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Input Convex Neural Networks
A quick glimpse
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Input Convex Neural Networks
(ICNNS)

Definition Scalar-valued network !(#, %; ') such that ! is convex in % for all 
values of # (note that these networks are still not convex in ' = {+,, -,})

We can efficiently optimize over some inputs to the network given other inputs

Efficiently captures dependencies in the output space for prediction

It turns out, we don’t need very many restrictions on the network to achieve 
this property



How to achieve input convexity?
Most networks can be “trivially” modified to guarantee input convexity

Consider a simple feedforward ReLU network:
!"#$= max{0,,"!" + ."}, 0 = 1,… , 3

4 5; 7 = !8#$, !$= 5

Proposition. 4 is convex in 5 provided that the ," are non-negative for 0 > 1

More generally, any activation function that is convex and non-decreasing 
also has this property.
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Is convexity restrictive?
Yes (by definition, the functions are restricted to be convex), but not 
that bad in practice

Proposition. ICNNs trivially subsume any feedforward network 
!" # with the network " #, % = % − !" #

(

More complex convex portion adds additional structure over %, which 
can still be “easily” optimized over
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Overview for the remainder of this talk
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OptNet: Differentiable Optimization as a 
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions



Today’s Machine Learning Systems

Current Primitive Operations: Linear maps, convolutions, activation functions, 
random sampling, simple projections (e.g. onto the simplex or Birkhoff polytope)

A lot of data Model Predictions

Black-box neural networks don’t work everywhere and when they fail, task-
specific domain knowledge can provide useful modeling priors

My work mostly focuses on ways to use optimization to inject domain knowledge 
into the modeling process

How can the modeling part be improved?

Loss
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Optimization and Machine Learning
Non-convex optimization is thriving in machine learning for parameter 
optimization and architecture search. This is not what this talk covers.

In this talk, we argue that optimization is also a useful operation for 
inference and control.
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x⋆

We consider optimization as another potential 
layer, to be composed with others

Why? Optimization is an extremely powerful
paradigm for decision-making.
• Applications in finance (Markowitz portfolio optimization),

machine learning (support vector machines),
control (linear-quadratic model predictive control),
geometry (projections onto polyhedra)



Why is optimization a useful primitive 
operation in learning systems?

We have incomplete domain knowledge about what we want to model
• Fill in parts of the optimization problem that we know
• Use data to learn the parts that we don’t

Also subsumes many standard layers (ReLU, sigmoid, softmax)
• We will show this later
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(Learned) Abstract 
Representation (Learned) Solver

A lot of data Model Predictions Loss



Convex optimization viewpoint of 
standard layers
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!⋆ = argmin
*

! − , -
-

subject to ! ≥ 0
ReLU ! = max{0, ,}

! =
1

1 + >?@
Sigmoid

Softmax

!⋆ = argmin
*

−!A, − BC(!)

subject to 0 ≤ ! ≤ 1

!G =
>@H
∑>@J

!⋆ = argmin
*

−!A, − B(!)

subject to 0 ≤ ! ≤ 1
1A! = 1



OptNet Application: Modeling Constraints

13

Constraint Predictions During TrainingTrue Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4
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Example 1 Example 2

Example 3 Example 4



!"#$ = argmin
,

1
2 !

/0 !" ! + 2 !" /!
subject to ; !" ! = < !"

= !" ! ≤ ℎ !"

Parameters/Submodules : 0, 2, ;, <, =, ℎ

Layer !"… OptNet 
Layer

…

The OptNet Layer

A lot of data Model Predictions

The matrix 0 !" depends on 
the previous layer !"

Loss

Brandon Amos Optimization-Based Modeling for Machine Learning 14



Differentiating a quadratic argmin
Consider the optimization problem:

!⋆ = argmin
*

1
2 !

-.! + 0-!
subject to 1! = 2, 4! ≤ ℎ

From convex optimization theory, the Karush-Kuhn-Tucker conditions 
provide necessary and sufficient equations for optimality.

To obtain 7!⋆/79 implicitly differentiate the KKT conditions.
This also works for any convex optimization problem (not just QPs)
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stationarity
primal feasibility

complementary slackness

.!⋆ + 0 + 1-:⋆ + 4-;⋆ = 0
1!⋆ − 2 = 0
> ;⋆ 4!⋆ − ℎ = 0



Implicitly differentiating the KKT conditions
Implicitly differentiate them (using differentials here):

d"#∗ + &d# + d& + d'()∗ + '(d) + d*(+∗ + *(d+ = 0
d'#∗ + 'd# − d/ = 0
0 *#∗ − ℎ d+ + 0 +⋆ d*#∗ + *d# − dℎ = 0

Fill in desired differentials, form a linear system, solve for unknowns

If done naively, takes many linear system solves
If done correctly, just requires a single solve to compute all gradients
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A Simple Application: Sudoku
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OptNet Learns Sudoku
!⋆ = argmin

*
dist(!, 0)

subject to 8! = 9

The OptNet layer exactly learns the mini-Sudoku constraints from data!
Baseline: A deep convolutional feed-forward network
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Overview for the remainder of this talk

Brandon Amos Optimization-Based Modeling for Machine Learning 19

OptNet: Differentiable Optimization as a 
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions



Should RL policies have a system 
dynamics model or not?

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions
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State Action

Policy Neural 
Network(s)

Future 
Plan

System 
Dynamics



Combining model-based and model-free RL

Recently there has been a lot of interest in model-based priors for model-free 
reinforcement learning:

Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013), 
Imagination-Augmented Agents (Weber et al., 2017), Value Iteration Networks 
(Tamar et al., 2016), TreeQN (Farquhar et al., 2017)

These typically involve:
1. Using an RNN: Efficient but not as expressive and general as MPC/iLQR
2. Unrolling an LQR or gradient-based solver: Expressive/general but inefficient

Our approach: Differentiable Model-Predictive Control
• Explicitly solves a control problem
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Our Approach: Model Predictive Control
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!":$
⋆ = argmin

-.:/

0

1

23(!1)

subject to >" = >?@?1
>1A" = B3 !1
C ≤ C ≤ C

Our Approach: Model Predictive Control
Traditionally	viewed	as	a	pure	planning	problem	given	known	(potentially	

non-convex)	cost and	dynamics:
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Cost

Dynamics

where	!1 = {>1, C1}

Execute	C" in	the	environment,	observe	the	next	observation,	and	repeat.

Cost	and	dynamics	explicitly	represented	and	learned.



Model Predictive Control with SQP
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• The	standard	way	of	solving	MPC	is	to	use	sequential	quadratic	
programming	(SQP),	using	LQR	in	most	cases

• Form	approximations	to	the	cost	and	dynamics	around	the	current	iterate
• Repeat	until	a	fixed	point	is	reached	and	differentiate	through	it



LQR, KKT Systems, and Differentiation
Solving LQR with dynamic Riccati recursion efficiently solves the KKT system
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Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system
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Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are
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where ⌦ is the outer product operator, and d
?
⌧ and d
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to 
implicitly differentiate the LQR KKT conditions:

where

Just another LQR problem!



LQR, KKT Systems, and Differentiation
Solving LQR with dynamic Riccati recursion efficiently solves the KKT system
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Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to 
implicitly differentiate the LQR KKT conditions:

where

Just another LQR problem!



A Differentiable MPC Module
We can differentiate through (non-convex) MPC with a single (convex) LQR 
solve by differentiating the SQP fixed point
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Layer z"… MPC Layer …

A lot of data Model Predictions Loss

What can we do with this now?
Replace neural network policies in model-free algorithms with MPC policies, and 
also replace the unrolled controllers in other settings (hindsight plan, universal 
planning networks)

The cost can also be learned! No longer have to hard-code in a known value.



Imitation learning with a linear model
Linear dynamics: ! "#, %# = '"# + )%#
Parameters: * = {', )}
Trajectory: -. "init obtained by MPC 
Given known * and sample trajectories, learn 2*
Trajectory (Training) Loss: MSE(-. "init , -7. "init )
Model Loss: MSE(*, 2*)

Not guaranteed to converge, but a good sanity check that it does in small cases.
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Simple Pendulum Control
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Imitation learning with the pendulum/cartpole

Again optimizes the imitation loss with respect to the controller’s parameters

Using only action trajectories we can recover the true parameters
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Optimizing the task loss is often better 
than SysID in the unrealizable case
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True System: Pendulum environment with noise (damping and a wind force)
Approximate Model: Pendulum without the noise terms

True Model

Approximate 
Model Class

Best Imitation Loss

Best MSE

~1.8x difference!



A PyTorch MPC Solver
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https://locuslab.github.io/mpc.pytorch



Overview for the remainder of this talk
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OptNet: Differentiable Optimization as a 
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions



Extensions

Game Theory [Ling, Fang, and Kolter; IJCAI 2017]: Distinguished Paper Award

Stochastic optimization and end-to-end learning
[Donti, Amos, and Kolter; NeurIPS 2017]

Reinforcement learning and control
Safety [Dalal et al. 2018], physics-based modeling [Peres et al. NeurIPS 2018], 
inverse cost and reward learning, multi-agent systems, learnable embeddings

Discrete, combinatorial, and submodular optimization
[Djolonga and Krause 2017, Niculae and Blondel 2017,
Mensch and Blondel 2018]

Optimization viewpoints of standard components 
[Bibi et al. ICLR 2019]
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Section 2 and Section 8 of my thesis document contain a more complete set of references



Overview for the remainder of this talk
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OptNet: Differentiable Optimization as a 
Layer in Neural Networks

Differentiable cvxpy Layers

Differentiable MPC Extensions



Background: cvxpy
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http://cvxpy.org

[Diamond2018]
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Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)
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Why should practicioners care?
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A new way of rapidly prototyping 
optimization layers

Brandon Amos Optimization-Based Modeling for Machine Learning 39

…Inputs Loss
cvxpy optimization layer

!"#$ = argmin
,

-.(!, !")
s.t. ! ∈ ∁.(!")

Backprop

…

Parameters

Variables

Constants

Canonicalized
Cone Program

argmin
7

89:
s.t. ;: ≼= >

Problem

Objective
Constraints

Cone Program
Solution

Original Problem
Solution



Full source code example: OptNet QP

Brandon Amos Optimization-Based Modeling for Machine Learning 40

!"#$ = argmin
,

1
2 !

/0 !" ! + 2 !" /!
subject to ; !" ! = < !"

= !" ! ≤ ℎ !"

Parameters/Submodules : 0, 2, ;, <, =, ℎ

Before: 1k lines of code
Hand-implemented and optimized PyTorch GPU-
capable batched primal-dual interior point method

Now: 10 lines of code
Same speed



Full source code example: The sigmoid
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! = 1
1 + %&'

!⋆ = argmin
/

−!12 − 34(!)
subject to 0 ≤ ! ≤ 1



OptNet Application: Modeling Constraints

42

Constraint Predictions During TrainingTrue Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

Brandon Amos Optimization-Based Modeling for Machine Learning

Example 1 Example 2

Example 3 Example 4



Full source code example: Constraint modeling
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…Inputs Loss
cvxpy optimization layer

!"#$ = argmin
,

-.(!, !")
s.t. ! ∈ ∁.(!")

Backprop

…

Parameters

Variables

Constants

Canonicalized
Cone Program

argmin
7

89:
s.t. ;: ≼= >

Problem

Objective
Constraints

Cone Program
Solution

Original Problem
Solution

What’s going on behind the scenes?

Brandon Amos Optimization-Based Modeling for Machine Learning 44

Much more general than the QPs we considered in OptNet

Question from my thesis proposal: How to differentiate non-polyhedral cones?

Non-trivial because we can’t easily differentiate the KKT conditions of cone 
programs because of non-trivial cone constraints

Cone Program Differentiation



Cone Program Differentiation
Take the homogenous self-dual embedding of the cone program

!" = $ where

Definition: Minty’s projection onto the embedding space
%: ℝ()*)+ → - % . = Π.,−Π∗. where - = ", $ ∈ 4×4∗ "6$ = 0}

Take the residual map of Minty’s parameterization:
ℛ . = !Π. + Π∗.

Implicitly differentiate ℛ:
;< . = − ;=ℛ .∗ >+;<? .∗

Captures KKT differentiation as a special case
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Closing Thoughts And Future Directions
Optimization is a powerful primitive to use within larger systems
• This thesis has uncovered theoretical and engineering foundations
• Can be propagated through and learned, just like any layer
• Provides a perspective to analyze existing models and layers
• Can be used to project onto sets in a differentiable way

Even if a closed form solution doesn’t exist

Applications in:
• Model-based RL and control

• In the policy or for exploration
• Inverse control, cost learning
• Learning embedded state spaces for planning
• Multi-agent systems

Interpret other agents as solving optimization problems
• Meta-Learning
• Energy-based learning and structured prediction
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http://github.com/bamos/thesis
The source code behind all of my work is free and publicly available:

Brandon Amos • Carnegie Mellon University

Differentiable Optimization-Based 
Modeling for Machine Learning

Thesis Defense
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Optimization-Based Inference

Brandon Amos Optimization-Based Modeling for Machine Learning 50

!

Structured prediction: define a network over "×$ and predict via
%!(') = argmin0 1(', !; 4)

*This is also called energy-based modeling

1(', !; 4)

Input '

Lion

Dog

Cat



Structured prediction models nicely 
capture dependencies in the output space

Especially useful for high-dimensional, correlated 
output spaces

• Multi-label classification
• Semantic segmentation
• Scene-graph generation

Difficult to capture with most feed-forward models

Intractable in many graphical models if a special 
structure is not imposed

• Like in MRFs/CRFs

Easy with energy-based models
• Just add them to the energy !" #, %

Brandon Amos Optimization-Based Modeling for Machine Learning 51

[Zellers2018]



Energy-based models have historically 
been used for many tasks

Brandon Amos Optimization-Based Modeling for Machine Learning 52

[LeCun2006]

Historically these have relied 
on shallow energy functions 
and hand-engineered features

We show how to use a deep 
convex energy-based model
with learned features



Optimization-Based Inference

Structured prediction: define a network over !×# and predict via
$%(') = argmin0 1(', %; 4)

Data imputation: build a network over only over #, given %ℐ populate the 
remaining entries via

$% ̅ℐ = argmin0 ̅ℐ 1 % ̅ℐ, %ℐ; 4

Continuous action reinforcement learning: Represent 7 function as 
7⋆ 9, : = −1(9, :; 4), policy becomes

<⋆ 9 = argmin=1 9, :; 4
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ICNN Portion Overview
Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous–Action Q-Learning
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Input Convex Neural Networks (ICNNS)

Definition Scalar-valued network !(#, %; ') such that ! is convex in 
% for all values of # (note that these networks are still not convex in 
' = {+,, -,})

We can efficiently optimize over some inputs to the network given 
other inputs

Efficiently captures dependencies in the output space for 
prediction

It turns out, we don’t need very many restrictions on the network 
to achieve this property
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Applications of Optimization for Inference

Structured prediction: define a network over !×# and predict via
$%(') = argmin0 1(', %; 4)

Data imputation: build a network over only over #, given %ℐ populate the 
remaining entries via

$% ̅ℐ = argmin0 ̅ℐ 1 % ̅ℐ, %ℐ; 4

Continuous action reinforcement learning: Represent 7 function as 
7⋆ 9, : = −1(9, :; 4), policy becomes

<⋆ 9 = argmin=1 9, :; 4

Brandon Amos Optimization-Based Modeling for Machine Learning 56

With ICNNs: All of these problems are 
convex, “easy” to solve globally



Example Networks
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Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.
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define a PICNN to be a network over (x, y) pairs f(x, y; ✓) where f is convex in y but not convex155

in x. Figure 1 illustrates one potential k-layer PICNN architecture defined by the recurrences156

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi
⇣
W (uz)

i (ui � zi) +W (u)
i ui +W (z)

i zi +W (y)
i yi + bi

⌘

f(x, z; ✓) = zk

(8)

where ui 2 Rni and zi 2 Rmi denote the hidden units for the “x-path” and “y-path”, where y 2 Rp,157

and where � denotes the Hadamard product, the elementwise product between two vectors. The158

crucial element here is that unlike the FICNN, we only need the W (z) terms to be non-negative, and159

we can introduce arbitrary products between the ui hidden units and the zi hidden units. Although160

more general formulations are possible (e.g., we could involve arbitrary linear functions of the outer161

product uizTi , these would result in very large numbers of parameters, and can always be captured by162

above architecture by simply adding additional layers that contain more hidden units). The following163

proposition highlights the representational power of the PICNN.164

Proposition 2. The PICNN network with k layers can represent any FICNN with k layers and any165

purely feedforward network with k � 1 layers.166

Proof. To recover a FICNN we simply set the weights over the entire x path to be zero. We can167

recover a feedforward network by noting that a traditional feedforward network f̂(x; ✓) where f :168

X ! Y , can be viewed as a network with an inner product f(x; ✓)T y in its last layer (see e.g. [1]169

for more details). Thus, a feedforward network can be represented as a PICNN by setting the x170

path to be exactly the feedforward component, then having the y path be all zero except W (y)
k�2 = I171

(implying zk�1 = y) and W (uz)
k�1 = vec(I)T .172

Biconvex architectures Although we do not discuss it in detail here, we can also develop an173

intermediate model between the PICNN and FICNN that is not convex in (x, y) jointly, but which is174

convex in either x or y when the other variables are fixed. Such an architecture would be useful for175

e.g., the generative embedding model described above, since it would allow for efficient inference176

over either x or y given the other, but is less restrictive that requiring joint convexity.177

3.3 Convolutional architectures178

Convolutions are important to many visual structured tasks. We have left convolutions out to keep179

the prior ICNN notation light by using matrix-vector operations. ICNNs can be similarly created180

with convolutions by viewing the convolution as a linear operator.181

The construction of convolutional layers in ICNNs depend on the type of input and output space.182

If the input and output space are similarly structured (e.g. both spatial), the jth feature map of a183

FICNN layer i can be defined by184

zji+1 = gi
⇣
zi ⇤W (z)

i,j + (Sx) ⇤W (x)
i,j + (Sy) ⇤W (y)

i,j + bi,j
⌘

(9)

where the convolution kernels W are the same size and S scales the input and output to be the same185

size as the previous feature map.186

If the input space is spatial, but the output space has another structure (e.g. the simplex), the convo-187

lution over the output space can be replaced by a matrix-vector operation, such as188

zji+1 = gi
⇣
zi ⇤W (z)

i,j + (Sx) ⇤W (x)
i,j +B(y)

i,j y + bi,j
⌘

(10)

where the product B(y)
i,j y is a scalar.189

4 Prediction and learning in ICNNs190

A traditional feedforward neural network’s prediction is a forward pass and learning is based on191

gradient steps from a backward pass. In contrast, ICNN prediction is a convex optimization problem192

(2) and the learning shapes the objective to the task.193

5

Features

Class
Prediction

!(#, %; ')
State

Action

−*(+, ,; ')

ICNN for Q learning:
-⋆ + = argmin6 − * +, ,; '

ICNN for structured prediction:
7%(#) = argmin8 !(#, %; ')



How to achieve input convexity?
Most networks can be “trivially” modified to guarantee input convexity

Consider a simple feedforward ReLU network:
!"#$= max{0,,"!" + ."}, 0 = 1,… , 3

4 5; 7 = !8#$, !$= 5

Proposition. 4 is convex in 5 provided that the ," are non-negative for 0 > 1

More generally, any activation function that is convex and non-decreasing 
also has this property.
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Is convexity restrictive?

Yes (by definition, the functions are restricted to be convex), but not 
that bad in practice

Proposition. ICNNs trivially subsume any feedforward network 
!" # with the network " #, % = % − !" #

(

More complex convex portion adds additional structure over %, which 
can still be “easily” optimized over

We’ll see more evidence for this later
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ICNN Portion Overview
Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous–Action Q-Learning
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Challenges for ICNNs

Brandon Amos Optimization-Based Modeling for Machine Learning 61

Inference: how do we efficiently perform the optimization?
!⋆ #; % = argmin- .(#, !; %)

Learning: How do we train the network (find %) such that it gives good 
predictions?

minimize4 5
678

9
ℓ !6, !⋆ #6; %



Inference in ICNNs
In theory, inference in ICNNs is just a linear program

min$ % &; ( = min$,+ ,-./
s.t. ,0./ ≥ 20,0 + 40

,0 ≥ 0 for 6 > 1
,/ = &

This program has as many variables as hidden units in the network, exact 
solution methods require that we invert the 20

920 matrices

Instead, exploit the fact that we can easily compute the gradient of 
% :, &; ( with respect to & (this is just backprop), and optimize using 
gradient-based methods

We found that the bundle method (defined on the next slide) performs 
better than gradient descent in some cases
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Inference with the Bundle Method

Repeatedly minimize a lower bound on the function

Uses convexity to minimize more quickly than gradient descent

Boundary constraints are difficult, so we actually use an entropy penalty
!" #, %; ' + % log % + 1 − % log(1 − %)
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ICNN Learning

Brandon Amos Optimization-Based Modeling for Machine Learning 64

Two possibilities for training networks

1. Max-margin structured prediction: enforce constraint that
! "#, %#; ' ≤ argmin/ ! "#, %; ' + Δ %, %#

Common structured prediction approach
Margin-scaling term Δ(%, %#) can be finicky

2. Argmin differentiation, directly compute
45ℓ %#, %⋆ "#; '

Can be approximated by unrolling an optimization procedure
Plays nicely with bundle method and approximate optimization
May require some differential calculus (nothing too nasty)



ICNN Portion Overview
Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
Synthetic
Multi-label Classification
Image Completion
Continuous–Action Q-Learning

Brandon Amos Optimization-Based Modeling for Machine Learning 65



Results: toy example
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Partially input convex neural network trained to classify points in 2D space

Only point to remember from this: convex energy function does not imply a 
convex decision boundary; argmin operator is a powerful one
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Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.
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Results: multi-label classification
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Task: Predict tags for bibtex entries from bag of words features

Used in Belanger and McCallum, 2016: Structured Prediction Energy Networks

ICNNs almost recover the same performance as SPENs despite the convexity 
restrictions

Method Test Macro-F1
NN (Baseline) 0.396
SPEN 0.422

ICNN 0.415
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Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.
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Results: image completion
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Task: Predict the left side of the image given the right side. Used in Poon 
and Domingos 2011; Sum-Product Networks

ICNN: DQN-like network over both input and output
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Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.
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The full TensorFlow source code to reproduce all of our experiments 
is available online at https://github.com/locuslab/icnn

Our Contribution: Input Convex Neural Networks

Challenges: Inference and Learning

Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous–Action Q-Learning
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