Thesis Defense

Differentiable Optimization-Based
Modeling for Machine Learning

Brandon Amos e Carnegie Mellon University

Thesis Committee:

J. Zico Kolter, Chair
Barnabas Pdczos

Jeff Schneider

Vladlen Koltun (Intel Labs)



My Ph.D. Contributions ~ Wscconaery conrbuion

[CMU 2016] OpenFace

ICML 2016] Collapsed Variational Inference for SPNs (2R

[ICML 2017] Input Convex Neural Networks R

[ICML 2017] OptNet

[INeurlPS 2017] Task-Based Model Learning

v
it

4

1/

[ICLR 2018] Learning Awareness Models

[INeurlPS 2018] Imperfect-Information Game Solving

[NeurlPS 2018] Differentiable MPC

The Limited Multi-Label Projection Layer ’ A

Differentiable cvxpy Optimization Layers

Brandon Amos Optimization-Based Modeling for Machine Learning 2



Th is Talk .Secondaw Contribution

[CMU 2016] OpenFace

[ICML 2016] Collapsed Variational Inference for SPNs

[ICML 2017] Input Convex Neural Networks

[ICML 2017] OptNet

[INeurlPS 2017] Task-Based Model Learning
[ICLR 2018] Learning Awareness Models

[INeurlPS 2018] Imperfect-Information Game Solving

[NeurlPS 2018] Differentiable MPC

The Limited Multi-Label Projection Layer

Differentiable cvxpy Optimization Layers

Brandon Amos Optimization-Based Modeling for Machine Learning 3



Input Convex Neural Networks

A quick glimpse



Input Convex Neural Networks
(ICNNS)

Definition Scalar-valued network f (x, y; 8) such that f is convex in y for all
values of x (note that these networks are still not convex in 8 = {W;, b;})

We can efficiently optimize over some inputs to the network given other inputs
Efficiently captures dependencies in the output space for prediction

It turns out, we don’t need very many restrictions on the network to achieve
this property
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How to achieve input convexity?

Most networks can be “trivially” modified to guarantee input convexity

Consider a simple feedforward RelLU network:
Ziy1= maX{O, WiZi + bi}! [ = 1, ver) k

f;0) = zgy1, 21=Yy

Proposition. f is convex in y provided that the W; are non-negative for i > 1

More generally, any activation function that is convex and non-decreasing
also has this property.
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Is convexity restrictive?

Yes (by definition, the functions are restricted to be convex), but not
that bad in practice

Proposition. ICNNSs trivially subsume any feedforward network
- - 2
f(x) with the network f(x,y) = (y — f(x))

More complex convex portion adds additional structure over y, which
can still be “easily” optimized over
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Overview for the remainder of this talk

OptNet: Differentiable Optimization as a

Layer in Neural Networks

Differentiable MPC

Differentiable cvxpy Layers
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Today’s Machine Learning Systems

R~ I~ e~ I

Current Primitive Operations: Linear maps, convolutions, activation functions,
random sampling, simple projections (e.g. onto the simplex or Birkhoff polytope)

How can the modeling part be improved?

Black-box neural networks don’t work everywhere and when they fail, task-
specific domain knowledge can provide useful modeling priors

My work mostly focuses on ways to use optimization to inject domain knowledge
into the modeling process
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Optimization and Machine Learning

Non-convex optimization is thriving in machine learning for parameter
optimization and architecture search. This is not what this talk covers.

In this talk, we argue that optimization is also a useful operation for
inference and control.

We consider optimization as another potential
layer, to be composed with others

Why? Optimization is an extremely powerful

paradigm for decision-making.
» Applications in finance (Markowitz portfolio optimization),
machine learning (support vector machines),
control (linear-quadratic model predictive control), >
geometry (projections onto polyhedra)
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Why is optimization a useful primitive
operation in learning systems?

We have incomplete domain knowledge about what we want to model
» Fillin parts of the optimization problem that we know
» Use data to learn the parts that we don’t

-—)

- -

{ \

(Learned) Abstract

» (Learned) Solver

Representation

Also subsumes many standard layers (RelLU, sigmoid, softmax)
* We will show this later
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Convex optimization viewpoint of
standard layers

*

y*= argmin |ly —x||3
RelLU y = max{0, x} y
subjectto y =0

1 y*= argmin —y'x — Hy(y)
Sigmoid y = — 4
1+e subjectto 0 <y <1
i y*= argmin —yTx — H(y)
y
Softmax yj = S ek subjectto 0 <y <1
1Ty =1
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OptNet Application: Modeling Constraints

True Constraint (Unknown to the model) . Constraint Predictions During Training

Example 1 Example 2 Example 1 Example 2

Example 3 Example 4

Example 3 Example 4
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The OptNet Layer

o ..

)

—

-

Layer z;

OptNet -
Layer

-

1
Zi+1 = argmin EZT‘Q(ZL')Z + CI(Zi)TZ\
Z
subjectto A(z;)z = b(z;)

G(z))z < h(z;)

Garameters/Submodules :0Q0,q9,A4,b,G, h)

The matrix Q(z;) depends on
the previous layer z;
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Differentiating a quadratic argmin

Consider the optimization problem:

1
z* = argminEZTQZ +q'z
Z

subjectto Az=b,Gz< h

From convex optimization theory, the Karush-Kuhn-Tucker conditions
provide necessary and sufficient equations for optimality.

stationarity Qz* +q +ATv*+GTA =0
orimal feasibility Az* —b =10
complementary slackness p(A*)(Gz* — h) = 0

To obtain dz* /20 implicitly differentiate the KKT conditions.
This also works for any convex optimization problem (not just QPS)

Differentiable Optimization-Based Inference for Machine

Brandon Amos .
Learning



Implicitly differentiating the KKT conditions

Implicitly differentiate them (using differentials here):

dQz* + qdz +dg + dATv* + ATdv + dGTA* + GTd1 =0
dAz* 4+ Adz—db =0
D(Gz*—h)d) +D(A*)(dGz* + Gdz —dh) =0

Fill in desired differentials, form a linear system,

If done naively, takes many linear system solves
If done correctly, just requires a single solve to compute all gradients
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Sudoku

A Simple Application
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OptNet Learns Sudoku

x* = argmin dist(x, p)
X

subjectto Ax = b

The OptNet layer exactly learns the mini-Sudoku constraints from datal
Baseline: A deep convolutional feed-forward network

=

o
o

M

% Incorrectly Solved Boards

103L LV - — L\ LNY . A L 1 J

0O 2 4 6 8 10 12 14 16 18
Epoch
=== Conv Train Conv Test === QOptNet Train OptNet Test
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Overview for the remainder of this talk

Brandon Amos

OptNet: Differentiable Optimization as a

Layer in Neural Networks

Differentiable MPC

Differentiable cvxpy Layers

Optimization-Based Modeling for Machine Learning
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Should RL policies have a system
dynamics model or not?

[ Policy NEWTE] '

Network(s)

w System . Future

| Dynamics Plan |

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions

Brandon Amos Optimization-Based Modeling for Machine Learning 20



Combining model-based and model-free RL

Recently there has been a lot of interest in model-based priors for model-free
reinforcement learning:

Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013),
Imagination-Augmented Agents (Weber et al., 2017), Value Iteration Networks
(Tamar et al., 2016), TreeQN (Farquhar et al., 2017)

These typically involve:
1. Using an RNN: Efficient but not as expressive and general as MPC/ILQR
2. Unrolling an LQR or gradient-based solver: Expressive/general but inefficient

Our approach: Differentiable Model-Predictive Control
» Explicitly solves a control problem

Brandon Amos Optimization-Based Modeling for Machine Learning 21



Our Approach: Model Predictive Control

Model Predictive Control

Finds an optimal future trajecto
System Opti -
, ptimal actions
> to take next
Initial State
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Our Approach: Model Predictive Control

Traditionally viewed as a pure planning problem given known (potentially
non-convex) cost and dynamics:

(tir = argmin ) [Ca(i]Cost

~

subjectto x1 = Xjnit

Xe+1 =|fo(7)|Dynamics
usu<su

. J

where T = {xt, ut}
Execute u; in the environment, observe the next observation, and repeat.
Cost and dynamics explicitly represented and learned.
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Model Predictive Control with SQP

The standard way of solving MPC is to use sequential quadratic
programming (SQP), using LQR in most cases

Form approximations to the cost and dynamics around the current iterate
Repeat until a fixed point is reached and differentiate through it

QP lterate i
R YT
t

T1:.T

subjectto x; = Xt

Xt+1 = fel (t¢)
ususu
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LAR, KKT Systems, and Differentiation

Solving LQR with dynamic Riccati recursion efficiently solves the KKT system

K
. Tt )\t. Tt4+1 )\t—i—l_
Ci Ft-r . | Tt* Ct
_______ Ft - [_IO] AL . i
1| l T | |G
O T +
0] o THL T Aty fee1
________________________ t+1 : :

Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to
implicitly differentiate the LQR KKT conditions:

o0 1, o o, J* v,
a_Ct - 5 (dn QT+ T © dn) a_ct - th O%init B d)\o Whel’e K di{t — - 6t
ol ol ¢

a_};wt = d§t+1 ® Tt* + )\:—i-l ® d:'t a_ft - d;t

Just another LQR problem!
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LQR, KKT Systems, and Differentiation

Solving LQR with dynamic Riccati recursion efficiently solves the KKT system

K
Tt At - T4 /\H—ll

R A T ¢t
_______ B _dl=ro oo AV N A
—I| : T - Ct4+1

O FT ! 7;+1 L
[ 0 ] l b b+l /\t+1 ft+1
______________________ Foor : :

Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to

implicitly differentiate the LQR KKT conditions: - -
ot . 1 * * * * ol % ot — A* d* VT*E
a—C't o 5 (th 03¢ Ty + Ty 03¢ th) a—()t o th axinit o d/\() Where K dj){t — Ot
a/ * * * * aﬁ * E

a—ﬂ :d/\t+l ®Tt +At+1®d7} a—ft = ay, ] . ] . |

Just another LQR problem!T
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A Differentiable MPC Module

We can differentiate through (non-convex) MPC with a single (convex) LQR
solve by differentiating the SQP fixed point

mpY  \odel - [mmy —>

i
e [ = = -

What can we do with this now?

Replace neural network policies in model-free algorithms with MPC policies, and
also replace the unrolled controllers in other settings (hindsight plan, universal

planning networks)

The cost can also be learned! No longer have to hard-code in a known value.
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Imitation learning with a linear model

Linear dynamics: f (x;, u;) = Ax; + Bu;
Parameters: 6 = {4, B}

Trajectory: 74 (xipjt) Obtained by MPC

Given known 6 and sample trajectories, learn 8
Trajectory (Training) Loss: MSE (74 (xinit) 73 (Xinit))
Model Loss: MSE(8, 6)

1.00

- |mitation Loss
0.75 - — Model Loss
0.50 -

0.25 \
0.00 200 400 600 800 1000
Iteration

Not guaranteed to converge, but a good sanity check that it does in small cases.
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Simple Pendulum Gontrol

Model Predictive Control

Finds an optimal future trajectory

System »
Dynamics

> Optimal actions
to take next

Initial State
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Imitation learning with the pendulum/cartpole

Again optimizes the imitation loss with respect to the controller’s parameters

Using only action trajectories we can recover the true parameters

Pendulum ; Cartpole

10! - Baselines | Ours Baselines | Ours

10! -
100 é_ ,,,,,,

107 -

Imitation Loss
Imitation Loss

102 ,,,,,, ,,,,,,

1073 -

104 .
nn Sys; m m m
Sig Pc. dy Oc. COstp

n Sye;
n Ysiq  Mbc, O Mpe CO;ZD

“Cost g, “Cost. g,

W #Train: 10 M #Train: 50 M #Train: 100
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Optimizing the task loss is often better
than SyslID in the unrealizable case

True System: Pendulum environment with noise (damping and a wind force)
Approximate Model: Pendulum without the noise terms

SysID Loss Imitation Loss

0.010 0.3

~1.8x differencel

0.2 -
0.005 -
0.1-

. I I I I \ | I i 1
O'OOOO 50 100 150 200 250 O'OO 50 100 150 200 250

Epoch Epoch
M Vanilla Sysld Baseline WM (Ours) Directly optimizing the Imitation Loss

Approximate
Model Class

True Model Y ¢ Best MSE
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A PyTorch MPC Solver

https://locuslab.github.io/mpc.pytorch

Control is important!

mpc.pytorch

Model Predictive Control
A fast and differentiable
model predictive control
(MPC) solver for PyTorch.
Crafted by Brandon
Amos, lvan Jimenez, Jacob
Sacks, Byron Boots, and ). \
Zico Kolter. For more

Finds an optimal future trajectory

context and details, see

our ICML 2017 paper on Optimal control is a widespread field that involve finding an optimal sequence of future actions to
OptNet and our take in a system or environment. This is the most useful in domains when you can analytically
(forthcoming) NIPS 2018 model your system and can easily define a cost to optimize over your system. This project focuses
paper on differentiable on solving model predictive control (MPC) with the box-DDP heuristic. MPC is a powerhouse in
MPC. many real-world domains ranging from short-time horizon robot control tasks to long-time horizon

control of chemical processing plants. More recently, the reinforcement learning community, strife

View On GitHub with poor sample-complexity and instability issues in model-free learning, has been actively
searching for useful model-based applications and priors.
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Overview for the remainder of this talk

Brandon Amos

OptNet: Differentiable Optimization as a

Layer in Neural Networks

Differentiable MPC

Differentiable cvxpy Layers

Optimization-Based Modeling for Machine Learning
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Extensions

Section 2 and Section 8 of my thesis document contain a more complete set of references

Game Theory [Ling, Fang, and Kolter; [JCAI 2017]: Distinguished Paper Award

. el e
Co)r(ltext S VoL | Solver VoLV D) e
Stochastic optimization and end-to-end learning ‘
[Donti, Amos, and Kolter; NeurlPS 2017] { o l Mwm]
Reinforcement learning and control I RIHI

Safety [Dalal et al. 2018], physics-based modeling [Peres et al. NeurlPS 2018],
inverse cost and reward learning, multi-agent systems, Ieamable embeddings

Discrete, combinatorial, and submodular optimization ~* " == ""(V_Hj:ff‘f';z?}%’ Ai)
[Djolonga and Krause 2017, Niculae and Blondel 2017, - et
Mensch and Blondel 201 8] y = II}S(G)§||3’ y'||, where y’ —drgmlnf( )+%”y_z||2‘ - the

Oo(x) —drgrga.xy z — ¥Q(y) = Vmaxg(x) \,2/“\‘2/ §
Optimization wewpomts of standard components ©

[Bibi et al. ICLR 2019] »
BT
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Overview for the remainder of this talk

Brandon Amos

OptNet: Differentiable Optimization as a

Layer in Neural Networks

Differentiable MPC

Differentiable cvxpy Layers
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Background: cvxpy
http://cvxpy.org

(constrained LASSO) [Diamond2018]

minimize  ||Ax — b||3 + 7|/ x]|1
subject to 17x =10, |x]|oeo <1

with variable x € R"

from cvxpy import *

x = Variable(n)

cost = sum_squares(A*x-b) + gamma*norm(x,1)

obj = Minimize(cost)

constr = [sum_entries(x) == 0, norm(x,"inf") <= 1]
prob = Problem(obj, constr)

opt_val = prob.solve()

solution = x.value

Brandon Amos Optimization-Based Modeling for Machine Learning
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Hand-Implementing Optimization
Layers is Non-Trivial

dQz* + Qdz + dg + dATv*+
ATdy +dGTX* + GTd\ =0

dAz* 4+ Adz —db=0

D(Gz* — h)dA + D(X*)(dGz* + Gdz — dh) = 0

Q GT AT [dz —dQz* — dg — dGTX* — dATV*
D(A)G D(Gz*—h) 0 d\| = —D(A*)dGz* + D(A\*)dh
A 0 0 dv —dAz* + db
N
g At o Tl At+1 h
e A T e
UL U o SUNLU NSRRI SO N
' —I| . (R N
R R I o N
___________________ S R ; ;
[ ] ] ov 1
d;( V.*Z 2c; :§(d:t®7t*—|-7';®d:t)
Kl l=—1 0 o0
?\t 8—}71: :d;\t—kl ®T;+)\jtk+1 ®d:t

Brandon Amos

Optimization-Based Modeling for Machine Learning

Vol = %(dzzT + zd?) Vil =d,
Val=d,z" +vdf Vil = —d,
Vel = D) (drz" + MdT) Vil = —D(\*)d)
Q GTD(\) AT 7' [V./
=— |G D(Gz*—h) 0 0
A 0 0 0
Q AT GT] [a* \Y
A 0 O ;| =—1 0
G 0 O d; 0
Vol = %(d;®:c*+:c*®d;) V0 =d
Vil = @z +1*®d; Vil = —d}
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Ocy ST OTinit B
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Why should practicioners care?
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A new way of rapidly prototyping
optimization layers

Backprop

cvxpy optimization layer

Loss

Inputs z;+1 = argmin fy(z, z;)

Zs.t. z € Co(z))

Parameters Canonicalized
Problem Cone Program e E——
. — one Program riginal Problem
Variables ; }
Objective .T Solution Solution E
Constraints arg;mn cx
Constants st. Ax <y b

Brandon Amos
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[ —

Full source code example: OptNet QP

Before: 1k lines of code

Hand-implemented and optimized PyTorch GPU-

capable batched primal-dual interior point method

Now: 10 lines of code
Same speed

-

1
Zi+1 = argmin EZTQ(ZL')Z + CI(Zi)TZ\
Z

subjectto A(z;)z = b(z;)
G(Zl')Z < h(Zi)

\Parameters/Submodules :0,q9,A4,b,G, h)

cp.Parameter(n)
.Parameter (m)

cp.Parameter(p)
cp.Variable(n)

" PEFPQUoD =T O

nmn unwn nn
(]
o

o
o
[

cons
prob

= O W 00~ Ol WK -

cp.Parameter ((n, n),
cp.Parameter ((m, n))

cp.Parameter ((p, n))

PSD=True)

import cvxpy as cp
from cvxpyth import CvxpyLayer

= cp.Minimize (0.5%cp.quad_form(x, Q) + p.T * x)
[A*x == b, G*x <= h]

cp.Problem(obj, cons)
layer = CvxpyLayer (prob, params=[Q, p, A, b, G, h], out=[x])

Brandon Amos
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f(z)

Full source code example: The sigmoid

1 y*= argmin —y’x — Hy(y)

T 14 ex y
e subjectto 0 <y <1

y

1|x = cp.Parameter(n)

2y = cp.Variable(n)

3|obj = cp.Minimize(-x.T*y - cp.sum(cp.entr(y) + cp.entr(i.-y)))
4, prob = cp.Problem(obj)

5 layer = CvxpylLayer(prob, params=[x], out_vars=[y])

The Sigmoid Function in Optimization Form The Derivative of the Sigmoid Function in Optimization Form

1.0~ 0.25 -
0.8~ 0.20 -
0.6~ 0.15 -
™M
=
04- 0.10 -
0.2 r 0-05 -
0.0~ ( ' ' i ' 0.00 - i i [l i '
-4 -2 0 2 - -4 -2 0 2 4
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OptNet Application: Modeling Constraints

True Constraint (Unknown to the model) . Constraint Predictions During Training

Example 1 Example 2 Example 1 Example 2

Example 3 Example 4

Example 3 Example 4

Brandon Amos Optimization-Based Modeling for Machine Learning 42



Full source code example: Constraint modeling
oo
Veese

00O~ O Ot s W~

~ - 1
j = argmin ~||p— 1] j = argmin _||p —yl|;
Yy = arg D —Yll2 2
y 2 v
1
st. Gy<h s.t. §(y—z)TA(y—z) <1
G = cp.Parameter ((m, n)) 1|A = cp.Parameter ((n, n), PSD=True)
h = cp.Parameter(m) 2|z = cp.Parameter(n)
p = cp.Parameter (n) 3|p = cp.Parameter(n)
y = cp.Variable(n) 4|y = cp.Variable(n)
obj = cp.Minimize (0.5*cp.sum_squares (y-p)) 5/obj = cp.Minimize (0.5%cp.sum_squares (y-p))
cons = [G*xy <= h] 6| cons = [0.5%cp.quad_form(y-z, A) <= 1]
prob = cp.Problem(obj, cons) 7| prob = cp.Problem(obj, cons)
layer = CvxpyLayer (prob, params=[p, G, h], out=[y])|8 layer = CvxpyLayer (prob, params=[p, A, z], out=[y])

Brandon Amos Optimization-Based Modeling for Machine Learning 43



What’s going on behind the scenes?

Canonicalized
Cone Program

Cone Program

Original Problem

Solution E?

argmin Ty Solution

X
st. Ax < b

Constraints

| >Pa rameters
Problem
Variables Objective

Constants

Cone Program Differentiation

Much more general than the QPs we considered in OptNet
Question from my thesis proposal: How to differentiate non-polyhedral cones?

Non-trivial because we can’t easily differentiate the KKT conditions of cone
programs because of non-trivial cone constraints

Brandon Amos Optimization-Based Modeling for Machine Learning 44



Cone Program Differentiation

Take the homogenous self-dual embedding of the cone program

0 AT e wueK, veK', Ungni1t Unint1 >0,
Qu=v where Q=|(-A 0_b
—" —b" 0 K=R"xK"xR,, K"={0}"xKxRy,,

Definition: Minty’s projection onto the embedding space
M: R ¢ M(z) = (Ilz, —11*z) where € = {(u,v) € XxK* |uv = 0}

Take the residual map of Minty’s parameterization:
R(z) =0Ilz+ 11"z

Implicitly differentiate R:
-1
Dg(2) = —(D,R(z") " DoR(z")

Captures KKT differentiation as a special case

Brandon Amos Optimization-Based Modeling for Machine Learning 45




Closing Thoughts And Future Directions

Optimization is a powerful primitive to use within larger systems

» This thesis has uncovered theoretical and engineering foundations
« (Can be propagated through and learned, just like any layer

» Provides a perspective to analyze existing models and layers

« (Can be used to project onto sets in a differentiable way

Applications in:
* Model-based RL and control

* In the policy or for exploration

» Inverse control, cost learning

« Learning embedded state spaces for planning

« Multi-agent systems

Interpret other agents as solving optimization problems

« Meta-Learning
» Energy-based learning and structured prediction

Brandon Amos Optimization-Based Modeling for Machine Learning 46



Closing Thoughts And Future Directions

Optimization is a powerful primitive to use within larger systems

* This thesis has uncovered theoretical and engineering foundations
« (Can be propagated through and learned, just like any layer
Provides a perspective to analyze existing models and layers

Can be used to project onto sets in a differentiable way

Even if a closed form solution doesn’t exist

Applications in:
* Model-based RL and control

* In the policy or for exploration

* Inverse control, cost learning

« Learning embedded state spaces for planning

e Multi-agent systems

Interpret other agents as solving optimization problems

- Meta-Cearning
* Energy-based learning and structured prediction

Brandon Amos Optimization-Based Modeling for Machine Learning iy



Thesis Defense

Differentiable Optimization-Based
Modeling for Machine Learning

YW brandondamos
“B bamos.github.io

Brandon Amos e Carnegie Mellon University

The source code behind all of my work is free and publicly available:

x» # http://github.com/bamos/thesis



Brandon Amos

Extra Slides

Optimization-Based Modeling for Machine Learning
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Optimization-Based Inference

Structured prediction: define a network over X xY and predict via
y(x) = argmin,, f(x,y;0)

*This is also called energy-based modeling

Input x S

Dog

f(x,y;0)

Lion

Brandon Amos Optimization-Based Modeling for Machine Learning



Structured prediction models nicely
capture dependencies in the output space

Especially useful for high-dimensional, correlated

output spaces
Multi-label classification
Semantic segmentation
Scene-graph generation

Difficult to capture with most feed-forward models

Intractable in many graphical models if a special

structure is not imposed
* Like in MRFs/CRFs

[Zellers2018]

Easy with energy-based models
« Just add them to the energy fy(x,y)

Brandon Amos Optimization-Based Modeling for Machine Learning 51



Energy-based models have historically
been used fog many ta?c,ks

E(Y, X)

—>

Historically these have relied
on shallow energy functions
and hand-engineered features

We show how to use a deep

convex energy-based model E(Y.X) ]
with learned features ~ ~
x| vl
This is easy"  (pr b adj)
[LeCun2006]
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Optimization-Based Inference

Structured prediction: define a network over X XY and predict via
$(x) = argminy, f(x,y; 6)

Data imputation: build a network over only over Y, given y; populate the
remaining entries via

y7 = argminy,. f(y7,y7; 6)

Continuous action reinforcement learning: Represent Q function as
Q*(s,a) = —f(s,a; 0), policy becomes
n*(s) = argming,f (s, a; 0)
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IGCNN Portion Overview

- Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous—Action Q-Learning
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Input Convex Neural Networks (ICNNS)

Definition Scalar-valued network f(x, y; 8) such that f is convex in
y for all values of x (note that these networks are still not convex in
6 = {W;, b;})

We can efficiently optimize over some inputs to the network given
other inputs

Efficiently captures dependencies in the output space for
prediction

It turns out, we don’t need very many restrictions on the network
to achieve this property
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Applications of Optimization for Inference

With ICNNs: All of these problems are
convex, “easy” to solve globally

Structured prediction: define a network over X xY and predict via
y(x) = argmin,, f(x,y;0)

Data imputation: build a network over only over Y, given y; populate the
remaining entries via

y7 = argmin,, f(y7,y7;6)

Continuous action reinforcement learning: Represent Q function as
Q*(s,a) = —f(s,a;0), policy becomes
n*(s) = argmingf (s, a; 8)
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Example Networks

ICNN for structured prediction:
9(x) = argmin,, f(x,y; 6)

Features | * [ “ [ 2 [~ "
Class y > 2 29 > oo — 21— 2
Prediction

A

wir1 = Gi(Wiug + b;)
Zit1 = g; (Wi(UZ) (Uz o Zi) + Wi(U)ui + Wi(Z)Zi + Wi(y)yi + bz)

ICNN for Q learning:
n*(s) = argmin, — Q(s,a; 0)

State| S > U] » Uy > - —{Up—1
NN N\ s a6)
Action!| a > 21 > 2 > - {21} 2z
A ] A

Uitl = §i(W¢Ui + Ei)
zisr = gi (W (2 0 W us + b))+
Wz‘(a) (a ° (W—;(au)ui + bga))) + Wi(u)ui + bi)

—Q(s,a;0) = f(s,a;0) = 2k, uo =8, 20 =a
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How to achieve input convexity?

Most networks can be “trivially” modified to guarantee input convexity

Consider a simple feedforward RelLU network:
Ziy1= maX{O, WiZi + bi}! [ = 1, ver) k

f;0) = zgy1, 21=Yy

Proposition. f is convex in y provided that the W; are non-negative for i > 1

More generally, any activation function that is convex and non-decreasing
also has this property.
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Is convexity restrictive?

Yes (by definition, the functions are restricted to be convex), but not
that bad in practice

Proposition. ICNNSs trivially subsume any feedforward network
- - 2
f (x) with the network f(x,y) = (y —f (x))

More complex convex portion adds additional structure over y, which
can still be “easily” optimized over

We'll see more evidence for this later
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IGCNN Portion Overview

Our Contribution: Input Convex Neural Networks

» Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous—Action Q-Learning
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Challenges for ICNNs

Inference: how do we efficiently perform the optimization?
y*(x; 8) = argmin,, f(x,y;0)

Learning: How do we train the network (find 8) such that it gives good
predictions?

n
minimizeg Z (i, y* (x5 0))
i=1
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Inference in ICNNs

In theory, inference in ICNNSs is just a linear program

min,, f(y;0) = Miny, ; Zg 41
S.t. Zi+1 = WiZi + bi
z; =0 fori>1
Z1 =)

This program has as many variables as hidden units in the network, exact
solution methods require that we invert the W' W; matrices

Instead, exploit the fact that we can easily compute the gradient of
f(x,y; 8) with respect to y (this is just backprop), and optimize using
gradient-based methods

We found that the bundle method (defined on the next slide) performs
better than gradient descent in some cases
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Inference with the Bundle Method

Repeatedly minimize a lower bound on the function

Uses convexity to minimize more quickly than gradient descent

Boundary constraints are difficult, so we actually use an entropy penalty
fCx,y;0) +ylogy + (1 —y)log(l—y)
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ICNN Learning

Two possibilities for training networks

1. Max-margin structured prediction: enforce constraint that

f(xy,y:;0) < argminy, (f (x;,y; 6) + Ay, ¥))
Common structured prediction approach
Margin-scaling term A(y, y;) can be finicky

2. Argmin differentiation, directly compute
Vot (i, y*(x;;0))
Can be approximated by unrolling an optimization procedure
Plays nicely with bundle method and approximate optimization
May require some differential calculus (nothing too nasty)
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IGCNN Portion Overview

Our Contribution: Input Convex Neural Networks
Challenges: Inference and Learning

- Experiments
Synthetic

Multi-label Classification
Image Completion
Continuous—Action Q-Learning
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Results: toy example

Partially input convex neural network trained to classify points in 2D space

Features

Class Prediction

y(x) = argmin,, f(x,y;0)

X

Uy

Ug

Y A(/, Y
V/V
e

21

R e o

Uk—1

N\,

oo —

AN

Y

f(x,y:0)

Only point to remember from this: convex energy function does not imply a
convex decision boundary; argmin operator is a powerful one

Brandon Amos
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Results: multi-label classification

Task: Predict tags for bibtex entries from bag of words features

Used in Belanger and McCallum, 2016: Structured Prediction Energy Networks

ICNNs almost recover the same performance as SPENs despite the convexity
restrictions

Features

Class
Prediction

Uy

Ug

e
v
e
L

<1

<2

y(x) = argmin,, f(x,y;0)

Uk—1

(x,y;0)

Zk—1

M

2k

A

Brandon Amos
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NN (Baseline)
SPEN
ICNN

(Higher = Better)

Test Macro-F1

0.396
0.422
0.415
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Results: image completion

Task: Predict the left side of the image given the right side. Used in Poon
and Domingos 2011; Sum-Product Networks

ICNN: DQN-like network over both input and output

y(x) = argmin,, f(x,y;0)

. _ d ICNN Test Set Completions
(Given) Right ° bl u bl w b o Sl ’ . ,
Face Half By hane Bieb - .
d‘\\\\\‘
(Predicted) Left Y = 2 > 2 s A 2 .
Face Half E f(x,y:6)
) A A
Method MSE
Sum-Product Network Baseline [PD11] 942.0
Dilated CNN Baseline [YK15] 800.0
FCN Baseline [LSD15] 795.4
ICNN - Bundle Entropy 833.0
ICNN - Gradient Decent 872.0
ICNN - Nonconvex 850.9
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Input Convex Neural Networks

Brandon Amos Lei Xu J. Zico Kolter
Carnegie Mellon University
School of Computer Science

Our Contribution: Input Convex Neural Networks
Challenges: Inference and Learning

Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous—Action Q-Learning

The full TensorFlow source code to reproduce all of our experiments
: ¥ s available online at https://github.com/locuslab/icnn
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