
Balancing Performance and
Productivity for the Development of
Dynamic Binary Instrumentation
Tools: A Case Study on Arm Systems

Cosmin Gorgovan, Guillermo Callaghan, Mikel Luján
Department of Computer Science
University of Manchester



Dynamic Binary Instrumentation (DBI)

• DBI is an approach for analysing the execution of
applications at the level of machine code

• DBI frameworks
– implement a runtime capable of modifying applications as

they execute
– provide APIs used by DBI tools to plug in their analysis and

instrumentation routines

• Used for a wide range of applications such as:
– development tools: memory error checkers, profilers
– application analysis: taint tracers, debuggers
– microarchitectural simulators

1



Contributions
• an API design which:

– emphasises convenience and portability for the common
building blocks of DBI

– while allowing low level control over performance-critical or
specialised instrumentation

• implemented the API on top of the open-source MAMBO
system

• implemented a number of DBI tools using this system
– and evaluated their performance against similar tools

2



Our API
Event-driven: plugins register handlers for events related to:

• code scanning
• execution of system calls
• function calls
• multithreading

Two layers:
• low level - operates directly on machine code
• high level - portable instrumentation

– a RISC-like instruction set for generating instrumentation
– code analysis functions which abstract the decoding of

application code
– code generation helpers for a number of common DBI tasks

3



M-memcheck

• memory error checker
• detects memory usage bugs:

– out-of-bounds memory accesses
– invalid frees

• similar functionality to Valgrind Memcheck and Dr. Memory
• implemented using our API
• representative of heavyweight DBI plugins
• github.com/beehive-lab/mambo/tree/memcheck

4

github.com/beehive-lab/mambo/tree/memcheck


Shadow memory

Tracks whether a memory location is valid:
• granularity of 1 byte
• updated when the application allocates

and releases memory
• in the same address space as the

application
• using the address space shaping

capabilities of the API to reserve a
contiguous shadow memory location for
the entire address space of the
application

Shadow memory layout on
32-bit architectures

5



Instrumenting memory accesses

Each memory access in the application is instrumented to
• load the corresponding values from the shadow memory
• check whether the whole accessed range is valid
• and print an error message + backtrace if not

mambo_register_pre_inst_cb(ctx, &memcheck_pre_inst_handler);
[...]
int memcheck_pre_inst_handler(mambo_context *ctx) {

if (mambo_is_load_or_store(ctx)) {
int access_size = mambo_get_ld_st_size(ctx);
bool is_store = mambo_is_store(ctx);
[...]

6



Error reporting

Called by the instrumentation for invalid memory accesses
• prints the location that was accessed
• the location of the instruction performing the invalid access
• symbol information for the function containing it
• and a backtrace if it’s available

void memcheck_print_error(void *addr, void *pc, stack_frame_t *frame) {
[...]
int ret = get_symbol_info_by_addr(pc, &symbol, &symbol_base, &file);
printf("\n==memcheck== Invalid access (size %d) at %p\n", size, addr);
printf("==memcheck== at [%s]+%p (%p) in %s\n",

symbol, pc - symbol_base, pc, file);
[...]

7



Instrumenting function calls

Standard library functions that allocate or free memory
• instrumented to update the shadow memory
• invalid accesses in these functions and their callees ignored

– they access the heap metadata - outside the valid application
allocations

// instrumenting void *malloc(size_t size);
mambo_register_function_cb(ctx, "malloc", &memcheck_malloc_pre,

&memcheck_malloc_post, 1);
memcheck_malloc_pre() {// save size = reg0}
memcheck_malloc_post() {fcall(&memcheck_alloc_hook, retvalue, size);}
memcheck_alloc_hook(void *start, size_t size) {

int ret = mambo_ht_add(&allocs, (uintptr_t)start, (uintptr_t)size);
assert(ret == 0);
memcheck_mark_valid(start, size);

} 8



Multithreading

• multithread-scalable plugins
• Events

– Pre Thread - convenient event to allocate and initialise
thread-private resources

– Post Thread - all active threads at the time the application
exits

• Removes the burden of tracking application threads in each
plugin.

9



Evaluation
Benchmark: PARSEC 3.0 benchmark suite w/ native input set
Platforms:

• Merlin - 8-core X-Gene2 SoC
• TX1 - 4-core (Cortex-A57) Tegra X1 SoC

Memory error checkers:
• M-memcheck
• Valgrind Memcheck 3.13.0
• Dr. Memory (bcb36073a2c) implemented using

DynamoRIO
– crashed on some of the benchmarks

10



Evaluation - single threaded

Geometric mean slowdown relative to native execution - 1 thread

11



Evaluation - multithreaded

Geometric mean slowdown relative to native execution, 4 threads

12



Summary

• API for a DBI framework (open-source MAMBO system)
github.com/beehive-lab/mambo/tree/memcheck

• Portability and flexibility
– across A32, T32 and A64 ISAs (Armv8)

• Two layers:
– Low level - fine-grain
– High level - portable

• Tools
– M-memcheck - Memory Error Checking
– M-cachesim - Online Cache Simulation

13

github.com/beehive-lab/mambo/tree/memcheck

