forked from g4klx/MMDVM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IO.cpp
846 lines (738 loc) · 22.1 KB
/
IO.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/*
* Copyright (C) 2015,2016,2017,2018,2020,2021 by Jonathan Naylor G4KLX
* Copyright (C) 2015 by Jim Mclaughlin KI6ZUM
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "IO.h"
#if defined(USE_DCBLOCKER)
// Generated using [b, a] = butter(1, 0.001) in MATLAB
static q31_t DC_FILTER[] = {3367972, 0, 3367972, 0, 2140747704, 0}; // {b0, 0, b1, b2, -a1, -a2}
const uint32_t DC_FILTER_STAGES = 1U; // One Biquad stage
#endif
#if defined(MODE_DMR) || defined(MODE_YSF)
// Generated using rcosdesign(0.2, 8, 5, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {401, 104, -340, -731, -847, -553, 112, 909, 1472, 1450, 683, -675, -2144, -3040, -2706, -770, 2667, 6995,
11237, 14331, 15464, 14331, 11237, 6995, 2667, -770, -2706, -3040, -2144, -675, 683, 1450, 1472, 909, 112,
-553, -847, -731, -340, 104, 401, 0};
const uint16_t RRC_0_2_FILTER_LEN = 42U;
#endif
#if defined(MODE_M17)
// Generated using rcosdesign(0.5, 8, 5, 'sqrt') in MATLAB
static q15_t RRC_0_5_FILTER[] = {-147, -88, 72, 220, 223, 46, -197, -285, -79, 334, 623, 390, -498, -1691, -2363, -1556, 1284, 5872, 11033,
15109, 16656, 15109, 11033, 5872, 1284, -1556, -2363, -1691, -498, 390, 623, 334, -79, -285, -197, 46, 223,
220, 72, -88, -147, 0};
const uint16_t RRC_0_5_FILTER_LEN = 42U;
#endif
#if defined(MODE_NXDN)
#if defined(USE_NXDN_BOXCAR)
// One symbol boxcar filter
static q15_t BOXCAR10_FILTER[] = {6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000};
const uint16_t BOXCAR10_FILTER_LEN = 10U;
#else
// Generated using rcosdesign(0.2, 8, 10, 'sqrt') in MATLAB
static q15_t NXDN_0_2_FILTER[] = {284, 198, 73, -78, -240, -393, -517, -590, -599, -533, -391, -181, 79, 364, 643, 880, 1041, 1097, 1026, 819,
483, 39, -477, -1016, -1516, -1915, -2150, -2164, -1914, -1375, -545, 557, 1886, 3376, 4946, 6502, 7946, 9184,
10134, 10731, 10935, 10731, 10134, 9184, 7946, 6502, 4946, 3376, 1886, 557, -545, -1375, -1914, -2164, -2150,
-1915, -1516, -1016, -477, 39, 483, 819, 1026, 1097, 1041, 880, 643, 364, 79, -181, -391, -533, -599, -590,
-517, -393, -240, -78, 73, 198, 284, 0};
const uint16_t NXDN_0_2_FILTER_LEN = 82U;
static q15_t NXDN_ISINC_FILTER[] = {790, -1085, -1073, -553, 747, 2341, 3156, 2152, -893, -4915, -7834, -7536, -3102, 4441, 12354, 17394, 17394,
12354, 4441, -3102, -7536, -7834, -4915, -893, 2152, 3156, 2341, 747, -553, -1073, -1085, 790};
const uint16_t NXDN_ISINC_FILTER_LEN = 32U;
#endif
#endif
#if defined(MODE_DSTAR)
// Generated using gaussfir(0.5, 4, 5) in MATLAB
static q15_t GAUSSIAN_0_5_FILTER[] = {8, 104, 760, 3158, 7421, 9866, 7421, 3158, 760, 104, 8, 0};
const uint16_t GAUSSIAN_0_5_FILTER_LEN = 12U;
#endif
#if defined(MODE_P25)
// One symbol boxcar filter
static q15_t BOXCAR5_FILTER[] = {12000, 12000, 12000, 12000, 12000, 0};
const uint16_t BOXCAR5_FILTER_LEN = 6U;
#endif
const uint16_t DC_OFFSET = 2048U;
CIO::CIO() :
m_started(false),
m_rxBuffer(RX_RINGBUFFER_SIZE),
m_txBuffer(TX_RINGBUFFER_SIZE),
m_rssiBuffer(RX_RINGBUFFER_SIZE),
#if defined(USE_DCBLOCKER)
m_dcFilter(),
m_dcState(),
#endif
#if defined(MODE_DSTAR)
m_gaussianFilter(),
m_gaussianState(),
#endif
#if defined(MODE_DMR)
m_rrc02Filter1(),
m_rrc02State1(),
#endif
#if defined(MODE_YSF)
m_rrc02Filter2(),
m_rrc02State2(),
#endif
#if defined(MODE_P25)
m_boxcar5Filter(),
m_boxcar5State(),
#endif
#if defined(MODE_NXDN)
#if defined(USE_NXDN_BOXCAR)
m_boxcar10Filter(),
m_boxcar10State(),
#else
m_nxdnFilter(),
m_nxdnISincFilter(),
m_nxdnState(),
m_nxdnISincState(),
#endif
#endif
#if defined(MODE_M17)
m_rrc05Filter(),
m_rrc05State(),
#endif
m_pttInvert(false),
m_rxLevel(128 * 128),
m_cwIdTXLevel(128 * 128),
m_dstarTXLevel(128 * 128),
m_dmrTXLevel(128 * 128),
m_ysfTXLevel(128 * 128),
m_p25TXLevel(128 * 128),
m_nxdnTXLevel(128 * 128),
m_m17TXLevel(128 * 128),
m_pocsagTXLevel(128 * 128),
m_fmTXLevel(128 * 128),
m_ax25TXLevel(128 * 128),
m_rxDCOffset(DC_OFFSET),
m_txDCOffset(DC_OFFSET),
m_useCOSAsLockout(false),
m_ledCount(0U),
m_ledValue(true),
m_detect(false),
m_adcOverflow(0U),
m_dacOverflow(0U),
m_watchdog(0U),
m_lockout(false)
{
#if defined(USE_DCBLOCKER)
::memset(m_dcState, 0x00U, 4U * sizeof(q31_t));
m_dcFilter.numStages = DC_FILTER_STAGES;
m_dcFilter.pState = m_dcState;
m_dcFilter.pCoeffs = DC_FILTER;
m_dcFilter.postShift = 0;
#endif
#if defined(MODE_DSTAR)
::memset(m_gaussianState, 0x00U, 40U * sizeof(q15_t));
m_gaussianFilter.numTaps = GAUSSIAN_0_5_FILTER_LEN;
m_gaussianFilter.pState = m_gaussianState;
m_gaussianFilter.pCoeffs = GAUSSIAN_0_5_FILTER;
#endif
#if defined(MODE_DMR)
::memset(m_rrc02State1, 0x00U, 70U * sizeof(q15_t));
m_rrc02Filter1.numTaps = RRC_0_2_FILTER_LEN;
m_rrc02Filter1.pState = m_rrc02State1;
m_rrc02Filter1.pCoeffs = RRC_0_2_FILTER;
#endif
#if defined(MODE_YSF)
::memset(m_rrc02State2, 0x00U, 70U * sizeof(q15_t));
m_rrc02Filter2.numTaps = RRC_0_2_FILTER_LEN;
m_rrc02Filter2.pState = m_rrc02State2;
m_rrc02Filter2.pCoeffs = RRC_0_2_FILTER;
#endif
#if defined(MODE_P25)
::memset(m_boxcar5State, 0x00U, 30U * sizeof(q15_t));
m_boxcar5Filter.numTaps = BOXCAR5_FILTER_LEN;
m_boxcar5Filter.pState = m_boxcar5State;
m_boxcar5Filter.pCoeffs = BOXCAR5_FILTER;
#endif
#if defined(MODE_NXDN)
#if defined(USE_NXDN_BOXCAR)
::memset(m_boxcar10State, 0x00U, 40U * sizeof(q15_t));
m_boxcar10Filter.numTaps = BOXCAR10_FILTER_LEN;
m_boxcar10Filter.pState = m_boxcar10State;
m_boxcar10Filter.pCoeffs = BOXCAR10_FILTER;
#else
::memset(m_nxdnState, 0x00U, 110U * sizeof(q15_t));
::memset(m_nxdnISincState, 0x00U, 60U * sizeof(q15_t));
m_nxdnFilter.numTaps = NXDN_0_2_FILTER_LEN;
m_nxdnFilter.pState = m_nxdnState;
m_nxdnFilter.pCoeffs = NXDN_0_2_FILTER;
m_nxdnISincFilter.numTaps = NXDN_ISINC_FILTER_LEN;
m_nxdnISincFilter.pState = m_nxdnISincState;
m_nxdnISincFilter.pCoeffs = NXDN_ISINC_FILTER;
#endif
#endif
#if defined(MODE_M17)
::memset(m_rrc05State, 0x00U, 70U * sizeof(q15_t));
m_rrc05Filter.numTaps = RRC_0_5_FILTER_LEN;
m_rrc05Filter.pState = m_rrc05State;
m_rrc05Filter.pCoeffs = RRC_0_5_FILTER;
#endif
initInt();
selfTest();
}
void CIO::selfTest()
{
bool ledValue = false;
for (uint8_t i = 0U; i < 6U; i++) {
ledValue = !ledValue;
// We exclude PTT to avoid trigger the transmitter
setLEDInt(ledValue);
setCOSInt(ledValue);
#if defined(MODE_LEDS)
setDStarInt(ledValue);
setDMRInt(ledValue);
setYSFInt(ledValue);
setP25Int(ledValue);
#if !defined(USE_ALTERNATE_NXDN_LEDS)
setNXDNInt(ledValue);
#endif
#if !defined(USE_ALTERNATE_M17_LEDS)
setM17Int(ledValue);
#endif
#if !defined(USE_ALTERNATE_POCSAG_LEDS)
setPOCSAGInt(ledValue);
#endif
#if !defined(USE_ALTERNATE_FM_LEDS)
setFMInt(ledValue);
#endif
#endif
delayInt(250);
}
#if defined(MODE_LEDS)
setDStarInt(false);
setDMRInt(false);
setYSFInt(false);
setP25Int(false);
#if !defined(USE_ALTERNATE_NXDN_LEDS)
setNXDNInt(false);
#endif
#if !defined(USE_ALTERNATE_M17_LEDS)
setM17Int(false);
#endif
#if !defined(USE_ALTERNATE_POCSAG_LEDS)
setPOCSAGInt(false);
#endif
#if !defined(USE_ALTERNATE_FM_LEDS)
setFMInt(false);
#endif
setDStarInt(true);
delayInt(250);
setDMRInt(true);
delayInt(250);
setYSFInt(true);
delayInt(250);
setP25Int(true);
#if !defined(USE_ALTERNATE_NXDN_LEDS)
delayInt(250);
setNXDNInt(true);
#endif
#if !defined(USE_ALTERNATE_M17_LEDS)
delayInt(250);
setM17Int(true);
#endif
#if !defined(USE_ALTERNATE_POCSAG_LEDS)
delayInt(250);
setPOCSAGInt(true);
#endif
#if !defined(USE_ALTERNATE_FM_LEDS)
delayInt(250);
setFMInt(true);
delayInt(250);
setFMInt(false);
#endif
#if !defined(USE_ALTERNATE_POCSAG_LEDS)
delayInt(250);
setPOCSAGInt(false);
#endif
#if !defined(USE_ALTERNATE_M17_LEDS)
delayInt(250);
setM17Int(false);
#endif
#if !defined(USE_ALTERNATE_NXDN_LEDS)
delayInt(250);
setNXDNInt(false);
#endif
delayInt(250);
setP25Int(false);
delayInt(250);
setYSFInt(false);
delayInt(250);
setDMRInt(false);
delayInt(250);
setDStarInt(false);
#endif
}
void CIO::start()
{
if (m_started)
return;
startInt();
m_started = true;
setMode(STATE_IDLE);
}
void CIO::process()
{
m_ledCount++;
if (m_started) {
// Two seconds timeout
if (m_watchdog >= 48000U) {
if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF || m_modemState == STATE_P25 || m_modemState == STATE_NXDN || m_modemState == STATE_M17 || m_modemState == STATE_POCSAG) {
#if defined(MODE_DMR)
if (m_modemState == STATE_DMR && m_tx)
dmrTX.setStart(false);
#endif
setMode(STATE_IDLE);
}
m_watchdog = 0U;
}
#if defined(CONSTANT_SRV_LED)
setLEDInt(true);
#else
if (m_ledCount >= 24000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
setLEDInt(m_ledValue);
}
#endif
} else {
if (m_ledCount >= 240000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
setLEDInt(m_ledValue);
}
return;
}
if (m_useCOSAsLockout)
m_lockout = getCOSInt();
// Switch off the transmitter if needed
if (m_txBuffer.getData() == 0U && m_tx) {
m_tx = false;
setPTTInt(m_pttInvert ? true : false);
DEBUG1("TX OFF");
}
if (m_rxBuffer.getData() >= RX_BLOCK_SIZE) {
q15_t samples[RX_BLOCK_SIZE];
uint8_t control[RX_BLOCK_SIZE];
uint16_t rssi[RX_BLOCK_SIZE];
for (uint16_t i = 0U; i < RX_BLOCK_SIZE; i++) {
TSample sample;
m_rxBuffer.get(sample);
control[i] = sample.control;
m_rssiBuffer.get(rssi[i]);
// Detect ADC overflow
if (m_detect && (sample.sample == 0U || sample.sample == 4095U))
m_adcOverflow++;
q15_t res1 = q15_t(sample.sample) - m_rxDCOffset;
q31_t res2 = res1 * m_rxLevel;
samples[i] = q15_t(__SSAT((res2 >> 15), 16));
}
if (m_lockout)
return;
#if defined(USE_DCBLOCKER)
q31_t q31Samples[RX_BLOCK_SIZE];
::arm_q15_to_q31(samples, q31Samples, RX_BLOCK_SIZE);
q31_t dcValues[RX_BLOCK_SIZE];
::arm_biquad_cascade_df1_q31(&m_dcFilter, q31Samples, dcValues, RX_BLOCK_SIZE);
q31_t dcLevel = 0;
for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++)
dcLevel += dcValues[i];
dcLevel /= RX_BLOCK_SIZE;
q15_t offset = q15_t(__SSAT((dcLevel >> 16), 16));;
q15_t dcSamples[RX_BLOCK_SIZE];
for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++)
dcSamples[i] = samples[i] - offset;
#endif
if (m_modemState == STATE_IDLE) {
#if defined(MODE_DSTAR)
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_gaussianFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_gaussianFilter, samples, GMSKVals, RX_BLOCK_SIZE);
#endif
dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE);
}
#endif
#if defined(MODE_P25)
if (m_p25Enable) {
q15_t P25Vals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcar5Filter, dcSamples, P25Vals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcar5Filter, samples, P25Vals, RX_BLOCK_SIZE);
#endif
p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE);
}
#endif
#if defined(MODE_NXDN)
if (m_nxdnEnable) {
q15_t NXDNVals[RX_BLOCK_SIZE];
#if defined(USE_NXDN_BOXCAR)
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcar10Filter, dcSamples, NXDNVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcar10Filter, samples, NXDNVals, RX_BLOCK_SIZE);
#endif
#else
q15_t NXDNValsTmp[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE);
#endif
::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE);
#endif
nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE);
}
#endif
#if defined(MODE_DMR)
if (m_dmrEnable) {
q15_t DMRVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_rrc02Filter1, samples, DMRVals, RX_BLOCK_SIZE);
if (m_duplex)
dmrIdleRX.samples(DMRVals, RX_BLOCK_SIZE);
else
dmrDMORX.samples(DMRVals, rssi, RX_BLOCK_SIZE);
}
#endif
#if defined(MODE_YSF)
if (m_ysfEnable) {
q15_t YSFVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_rrc02Filter2, dcSamples, YSFVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_rrc02Filter2, samples, YSFVals, RX_BLOCK_SIZE);
#endif
ysfRX.samples(YSFVals, rssi, RX_BLOCK_SIZE);
}
#endif
#if defined(MODE_M17)
if (m_m17Enable) {
q15_t RRCVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_rrc05Filter, dcSamples, RRCVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_rrc05Filter, samples, RRCVals, RX_BLOCK_SIZE);
#endif
m17RX.samples(RRCVals, rssi, RX_BLOCK_SIZE);
}
#endif
#if defined(MODE_FM)
if (m_fmEnable) {
bool cos = getCOSInt();
#if defined(USE_DCBLOCKER)
fm.samples(cos, dcSamples, RX_BLOCK_SIZE);
#else
fm.samples(cos, samples, RX_BLOCK_SIZE);
#endif
}
#endif
#if defined(MODE_FM) && defined(MODE_AX25)
if (m_ax25Enable) {
#if defined(USE_DCBLOCKER)
ax25RX.samples(dcSamples, RX_BLOCK_SIZE);
#else
ax25RX.samples(samples, RX_BLOCK_SIZE);
#endif
}
#endif
}
#if defined(MODE_DSTAR)
else if (m_modemState == STATE_DSTAR) {
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_gaussianFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_gaussianFilter, samples, GMSKVals, RX_BLOCK_SIZE);
#endif
dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE);
}
}
#endif
#if defined(MODE_DMR)
else if (m_modemState == STATE_DMR) {
if (m_dmrEnable) {
q15_t DMRVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_rrc02Filter1, samples, DMRVals, RX_BLOCK_SIZE);
if (m_duplex) {
// If the transmitter isn't on, use the DMR idle RX to detect the wakeup CSBKs
if (m_tx)
dmrRX.samples(DMRVals, rssi, control, RX_BLOCK_SIZE);
else
dmrIdleRX.samples(DMRVals, RX_BLOCK_SIZE);
} else {
dmrDMORX.samples(DMRVals, rssi, RX_BLOCK_SIZE);
}
}
}
#endif
#if defined(MODE_YSF)
else if (m_modemState == STATE_YSF) {
if (m_ysfEnable) {
q15_t YSFVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_rrc02Filter2, dcSamples, YSFVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_rrc02Filter2, samples, YSFVals, RX_BLOCK_SIZE);
#endif
ysfRX.samples(YSFVals, rssi, RX_BLOCK_SIZE);
}
}
#endif
#if defined(MODE_P25)
else if (m_modemState == STATE_P25) {
if (m_p25Enable) {
q15_t P25Vals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcar5Filter, dcSamples, P25Vals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcar5Filter, samples, P25Vals, RX_BLOCK_SIZE);
#endif
p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE);
}
}
#endif
#if defined(MODE_NXDN)
else if (m_modemState == STATE_NXDN) {
if (m_nxdnEnable) {
q15_t NXDNVals[RX_BLOCK_SIZE];
#if defined(USE_NXDN_BOXCAR)
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcar10Filter, dcSamples, NXDNVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcar10Filter, samples, NXDNVals, RX_BLOCK_SIZE);
#endif
#else
q15_t NXDNValsTmp[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE);
#endif
::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE);
#endif
nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE);
}
}
#endif
#if defined(MODE_M17)
else if (m_modemState == STATE_M17) {
if (m_m17Enable) {
q15_t M17Vals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_rrc05Filter, dcSamples, M17Vals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_rrc05Filter, samples, M17Vals, RX_BLOCK_SIZE);
#endif
m17RX.samples(M17Vals, rssi, RX_BLOCK_SIZE);
}
}
#endif
#if defined(MODE_FM)
else if (m_modemState == STATE_FM) {
bool cos = getCOSInt();
#if defined(USE_DCBLOCKER)
fm.samples(cos, dcSamples, RX_BLOCK_SIZE);
#if defined(MODE_AX25)
if (m_ax25Enable)
ax25RX.samples(dcSamples, RX_BLOCK_SIZE);
#endif
#else
fm.samples(cos, samples, RX_BLOCK_SIZE);
#if defined(MODE_AX25)
if (m_ax25Enable)
ax25RX.samples(samples, RX_BLOCK_SIZE);
#endif
#endif
}
#endif
#if defined(MODE_DSTAR)
else if (m_modemState == STATE_DSTARCAL) {
q15_t GMSKVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_gaussianFilter, samples, GMSKVals, RX_BLOCK_SIZE);
calDStarRX.samples(GMSKVals, RX_BLOCK_SIZE);
}
#endif
else if (m_modemState == STATE_RSSICAL) {
calRSSI.samples(rssi, RX_BLOCK_SIZE);
}
}
}
void CIO::write(MMDVM_STATE mode, q15_t* samples, uint16_t length, const uint8_t* control)
{
if (!m_started)
return;
if (m_lockout)
return;
// Switch the transmitter on if needed
if (!m_tx) {
m_tx = true;
setPTTInt(m_pttInvert ? false : true);
DEBUG1("TX ON");
}
q15_t txLevel = 0;
switch (mode) {
case STATE_DSTAR:
txLevel = m_dstarTXLevel;
break;
case STATE_DMR:
txLevel = m_dmrTXLevel;
break;
case STATE_YSF:
txLevel = m_ysfTXLevel;
break;
case STATE_P25:
txLevel = m_p25TXLevel;
break;
case STATE_NXDN:
txLevel = m_nxdnTXLevel;
break;
case STATE_M17:
txLevel = m_m17TXLevel;
break;
case STATE_POCSAG:
txLevel = m_pocsagTXLevel;
break;
case STATE_FM:
txLevel = m_fmTXLevel;
break;
case STATE_AX25:
txLevel = m_ax25TXLevel;
break;
default:
txLevel = m_cwIdTXLevel;
break;
}
for (uint16_t i = 0U; i < length; i++) {
q31_t res1 = samples[i] * txLevel;
q15_t res2 = q15_t(__SSAT((res1 >> 15), 16));
uint16_t res3 = uint16_t(res2 + m_txDCOffset);
// Detect DAC overflow
if (res3 > 4095U)
m_dacOverflow++;
if (control == NULL)
m_txBuffer.put({res3, MARK_NONE});
else
m_txBuffer.put({res3, control[i]});
}
}
uint16_t CIO::getSpace() const
{
return m_txBuffer.getSpace();
}
void CIO::setDecode(bool dcd)
{
if (dcd != m_dcd)
setCOSInt(dcd ? true : false);
m_dcd = dcd;
}
void CIO::setADCDetection(bool detect)
{
m_detect = detect;
}
void CIO::setMode(MMDVM_STATE state)
{
if (state == m_modemState)
return;
#if defined(MODE_LEDS)
switch (m_modemState) {
case STATE_DSTAR: setDStarInt(false); break;
case STATE_DMR: setDMRInt(false); break;
case STATE_YSF: setYSFInt(false); break;
case STATE_P25: setP25Int(false); break;
case STATE_NXDN: setNXDNInt(false); break;
case STATE_M17: setM17Int(false); break;
case STATE_POCSAG: setPOCSAGInt(false); break;
case STATE_FM: setFMInt(false); break;
default: break;
}
switch (state) {
case STATE_DSTAR: setDStarInt(true); break;
case STATE_DMR: setDMRInt(true); break;
case STATE_YSF: setYSFInt(true); break;
case STATE_P25: setP25Int(true); break;
case STATE_NXDN: setNXDNInt(true); break;
case STATE_M17: setM17Int(true); break;
case STATE_POCSAG: setPOCSAGInt(true); break;
case STATE_FM: setFMInt(true); break;
default: break;
}
#endif
m_modemState = state;
}
void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel, uint8_t nxdnTXLevel, uint8_t m17TXLevel, uint8_t pocsagTXLevel, uint8_t fmTXLevel, uint8_t ax25TXLevel, int16_t txDCOffset, int16_t rxDCOffset, bool useCOSAsLockout)
{
m_pttInvert = pttInvert;
m_rxLevel = q15_t(rxLevel * 128);
m_cwIdTXLevel = q15_t(cwIdTXLevel * 128);
m_dstarTXLevel = q15_t(dstarTXLevel * 128);
m_dmrTXLevel = q15_t(dmrTXLevel * 128);
m_ysfTXLevel = q15_t(ysfTXLevel * 128);
m_p25TXLevel = q15_t(p25TXLevel * 128);
m_nxdnTXLevel = q15_t(nxdnTXLevel * 128);
m_m17TXLevel = q15_t(m17TXLevel * 128);
m_pocsagTXLevel = q15_t(pocsagTXLevel * 128);
m_fmTXLevel = q15_t(fmTXLevel * 128);
m_ax25TXLevel = q15_t(ax25TXLevel * 128);
m_rxDCOffset = DC_OFFSET + rxDCOffset;
m_txDCOffset = DC_OFFSET + txDCOffset;
m_useCOSAsLockout = useCOSAsLockout;
if (rxInvert)
m_rxLevel = -m_rxLevel;
if (txInvert) {
m_dstarTXLevel = -m_dstarTXLevel;
m_dmrTXLevel = -m_dmrTXLevel;
m_ysfTXLevel = -m_ysfTXLevel;
m_p25TXLevel = -m_p25TXLevel;
m_nxdnTXLevel = -m_nxdnTXLevel;
m_m17TXLevel = -m_m17TXLevel;
m_pocsagTXLevel = -m_pocsagTXLevel;
}
}
void CIO::getOverflow(bool& adcOverflow, bool& dacOverflow)
{
adcOverflow = m_adcOverflow > 0U;
dacOverflow = m_dacOverflow > 0U;
m_adcOverflow = 0U;
m_dacOverflow = 0U;
}
bool CIO::hasTXOverflow()
{
return m_txBuffer.hasOverflowed();
}
bool CIO::hasRXOverflow()
{
return m_rxBuffer.hasOverflowed();
}
void CIO::resetWatchdog()
{
m_watchdog = 0U;
}
uint32_t CIO::getWatchdog()
{
return m_watchdog;
}
bool CIO::hasLockout() const
{
return m_lockout;
}