
tss-lib Security Audit

Final Report, 2019-10-04

FOR PUBLIC RELEASE

Contents

1 Summary 3
2 Introduction 4
3 Methodology 5
3.1 Code Safety . 5

3.2 Cryptography . 6

3.3 Protocol Specification Matching . 6

4 Findings 7
KS-BTL-F-01 Signed message not hashed nor sanitized 7

KS-BTL-F-02 Not fully committing ZKProof for Bob in MtAwc 8

KS-BTL-F-03 Not using safe primes . 9

KS-BTL-F-04 MustGetRandomInt() panics and DoS 9

KS-BTL-F-05 GetRandomPositiveInt() infinite loop 10

KS-BTL-F-06 GetRandomPositiveRelativelyPrimeInt() infinite loop . . 10

KS-BTL-F-07 Discrepancy in signing Finalize step 11

KS-BTL-F-08 PrepareForSigning() panics on invalid inputs. 11

KS-BTL-F-09 SHA512_256 interface prone to collisions 12

KS-BTL-F-10 Unhandled errors can lead to panic 13

5 Observations 15
KS-BTL-O-01 The IsOnCurve() method is not called during

unmarshal/new . 15

1

tss-lib Security Audit – Binance

KS-BTL-O-02 Inconsistent arguments validation in range proofs 17

KS-BTL-O-03 Accumulators can spare big.Exp() computations in for
loops . 17

KS-BTL-O-04 Storage of unnecessary data in signing round 1 19

KS-BTL-O-05 Extra memory allocations in ModIntmethods 20

KS-BTL-O-06 Extra big int allocation done in proofs 20

KS-BTL-O-07 GenerateNTildei() incomplete arguments check 21

KS-BTL-O-08 Discrepancy in the re-sharing protocol 21

KS-BTL-O-09 Unnecessary re-computation of stored value 22

KS-BTL-O-10 Redundant check in GetRandomPrimeInt() 22

KS-BTL-O-11 Redundant check in ECpoint.ValidateBasic() 23

KS-BTL-O-12 big.Int is not constant time 23

KS-BTL-O-13 Non-constant time commitment verification 24

KS-BTL-O-14 RejectionSample superfluous loop condition 24

KS-BTL-O-15 Unhandled errors . 25

KS-BTL-O-16 Use of multiple channels in concurrency situations 25

KS-BTL-O-17 Wrong value gets saved in signing round 2 26

KS-BTL-O-18 Unnecessary initialization in loop 27

KS-BTL-O-19 Implementation does not support more parties than the

threshold . 28

KS-BTL-O-20 Linters & good practices for Go 28

6 About 30

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 2 of 30

1 Summary

Binance created a software library implementing threshold ECDSA signatures, and

hired Kudelski Security to perform a security assessment of this library.

The repository concerned is:

https://github.com/binance-chain/tss-lib/

we specifically audited commit 31c67c55.

This document reports the security issues identified and our mitigation

recommendations, as well as some observations regarding the code base and general

code safety. A “Status” section reports the feedback from Binance’s developers, and

includes a reference to the patches related to the reported issues. All changes have

been reviewed by our team according to our standard audit methodology, and we

believe the patches created by Binance adequately address the shortcomings

reported.

We report:

• 7 security issues of medium severity

• 3 security issues of low severity

• 20 observations related to general code safety

All of which have already been fixed by the Binance team.

It is important to notice however that the severity of certain issues has been

considered higher than we would usually do since this is a library meant to be reused

by other developers. None of the issues found in the frame of this audit could be

exploited per se to completely break the security of the scheme, or recover secret
data.

3

https://github.com/binance-chain/tss-lib/

2 Introduction

The tss-lib software implements threshold ECDSA signatures, based on a number of

cryptographic components.

Said core components include commitment protocols, Paillier cryptosystem,

randomness generation, range proofs, Schnorr proofs, and verifiable secret-sharing.

The actual threshold ECDSA signature scheme includes the three main required

algorithms (key generation, signing, verification), as well as higher-level interface to

simplify the usage of the threshold scheme.

Our assessment focused mostly on the cryptographic components (most of which are

critical to the secure execution of the protocol). We aimed to find:

• Discrepancies between the specified protocol and its expected behavior.

• Insecure cryptographic components or parameters.

• Unsafe software patterns or components.

• Risk of software abuse from malicious input.

• Unsafe handling of errors and edge cases.

4

3 Methodology

We approached this engagement by performing the following activities:

1. review of the specification and related literature;

2. detailed review of the functional matching between the code and specified

intended behavior;

3. assessment of the cryptographic primitives used;

4. software security code review.

This was done in a static way and no dynamic analysis has been performed on the

codebase. We discuss our methodology in more detail in the following sections.

3.1 Code Safety
We reviewed the code for software defects, focusing on the handling of potentially

untrusted inputs. We looked for:

• general code safety and susceptibility to known vulnerabilities;

• bad coding practices and unsafe behavior;

• leakage of secrets or other sensitive data through memory mismanagement;

• susceptibility to misuse and system errors;

• error management and logging;

• safety against malformed or malicious input from other network participants.

5

tss-lib Security Audit – Binance

3.2 Cryptography
We analyzed the cryptographic primitives and subprotocols used, with particular

emphasis on randomness and hash generation, signatures, key management,

zero-knowledge proofs, and encryption. We checked in particular:

• matching of the proper cryptographic primitives to the desired cryptographic

functionality needed;

• security level of cryptographic primitives and of their respective parameters (key

lengths, etc.);

• safety of the randomness generation in the general case and in case of failure;

• checking for known vulnerabilities in the primitives used.

3.3 Protocol Specification Matching
We analyzed the original paper, and checked that the code matches the given

specification. We checked for things such as:

• proper implementation of the protocol phases;

• proper error handling;

• correct implementation of the zero-knowledge proofs;

• adherence to the protocol logical description.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 6 of 30

4 Findings

This section reports security issues found during the audit. Notice that tss-lib being a

library rather than an attacker-exposed application, we define severity assuming that

public functions and methods can be reached by an attacker, and that we cannot

expect one to perform security critical operations at the client level.

The “Status” section includes feedback from Binance developers received after

reporting our findings.

KS-BTL-F-01: Signed message not hashed nor sanitized
Severity: Medium

Description
The message is not hashed in signing/round_1.go (this is even explicitly written in

the comments on lines 21-22), instead it is simply passed as a big.Int, without even

checking it’s inZq.

This means that it would be trivial to forge messages that match a signature for a

previous message, shall the library be wrongly used without first hashing the

messages.

21 // missing:
22 // line1: m = H(M) belongs to Zq
23 func (round *round1) Start() *tss.Error {

Recommendation
Hash the message before processing it, and make sure the hash is in Zq (repeat

hashing until it is).

7

tss-lib Security Audit – Binance

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55. The

check that the message is inZq has been added in #62.

Not hashing the message in the library is a design choice made by the developers

and will not be changed, in order to be compatible with different sort of blockchain

technologies, that require different type of hashes.

This means the clients are responsible for hashing correctly their messages before

passing them to the library.

KS-BTL-F-02: Not fully committing ZKProof for Bob in MtAwc
Severity: Medium

Description
In crypto/mta/proofs.go, on lines 93 and 161, the following hash is computed:

93 eHash = common.SHA512_256i(append(pk.AsInts(), X.X(), X.Y(), c1, c2, z, zPrm, t, v,
w)...)↪→

However, one component in that hash is missing, namely u = gα
.

This means the ZK proof does not fully commit to the consistency check as it should.

However, it does not allow to create a valid proof for a distinct set of data.

Recommendation
Include the parameter u in the hash computation.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/42 and has

been fixed in #43.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 8 of 30

https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/62
https://github.com/binance-chain/tss-lib/issues/42
https://github.com/binance-chain/tss-lib/pull/43

tss-lib Security Audit – Binance

KS-BTL-F-03: Not using safe primes
Severity: Medium

Description
The function GetRandomGeneratorOfTheQuadraticResidue() used in

GenerateNTildei() works only if its input is the product of two safe primes, that is,
primes of the form p = 2q + 1 where q is also prime.

However, the primes used in GenerateNTildei() are coming from its arguments and

in keygen/round_1.go, it appears that the primes generated using

rsa.GenerateMultiPrimeKey() are not safe primes.

77 // Return a random generator of RQn with high probability. THIS METHOD
78 // ONLY WORKS IF N IS THE PRODUCT OF TWO SAFE PRIMES!
79 // https://github.com/didiercrunch/paillier/blob/d03e8850a8e4c53d04e8016a2ce8762af3278b71/utils.go#L39
80 func GetRandomGeneratorOfTheQuadraticResidue(n *big.Int) *big.Int {
81 r := GetRandomPositiveRelativelyPrimeInt(n)
82 return new(big.Int).Mod(new(big.Int).Mul(r, r), n)
83 }

Recommendation
We recommend to check that the primes used are of the desired form. Also, during the

generation of two 1024-bit RSA (safe) primes r and s meant to create a Paillier public
key with N = rs, it should be checked that r − s is also very large (1020 bits) in order
to avoid square-root attacks.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been addressed in #63 and in #68.

KS-BTL-F-04: MustGetRandomInt() panics and DoS
Severity: Medium

Description
The bits argument in MustGetRandomInt() should be checked for acceptable values:

• Upon negative value, rand.Int() will panic

• Upon very long value rand.Int will take a long time

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 9 of 30

 https://github.com/didiercrunch/paillier/blob/d03e8850a8e4c53d04e8016a2ce8762af3278b71/utils.go#L39
https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/63
https://github.com/binance-chain/tss-lib/pull/68

tss-lib Security Audit – Binance

See PoC at https://play.golang.org/p/y-wjDiIK374.

Recommendation
We recommend to check that bits is strictly positive and below a certain bound

defined as a constant.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/28 and has

been fixed in cb96dd6.

KS-BTL-F-05: GetRandomPositiveInt() infinite loop
Severity: Medium

Description
If the lessThan argument is negative in GetRandomPositiveInt(), then it will enter an

infinite loop, as the condition try.Cmp(lessThan) < 0 will never be satisfied.

See PoC at https://play.golang.org/p/sqxDsvzM944.

Recommendation
We recommend to check that lessThan is positive.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/29 and has

been fixed in cb96dd6.

KS-BTL-F-06: GetRandomPositiveRelativelyPrimeInt() infinite loop
Severity: Medium

Description
If the n argument is negative, then GetRandomPositiveRelativelyPrimeInt will loop

forever, as the condition v.Cmp(n) < 0 in IsNumberInMultiplicativeGroup() is never

satisfied.

See PoC at https://play.golang.org/p/NeejDhqUWOb.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 10 of 30

https://play.golang.org/p/y-wjDiIK374
https://github.com/binance-chain/tss-lib/issues/28
https://github.com/binance-chain/tss-lib/commit/cb96dd603500f26ff9c390a35d87bed4ada0d0b4
https://play.golang.org/p/sqxDsvzM944
https://github.com/binance-chain/tss-lib/issues/29
https://github.com/binance-chain/tss-lib/commit/cb96dd603500f26ff9c390a35d87bed4ada0d0b4
https://play.golang.org/p/NeejDhqUWOb

tss-lib Security Audit – Binance

Recommendation
We recommend to check that n is positive, and also that

IsNumberInMultiplicativeGroup checks the validity of its argument (being a method

visible outside of the package).

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/30 and has

been fixed in cb96dd6.

KS-BTL-F-07: Discrepancy in signing Finalize step
Severity: Medium

Description
In the last part of the signature generation protocol, each party is supposed to verify

the final signature it computed verifies under the group public key. This is not the

case currently in finalize.go, as such, any malicious party could make the group

reconstruct invalid signatures.

Notice that also the reference paper states that this check is necessary, as the signing

procedure can potentially produce invalid signatures.

Recommendation
Perform the final check as described by the reference paper by verifying the

reconstructed signature with the group’s public key.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been fixed in 9f398c9.

KS-BTL-F-08: PrepareForSigning() panics on invalid inputs.
Severity: Low

Description
The input to PrepareForSigning() could be so that pax > len(ks) || pax > len(Xs),
which leads to a panic when iterating over the array ks[j] with j ∈ [0, pax[.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 11 of 30

https://github.com/binance-chain/tss-lib/issues/30
https://github.com/binance-chain/tss-lib/commit/cb96dd603500f26ff9c390a35d87bed4ada0d0b4
https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/commit/9f398c92def051a66cb23d4f8087cf5d6422f7d4

tss-lib Security Audit – Binance

Here is the concerned code snippet, from signing/prepare.go:

12 func PrepareForSigning(i, pax int, xi *big.Int, ks []*big.Int, bigXs
[]*crypto.ECPoint) (wi *big.Int, bigWs []*crypto.ECPoint) {↪→

13 modQ := common.ModInt(tss.EC().Params().N)
14

15 // 2-4.
16 wi = xi
17 for j := 0; j < pax; j++ {
18 if j == i {
19 continue
20 }
21 kj, ki := ks[j], ks[i] // <-- This could panic if pax > len(ks)
22 // big.Int Div is calculated as: a/b = a * modInv(b,q)
23 coef := modQ.Mul(kj, modQ.ModInverse(new(big.Int).Sub(kj, ki)))

// This could panic if kj-ki == 0↪→

Also, if kj == ki, notice the function will panic as it tries to compute the modular

inverse of new(big.Int).Sub(kj, ki) on the next line, since 0 is not invertible.

A little bit further on line 36, if ks[c]==ks[j], the ModInverse would panic as well.

Notice these should never happen, but this is an exported function, which means it is

best to check from a defensive coding point of view, to reduce the attack surface. We

report this as a finding since external input would lead to panics.

Recommendation
Add sanity checks on the input.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and was

fixed in #56.

KS-BTL-F-09: SHA512_256 interface prone to collisions
Severity: Low

Description
The SHA512_256() function takes of list of byte arrays as arguments and creates the

data to be hashed by separating these data blocks with a $ character.

Since the byte arrays can also include this character, different sets of inputs can hash

to the same value.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 12 of 30

https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/56

tss-lib Security Audit – Binance

For example, if in is the single array [a,$,b,$], then the hash result will be the same

as when in is the two arrays [a] and [b].

Recommendation
A non-ambiguous encoding should be used to prevent this, for example by adding an

encoding of the block length for each of the blocks processed.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/34 and has

been fixed in #41.

KS-BTL-F-10: Unhandled errors can lead to panic
Severity: Low

Description
On line 38 of share_protocol.go, err is not checked, but if

EncryptAndReturnRandomness() returns with the ErrMessageTooLong error, then

both cBetaPrm and cRand would be nil, which it turns would make pkA.HomoAdd(cB,

cBetaPrm) panic on nil pointer dereference.

Moreover, the results of pkA.EncryptAndReturnRandomness() and ProveBob() are not

checked to be nil here:

38 cBetaPrm, cRand, err := pkA.EncryptAndReturnRandomness(betaPrm)
39 cB, err = pkA.HomoMult(b, cA)
40 if err != nil {
41 return
42 }
43 cB, err = pkA.HomoAdd(cB, cBetaPrm)
44 if err != nil {
45 return
46 }
47 beta = common.ModInt(q).Sub(zero, betaPrm)
48 piB, err = ProveBob(pkA, NTildeA, h1A, h2A, cA, cB, b, betaPrm, cRand)
49 return

Notice that if there are good reasons not to check these errors, it is recommended to

make them explicit by setting the result to something, _.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 13 of 30

https://github.com/binance-chain/tss-lib/issues/34
https://github.com/binance-chain/tss-lib/pull/41

tss-lib Security Audit – Binance

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/39 and has

been fixed in #48.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 14 of 30

https://github.com/binance-chain/tss-lib/issues/39
https://github.com/binance-chain/tss-lib/pull/48

5 Observations

This section reports various observations that are not security issues to be fixed, such

as improvement or defense-in-depth suggestions.

KS-BTL-O-01: The IsOnCurve() method is not called during
unmarshal/new

The structure ECPoint represents a point on a given curve. Currently a method exists

such that one can:

1 point := NewECPoint(P256(), x, y)
2 if !point.IsOnCurve() {
3 // report error
4 }

This relies on the programmer remembering to call IsOnCurve. We see such checks in

the code:

tss-lib/crypto/schnorr/schnorr_proof_test.go:20:

assert.True(t, proof.Alpha.IsOnCurve())

tss-lib/crypto/mta/proofs.go:173:

if !gS1.IsOnCurve() || !xEU.IsOnCurve() || !gS1.Equals(xEU) {

tss-lib/crypto/vss/feldman_vss_test.go:36:

assert.True(t, pg.IsOnCurve())

tss-lib/ecdsa/keygen/round_3.go:127:

if !ecdsaPubKey.IsOnCurve() {

15

tss-lib Security Audit – Binance

Recommendation
For defensive coding purposes we recommend not allowing the construction of an

invalid curve point. This can be done by changing NewECPoint to validate and return

an error:

1 func isOnCurve(c Curve, x, y *big.Int) bool {
2 if x == nil || y == nil {
3 return false
4 }
5 return c.IsOnCurve(x,y)
6 }
7

8 func (p *ECPoint) IsOnCurve() bool {
9 return isOnCurve(p, p.coords[0], p.coords[1])

10 }
11

12 func NewECPoint(curve elliptic.Curve, X, Y *big.Int) *ECPoint, error {
13 if !isOnCurve(curve, X, Y) {
14 return nil, fmt.Errorf("Your error message here")
15 }
16 return &ECPoint{curve, [2]*big.Int{X, Y}}, nil
17 }

The unmarshalling function UnmarshalJSON() can likewise call isOnCurve() to validate

the point.

The above is just a suggestion: given that structure fields are only private at a package

level in Go, this may or not make sense to implement. In particular, if consuming

packages are free to modify the internal fields of the structure at any point, then

IsOnCurve() may need to be called regularly by the programmers to check the

structure has not been altered into an invalid state.

Also notice that invalid curve attacks are not a known problem for ECDSA, unlike for

TLS, hence this does not appear to be a security issue.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/46 and has

been fixed in #48.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 16 of 30

https://github.com/binance-chain/tss-lib/issues/46
https://github.com/binance-chain/tss-lib/pull/48

tss-lib Security Audit – Binance

KS-BTL-O-02: Inconsistent arguments validation in range proofs
The verification function checks that arguments are not nil in mta/range_proof.go:

75 func (pf *RangeProofAlice) Verify(pk *paillier.PublicKey, NTilde, h1, h2, c *big.Int)
bool {↪→

76 if pf == nil || pk == nil || NTilde == nil || h1 == nil || h2 == nil || c == nil {
77 return false
78 }
79 ...

However, the proof creation does not perform any such checks (and might fail upon

nil values, when performing arithmetic operations):

21 func ProveRangeAlice(pk *paillier.PublicKey, c, NTilde, h1, h2, m, r *big.Int)
*RangeProofAlice {↪→

22 q := tss.EC().Params().N
23 q3 := new(big.Int).Mul(q, q)
24 q3 = new(big.Int).Mul(q, q3)
25 ...

Recommendation
We recommend to add nil checks for extra safety.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/47 and has

been fixed in #50.

KS-BTL-O-03: Accumulators can spare big.Exp() computations in
for loops

In the feldman_vss.go file, in the evaluatePolynomial() function, we have the

following:

138 q := tss.EC().Params().N
139 modQ := common.ModInt(q)
140 result = new(big.Int).Set(v[0])
141 for i := 1; i <= threshold; i++ {
142 ai := v[i]
143 aiXi := new(big.Int).Mul(ai, modQ.Exp(id, big.NewInt(int64(i))))
144 result = modQ.Add(result, aiXi)
145 }

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 17 of 30

https://github.com/binance-chain/tss-lib/issues/47
https://github.com/binance-chain/tss-lib/pull/50

tss-lib Security Audit – Binance

But instead of computing modQ.Exp(id, big.NewInt(int64(i))) at each iteration, it

would be faster to accumulate the value of xi
.

Recommendation
We propose to use an accumulator instead of re-computing the exponentiation in each

iteration of the loop:

1 q := tss.ec().params().n
2 modq := common.modint(q)
3 result = new(big.int).set(v[0])
4 x := big.newint(int64(1))

// we need to have our accumulator outside of the loop↪→

5 for i := 1; i <= threshold; i++ {
6 ai := v[i]
7 x = modq.mul(x, id)

// so we have that x = 1*id*id*...*id = id^i↪→

8 aixi := new(big.int).mul(ai, x)
9 result = modq.add(result, aixi)

10 }

The same holds for the verify() function in vss/feldman_vss.go#L75, proposed

patch:

1 func (share *Share) Verify(threshold int, vs Vs) bool {
2 if share.Threshold != threshold {
3 return false
4 }
5 modN := common.ModInt(tss.EC().Params().N)
6 v := vs[0]
7 t := new(big.Int).SetInt64(int64(1))

// we need to have our accumulator outside of the loop↪→

8 for j := 1; j <= threshold; j++ {
9 // t = ki^j

10 t = modN.Mul(t, share.ID) // here we can use just Mul instead of Exp.
11 // v = v * vj^t
12 vjt := vs[j].SetCurve(tss.EC()).ScalarMult(t)
13 v = v.SetCurve(tss.EC()).Add(vjt)
14 }
15 sigmaGi := crypto.ScalarBaseMult(tss.EC(), share.Share)
16 if sigmaGi.Equals(v) { // could be simplified to "return sigmaGi.Equals(v)"
17 return true // *
18 } // *
19 return false // *
20 }

Also notice the above function could directly return the value of sigmaGi.Equals(v)

instead of having a conditional return statement.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 18 of 30

tss-lib Security Audit – Binance

The same holds for the Start() function in regroup/round_4_new_step_2.go.

And the same holds for the Start() function in keygen/round_3.go.

For instance, using 512 bits values for q and id, here are some benchmark results that

show a 5x speed increase using an accumulator, as well as a significant decrease in the

number of allocations required:

BenchmarkModMul-4 1000 2188456 ns/op 1135169 B/op 8996 allocs/op

BenchmarkExpMod-4 100 10746285 ns/op 1987063 B/op 13186 allocs/op

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/51 and has

been fixed in #53.

KS-BTL-O-04: Storage of unnecessary data in signing round 1
In round 1, in the case where j == i, the mta.AliceInit() function is still called, and

the message is even stored in round.temp.signRound1MtAInitMessages[i], whereas

it is always skipped in the next rounds.

Recommendation
This could be skipped completely in round 1 as well as per the specification.

43 for j, Pj := range round.Parties().IDs() {
44 c, pi, err := mta.AliceInit(round.key.PaillierPks[i], k, round.key.NTildej[j],

round.key.H1j[j], round.key.H2j[j])↪→

45 if err != nil {
46 return round.WrapError(fmt.Errorf("failed to init mta: %v", err))
47 }
48 r1msg1 := NewSignRound1MtAInitMessage(Pj, round.PartyID(), c, pi)
49 if j == i {

// this could be at the start of the loop to avoid the AliceInit computations↪→

50 round.temp.signRound1MtAInitMessages[j] = &r1msg1 // <-- unnecessary
51 continue
52 }
53 round.temp.signRound1SentMtaInitMessages[j] = &r1msg1
54 round.out <- r1msg1
55 }

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been fixed in #56.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 19 of 30

https://github.com/binance-chain/tss-lib/issues/51
https://github.com/binance-chain/tss-lib/pull/53
https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/56

tss-lib Security Audit – Binance

KS-BTL-O-05: Extra memory allocations in ModIntmethods
The modular arithmetic defined on top of big.Int does a lot of new(big.Int) in order

to use big.Int methods, however these incur superfluous memory allocations, which

may have an impact on performance when many operations are done.

For example in:

14 func (mi *modInt) Add(x, y *big.Int) *big.Int {
15 i := new(big.Int).Add(x, y)
16 return new(big.Int).Mod(i, mi.i())
17 }

Here, three big.Int structs are allocated whereas one would be sufficient, for example

by doing:

1 func (mi *modInt) Add(x, y *big.Int) *big.Int {
2 i := new(big.Int).Add(x, y)
3 return i.Mod(i, mi.i())
4 }

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/33 and has

been fixed in 60f53b9.

KS-BTL-O-06: Extra big int allocation done in proofs
In mta/proofs.go, there are extra allocation of big.Int that could be spared:

103 // 14.
104 s1 := new(big.Int).Mul(e, x)
105 s1 = new(big.Int).Add(s1, alpha)
106

107 // 15.
108 s2 := new(big.Int).Mul(e, rho)
109 s2 = new(big.Int).Add(s2, rhoPrm)
110

111 // 16.
112 t1 := new(big.Int).Mul(e, y)
113 t1 = new(big.Int).Add(t1, gamma)
114

115 // 17.
116 t2 := new(big.Int).Mul(e, sigma)
117 t2 = new(big.Int).Add(t2, tau)

which all allocate a temporary big.Int to perform the additions.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 20 of 30

https://github.com/binance-chain/tss-lib/issues/33
https://github.com/binance-chain/tss-lib/commit/60f53b91303a08c6bb9e818032e7fe3f366c77ee

tss-lib Security Audit – Binance

Recommendation
This could be instead:

1 s1 := new(big.Int).Mul(e, x)
2 s1.Add(s1, alpha)
3 ...

which achieves the same outcome.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been fixed in #56.

KS-BTL-O-07: GenerateNTildei() incomplete arguments check
The function requires a slice with exactly two *big.Int’s, however the function will not

reject slices with three or more values:

10 func GenerateNTildei(rsaPrimes []*big.Int) (NTildei, h1i, h2i *big.Int, err error) {
11 if len(rsaPrimes) < 2 {
12 return nil, nil, nil, fmt.Errorf("GenerateNTildei: needs two primes, got %d",

len(rsaPrimes))↪→

13 }
14 NTildei = new(big.Int).Mul(rsaPrimes[0], rsaPrimes[1])
15 h1 := random.GetRandomGeneratorOfTheQuadraticResidue(NTildei)
16 h2 := random.GetRandomGeneratorOfTheQuadraticResidue(NTildei)
17 return NTildei, h1, h2, nil
18 }

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/35 and has

been fixed in #49.

KS-BTL-O-08: Discrepancy in the re-sharing protocol
In round_1_old_step_1.go, the “big Xjs” are included in the commitments made using

the Com() function, whereas in the specification itself, only commitments for the vij

from the Feldman’s VSS scheme are included.

Similarly, the use of Xj is omitted from the decommitment in NewCommitteeStep2
step 6, but unwrapped in the code and stored in round.temp.OldBigXj and

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 21 of 30

https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/56
https://github.com/binance-chain/tss-lib/issues/35
https://github.com/binance-chain/tss-lib/pull/49

tss-lib Security Audit – Binance

round.temp.OldKs in round_4_new_step_2.go. They both do not appear to be reused

after that, and take no further part in the specification.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/60 and has

been fixed in #60.

KS-BTL-O-09: Unnecessary re-computation of stored value
In the signing round 1, the value round.temp.point is stored, but in round 4 and in

round 5, the bigGamma value and the RX, RY values respectively are re-computed from

the round.temp.gamma value, instead of being retrieved from the round.temp.point

variable.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/61 and has

been fixed in #62.

KS-BTL-O-10: Redundant check in GetRandomPrimeInt()

In common/random.go, in the function GetRandomPrimeInt(), there is a conditional

check where try == nil can only be true if err != nil, so it is sufficient to check

that err != nil.

42 func GetRandomPrimeInt(bits int) *big.Int {
43 try, err := rand.Prime(rand.Reader, bits)
44 if err != nil ||
45 try == nil ||
46 try.Cmp(zero) == 0 {

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/31 and has

been fixed in a897100.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 22 of 30

https://github.com/binance-chain/tss-lib/issues/60
https://github.com/binance-chain/tss-lib/issues/60
https://github.com/binance-chain/tss-lib/issues/61
https://github.com/binance-chain/tss-lib/pull/62
https://github.com/binance-chain/tss-lib/issues/31
https://github.com/binance-chain/tss-lib/commit/a8971001490536696d5c241bdc5bd5e8f61eacf0

tss-lib Security Audit – Binance

KS-BTL-O-11: Redundant check in ECpoint.ValidateBasic()

An ECPoint struct is defined as:

16 type ECPoint struct {
17 curve elliptic.Curve
18 coords [2]*big.Int
19 }

Hence the coords array will always be of size 2, as enforced by the Go language. The
condition len(p.coords) == 2 below is therefore always true, thus can be omitted:

62 func (p *ECPoint) ValidateBasic() bool {
63 return p != nil && len(p.coords) == 2 && p.coords[0] != nil && p.coords[1] !=

nil↪→

64 }

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/36 and has

been fixed in #48.

KS-BTL-O-12: big.Int is not constant time
Golang’s big package provides multiprecision integer arithmetic similar to libgmp or

libmpir. However, big.Int does not operate in constant time. Therefore, all

big.Int.Exp() implementations (https://golang.org/pkg/math/big/#Int.Exp)

potentially leak timing information.

Golang’s RSA package is similarly vulnerable, and in order to mitigate this problem, it

applies blinding (e.g. in crypto/rsa/rsa.go) in decryption operations. Decrypt

functionality in the Paillier cryptosystem may apply similar techniques. An issue

(https://github.com/golang/go/issues/20654) is open in the Go repository to

support constant-time arithmetic but there is little progress.

Notice this is not necessarily something we recommend trying to fix, but which might

be useful depending on your threat model.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/44 and does

not necessarily need to be fixed.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 23 of 30

https://github.com/binance-chain/tss-lib/issues/36
https://github.com/binance-chain/tss-lib/pull/48
https://golang.org/pkg/math/big/#Int.Exp
https://golang.org/src/crypto/rsa/rsa.go?s=11973:12081#L460
https://github.com/golang/go/issues/20654
https://github.com/binance-chain/tss-lib/issues/44

tss-lib Security Audit – Binance

KS-BTL-O-13: Non-constant time commitment verification
If an attacker’s goal is to find the hash corresponding to some (unknown) secret, they

may leverage the variable-time comparator in Verify(). The execution time of

Verify() can also leak the result of the function to an observer. However this is only

in theory, and unlikely to represent a security issue in practice.

47 func (cmt *HashCommitDecommit) Verify() bool {
48 C, D := cmt.C, cmt.D
49 if C == nil || D == nil {
50 return false
51 }
52 hash := common.SHA512_256i(D...)
53 if hash.Cmp(C) == 0 {
54 return true
55 } else {
56 return false
57 }
58 }

Here hash.Cmp(C) calls big/nat.go’s cmp(), which compares bigInt’s value Word by

Word.

Notice this is not necessarily something we recommend trying to fix, but which might

be useful depending on your threat model.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/37 and does

not necessarily need to be fixed.

KS-BTL-O-14: RejectionSample superfluous loop condition
Here the for loop depends on the condition zero.Cmp(q) == -1, however neither q

nor zero are modified inside the loop, so this check can be moved out of the loop:

14 qBits := q.BitLen()
15 // e = the first |q| bits of e'
16 e := firstBitsOf(qBits, eHash)
17 // while e is not between 0-q
18 for !(e.Cmp(q) == -1 && zero.Cmp(q) == -1) {
19 eHash := SHA512_256i(eHash)
20 e = firstBitsOf(qBits, eHash)
21 }

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 24 of 30

https://github.com/binance-chain/tss-lib/issues/37

tss-lib Security Audit – Binance

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/52 and has

been fixed in f890595.

KS-BTL-O-15: Unhandled errors
In ecpoint.go, there are unhandled errors on Read, Write, and (*Int) GobDecode.

This should not be a security concern, but it would be better to handle them.

Especially for the GobDecode one, as the encoding version can change, causing it to be

incompatible.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/38 and has

been fixed in #48.

KS-BTL-O-16: Use of multiple channels in concurrency situations
In the ECDSA signing rounds, there are multiple instances of 2n unbuffered channels
being created for n parties. But one unbuffered channel should be enough to gather
all errors from all go routines, especially since we know that we are writing 2n − 2
things to the channel at most, so it won’t block.

In round_3.go in particular, two arrays of channels are created, two for each remote

party:

25 // it's concurrency time...
26 errChs1 := make([]chan *tss.Error, len(round.Parties().IDs()))
27 for j := range errChs1 {
28 if j == i {
29 errChs1[j] = nil
30 continue
31 }
32 errChs1[j] = make(chan *tss.Error)
33 }
34 errChs2 := make([]chan *tss.Error, len(round.Parties().IDs()))
35 for j := range errChs2 {
36 if j == i {
37 errChs2[j] = nil
38 continue
39 }
40 errChs2[j] = make(chan *tss.Error)
41 }

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 25 of 30

https://github.com/binance-chain/tss-lib/issues/52
https://github.com/binance-chain/tss-lib/commit/f890595d3ba5e9bcdbf0a318fbc087009c39a8fe
https://github.com/binance-chain/tss-lib/issues/38
https://github.com/binance-chain/tss-lib/pull/48

tss-lib Security Audit – Binance

Goroutines are then launched in order to receive messages and report errors from this

round, which are passed into each channel. The main thread continues to “drain” error

messages (if any) from these channels. Channels are not immediately closed (they do

not have to be) and are exposed in a bidirectional fashion to the goroutines.

This works; however, it allocates many individual channels, and ranges iterating over

the array of channels will block on any channel that has not had a message sent – that

is, if channel[2] is encountered first and is blocked but channel[3] is ready, the loop

will wait until channel[2] is ready.

For further reading you may refer to “closing channels in golang”.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been fixed in #56.

KS-BTL-O-17: Wrong value gets saved in signing round 2
In the loop at the end of the signing round 2 responsible for sending the messages,

it appears only the latest message meant for the last party is saved in the local temp

variable :

100 // create and send messages
101 for j, Pj := range round.Parties().IDs() {
102 if j == round.PartyID().Index {
103 continue
104 }
105 r2msg := NewSignRound2MtAMidMessage(
106 Pj, round.PartyID(), round.temp.c1jis[j], round.temp.pi1jis[j],

round.temp.c2jis[j], round.temp.pi2jis[j])↪→

107 round.temp.signRound2MtAMidMessages[round.PartyID().Index] = &r2msg
108 round.out <- r2msg
109 }

Also notice that round.PartyID().Index is actually i.

As a consequence, in the Update() function, message on index i is the one meant to

be sent to the latest party. This seems wrong as there is no need to store the latest

message sent on index i of that table. If the goal is simply to have a valid message

on index i, so that the Update() still verifies, it seems a bit too much to overwrite the

value on each loop iteration to just retain the latest one in the end.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 26 of 30

https://go101.org/article/channel-closing.html
https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/56

tss-lib Security Audit – Binance

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been fixed in #56.

KS-BTL-O-18: Unnecessary initialization in loop
In signing/prepare.go, line 21, the value ki := ks[i] is initialized in every loop

iteration, whereas it could be initialized just once outside of the loop.

12 func PrepareForSigning(i, pax int, xi *big.Int, ks []*big.Int, bigXs
[]*crypto.ECPoint) (wi *big.Int, bigWs []*crypto.ECPoint) {↪→

13 modQ := common.ModInt(tss.EC().Params().N)
14

15 // 2-4.
16 wi = xi // ki could be initialized here
17 for j := 0; j < pax; j++ {
18 if j == i {
19 continue
20 }
21 kj, ki := ks[j], ks[i]

// ki doesn't need to be initialized every time↪→

The same hold in prepare.go, line 36: the value ks[c] is accessed at each iteration, it

could be copied to a local variable in the outer loop:

30 bigWj := bigXs[j]
31 for c := 0; c < pax; c++ {
32 if j == c {
33 continue
34 }
35 // big.Int Div is calculated as: a/b = a * modInv(b,q)
36 iota := modQ.Mul(ks[c], modQ.ModInverse(new(big.Int).Sub(ks[c], ks[j])))
37 bigWj = bigWj.ScalarMult(iota)
38 }

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been fixed in #56.

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 27 of 30

https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/56
https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/56

tss-lib Security Audit – Binance

KS-BTL-O-19: Implementation does not support more parties than
the threshold

It seems the current signing algorithm is assuming as many parties as required by the

threshold, and if there are more parties, with indexes larger than Threshold + 1, they

would panic during signing.

See for instance, how pax and len(bigWs) are not related in PrepareForSigning()

(lines 28, 29, and 39, in prepare.go), which means bigWs[pax:] is containing null

pointers that would be used by the parties with indexes greater than pax in round_2’s

Start().

Notice that this is consistent with the specification that says “We assume that [the set
of player participating] = t + 1. However this does not seem to be checked within the
library; instead it is assumed, and it could panics if someone where to run the protocol

with more players than the threshold +1.

Status
This is tracked in https://github.com/binance-chain/tss-lib/issues/55 and has

been fixed in #56.

Notice that it is considered the client’s responsibility to make sure that len(ks) ==

len(bigXs) == pax, however some checks have been added, since this is an exported

function.

KS-BTL-O-20: Linters & good practices for Go
We want to stress that the usage of linters in the CD/CI pipeline would help increase

code quality, and could have avoided some of the observation we had, such as the

presence of deadcode in signing/round5.go, where the NextRound() function returns

always before the return nil at its end, on line 67.

Another example that would have been detected by linting: in keygen/round_1.go,

line 88, the variable cmt is named like the package cmt, which hurts readability and

maintainability.

88 cmt := cmt.NewHashCommitment(pGFlat...)

Also, linters could have complained regarding the use of a type identifier as a variable

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 28 of 30

https://github.com/binance-chain/tss-lib/issues/55
https://github.com/binance-chain/tss-lib/pull/56

tss-lib Security Audit – Binance

identifier in hash.go, where int is used as an identifier in for i, int := range in.

Although int is not a reserved keyword in the Go language, such a mix between type

and variable identifier can be confusing and is not recommended.

It is also probable that KS-BTL-O-15 would have been detected using linters.

Also, the Go good practices require exported functions to be commented as per the

GoDoc format. This is especially important in a library and is not the case currently.

Furthermore, the Go good practices also require variables to be named using

CamelCase, which is not always enforced currently.

Recommendation
We recommend using golangci-lint with the basic linters enabled, and following the

Effective Go guidelines.

Status
Some of these issues are tracked in https://github.com/binance-chain/tss-lib/i

ssues/32, https://github.com/binance-chain/tss-lib/issues/40, and have been

fixed in #41, #45 .

© Nagravision SA 2019 / All rights reserved. FOR PUBLIC RELEASE Page 29 of 30

https://golang.org/doc/effective_go.html
https://github.com/binance-chain/tss-lib/issues/32
https://github.com/binance-chain/tss-lib/issues/32
https://github.com/binance-chain/tss-lib/issues/40
https://github.com/binance-chain/tss-lib/pull/41
https://github.com/binance-chain/tss-lib/pull/45/files#diff-f68be75e51ddf36bb3a3f139548577d6L96

6 About

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of

security experts delivers end-to-end consulting, technology, managed services, and

threat intelligence to help organizations build and run successful security programs.

Our global reach and cyber solutions focus is reinforced by key international

partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit

https://www.kudelskisecurity.com or https://kudelski-blockchain.com/.

Kudelski Security

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

This report and all its content is copyright (c) Nagravision SA 2019, all rights reserved.

30

https://www.kudelskisecurity.com
https://kudelski-blockchain.com/

	Summary
	Introduction
	Methodology
	Code Safety
	Cryptography
	Protocol Specification Matching

	Findings
	Signed message not hashed nor sanitized
	Not fully committing ZKProof for Bob in MtAwc
	Not using safe primes
	MustGetRandomInt() panics and DoS
	GetRandomPositiveInt() infinite loop
	GetRandomPositiveRelativelyPrimeInt() infinite loop
	Discrepancy in signing Finalize step
	PrepareForSigning() panics on invalid inputs.
	SHA512_256 interface prone to collisions
	Unhandled errors can lead to panic

	Observations
	The IsOnCurve() method is not called during unmarshal/new
	Inconsistent arguments validation in range proofs
	Accumulators can spare big.Exp() computations in for loops
	Storage of unnecessary data in signing round 1
	Extra memory allocations in ModInt methods
	Extra big int allocation done in proofs
	GenerateNTildei() incomplete arguments check
	Discrepancy in the re-sharing protocol
	Unnecessary re-computation of stored value
	Redundant check in GetRandomPrimeInt()
	Redundant check in ECpoint.ValidateBasic()
	big.Int is not constant time
	Non-constant time commitment verification
	RejectionSample superfluous loop condition
	Unhandled errors
	Use of multiple channels in concurrency situations
	Wrong value gets saved in signing round 2
	Unnecessary initialization in loop
	Implementation does not support more parties than the threshold
	Linters & good practices for Go

	About

