
MAMBO: A Low Overhead Dynamic

Binary Modification Tool for ARM

Cosmin Gorgovan, Amanieu d’Antras & Mikel Luján
School of Computer Science
University of Manchester



What is Dynamic Binary Modification (DBM)?

• software technique for altering applications at runtime

– working on machine code
– transparently to the applications
– many uses: virtualization, instrumentation, translation

• main limitation: it introduces overheads

– in particular, runtime performance overhead

1



Motivation

• previous DBM optimisation research and existing
low-overhead DBM tools focused on x86/x86-64

• DBM performance on ARM lagged behind state of the art

Tool Overhead1 Maintained Source code
Valgrind 226% Y GPL
QEMU 1907% Y GPL

Table: DBM tools for ARM (2013)

1 Compared to native execution, on SPEC CPU

2



MAMBO

• open source DBM tool for ARM (Apache 2.0 license)

– https://github.com/beehive-lab/mambo
– released together with the paper

• designed as a research system

– small code size (fewer than 10,000 LoC)
– relaxed transparency reduces implementation complexity

• good performance

– low runtime performance overhead
– multithread scaling

3

https://github.com/beehive-lab/mambo


Overall design

• all binary code is scanned and translated before execution to

– enable arbitrary modification via a plugin API
– maintain control of execution
– run correctly from the code cache

• the modified code is stored in a software code cache

• the code cache is organised in single-entry and single-exit
units - basic blocks (BBs)

• data is still accessed in the original locations

4



Code cache & metadata

• BL - Branch-with-Link - call

• B - Branch

5



Indirect branches: main source of overhead

• types:

– generic indirect branches
– returns
– table branches

• their target address is:

– not available at code scanning time
– dynamic, it changes across executions of the branch

• source program counter (SPC) to translated program
counter (TPC) lookup done for each execution

6



Inline hash table lookup

Hash table (HT) lookup routine used for mapping SPCs to TPCs

• the baseline translation for indirect branches

• uses linear probing

– to improve hardware data cache locality

• the least significant X bits of SPC are used as the key; X = 19

• collision in the HT = branch mispredictions at lookup

– therefore, a low fill rate HT tends to perform better

7



Return instruction translation

Native code Naive translation: inline hash table
lookup

IHL() - inline hash table lookup: 10-20 instructions

• code expansion
• eliminating hardware return address prediction by replacing

– the direct call with a regular direct branch
– the return with a regular indirect branch

8



Low overhead return address prediction

• shorter critical path by using a shadow return address stack

• enables hardware return address prediction

Low overhead return address prediction
(simplified)

The shadow
return address
stack

9



Low overhead return address prediction

• shorter critical path by using a shadow return address stack

• enables hardware return address prediction

Low overhead return address prediction
(simplified)

The shadow
return address
stack

9



Low overhead return address prediction

• shorter critical path by using a shadow return address stack

• enables hardware return address prediction

Low overhead return address prediction
(simplified)

The shadow
return address
stack

9



Low overhead return address prediction

• shorter critical path by using a shadow return address stack

• enables hardware return address prediction

Low overhead return address prediction
(simplified)

The shadow
return address
stack

9



Incorrect return address predictions

• procedures are generally expected to return to the caller

• but not always:

– exceptions
– longjmp
– direct modification of the return address

• please refer to the paper for a complete description of
misprediction handling

10



Single thread overhead (SPEC CPU2006)

• A9: Cortex-A9 (ODROID-X2)

• A15: Cortex-A15 (Jetson TK1)
11



Multithreaded overhead (PARSEC 3.0) - A15

Geomean overhead (1, 2, 3, 4 threads): 30%, 27%, 32%, 32%
12



Summary of the paper

• MAMBO is a low overhead, open source DBM tool

• the main source of overhead:

– the translated indirect branches

• optimisations for:

– generic indirect branches - efficient inline hash table lookup
– returns - shadow return address stack, HW branch prediction
– table branches - space-efficient table branch linking

• overhead on SPEC CPU2006: 28% (A9), 34% (A15)

– compared to Valgrind: 226% (A9), 285% (A15)

13



https://github.com/beehive-lab/mambo

14

https://github.com/beehive-lab/mambo

