
Optimising Dynamic Binary

Modification Across ARM

Microarchitectures

Cosmin Gorgovan, Amanieu d’Antras, Mikel Luján
School of Computer Science
University of Manchester



What is Dynamic Binary Modification (DBM)?

• software technique for altering applications at runtime

– working on machine code
– transparently to the applications
– many uses:

– virtualization
– microarchitectural simulation
– program analysis
– memory error detection and debugging

• main limitation: it introduces overheads

– in particular, runtime performance overhead

1



Example: Memory access instrumentation
using DBM

$ mambo_mtrace /usr/bin/whoami 2> ./memory_trace
cosmin
$ cat memory_trace
w: 0x7ff5ec1080 16
w: 0x7ff5ec10a8 8
w: 0x7ff5ec10f8 8
w: 0x7ff5ec1568 8
w: 0x7ff5ec10d0 8
w: 0x7ff5ec1140 8
w: 0x7ff5ec1148 8
w: 0x7ff5ec1150 8
[...]

2



Motivation

• previous DBM optimisation research and existing
low-overhead DBM tools focused on x86/x86-64

• DBM performance on ARM lagged behind state of the art

Tool Geomean overhead1 Worst case overhead1

Valgrind >200% >5000%

Table: Performance of DBM tools for ARM

1 Compared to native execution, on SPEC CPU2006 running on an APM X-C1
2 MAMBO: a low-overhead dynamic binary modification tool for ARM. ACM Transactions on
Architecture and Code Optimization (TACO) 2016. 3



Motivation

• previous DBM optimisation research and existing
low-overhead DBM tools focused on x86/x86-64

• DBM performance on ARM lagged behind state of the art

Tool Geomean overhead1 Worst case overhead1

MAMBO-baseline2 26% 165%
Valgrind >200% >5000%

Table: Performance of DBM tools for ARM

1 Compared to native execution, on SPEC CPU2006 running on an APM X-C1
2 MAMBO: a low-overhead dynamic binary modification tool for ARM. ACM Transactions on
Architecture and Code Optimization (TACO) 2016. 3



Motivation

• previous DBM optimisation research and existing
low-overhead DBM tools focused on x86/x86-64

• DBM performance on ARM lagged behind state of the art

Tool Geomean overhead1 Worst case overhead1

MAMBO-baseline2 26% 165%
DynamoRIO 34% 159%
Valgrind >200% >5000%

Table: Performance of DBM tools for ARM

1 Compared to native execution, on SPEC CPU2006 running on an APM X-C1
2 MAMBO: a low-overhead dynamic binary modification tool for ARM. ACM Transactions on
Architecture and Code Optimization (TACO) 2016. 3



Motivation

• previous DBM optimisation research and existing
low-overhead DBM tools focused on x86/x86-64

• DBM performance on ARM lagged behind state of the art

Tool Geomean overhead1 Worst case overhead1

MAMBO-opt 12% 66%
MAMBO-baseline2 26% 165%
DynamoRIO 34% 159%
Valgrind >200% >5000%

Table: Performance of DBM tools for ARM

1 Compared to native execution, on SPEC CPU2006 running on an APM X-C1
2 MAMBO: a low-overhead dynamic binary modification tool for ARM. ACM Transactions on
Architecture and Code Optimization (TACO) 2016. 3



Working principles of DBM

The DBM system scans the application code and copies it to a
software code cache:

• it transforms the code to maintain correctness & control

• organised in basic blocks

– single-entry and single-exit regions

• all application code runs from the code cache

• it enables doing other modifications

– by plugins via an API

• think JIT (re)compilation for native code

4



The code cache

5



Optimisations

• Aim: tweak the generated code to better match the
processor microarchitecture

• Optimisation for the processor’s frontend:

– Hot code traces

• Indirect branches:

– branches which have a dynamic target (register or memory)
– the translation needs to perform a source PC (SPC) to

translated PC (TPC) lookup for each execution
– major source of runtime overhead
– returns: Hardware-assisted return address prediction
– generic: Adaptive Indirect Branch Inlining (AIBI)

6



HW-assisted return address prediction [1]

Figure: The original function call

Figure: Typical translation of the function call
7



HW-assisted return address prediction [2]

Figure: Translation for HW-assisted return address prediction

• use of call and return instructions preserved

• translations of the call and predicted return in adjacent BBs
8



Adaptive indirect branch inlining [1]

• SPC-to-TPC lookup usually done with a hash table lookup

Figure: Translation of an indirect branch with hash table lookup

9



Adaptive indirect branch inlining [2]

• some degree of temporal locality
– can be exploited to predict the TPC

– however, the prediction must be verified
– and it must be relatively cheap to update

• AIBI: locally cache predicted SPC and TPC

– compare target to cached SPC
– if equal, branch to cached TPC
– otherwise, perform hash table lookup and update the cached

prediction

10



Adaptive indirect branch inlining [3]

Figure: Translation of an indirect branch with AIBI

11



Experimental setup

• SPEC CPU2006

• Paper: 5 ARM computers running GNU/Linux:

System ODROID-XU3 ODROID-X2 Tronsmart R28 Jetson TK1 APM X-C1

SoC Exynos 5422 Exynos 4412 Prime Rockchip RK3288 NVIDIA T124 APM883208
Core Cortex-A7 Cortex-A9 Cortex-A17 Cortex-A15 X-Gene 1
Frequency 1.4 GHz 1.7 GHz 1.6 GHz 2.3 GHz 2.4 GHz
L2 cache size 512 KiB 1 MiB 1 MiB 2 MiB 256 KiB
L3 cache size N/A N/A N/A N/A 8 MiB
L1i line length 32 32 64 64 64
L1d line length 64 32 64 64 64
L2 line length 64 32 64 64 64
L1d TLB 10 32 32 32(R) + 32(W) 20
L1i TLB 10 32 32 32 10
L2 TLB 256 132 1024 512 1024

IB predictor previous1 previous previous adaptive adaptive
OOO N Y, 2-issue Y, 2-issue Y, 3-issue Y, 4-issue
Pipeline len 8 8-11 10-12 15 15

12



Experimental setup

• SPEC CPU2006

• APM X-C1

– APM X-Gene1
– 2.4 GHz
– 4-issue out-of-order
– 15 stage integer pipeline
– Ubuntu 14.04 LTS, Linux 4.2

12



Evaluation [1]

Figure: Relative overhead for SPEC CPU2006 on the APM X-C1 system
13



Evaluation [2]

SPEC CPU overhead
Hardware platform MAMBO config. Geomean Worst case
ODROID-XU3 (LITTLE) baseline 26% 136%
in-order Cortex-A7 +traces 21% 75%

+hw_rap +traces 19% 69%
ODROID-X2 baseline 30% 141%
OOO Cortex-A9 +traces 17% 71%

+aibi + traces 15% 66%
Tronsmart R28 baseline 29% 159%
OOO Cortex-A17 +traces 17% 75%

+aibi +traces 16% 67%
Jetson TK1 baseline 35% 177%
OOO Cortex-A15 +traces 23% 100%

+hw_rap +traces 21% 80%
APM X-C1 baseline 26% 165%
OOO X-Gene1 +traces 17% 96%

+hw_rap +traces 12% 66%

14



Summary

• DBM is a powerful technique for microarchitectural
simulation, program analysis and debugging

– however, it introduces a performance overhead

• 3 optimisations:

– Hardware-assisted return address prediction
– Adaptive indirect branch inlining
– Traces

• Worst case overhead significantly reduced:

– from 136-177% to 66% - 80%

• Implemented for MAMBO:
https://github.com/beehive-lab/mambo

15

https://github.com/beehive-lab/mambo


MAMBO

• Fast DBM implementation for ARM (AArch32 and AArch64)

• Runs on GNU/Linux

• Open source, Apache 2.0 license

– https://github.com/beehive-lab/mambo

• contributions are welcomed

– bug reports & patches
– sample plugins
– feedback on the API

• Cosmin Gorgovan, Amanieu d’Antras, and Mikel Luján. MAMBO: A
Low-Overhead Dynamic Binary Modification Tool for ARM. TACO,
Article 14 (April 2016)

16

https://github.com/beehive-lab/mambo

