on the rest
of the swarm manager nodes. Example:

https://devdojo.com/tutorials/introduction-to-docker-part-1
https://devdojo.com/tutorials/introduction-to-docker-part-1

224

Step 3

To get the command that you need for joining workers just run:

docker swarm join-token worker

The command for workers would be pretty similar to the command for join managers
but the token would be a bit different.

The output that you would get when joining a manager would look like this:

Step 4

Then once you have your join commands, ssh to the rest of your nodes and join
them as workers and managers accordingly.

225

Managing the cluster

After you've run the join commands on all of your workers and managers, in order to
get some information for your cluster status you could use these commands:

To list all of the available nodes run:

docker node ls

Note: This command can only be run from a swarm manager!Output:

To get information for the current state run:

docker info

Output:

226

227

Promote a worker to manager

To promote a worker to a manager run the following from one of your manager nodes:

docker node promote node_id_here

Also note that each manager also acts as a worker, so from your docker info output you
should see 6 workers and 3 manager nodes.

228

Using Services

In order to create a service you need to use the following command:

docker service create --name bobby-web -p 80:80 --replicas 5
bobbyiliev/php-apache

Note that I already have my bobbyiliev/php-apache image pushed to the Docker hub as
described in the previous blog posts.

To get a list of your services run:

docker service ls

Output:

Then in order to get a list of the running containers you need to use the following
command:

docker services ps name_of_your_service_here

Output:

229

Then you can visit the IP address of any of your nodes and you should be able to see
the service! We can basically visit any node from the swarm and we will still get the to
service.

230

Scaling a service

We could try shutting down one of the nodes and see how the swarm would
automatically spin up a new process on another node so that it matches the desired
state of 5 replicas.

To do that go to your DigitalOcean control panel and hit the power off button for one
of your Droplets. Then head back to your terminal and run:

docker services ps name_of_your_service_here

Output:

In the screenshot above, you can see how I've shutdown the droplet called worker-2
and how the replica bobby-web.2 was instantly started again on another node called
worker-01 to match the desired state of 5 replicas.

To add more replicas run:

docker service scale name_of_your_service_here=7

Output:

231

This would automatically spin up 2 more containers, you can check this with the docker
service ps command:

docker service ps name_of_your_service_here

Then as a test try starting the node that we've shutdown and check if it picked up any
tasks?

Tip: Bringing new nodes to the cluster does not automatically distribute running tasks.

232

Deleting a service

In order to delete a service, all you need to do is to run the following command:

docker service rm name_of_your_service

Output:

Now you know how to initialize and scale a docker swarm cluster! For more
information make sure to go through the official Docker documentation here.

https://docs.docker.com/engine/swarm/

233

Docker Swarm Knowledge Check

Once you've read this post, make sure to test your knowledge with this Docker Swarm
Quiz:

https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions

https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions
https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions
https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions

234

Conclusion

Congratulations! You have just completed the Docker basics eBook! I hope that it was
helpful and you've managed to learn some cool new things about Docker!

If you found this helpful, be sure to star the project on GitHub!

If you have any suggestions for improvements, make sure to contribute pull requests or
open issues.

In this introduction to Docker eBook, we just covered the basics, but you still have
enough under your belt to start working with Docker containers and images!

As a next step make sure to spin up a few servers, install Docker and play around with
all of the commands that you've learnt from this eBook!

In case that this eBook inspired you to contribute to some fantastic open-source
project, make sure to tweet about it and tag @bobbyiliev_ so that we could check it
out!

Congrats again on completing this eBook!

https://github.com/bobbyiliev/introduction-to-docker-ebook
https://twitter.com

235

Other eBooks

Some other eBooks that you might find helpful are:

Introduction to Git and GitHub
Introduction to Bash Scripting
Introduction to SQL
Introduction to Linux

https://github.com/bobbyiliev/introduction-to-git-and-github-ebook
https://github.com/bobbyiliev/introduction-to-bash-scripting
https://github.com/bobbyiliev/introduction-to-sql
https://leanpub.com/introduction-to-linux

	Contents
	About the book
	About the author
	Sponsors
	Ebook PDF Generation Tool
	Book Cover
	License

	Chapter 1: Introduction to Docker
	What is Docker?
	Why Use Docker?
	Docker Architecture
	Containers vs. Virtual Machines
	Basic Docker Workflow
	Docker Components
	Use Cases for Docker
	Conclusion

	Chapter 2: Installing Docker
	Docker Editions
	Installing Docker on Linux
	Installing Docker on macOS
	Installing Docker on Windows
	Post-Installation Steps
	Docker Desktop vs Docker Engine
	Troubleshooting Common Installation Issues
	Updating Docker
	Uninstalling Docker
	Conclusion

	Chapter 3: Working with Docker Containers
	Running Your First Container
	Basic Docker Commands
	Running Containers in Different Modes
	Port Mapping
	Working with Container Logs
	Executing Commands in Running Containers
	Practical Example: Running an Apache Container
	Container Resource Management
	Container Networking
	Data Persistence with Volumes
	Container Health Checks
	Cleaning Up
	Conclusion

	Chapter 4: What are Docker Images
	Key Concepts
	Working with Docker Images
	Building Custom Images
	Image Tagging
	Pushing Images to Docker Hub
	Image Layers and Caching
	Multi-stage Builds
	Image Scanning and Security
	Best Practices for Working with Images
	Image Management and Cleanup
	Conclusion

	Chapter 5: What is a Dockerfile
	Anatomy of a Dockerfile
	Dockerfile Instructions
	Best Practices for Writing Dockerfiles
	Advanced Dockerfile Concepts
	Conclusion

	Chapter 6: Docker Networking
	Docker Network Drivers
	Working with Docker Networks
	Deep Dive into Network Drivers
	Network Troubleshooting
	Best Practices
	Advanced Topics
	Conclusion

	Chapter 7: Docker Volumes
	Why Use Docker Volumes?
	Types of Docker Volumes
	Working with Docker Volumes
	Volume Drivers
	Best Practices for Using Docker Volumes
	Advanced Volume Concepts
	Troubleshooting Volume Issues
	Conclusion

	Chapter 8: Docker Compose
	Key Benefits of Docker Compose
	The docker-compose.yml File
	Key Concepts in Docker Compose
	Basic Docker Compose Commands
	Advanced Docker Compose Features
	Practical Examples
	Best Practices for Docker Compose
	Scaling Services
	Networking in Docker Compose
	Volumes in Docker Compose
	Conclusion

	Chapter 9: Docker Security Best Practices
	1. Keep Docker Updated
	2. Use Official Images
	3. Scan Images for Vulnerabilities
	4. Limit Container Resources
	5. Use Non-Root Users
	6. Use Secret Management
	7. Enable Content Trust
	8. Use Read-Only Containers
	9. Implement Network Segmentation
	10. Regular Security Audits
	11. Use Security-Enhanced Linux (SELinux) or AppArmor
	12. Implement Logging and Monitoring
	Conclusion

	Chapter 10: Docker in Production: Orchestration with Kubernetes
	Key Kubernetes Concepts
	Setting Up a Kubernetes Cluster
	Deploying a Docker Container to Kubernetes
	Scaling in Kubernetes
	Rolling Updates
	Monitoring and Logging
	Kubernetes Dashboard
	Persistent Storage in Kubernetes
	Kubernetes Networking
	Kubernetes Secrets
	Helm: The Kubernetes Package Manager
	Best Practices for Kubernetes in Production
	Conclusion

	Chapter 11: Docker Performance Optimization
	1. Optimizing Docker Images
	2. Container Resource Management
	3. Networking Optimization
	4. Storage Optimization
	5. Logging and Monitoring
	6. Docker Daemon Optimization
	7. Application-Level Optimization
	8. Benchmarking and Profiling
	9. Orchestration-Level Optimization
	Conclusion

	Chapter 12: Docker Troubleshooting and Debugging
	1. Container Lifecycle Issues
	2. Networking Issues
	3. Storage and Volume Issues
	4. Resource Constraints
	5. Image-related Issues
	6. Docker Daemon Issues
	7. Debugging Techniques
	8. Performance Debugging
	9. Docker Compose Troubleshooting
	Conclusion

	Chapter 13: Advanced Docker Concepts and Features
	1. Multi-stage Builds
	2. Docker BuildKit
	3. Custom Bridge Networks
	4. Docker Contexts
	5. Docker Content Trust (DCT)
	6. Docker Secrets
	7. Docker Health Checks
	8. Docker Plugins
	9. Docker Experimental Features
	10. Container Escape Protection
	11. Custom Dockerfile Instructions
	12. Docker Manifest
	13. Docker Buildx
	14. Docker Compose Profiles
	Conclusion

	Chapter 14: Docker in CI/CD Pipelines
	1. Docker in Continuous Integration
	2. Docker in Continuous Deployment
	3. Docker Compose in CI/CD
	4. Security Scanning
	5. Performance Testing
	6. Environment-Specific Configurations
	7. Caching in CI/CD
	8. Blue-Green Deployments with Docker
	9. Monitoring and Logging in CI/CD
	Conclusion

	Chapter 15: Docker and Microservices Architecture
	1. Principles of Microservices
	2. Dockerizing Microservices
	3. Inter-service Communication
	4. Service Discovery
	5. API Gateway
	6. Data Management
	7. Monitoring Microservices
	8. Scaling Microservices
	9. Testing Microservices
	10. Deployment Strategies
	Conclusion

	Chapter 16: Docker for Data Science and Machine Learning
	1. Setting Up a Data Science Environment
	2. Managing Dependencies with Docker
	3. GPU Support for Machine Learning
	4. Distributed Training with Docker Swarm
	5. MLOps with Docker
	6. Data Pipeline with Apache Airflow
	7. Reproducible Research with Docker
	8. Big Data Processing with Docker
	9. Automated Machine Learning (AutoML) with Docker
	10. Hyperparameter Tuning at Scale
	Conclusion

	What is Docker Swarm mode
	Docker Services
	Building a Swarm

	Managing the cluster
	Promote a worker to manager
	Using Services
	Scaling a service
	Deleting a service
	Docker Swarm Knowledge Check

	Conclusion
	Other eBooks

