
Brandon Amos • Carnegie Mellon University

Differentiable Optimization-Based
Modeling for Machine Learning

Thesis Committee:
J. Zico Kolter, Chair
Barnabás Póczos
Jeff Schneider
Vladlen Koltun (Intel Labs)

Thesis Defense

My Ph.D. Contributions

Brandon Amos Optimization-Based Modeling for Machine Learning 2

[CMU 2016] OpenFace

[ICML 2016] Collapsed Variational Inference for SPNs

[ICML 2017] Input Convex Neural Networks

[ICML 2017] OptNet

[NeurIPS 2017] Task-Based Model Learning

[ICLR 2018] Learning Awareness Models

[NeurIPS 2018] Imperfect-Information Game Solving

[NeurIPS 2018] Differentiable MPC

The Limited Multi-Label Projection Layer

Differentiable cvxpy Optimization Layers

Secondary Contribution

Brandon Amos Optimization-Based Modeling for Machine Learning 3

[CMU 2016] OpenFace

[ICML 2016] Collapsed Variational Inference for SPNs

[ICML 2017] Input Convex Neural Networks

[ICML 2017] OptNet

[NeurIPS 2017] Task-Based Model Learning

[ICLR 2018] Learning Awareness Models

[NeurIPS 2018] Imperfect-Information Game Solving

[NeurIPS 2018] Differentiable MPC

The Limited Multi-Label Projection Layer

Differentiable cvxpy Optimization Layers

This Talk Secondary Contribution

Input Convex Neural Networks
A quick glimpse

Brandon Amos Optimization-Based Modeling for Machine Learning 5

Input Convex Neural Networks
(ICNNS)

Definition Scalar-valued network !(#, %; ') such that ! is convex in % for all
values of # (note that these networks are still not convex in ' = {+,, -,})

We can efficiently optimize over some inputs to the network given other inputs

Efficiently captures dependencies in the output space for prediction

It turns out, we don’t need very many restrictions on the network to achieve
this property

How to achieve input convexity?
Most networks can be “trivially” modified to guarantee input convexity

Consider a simple feedforward ReLU network:
!"#$= max{0,,"!" + ."}, 0 = 1,… , 3

4 5; 7 = !8#$, !$= 5

Proposition. 4 is convex in 5 provided that the ," are non-negative for 0 > 1

More generally, any activation function that is convex and non-decreasing
also has this property.

Brandon Amos Optimization-Based Modeling for Machine Learning 6

Is convexity restrictive?
Yes (by definition, the functions are restricted to be convex), but not
that bad in practice

Proposition. ICNNs trivially subsume any feedforward network
!" # with the network " #, % = % − !" #

(

More complex convex portion adds additional structure over %, which
can still be “easily” optimized over

Brandon Amos Optimization-Based Modeling for Machine Learning 7

Overview for the remainder of this talk

Brandon Amos Optimization-Based Modeling for Machine Learning 8

OptNet: Differentiable Optimization as a
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions

Today’s Machine Learning Systems

Current Primitive Operations: Linear maps, convolutions, activation functions,
random sampling, simple projections (e.g. onto the simplex or Birkhoff polytope)

A lot of data Model Predictions

Black-box neural networks don’t work everywhere and when they fail, task-
specific domain knowledge can provide useful modeling priors

My work mostly focuses on ways to use optimization to inject domain knowledge
into the modeling process

How can the modeling part be improved?

Loss

Brandon Amos Optimization-Based Modeling for Machine Learning 9

Optimization and Machine Learning
Non-convex optimization is thriving in machine learning for parameter
optimization and architecture search. This is not what this talk covers.

In this talk, we argue that optimization is also a useful operation for
inference and control.

Brandon Amos Optimization-Based Modeling for Machine Learning 10

x⋆

We consider optimization as another potential
layer, to be composed with others

Why? Optimization is an extremely powerful
paradigm for decision-making.
• Applications in finance (Markowitz portfolio optimization),

machine learning (support vector machines),
control (linear-quadratic model predictive control),
geometry (projections onto polyhedra)

Why is optimization a useful primitive
operation in learning systems?

We have incomplete domain knowledge about what we want to model
• Fill in parts of the optimization problem that we know
• Use data to learn the parts that we don’t

Also subsumes many standard layers (ReLU, sigmoid, softmax)
• We will show this later

Brandon Amos Optimization-Based Modeling for Machine Learning 11

(Learned) Abstract
Representation (Learned) Solver

A lot of data Model Predictions Loss

Convex optimization viewpoint of
standard layers

Brandon Amos Optimization-Based Modeling for Machine Learning 12

!⋆ = argmin
*

! − , -
-

subject to ! ≥ 0
ReLU ! = max{0, ,}

! =
1

1 + >?@
Sigmoid

Softmax

!⋆ = argmin
*

−!A, − BC(!)

subject to 0 ≤ ! ≤ 1

!G =
>@H
∑>@J

!⋆ = argmin
*

−!A, − B(!)

subject to 0 ≤ ! ≤ 1
1A! = 1

OptNet Application: Modeling Constraints

13

Constraint Predictions During TrainingTrue Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

Brandon Amos Optimization-Based Modeling for Machine Learning

Example 1 Example 2

Example 3 Example 4

!"#$ = argmin
,

1
2 !

/0 !" ! + 2 !" /!
subject to ; !" ! = < !"

= !" ! ≤ ℎ !"

Parameters/Submodules : 0, 2, ;, <, =, ℎ

Layer !"… OptNet
Layer

…

The OptNet Layer

A lot of data Model Predictions

The matrix 0 !" depends on
the previous layer !"

Loss

Brandon Amos Optimization-Based Modeling for Machine Learning 14

Differentiating a quadratic argmin
Consider the optimization problem:

!⋆ = argmin
*

1
2 !

-.! + 0-!
subject to 1! = 2, 4! ≤ ℎ

From convex optimization theory, the Karush-Kuhn-Tucker conditions
provide necessary and sufficient equations for optimality.

To obtain 7!⋆/79 implicitly differentiate the KKT conditions.
This also works for any convex optimization problem (not just QPs)

Brandon Amos Differentiable Optimization-Based Inference for Machine
Learning 15

stationarity
primal feasibility

complementary slackness

.!⋆ + 0 + 1-:⋆ + 4-;⋆ = 0
1!⋆ − 2 = 0
> ;⋆ 4!⋆ − ℎ = 0

Implicitly differentiating the KKT conditions
Implicitly differentiate them (using differentials here):

d"#∗ + &d# + d& + d'()∗ + '(d) + d*(+∗ + *(d+ = 0
d'#∗ + 'd# − d/ = 0
0 *#∗ − ℎ d+ + 0 +⋆ d*#∗ + *d# − dℎ = 0

Fill in desired differentials, form a linear system, solve for unknowns

If done naively, takes many linear system solves
If done correctly, just requires a single solve to compute all gradients

Brandon Amos Optimization-Based Modeling for Machine Learning 16

A Simple Application: Sudoku

Brandon Amos Optimization-Based Modeling for Machine Learning 17

OptNet Learns Sudoku
!⋆ = argmin

*
dist(!, 0)

subject to 8! = 9

The OptNet layer exactly learns the mini-Sudoku constraints from data!
Baseline: A deep convolutional feed-forward network

%
 In

co
rre

ct
ly

 S
ol

ve
d

B
oa

rd
s

Brandon Amos Optimization-Based Modeling for Machine Learning 18

Overview for the remainder of this talk

Brandon Amos Optimization-Based Modeling for Machine Learning 19

OptNet: Differentiable Optimization as a
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions

Should RL policies have a system
dynamics model or not?

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions

Brandon Amos Optimization-Based Modeling for Machine Learning 20

State Action

Policy Neural
Network(s)

Future
Plan

System
Dynamics

Combining model-based and model-free RL

Recently there has been a lot of interest in model-based priors for model-free
reinforcement learning:

Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013),
Imagination-Augmented Agents (Weber et al., 2017), Value Iteration Networks
(Tamar et al., 2016), TreeQN (Farquhar et al., 2017)

These typically involve:
1. Using an RNN: Efficient but not as expressive and general as MPC/iLQR
2. Unrolling an LQR or gradient-based solver: Expressive/general but inefficient

Our approach: Differentiable Model-Predictive Control
• Explicitly solves a control problem

Brandon Amos Optimization-Based Modeling for Machine Learning 21

Our Approach: Model Predictive Control

Brandon Amos Optimization-Based Modeling for Machine Learning 22

!":$
⋆ = argmin

-.:/

0

1

23(!1)

subject to >" = >?@?1
>1A" = B3 !1
C ≤ C ≤ C

Our Approach: Model Predictive Control
Traditionally	viewed	as	a	pure	planning	problem	given	known	(potentially	

non-convex)	cost and	dynamics:

Brandon Amos Optimization-Based Modeling for Machine Learning 23

Cost

Dynamics

where	!1 = {>1, C1}

Execute	C" in	the	environment,	observe	the	next	observation,	and	repeat.

Cost	and	dynamics	explicitly	represented	and	learned.

Model Predictive Control with SQP

Brandon Amos Optimization-Based Modeling for Machine Learning 24

• The	standard	way	of	solving	MPC	is	to	use	sequential	quadratic	
programming	(SQP),	using	LQR	in	most	cases

• Form	approximations	to	the	cost	and	dynamics	around	the	current	iterate
• Repeat	until	a	fixed	point	is	reached	and	differentiate	through	it

LQR, KKT Systems, and Differentiation
Solving LQR with dynamic Riccati recursion efficiently solves the KKT system

Brandon Amos Optimization-Based Modeling for Machine Learning 25

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to
implicitly differentiate the LQR KKT conditions:

where

Just another LQR problem!

LQR, KKT Systems, and Differentiation
Solving LQR with dynamic Riccati recursion efficiently solves the KKT system

Brandon Amos Optimization-Based Modeling for Machine Learning 26

Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to
implicitly differentiate the LQR KKT conditions:

where

Just another LQR problem!

A Differentiable MPC Module
We can differentiate through (non-convex) MPC with a single (convex) LQR
solve by differentiating the SQP fixed point

Brandon Amos Optimization-Based Modeling for Machine Learning 27

Layer z"… MPC Layer …

A lot of data Model Predictions Loss

What can we do with this now?
Replace neural network policies in model-free algorithms with MPC policies, and
also replace the unrolled controllers in other settings (hindsight plan, universal
planning networks)

The cost can also be learned! No longer have to hard-code in a known value.

Imitation learning with a linear model
Linear dynamics: ! "#, %# = '"# +)%#
Parameters: * = {',)}
Trajectory: -. "init obtained by MPC
Given known * and sample trajectories, learn 2*
Trajectory (Training) Loss: MSE(-. "init , -7. "init)
Model Loss: MSE(*, 2*)

Not guaranteed to converge, but a good sanity check that it does in small cases.

Brandon Amos Optimization-Based Modeling for Machine Learning 28

Simple Pendulum Control

Brandon Amos Optimization-Based Modeling for Machine Learning 29

Imitation learning with the pendulum/cartpole

Again optimizes the imitation loss with respect to the controller’s parameters

Using only action trajectories we can recover the true parameters

Brandon Amos Optimization-Based Modeling for Machine Learning 30

Optimizing the task loss is often better
than SysID in the unrealizable case

Brandon Amos Optimization-Based Modeling for Machine Learning 31

True System: Pendulum environment with noise (damping and a wind force)
Approximate Model: Pendulum without the noise terms

True Model

Approximate
Model Class

Best Imitation Loss

Best MSE

~1.8x difference!

A PyTorch MPC Solver

Brandon Amos Optimization-Based Modeling for Machine Learning 32

https://locuslab.github.io/mpc.pytorch

Overview for the remainder of this talk

Brandon Amos Optimization-Based Modeling for Machine Learning 33

OptNet: Differentiable Optimization as a
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions

Extensions

Game Theory [Ling, Fang, and Kolter; IJCAI 2017]: Distinguished Paper Award

Stochastic optimization and end-to-end learning
[Donti, Amos, and Kolter; NeurIPS 2017]

Reinforcement learning and control
Safety [Dalal et al. 2018], physics-based modeling [Peres et al. NeurIPS 2018],
inverse cost and reward learning, multi-agent systems, learnable embeddings

Discrete, combinatorial, and submodular optimization
[Djolonga and Krause 2017, Niculae and Blondel 2017,
Mensch and Blondel 2018]

Optimization viewpoints of standard components
[Bibi et al. ICLR 2019]

Brandon Amos Optimization-Based Modeling for Machine Learning 34

Section 2 and Section 8 of my thesis document contain a more complete set of references

Overview for the remainder of this talk

Brandon Amos Optimization-Based Modeling for Machine Learning 35

OptNet: Differentiable Optimization as a
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions

Background: cvxpy

Brandon Amos Optimization-Based Modeling for Machine Learning 36

http://cvxpy.org

[Diamond2018]

Brandon Amos Optimization-Based Modeling for Machine Learning 37

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Hand-Implementing Optimization
Layers is Non-Trivial

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Why should practicioners care?

Brandon Amos Optimization-Based Modeling for Machine Learning 38

A new way of rapidly prototyping
optimization layers

Brandon Amos Optimization-Based Modeling for Machine Learning 39

…Inputs Loss
cvxpy optimization layer

!"#$ = argmin
,

-.(!, !")
s.t. ! ∈ ∁.(!")

Backprop

…

Parameters

Variables

Constants

Canonicalized
Cone Program

argmin
7

89:
s.t. ;: ≼= >

Problem

Objective
Constraints

Cone Program
Solution

Original Problem
Solution

Full source code example: OptNet QP

Brandon Amos Optimization-Based Modeling for Machine Learning 40

!"#$ = argmin
,

1
2 !

/0 !" ! + 2 !" /!
subject to ; !" ! = < !"

= !" ! ≤ ℎ !"

Parameters/Submodules : 0, 2, ;, <, =, ℎ

Before: 1k lines of code
Hand-implemented and optimized PyTorch GPU-
capable batched primal-dual interior point method

Now: 10 lines of code
Same speed

Full source code example: The sigmoid

Brandon Amos Optimization-Based Modeling for Machine Learning 41

! = 1
1 + %&'

!⋆ = argmin
/

−!12 − 34(!)
subject to 0 ≤ ! ≤ 1

OptNet Application: Modeling Constraints

42

Constraint Predictions During TrainingTrue Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

Brandon Amos Optimization-Based Modeling for Machine Learning

Example 1 Example 2

Example 3 Example 4

Full source code example: Constraint modeling

Brandon Amos Optimization-Based Modeling for Machine Learning 43

…Inputs Loss
cvxpy optimization layer

!"#$ = argmin
,

-.(!, !")
s.t. ! ∈ ∁.(!")

Backprop

…

Parameters

Variables

Constants

Canonicalized
Cone Program

argmin
7

89:
s.t. ;: ≼= >

Problem

Objective
Constraints

Cone Program
Solution

Original Problem
Solution

What’s going on behind the scenes?

Brandon Amos Optimization-Based Modeling for Machine Learning 44

Much more general than the QPs we considered in OptNet

Question from my thesis proposal: How to differentiate non-polyhedral cones?

Non-trivial because we can’t easily differentiate the KKT conditions of cone
programs because of non-trivial cone constraints

Cone Program Differentiation

Cone Program Differentiation
Take the homogenous self-dual embedding of the cone program

!" = $ where

Definition: Minty’s projection onto the embedding space
%: ℝ()*)+ → - % . = Π.,−Π∗. where - = ", $ ∈ 4×4∗ "6$ = 0}

Take the residual map of Minty’s parameterization:
ℛ . = !Π. + Π∗.

Implicitly differentiate ℛ:
;< . = − ;=ℛ .∗ >+;<? .∗

Captures KKT differentiation as a special case

Brandon Amos Optimization-Based Modeling for Machine Learning 45

Closing Thoughts And Future Directions
Optimization is a powerful primitive to use within larger systems
• This thesis has uncovered theoretical and engineering foundations
• Can be propagated through and learned, just like any layer
• Provides a perspective to analyze existing models and layers
• Can be used to project onto sets in a differentiable way

Even if a closed form solution doesn’t exist

Applications in:
• Model-based RL and control

• In the policy or for exploration
• Inverse control, cost learning
• Learning embedded state spaces for planning
• Multi-agent systems

Interpret other agents as solving optimization problems
• Meta-Learning
• Energy-based learning and structured prediction

Brandon Amos Optimization-Based Modeling for Machine Learning 46

Closing Thoughts And Future Directions
Optimization is a powerful primitive to use within larger systems
• This thesis has uncovered theoretical and engineering foundations
• Can be propagated through and learned, just like any layer
• Provides a perspective to analyze existing models and layers
• Can be used to project onto sets in a differentiable way

Even if a closed form solution doesn’t exist

Applications in:
• Model-based RL and control

• In the policy or for exploration
• Inverse control, cost learning
• Learning embedded state spaces for planning
• Multi-agent systems

Interpret other agents as solving optimization problems
• Meta-Learning
• Energy-based learning and structured prediction

Brandon Amos Optimization-Based Modeling for Machine Learning 47

http://github.com/bamos/thesis
The source code behind all of my work is free and publicly available:

Brandon Amos • Carnegie Mellon University

Differentiable Optimization-Based
Modeling for Machine Learning

Thesis Defense

Extra Slides

Brandon Amos Optimization-Based Modeling for Machine Learning 49

Optimization-Based Inference

Brandon Amos Optimization-Based Modeling for Machine Learning 50

!

Structured prediction: define a network over "×$ and predict via
%!(') = argmin0 1(', !; 4)

*This is also called energy-based modeling

1(', !; 4)

Input '

Lion

Dog

Cat

Structured prediction models nicely
capture dependencies in the output space

Especially useful for high-dimensional, correlated
output spaces

• Multi-label classification
• Semantic segmentation
• Scene-graph generation

Difficult to capture with most feed-forward models

Intractable in many graphical models if a special
structure is not imposed

• Like in MRFs/CRFs

Easy with energy-based models
• Just add them to the energy !" #, %

Brandon Amos Optimization-Based Modeling for Machine Learning 51

[Zellers2018]

Energy-based models have historically
been used for many tasks

Brandon Amos Optimization-Based Modeling for Machine Learning 52

[LeCun2006]

Historically these have relied
on shallow energy functions
and hand-engineered features

We show how to use a deep
convex energy-based model
with learned features

Optimization-Based Inference

Structured prediction: define a network over !×# and predict via
$%(') = argmin0 1(', %; 4)

Data imputation: build a network over only over #, given %ℐ populate the
remaining entries via

$% ̅ℐ = argmin0 ̅ℐ 1 % ̅ℐ, %ℐ; 4

Continuous action reinforcement learning: Represent 7 function as
7⋆ 9, : = −1(9, :; 4), policy becomes

<⋆ 9 = argmin=1 9, :; 4

Brandon Amos Optimization-Based Modeling for Machine Learning 53

ICNN Portion Overview
Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous–Action Q-Learning

Brandon Amos Optimization-Based Modeling for Machine Learning 54

Input Convex Neural Networks (ICNNS)

Definition Scalar-valued network !(#, %; ') such that ! is convex in
% for all values of # (note that these networks are still not convex in
' = {+,, -,})

We can efficiently optimize over some inputs to the network given
other inputs

Efficiently captures dependencies in the output space for
prediction

It turns out, we don’t need very many restrictions on the network
to achieve this property

Brandon Amos Optimization-Based Modeling for Machine Learning 55

Applications of Optimization for Inference

Structured prediction: define a network over !×# and predict via
$%(') = argmin0 1(', %; 4)

Data imputation: build a network over only over #, given %ℐ populate the
remaining entries via

$% ̅ℐ = argmin0 ̅ℐ 1 % ̅ℐ, %ℐ; 4

Continuous action reinforcement learning: Represent 7 function as
7⋆ 9, : = −1(9, :; 4), policy becomes

<⋆ 9 = argmin=1 9, :; 4

Brandon Amos Optimization-Based Modeling for Machine Learning 56

With ICNNs: All of these problems are
convex, “easy” to solve globally

Example Networks

Brandon Amos Optimization-Based Modeling for Machine Learning 57

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

define a PICNN to be a network over (x, y) pairs f(x, y; ✓) where f is convex in y but not convex155

in x. Figure 1 illustrates one potential k-layer PICNN architecture defined by the recurrences156

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi
⇣
W (uz)

i (ui � zi) +W (u)
i ui +W (z)

i zi +W (y)
i yi + bi

⌘

f(x, z; ✓) = zk

(8)

where ui 2 Rni and zi 2 Rmi denote the hidden units for the “x-path” and “y-path”, where y 2 Rp,157

and where � denotes the Hadamard product, the elementwise product between two vectors. The158

crucial element here is that unlike the FICNN, we only need the W (z) terms to be non-negative, and159

we can introduce arbitrary products between the ui hidden units and the zi hidden units. Although160

more general formulations are possible (e.g., we could involve arbitrary linear functions of the outer161

product uizTi , these would result in very large numbers of parameters, and can always be captured by162

above architecture by simply adding additional layers that contain more hidden units). The following163

proposition highlights the representational power of the PICNN.164

Proposition 2. The PICNN network with k layers can represent any FICNN with k layers and any165

purely feedforward network with k � 1 layers.166

Proof. To recover a FICNN we simply set the weights over the entire x path to be zero. We can167

recover a feedforward network by noting that a traditional feedforward network f̂(x; ✓) where f :168

X ! Y , can be viewed as a network with an inner product f(x; ✓)T y in its last layer (see e.g. [1]169

for more details). Thus, a feedforward network can be represented as a PICNN by setting the x170

path to be exactly the feedforward component, then having the y path be all zero except W (y)
k�2 = I171

(implying zk�1 = y) and W (uz)
k�1 = vec(I)T .172

Biconvex architectures Although we do not discuss it in detail here, we can also develop an173

intermediate model between the PICNN and FICNN that is not convex in (x, y) jointly, but which is174

convex in either x or y when the other variables are fixed. Such an architecture would be useful for175

e.g., the generative embedding model described above, since it would allow for efficient inference176

over either x or y given the other, but is less restrictive that requiring joint convexity.177

3.3 Convolutional architectures178

Convolutions are important to many visual structured tasks. We have left convolutions out to keep179

the prior ICNN notation light by using matrix-vector operations. ICNNs can be similarly created180

with convolutions by viewing the convolution as a linear operator.181

The construction of convolutional layers in ICNNs depend on the type of input and output space.182

If the input and output space are similarly structured (e.g. both spatial), the jth feature map of a183

FICNN layer i can be defined by184

zji+1 = gi
⇣
zi ⇤W (z)

i,j + (Sx) ⇤W (x)
i,j + (Sy) ⇤W (y)

i,j + bi,j
⌘

(9)

where the convolution kernels W are the same size and S scales the input and output to be the same185

size as the previous feature map.186

If the input space is spatial, but the output space has another structure (e.g. the simplex), the convo-187

lution over the output space can be replaced by a matrix-vector operation, such as188

zji+1 = gi
⇣
zi ⇤W (z)

i,j + (Sx) ⇤W (x)
i,j +B(y)

i,j y + bi,j
⌘

(10)

where the product B(y)
i,j y is a scalar.189

4 Prediction and learning in ICNNs190

A traditional feedforward neural network’s prediction is a forward pass and learning is based on191

gradient steps from a backward pass. In contrast, ICNN prediction is a convex optimization problem192

(2) and the learning shapes the objective to the task.193

5

Features

Class
Prediction

!(#, %; ')
State

Action

−*(+, ,; ')

ICNN for Q learning:
-⋆ + = argmin6 − * +, ,; '

ICNN for structured prediction:
7%(#) = argmin8 !(#, %; ')

How to achieve input convexity?
Most networks can be “trivially” modified to guarantee input convexity

Consider a simple feedforward ReLU network:
!"#$= max{0,,"!" + ."}, 0 = 1,… , 3

4 5; 7 = !8#$, !$= 5

Proposition. 4 is convex in 5 provided that the ," are non-negative for 0 > 1

More generally, any activation function that is convex and non-decreasing
also has this property.

Brandon Amos Optimization-Based Modeling for Machine Learning 58

Is convexity restrictive?

Yes (by definition, the functions are restricted to be convex), but not
that bad in practice

Proposition. ICNNs trivially subsume any feedforward network
!" # with the network " #, % = % − !" #

(

More complex convex portion adds additional structure over %, which
can still be “easily” optimized over

We’ll see more evidence for this later

Brandon Amos Optimization-Based Modeling for Machine Learning 59

ICNN Portion Overview
Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous–Action Q-Learning

Brandon Amos Optimization-Based Modeling for Machine Learning 60

Challenges for ICNNs

Brandon Amos Optimization-Based Modeling for Machine Learning 61

Inference: how do we efficiently perform the optimization?
!⋆ #; % = argmin- .(#, !; %)

Learning: How do we train the network (find %) such that it gives good
predictions?

minimize4 5
678

9
ℓ !6, !⋆ #6; %

Inference in ICNNs
In theory, inference in ICNNs is just a linear program

min$ % &; (= min$,+ ,-./
s.t. ,0./ ≥ 20,0 + 40

,0 ≥ 0 for 6 > 1
,/ = &

This program has as many variables as hidden units in the network, exact
solution methods require that we invert the 20

920 matrices

Instead, exploit the fact that we can easily compute the gradient of
% :, &; (with respect to & (this is just backprop), and optimize using
gradient-based methods

We found that the bundle method (defined on the next slide) performs
better than gradient descent in some cases

Brandon Amos Optimization-Based Modeling for Machine Learning 62

Inference with the Bundle Method

Repeatedly minimize a lower bound on the function

Uses convexity to minimize more quickly than gradient descent

Boundary constraints are difficult, so we actually use an entropy penalty
!" #, %; ' + % log % + 1 − % log(1 − %)

Brandon Amos Optimization-Based Modeling for Machine Learning 63

ICNN Learning

Brandon Amos Optimization-Based Modeling for Machine Learning 64

Two possibilities for training networks

1. Max-margin structured prediction: enforce constraint that
! "#, %#; ' ≤ argmin/ ! "#, %; ' + Δ %, %#

Common structured prediction approach
Margin-scaling term Δ(%, %#) can be finicky

2. Argmin differentiation, directly compute
45ℓ %#, %⋆ "#; '

Can be approximated by unrolling an optimization procedure
Plays nicely with bundle method and approximate optimization
May require some differential calculus (nothing too nasty)

ICNN Portion Overview
Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous–Action Q-Learning

Brandon Amos Optimization-Based Modeling for Machine Learning 65

Results: toy example

Brandon Amos Optimization-Based Modeling for Machine Learning 66

Partially input convex neural network trained to classify points in 2D space

Only point to remember from this: convex energy function does not imply a
convex decision boundary; argmin operator is a powerful one

!"($) = argmin- .($, "; 1)

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

Features

Class Prediction .($, "; 1)

Results: multi-label classification

Brandon Amos Optimization-Based Modeling for Machine Learning 67

Task: Predict tags for bibtex entries from bag of words features

Used in Belanger and McCallum, 2016: Structured Prediction Energy Networks

ICNNs almost recover the same performance as SPENs despite the convexity
restrictions

Method Test Macro-F1
NN (Baseline) 0.396
SPEN 0.422

ICNN 0.415

!"($) = argmin- .($, "; 1)

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

Features

Class
Prediction

.($, "; 1)

(Higher = Better)

Results: image completion

Brandon Amos Optimization-Based Modeling for Machine Learning 68

Task: Predict the left side of the image given the right side. Used in Poon
and Domingos 2011; Sum-Product Networks

ICNN: DQN-like network over both input and output

!"($) = argmin- .($, "; 1)

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

(Given) Right
Face Half

(Predicted) Left
Face Half

.($, "; 1)

ICNN Test Set Completions

Input Convex Neural Networks
Brandon Amos Lei Xu J. Zico Kolter

Carnegie Mellon University
School of Computer Science

The full TensorFlow source code to reproduce all of our experiments
is available online at https://github.com/locuslab/icnn

Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous–Action Q-Learning

https://github.com/locuslab/icnn

