MANCHESTER
1824

The University of Manchester

MAMBO: A Low Overhead Dynamic
Binary Modification Tool for ARM

ooo

Cosmin Gorgovan, Amanieu d’Antras & Mikel Lujan
School of Computer Science
University of Manchester

MANCHESTER
1824

The University of Manchester

What is Dynamic Binary Modification (DBM)?

e software technique for altering applications at runtime

- working on machine code
- transparently to the applications
- many uses: virtualization, instrumentation, translation

e main limitation: it introduces overheads

- in particular, runtime performance overhead

MANCHESTER
1824

The University of Manchester

Motivation

e previous DBM optimisation research and existing
low-overhead DBM tools focused on x86/x86-64

e DBM performance on ARM lagged behind state of the art

Tool Overhead' | Maintained | Source code
Valgrind | 226% Y GPL
QEMU 1907% Y GPL

Table: DBM tools for ARM (2013)

! Compared to native execution, on SPEC CPU

MANCHESTER
1824

The University of Manchester

MAMBO

e open source DBM tool for ARM (Apache 2.0 license)

- https://github.com/beehive-1lab/mambo
- released together with the paper

e designed as a research system

- small code size (fewer than 10,000 LoC)
- relaxed transparency reduces implementation complexity

e good performance

- low runtime performance overhead
- multithread scaling

https://github.com/beehive-lab/mambo

MANCHESTER
1824

The University of Manchester

Overall design

e all binary code is scanned and translated before execution to

- enable arbitrary modification via a plugin API
- maintain control of execution
- run correctly from the code cache

e the modified code is stored in a software code cache

e the code cache is organised in single-entry and single-exit
units - basic blocks (BBs)

e data is still accessed in the original locations

The University of Manchester

Code cache & metadata

Application code Translated code
0x8000: bb_x:
MOV RO, #0 MOV RO, #0
ADDRI, R1, #1 ADD RI, R1, #1
BL 0x8081 MOVW LR, #((spc+4) & 0xFFFF)
MOVT LR, #((spc+4) >> 16)
B translation_of(0x8081)

Hash table
SPC TPC
Source Program Counter | Translated Program Counter
0x8000 bb_x

e BL - Branch-with-Link - call

e B-Branch

MANCHESTER
1824

The University of Manchester

Indirect branches: main source of overhead

e types:

- generic indirect branches

- returns

- table branches
e their target address is:

- not available at code scanning time

- dynamic, it changes across executions of the branch
e source program counter (SPC) to translated program

counter (TPC) lookup done for each execution

MANCHESTER
1824

The University of Manchester

Inline hash table lookup

Hash table (HT) lookup routine used for mapping SPCs to TPCs
e the baseline translation for indirect branches
e uses linear probing
- to improve hardware data cache locality
e the least significant X bits of SPC are used as the key; X =19
e collision in the HT = branch mispredictions at lookup

- therefore, a low fill rate HT tends to perform better

MANCHF.\TER

The University of Manchester

Return instruction translation

Translated caller

Translated callee

BB #0:
Inst #0
Set return address
= SPC Inst #]

BB #1:

/lnsl #‘Ex]
Tmp = IHL(LR)
Ind. Branch(Tmp)

Caller Callee Branch BB#1
Inst #0 Inst #a
Call Callee [...] BB #2:
Inst #1 Return Inst #1
Native code

Naive translation: inline hash table

lookup

IHL() - inline hash table lookup: 10-20 instructions

e code expansion

e eliminating hardware return address prediction by replacing

- the direct call with a regular direct branch

- the return with a regular indirect branch

MANCHF.\TER

The University of Manchester

Low overhead return address prediction

e shorter critical path by using a shadow return address stack

e enables hardware return address prediction

Translated caller Translated callee

IBB #0: BB #2:

Inst #0 | »| Inst #a

PUSH {TPC Inst#1 ow [...] — [...]

Call BB#2 Set return address [...]
IBB #1: = POP shadow [...]

Inst #1 Return stack bottom
Low overhead return address prediction The shadow
(simplified) return address

stack

MANCHF.\TER

The University of Manchester

Low overhead return address prediction

e shorter critical path by using a shadow return address stack

e enables hardware return address prediction

Translated caller Translated callee
IBB #0: BB #2:
Inst #0 | | Inst #a — TPC inst#1
PUSH {TPC Inst#L}stradow [...] [...]
Call BB#2 Set return address [...]
IBB #1: = POP shadow [...]
Inst #1 Return stack bottom
Low overhead return address prediction The shadow
(simplified) return address

stack

MANCHF.\TER

The University of Manchester

Low overhead return address prediction

e shorter critical path by using a shadow return address stack

e enables hardware return address prediction

Translated caller Translated callee

IBB #0: BB #2:

Inst #0 | | Inst#a — TPC inst#l

PUSH {TPC Inst#l ow [...] [...]

Call BB#2 Set return address [...]
IBB #1: = POP shadow [...]

Inst #1 Return stack bottom
Low overhead return address prediction The shadow
(simplified) return address

stack

MANCHF.\TER

The University of Manchester

Low overhead return address prediction

e shorter critical path by using a shadow return address stack

e enables hardware return address prediction

Translated caller Translated callee

IBB #0: BB #2:

Inst #0 | »| Inst #a

PUSH {TPC Inst#1 ow [...] — [...]

Call BB#2 Set return address [...]
IBB #1: = POP shadow [...]

Inst #1 Return stack bottom
Low overhead return address prediction The shadow
(simplified) return address

stack

MANCHESTER
1824

The University of Manchester

Incorrect return address predictions

e procedures are generally expected to return to the caller
e but not always:
- exceptions
- longjmp
- direct modification of the return address
e please refer to the paper for a complete description of
misprediction handling

MANCHESTER.
1824

The University of Manchester

Single thread overhead (SPEC CPU2006)

300% 1907%
450%
400%
350%
300%
250% 285%
200% 226%
150%
100%

50%

PRI oo |

MAMBOA9 Valgrind A9 MAMBO A15 Valgrind A15 QEMU A15

Geomean overhead (SPEC CPU2006)

e A9: Cortex-A9 (ODROID-X2)
e A15: Cortex-A15 (Jetson TK1)

MANCHESTER
1824

The Unive

rsity of Manchester

Multithreaded overhead (PARSEC 3.0) - A15

80%

60%

Overhgad

N
o
X

Q

%

vips

blackscholes bodytrack dedup facesim

freqmine

M 1 thread

2 threads
3 threads

u 4 threads

Geomean overhead (1, 2, 3, 4 threads): 30%

. 27%, 32%, 32%

x264

MANCHESTER
1824

The University of Manchester

Summary of the paper

MAMBO is a low overhead, open source DBM tool

the main source of overhead:

- the translated indirect branches

optimisations for:
- generic indirect branches - efficient inline hash table lookup
- returns - shadow return address stack, HW branch prediction
- table branches - space-efficient table branch linking
overhead on SPEC CPU2006: 28% (A9), 34% (A15)
- compared to Valgrind: 226% (A9), 285% (A15)

The University of Manchester

https://github.com/beehive-lab/mambo

) syscalls.c Move syscall handling to a separate file 8 days ago
B traces.c Handle uncond_imm_arm brances in traces 3 months ago
B utils Rename the *s filesto *.S 8 days ago
B utilh Initial public commit 9 months ago

README.md

MAMBO: A Low-Overhead Dynamic Binary Modification
Tool for ARM

News:
« We will present the TACO paper at HIPEAC 2017, on 25th of January.
Publications:

+ Cosmin Gorgovan, Amanieu d'Antras, and Mikel Lujan. 2016. MAMBO: A low-overhead dynamic binary modification tool
for ARM. ACM Trans. Archit. Code Optim. 13, 1, Article 14 (April 2016). If you use MAMBO for your research, please cite
this paper.

Note that the version of MAMBO published in this repository is newer and has significantly lower overhead than the one used
in the paper, mostly due to the implementation of traces. If you want to reproduce the results in the paper, please get in touch.

https://github.com/beehive-lab/mambo

