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Abstract

This work is framedwithin the field of Functional Data Analysis, a branch of statistics in
which the objects of interest are random functions in a functional space, instead of, say,
random points inR𝑝 . Due to the infinite-dimensional nature of the data, the most com-
mon 𝐿2-models for functional linear and logistic regression present some complications
that require further simplifications, usually in the form of regularization or dimensional-
ity reduction.

In this thesis we propose a novel Bayesian approach for functional linear and logistic
regression models, based on the theory of reproducing kernel Hilbert spaces (RKHS’s).
These models build upon the RKHS associated with the covariance function of the un-
derlying stochastic process, and can be viewed as a finite-dimensional approximation to
the classical functional regressionparadigm. The corresponding functionalmodel (or the
functional logistic equation in the case of binary response) is determined by a function
living on a dense subspace of theRKHSof interest, which has a tractable parametric form
based on linear combinations of the kernel. By imposing a suitable prior distribution on
this space, we can perform data-driven inference via standard Bayes methodology. The
posterior distribution can be estimated through Markov chain Monte Carlo methods,
which do not require a complete specification of the posterior density.

We derive several prediction strategies from the approximate posterior distribution,
including a Bayesian-motivated variable selection procedure. We show through a com-
prehensive set of experiments that these methods are competitive against other usual al-
ternatives in terms of predictive performance, both in simulated examples and real data
sets. Overall, our proposed model is simple with regard to interpretation and feasible
with regard to implementation, while also enjoying the added flexibility of an ambient
Bayesian framework.

keywords: functional data, linear regression, logistic regression, reproducing kernel
Hilbert space, Bayesian inference, Markov chainMonte Carlo.
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1 Introduction

Over the last few decades, situations involving data in the form of functions have become
commonplace in many statistical scenarios, as more and more information is available
worldwide with an ever-increasing level of granularity in the measurements. In particu-
lar, functional data problems are far from unheard of in the data science and machine
learning community, since they have attracted the attention of researchers and practi-
tioners equally. Medical data, weather indicators or stock exchange indices are examples
of elements that benefit froma functional treatment, where the observations are regarded
as single entities rather than as a conglomerate of individual points.

Under a functional framework, the objects of interest are random functions instead
of random points in a finite-dimensional space. While in principle the functional data
could be simply regarded as a discretized vector in a very high dimension (and indeed
such a discretization is performed in practice), there are often many advantages in taking
into account the functional nature of the data, ranging frommodeling the possibly high
correlation among points that are close in the domain, to extracting information that
may be hidden in the derivatives of the function in question. Thus, the general idea is
to assume the existence of an underlying sufficiently smooth function that corresponds
to each (possibly noisy) functional observation, even though we only record it on a finite
grid of points.

To see what this kind of data looks like, Figure 1a shows an example of a functional
data set, which is known in the literature as the Tecator data set, and whose elements
represent near-infrared absorbance curves of meat samples. The objective here is to pre-
dict the fat content based on this absorbance spectrum, separating the samples into those
with “high” and “low” fat content. At first glance it does not seem that the trajectories
contain much relevant information to help classify the samples. However, after a suit-
able smoothing of the data (e.g. by representing each function in a Fourier basis) we can
take the derivatives of the curves. In this case, after differentiating twice a clearer pattern
emerges (see Figure 1b), one from which inference and prediction will surely be easier.
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1 Introduction

(a)Original curves (b) Second derivatives

Figure 1: Curves in the Tecator data set and their second derivatives (after smoothing).

In recent years numerous proposals have arisen onhow to suitably dealwith functional
data, all of them encompassed under the term Functional Data Analysis (FDA), which
essentially explores statistical techniques to process, model and make inference on data
varying over a continuum. A partial survey on such techniques and methods is Cuevas
(2014), while a more detailed exposition of the theory and applications can be found
for example in Ramsay and Silverman (2005), Hsing and Eubank (2015) or the book by
Horváth and Kokoszka (2012). As the name suggests, FDA techniques are heavily in-
spired by functional analysis tools and methods: Hilbert spaces, orthonormal systems,
linear operators, and so on. In particular, a notion that also intersects with the classical
theory of machine learning and pattern recognition, and that has gained traction in re-
cent years, is that of reproducing kernel Hilbert spaces (RKHS’s). We will demonstrate
throughout this work how these spaces of functions possess properties that allow for an
efficient treatment of functional data.

On the other hand, Bayesian inference methods are ubiquitous in the realm of statis-
tics, and their usual non-parametric approach alsomakesuse of randomfunctions, though
in a slightly different manner than in the FDA context. However, the two methodolo-
gies can certainly interact and benefit from one another, as we intend to show in this the-
sis. We will be particularly interested inMarkov chainMonte Carlo (MCMC)methods,
which allow us to approximate an arbitrary posterior distribution through a function
proportional to its density.

5
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In this work we are concerned with functional linear and logistic regression models,
that is, situations where the goal is to predict a continuous or dichotomous variable from
functional observations. Even though these problems can be formally stated with almost
no differences from their finite-dimensional counterparts, there are some fundamental
challenges as well as some subtle drawbacks that emerge as a result of working in in-
finite dimensions. Moreover, we will concentrate our efforts on the case in which the
response is a scalar, though function-on-function and function-on-scalar regression are
also interesting scenarios widely explored in the literature. To set a common framework,
throughout this work we will consider a scalar response variable 𝑌 (either continuous or
binary) which has some dependence on a stochastic 𝐿2-process 𝑋 = 𝑋(𝑡) = 𝑋(𝑡, 𝜔)
with trajectories in 𝐿2[0, 1] (i.e. a process with finite second moments and whose real-
izations are square-integrable functions indexed on [0, 1]). The underlying probability
space (Ω,𝒜 ,P) is not important. We will further suppose that 𝑋 is centered, that is to
say, its mean function 𝑚(𝑡) = E[𝑋(𝑡)] vanishes for all 𝑡 ∈ [0, 1]. In addition, we will
tacitly assume the existence of a labeled data set 𝒟𝑛 = {(𝑋𝑖, 𝑌𝑖) ∶ 𝑖 = 1, … , 𝑛} of inde-
pendent observations from (𝑋 , 𝑌 ), where the functional observations are recorded on a
common finite grid on [0, 1]. Our ultimate aimwill be to accurately predict the response
corresponding to unlabeled samples from 𝑋 . Figure 2 depicts a typical data set used in
functional regression, andwe already saw in Figure 1what a functional classification data
set may look like.

Figure 2: Simulated data set for functional regression. On the left we have 𝑛 = 50 functional
observations on an equispaced grid of 𝑁 = 100 points on [0, 1]. To each observation
corresponds a real number; the distribution of these responses is shown on the right.
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1 Introduction

1.1 Objectives and scope

We list below the main objectives of this work in no particular order.

1. To perform a brief but thorough literature review that contextualizes functional
linear and logistic regression within statistics and machine learning, exploring the
predominant models and techniques.

2. To propose a novel RKHS-based functional model for linear and logistic regres-
sion that builds on existing work and focuses on simplicity, both in terms of inter-
pretation and implementation.

3. To describe and implement a general Bayesian approach for parameter estimation
within the suggested model.

4. To introduce the tools needed to specify the proposed model and put it into prac-
tice, mainly reproducing kernel Hilbert spaces and Markov chain Monte Carlo
methods.

5. To carry out an extensive experimental study to test these newmodels and compare
them to existing methods, both in simulations and in real-world scenarios.

It is beyond the scope of this thesis to provide a complete review of FDA as a whole,
or to delve too deeply into the details and inner workings of most models and techniques
mentioned. Nevertheless, references are often provided throughout the text to point the
interested reader towards more specialized resources.

1.2 Structure overview

In Chapter 2 we summarize the relevant literature related to our problem, along with a
review of the basics of RKHS’s and MCMCmethods. Chapter 3 is devoted to explain-
ing the Bayesian methodology and the functional regression models we propose. Then,
in Chapter 4 we present a short discussion of theoretical and computational details that
have led to the concrete specification of the model, as well as some validation techniques.
The empirical results of the experimentation are contained in Chapter 5. Lastly, the con-
clusions drawn from this work and future paths of research are reviewed in Chapter 6.
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2 Background and related
work

FDA is undoubtedly an active area of research, which finds applications in a wide variety
of fields, such as biomedicine, finance, meteorology or chemistry (see for example Ul-
lah and Finch, 2013). Accordingly, there are many recent contributions on how to tackle
functional data problems, both froma theoretical andpractical standpoint. Chief among
them is the approach of reducing the problem to a finite-dimensional one, for exam-
ple using a truncated basis expansion or spline interpolation methods (e.g. Aguilera and
Aguilera-Morillo, 2013; Müller and Stadtmüller, 2005). At the same time, much effort
has also been put into the task of building a sound theoretical basis for FDA, generalizing
different concepts to the infinite-dimensional framework. Examples of this endeavor in-
clude the definition of centrality measures and depth-based notions for functional data
(e.g. Cuevas et al., 2007; Fraiman and Muniz, 2001; López-Pintado and Romo, 2009),
an ANOVA test for functional data (Cuevas et al., 2004), a purely functional partial least
squares algorithm (Delaigle and Hall, 2012b), a functional Mahalanobis distance (e.g.
Berrendero et al., 2020a; Galeano et al., 2015), or an extension of Fisher’s discriminant
analysis for function-valued random elements (e.g. James andHastie, 2001; Shin, 2008),
among many others. Interestingly enough, these last two are examples of situations in
which a RKHS-based approach provides useful insights.

Another technique found in the related literature is the use of Gaussian processes to
model the functional behavior of the data (see for instance Shi and Choi, 2011). These
ideas extend the theory of Gaussian process regression in classical finite-dimensional set-
tings (e.g. Rasmussen, 2004), providing an alternative Bayesian approach to functional
inference and prediction problems. Additional non-parametric methods for functional
prediction and classification were notably explored in Ferraty and Vieu (2006).
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2 Background and related work

𝐿2-models

The most common scalar-on-function linear regression model is the classical 𝐿2-model,
widely popularized since the first edition (1997) of the monograph by Ramsay and Sil-
verman (2005). It can be seen as a generalization of the usual finite-dimensional model,
replacing the scalar product inR𝑝 for that of the functional space 𝐿2[0, 1]:

𝑌 = 𝛼0 + ⟨𝑋 , 𝛽⟩ + 𝜀 = 𝛼0 + ∫
1

0
𝑋(𝑡)𝛽(𝑡) 𝑑𝑡 + 𝜀, (2.1)

where𝛼0 ∈ R, 𝜀 is a randomerror term independent from𝑋 withE[𝜀] = 0, and the func-
tional slope parameter 𝛽 = 𝛽(⋅) is assumed to be a member of the infinite-dimensional
space 𝐿2[0, 1]. A careful rearrangement of (2.1) shows that the model is equivalently ex-
pressed as Δ = 𝒦𝛽 , where Δ(⋅) is the cross-covariance function of 𝑋 and 𝑌 , and𝒦 is
the covariance operator of the process 𝑋 (to be defined in Section 2.1). This expression
is a continuous analog of the normal equations that arise in finite-dimensional regression
settings, and since the operator𝒦 is non-invertible in general, questions of existence and
uniqueness of 𝛽 need further study (see Cardot and Sarda, 2011).

Technical details aside, the inference on 𝛽 is also hampered by the fact that 𝐿2[0, 1]
is an extremely wide space that contains many non-smooth or ill-behaved functions, so
that any estimation procedure involving optimization on it would typically be hard. Al-
though it can be tempting to simply discretize the observed values on a grid and pro-
ceed with standard multiple linear regression, this would result in an under-determined
model in which the estimated parameters losemeaning. This happens essentially because
the number of available parameters is infinite, but the number of equations is finite (see
Ramsay and Silverman, 2005, Sec. 15.2). Thus, some regularization or dimensionality
reduction techniques are needed for parameter estimation; see Reiss et al. (2017) for a
summary of several widespread methods.

A common inference strategy is to expand both 𝑋 and 𝛽 on a certain data-driven or-
thonormal basis of 𝐿2[0, 1], say {𝜙𝑗}, up to a certain value 𝑝 ∈ N:

𝑋(𝑡) =
𝑝
∑
𝑗=1

𝑍𝑗𝜙𝑗(𝑡), 𝛽(𝑡) =
𝑝
∑
𝑗=1

𝛽𝑗𝜙𝑗(𝑡).
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In this way, model (2.1) simplifies to

𝑌 = 𝛼0 +
𝑝
∑
𝑗=1

𝛽𝑗𝑍𝑗 ,

which can then be solved in the usual manner. For example, when the chosen basis is
composed of eigenfunctions of the covariance operator 𝒦 , this method is known as
Functional Principal Component Regression (FPCR). Another class of methods focus
on selecting an a priori basis for 𝛽 (e.g. a spline basis) and solving a penalized least squares
problem. In particular, for a truncated basis representation of the form 𝛽(𝑡) = 𝜙(𝑡)′𝑏,
with 𝜙(𝑡) = (𝜙1(𝑡), … , 𝜙𝑝(𝑡))′ and 𝑏 ∈ R𝑝 , a typical minimization problem would be

argmin
(𝛼0,𝑏)∈R×R𝑝

{
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛼0 − ∫
1

0
𝑥𝑖(𝑡)[𝜙(𝑡)′𝑏] 𝑑𝑡)

2
+ 𝜆Ω(𝑏)},

whereΩ is some penalty function and 𝜆 > 0 is a regularization parameter.
Turningour attention to logistic regression, a similar𝐿2-based functional logistic equa-

tion can be derived for the binary classification problem via the logistic function:

P(𝑌 = 1 ∣ 𝑋) = 1
1 + exp{−𝛼0 − ⟨𝑋 , 𝛽⟩} , (2.2)

where 𝛼0 ∈ R and 𝛽 ∈ 𝐿2[0, 1]. In this situation, the most common way of estimating
the slope function𝛽 is via itsMaximumLikelihoodEstimator (MLE).However, not only
do the same complications as in the linear regression model apply in this situation, but
there is also the additional problem that in functional settings the MLE does not exist
with probability one under fairly general conditions (see Berrendero et al., 2022).

RKHS models

In spite of the apparent generality of model (2.1), it can be shown that it is not flexible
enough to include “simple” finite-dimensional models based on linear combinations of
themarginals of theprocess, such as 𝑌 = 𝛼0+𝛽1𝑋(𝑡1)+⋯+𝛽𝑝𝑋(𝑡𝑝)+𝜀 for someconstants
𝛽𝑗 ∈ R and instants 𝑡𝑗 ∈ [0, 1]; see Berrendero et al. (2020b) for additional details on this.
It turns out that in both linear and logistic scenarios a natural and more general alterna-
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2 Background and related work

tive to the 𝐿2-model is the so-called Reproducing Kernel Hilbert Space (RKHS) model,
which instead assumes the unknown functional parameter to be amember of the RKHS
associated with the covariance function of the process 𝑋 , making use of the scalar prod-
uct of that space. As we will show later on, not only is this model simpler and arguably
easier to interpret, but it also constrains the parameter space to smoother andmore man-
ageable functions. In fact, it does include a model based on finite linear combinations of
the marginals of𝑋 as a particular case, which is especially appealing to practitioners con-
fronted with functional data problems due to its simplicity. These RKHS-based models
and their idiosyncrasies have been explored inBerrendero et al. (2019, 2020b) in the func-
tional linear regression setting, and in Berrendero et al. (2022) for the case of functional
logistic regression.

There are other proposals for models that change the habitat of the functional param-
eter, and there are even some in which 𝛽 is supposed to live in a RKHS, most notably
Yuan and Cai (2010). However, theirs are arbitrary RKHS’s that do not directly exploit
the relationwith the process𝑋 (though the authors do use this connection to derive some
asymptotic properties of their estimators), and therefore the approach is somewhat differ-
ent. Incidentally, the RKHS associated with 𝑋 also has some interesting properties that
contribute to shed light on the near-perfect classification phenomenon for functional
data, described by Delaigle and Hall (2012a) and further examined for example in the
works of Berrendero et al. (2018) or Torrecilla et al. (2020).

A major aim of this work is to motivate these recently-proposed RKHS models in-
side the functional framework, while also providing efficient techniques to apply them
in practice. Our main contribution is the proposal of a Bayesian approach to parameter
estimation within the aforementioned RKHS models, in which a prior distribution is
imposed on the unknown functional parameter to obtain a posterior distribution after
seeing the data. Although setting a prior distribution on a functional space is generally a
hard task, the specific parametric formulation of the RKHS models we propose greatly
facilitates this (see Chapter 3 for details). A similar Bayesian scheme has recently been
explored in Grollemund et al. (2019), albeit not within a RKHS framework.

Another set of techniques extensively studied in this context are variable selectionmeth-
ods, which aim to select the marginals {𝑋(𝑡𝑗)} of the process that better summarize it
according to some optimality criterion. As it happens, some variable selection meth-
ods have already been proposed in the RKHS framework (see for example Berrendero

8



et al., 2019; Bueno-Larraz and Klepsch, 2019), but in general they have their own dedi-
cated algorithms and procedures. As will become apparent in the forthcoming chapters,
given the nature of our suggested Bayesianmodel we can easily isolate themarginal poste-
rior distribution corresponding to a finite set of points {𝑡𝑗}, and thus provide a Bayesian-
motivated variable selection process along with the other prediction methods that nat-
urally arise within our model. In this way, in addition to making predictions about the
input data, we can evaluate exactly which marginals of the functional explanatory vari-
able contain themost relevant information. These points-of-impact selectionmodels for
functional predictors have also been considered in the literature; see Poß et al. (2020),
Berrendero et al. (2016) or Ferraty et al. (2010) by way of illustration. Another exam-
ple of a related strategy is the work of James et al. (2009), in which the authors propose
a method to estimate 𝛽(𝑡) in such a way that it is exactly zero over some regions in the
domain (a sort of “region selection” algorithm).

Bayesian inference

The term Bayesian inference usually refers to a wide class of methods that to some extent
employ Bayes’ theorem to update the initial probability assigned to a hypothesis (or a pa-
rameter) when new information is available. It can be seen as a general tool for modeling
situations or problems that involve uncertainty; some examples include Bayesian hierar-
chical modeling, Bayesian regression or even Bayesian neural networks (see e.g. Bishop,
2006; Murphy, 2012). Specifically, in this work we will be interested in performing pa-
rameter estimation in a Bayesian framework, so that pre-existing information and beliefs
about the parameters can be incorporated into the model in question.

One difficulty found in almost all Bayesian methods is that the posterior distribution,
the main object of interest, is usually intractable due to the integral that appears as the
normalizing constant in Bayes’ rule. A way to bypass this limitation is to use conjugate
distributions, where it can be rigorously proven that a certain combination of likelihood
and prior distributions produces a posterior distribution in the same family as the prior.
However, unless conjugate priors are used, a closed-form expression of the posterior is
generally unattainable and some type of approximation is required. Apart from basic
numerical integration, some well-performing methods in this regard are variational in-
ference approaches (e.g. Blei et al., 2017) andMCMCmethods (e.g. Brooks et al., 2011).

9



2 Background and related work

The former are basedon approximating theposterior by another distribution restricted to
a certain parametric family so that theKullback-Leibler divergence between them ismini-
mized, whereas the latter are iterativemethods that directly provide approximate samples
of the posterior distribution.

On a separate note, there are some recent works that tackle Bayesian inference from
a functional perspective, mostly in relation to the distribution over functions induced
by a Bayesian neural network. Some examples are the functional Bayesian neural net-
works proposed by Sun et al. (2019), variational implicit processes (Ma et al., 2019) and
their deep variants (Ortega et al., 2022), or the functional variational inference techniques
suggested inMa andHernández-Lobato (2021). Moreover, there are approaches to func-
tional regression from a Bayesian perspective that impose a Gaussian process prior on the
functional parameter 𝛽 (e.g Lian et al., 2016), and it turns out that the RKHS’s corre-
sponding to these Gaussian processes, described for example in Van Der Vaart and Van
Zanten (2008), are useful when studying contraction rates of the posterior distribution.

2.1 Reproducing kernel Hilbert spaces

In this sectionwepresent a brief exposition of somebasic concepts regarding reproducing
kernel Hilbert spaces. Although there are quite a few ways of introducing these spaces,
we adopt a probabilistic point of view that will set the stage for the development of the
subsequent theory. Although the following ideas can be extended to complex functions,
we restrict ourselves to real-valued functions for the sake of simplicity; for amore detailed
account, a good reference is the book by Berlinet and Thomas-Agnan (2004). We start
by defining the concept of kernel functions, which are the foundation of these spaces.

Definition 2.1. We say that a function of two variables 𝐾 ∶ 𝒯 × 𝒯 → R is positive
semidefinite1 if 𝑝

∑
𝑖,𝑗=1

𝑎𝑖𝑎𝑗𝐾(𝑡𝑖, 𝑡𝑗) ≥ 0

for any 𝑝 ∈ N, any (𝑎1, … , 𝑎𝑝) ∈ R𝑝 and any (𝑡1, … , 𝑡𝑝) ∈ 𝒯 𝑝 . Note that this is equiva-
lent to saying that the matrix (𝐾(𝑡𝑖, 𝑡𝑗))𝑖,𝑗 is positive semidefinite for any choice of 𝑝 ∈ N

and (𝑡1, … , 𝑡𝑝) ∈ 𝒯 𝑝 .
1Sometimes in the literature these functions are known simply as positive definite.
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2.1 Reproducing kernel Hilbert spaces

We will be interested mainly in positive semidefinite functions that are symmetric,
which are usually referred to as kernel functions, and which happen to be the class of
covariance functions of second order stochastic processes (Berlinet and Thomas-Agnan,
2004, Th. 27). Let us now show how a RKHS arises from a kernel function.

Suppose 𝑋 = 𝑋(𝑡) is a 𝐿2-stochastic process with trajectories in 𝐿2[0, 1], and for sim-
plicity assumeE[𝑋(𝑡)] = 0 for all 𝑡 ∈ [0, 1]. Let us denote by𝐾(𝑡, 𝑠) = E[𝑋(𝑡)𝑋(𝑠)] the
covariance function of the process𝑋 . To construct theRKHSℋ(𝐾) associatedwith the
covariance function, we start by defining the functional vector spaceℋ0(𝐾) of all finite
linear combinations of evaluations of 𝐾 , that is,

ℋ0(𝐾) = {𝑓 ∶ 𝑓 (⋅) =
𝑝
∑
𝑖=1

𝑎𝑖𝐾(𝑡𝑖, ⋅), 𝑝 ∈ N, 𝑎𝑖 ∈ R, 𝑡𝑖 ∈ [0, 1]}. (2.3)

Note that, as subsets,ℋ0(𝐾) ⊂ 𝐿2[0, 1]. However, this new space can be endowed with
an inner product different from the one induced by 𝐿2[0, 1], namely

⟨𝑓 , 𝑔⟩𝐾 = ∑
𝑖,𝑗

𝑎𝑖𝑏𝑗𝐾(𝑡𝑖, 𝑠𝑗),

for 𝑓 (⋅) = ∑𝑖 𝑎𝑖𝐾(𝑡𝑖, ⋅) and 𝑔(⋅) = ∑𝑗 𝑏𝑗𝐾(𝑠𝑗 , ⋅). We show below that it is well defined,
but before we note that functions in this space satisfy the so-called reproducing property:

𝑓 (𝑡) = ⟨𝐾(𝑡, ⋅), 𝑓 ⟩𝐾 , for all 𝑡 ∈ [0, 1].

In particular, 𝐾(𝑡, 𝑠) = ⟨𝐾(𝑡, ⋅), 𝐾(𝑠, ⋅)⟩𝐾 , which can be understood as saying that the
kernel reproduces itself, hence the term “reproducing kernel”.

Proposition 2.2. (ℋ0(𝐾), ⟨⋅, ⋅⟩𝐾 ) is an inner product space.
Proof. Firstly, consider 𝑓 (⋅) = ∑𝑖 𝑎𝑖𝐾(𝑡𝑖, ⋅) and 𝑔(⋅) = ∑𝑗 𝑏𝑗𝐾(𝑠𝑗 , ⋅), and observe that

⟨𝑓 , 𝑔⟩𝐾 = ∑
𝑗
𝑏𝑗𝑓 (𝑠𝑗) = ∑

𝑖
𝑎𝑖𝑔(𝑡𝑖).

These equalities show that ⟨𝑓 , 𝑔⟩𝐾 depends only on 𝑓 and 𝑔 through their values, so it is
independent of their representation inℋ0(𝐾). From this expression (and also from the
original definition) it is straightforward to check linearity and symmetry, while positive
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2 Background and related work

semidefiniteness is a direct consequence of 𝐾 being a covariance function, and thus pos-
itive semidefinite. It remains to prove that ⟨𝑓 , 𝑓 ⟩𝐾 = 0 implies 𝑓 = 0. Indeed, for all
𝑡 ∈ [0, 1] and 𝜀 ∈ R, we have

0 ≤ ⟨𝑓 + 𝜀𝐾(𝑡, ⋅), 𝑓 + 𝜀𝐾(𝑡, ⋅)⟩𝐾 = ⟨𝑓 , 𝑓 ⟩𝐾 + 2𝜀⟨𝑓 , 𝐾(𝑡, ⋅)⟩𝐾 + 𝜀2𝐾(𝑡, 𝑡).

Now, if ⟨𝑓 , 𝑓 ⟩𝐾 = 0, by letting 𝜀 → 0± it follows that 𝑓 (𝑡) = ⟨𝑓 , 𝐾(𝑡, ⋅)⟩𝐾 necessarily
vanishes for all 𝑡 , as desired.

At this point, ℋ(𝐾) is defined to be the completion of ℋ0(𝐾) under the norm in-
duced by the scalar product ⟨⋅, ⋅⟩𝐾 , which informally amounts to adding all the limits of
Cauchy sequences inℋ0(𝐾), turning it into a genuineHilbert spacewith the inner prod-
uct extended accordingly. Then, it is immediate to see that the reproducing property is
retained. An important consequence is thatℋ(𝐾) is a space of actual functions and not
of equivalence classes, since the values of the functions at particular points are in fact
relevant, unlike in 𝐿2-spaces.

Indeed, another way of characterizing a RKHS is via the continuity of all the evalua-
tion operators, i.e., 𝛿𝑡(𝑓 ) ∶= 𝑓 (𝑡) for 𝑓 ∈ ℋ(𝐾) and 𝑡 ∈ [0, 1]. In this case, the interpre-
tation is that if two functions are close in the RKHS norm, they are also pointwise close.
Although in this definition there is no explicit mention of the kernel, it can be recov-
ered through the Riesz representation theorem. We summarize below some interesting
properties ofℋ(𝐾).

Proposition 2.3. The following properties hold for the spaceℋ(𝐾):

(i) The evaluation operator 𝛿𝑡 is bounded for all 𝑡 ∈ [0, 1].
(ii) Norm convergence implies pointwise convergence, and if 𝐾 is continuous, it also im-

plies uniform convergence.
(iii) If 𝐾 is m-times continuously differentiable, then so is every function 𝑓 ∈ ℋ(𝐾). In

particular, if 𝐾 is continuous, every function 𝑓 ∈ ℋ(𝐾) is continuous.

Proof. To prove (i), simply note that for any 𝑡 ∈ [0, 1] and 𝑓 ∈ ℋ(𝐾) the Cauchy-
Schwarz inequality and the reproducing property tell us that

|𝛿𝑡(𝑓 )| = |𝑓 (𝑡)| = |⟨𝑓 , 𝐾(𝑡, ⋅)⟩𝐾 | ≤ ‖𝐾(𝑡, ⋅)‖𝐾 ‖𝑓 ‖𝐾 = √𝐾(𝑡, 𝑡)‖𝑓 ‖𝐾 ,
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2.1 Reproducing kernel Hilbert spaces

and consequently ‖𝛿𝑡 ‖ ≤ √𝐾(𝑡, 𝑡). To see (ii), observe that for any 𝑡 ∈ [0, 1]we have

|𝑓𝑛(𝑡) − 𝑓 (𝑡)| = |𝛿𝑡(𝑓𝑛 − 𝑓 )| ≤ ‖𝛿𝑡 ‖‖𝑓𝑛 − 𝑓 ‖𝐾 ,

as we have shown in (i) that the evaluation operator is bounded. Moreover, if 𝐾 is con-
tinuous on its (compact) domain, ‖𝛿𝑡 ‖ ≤ sup𝑠 √𝐾(𝑠, 𝑠) = 𝑀 < ∞ for all 𝑡 , so the con-
vergence is indeed uniform. Finally, we prove the second statement in (iii), and refer the
reader to Saitoh and Sawano (2016, Th 2.6) for a complete proof. If 𝐾 is continuous,
then it is clear that every function inℋ0(𝐾) is continuous. Let us now fix an arbitrary
𝑓 ∈ ℋ(𝐾). By definition, there exists a sequence {𝑓𝑛} ⊂ ℋ0(𝐾) of continuous functions
such that ‖𝑓𝑛 −𝑓 ‖𝐾 → 0. But then 𝑓𝑛 → 𝑓 uniformly by (ii), and therefore 𝑓 is continu-
ous as the uniform limit of continuous functions. Note that this statement remains valid,
with a slightly different proof, even when the underlying domain is not compact.

For the sake of completeness, it is worth mentioning that the RKHS associated with
a kernel function is unique, and indeed theMoore-Aronszajn theorem (e.g. Berlinet and
Thomas-Agnan, 2004, Th. 3) states that there is a one-to-one correspondence between
kernel functions and reproducing kernel Hilbert spaces. Let us now illustrate the defini-
tion in a few simple cases; see Saitoh and Sawano (2016, Ch. 1) for more involved exam-
ples.

Example 2.4. If 𝑋 is the standard Brownian motion on [0, 1], it is well known that the
associated covariance function is 𝐾bm(𝑡, 𝑠) = min{𝑡 , 𝑠}. The corresponding RKHS is
given by (Janson, 1997, Ex. 8.19):

ℋ(𝐾bm) = {𝑓 ∶ 𝑓 is absolutely continuous, 𝑓 (0) = 0 and 𝑓 ′ ∈ 𝐿2[0, 1]},

with inner product ⟨𝑓 , 𝑔⟩𝐾bm
= ∫𝑓 ′𝑔′.

Example 2.5 (Finite-dimensional RKHS). Setting aside our stochastic process frame-
work for a moment, we can conceive examples outside of𝒯 = [0, 1]. Consider a vector-
valued random variable 𝑋 = (𝑋1, … , 𝑋𝑝) with non-singular covariance matrix Σ. In
this case the index set would be 𝒯𝑝 = {1, … , 𝑝}, so identifying functions on 𝒯𝑝 with
points in the 𝑝-dimensional Euclidean space, we haveℋ(Σ) = R𝑝 , with inner product
⟨𝑥, 𝑦⟩Σ = 𝑥Σ−1𝑦 .
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2 Background and related work

Example 2.6 (Non-RKHSHilbert space). Aswe pointed out before, the space of square
integrable functions 𝐿2(R) is not a RKHS. There are many ways of seeing this; for ex-
ample, in this space norm convergence does not imply pointwise convergence. Another
possibility is to observe that the would-be reproducing kernel must be the Dirac delta
function:

𝑓 (𝑠) = ∫
∞

−∞
𝛿(𝑡, 𝑠)𝑓 (𝑡) 𝑑𝑡, 𝑠 ∈ R.

However, 𝛿(𝑡, ⋅) ∉ 𝐿2(R).

The covariance operator

Note that, as expected, the covariance function of𝑋 plays a crucial role in characterizing
the associated RKHS. An integral operator closely related to this covariance function is
the so-called covariance operator, namely𝒦 ∶ 𝐿2[0, 1] → 𝐿2[0, 1] given by

𝒦𝑓 (⋅) = ∫
1

0
𝐾(𝑡, ⋅)𝑓 (𝑡) 𝑑𝑡, 𝑓 ∈ 𝐿2[0, 1],

which is self-adjoint and compact when 𝐾 is continuous (e.g. Hsing and Eubank, 2015,
Th. 4.6.2), so for the remaining of this workwewill indeed suppose that𝐾 is continuous.
As it turns out, the covariance function admits a spectral decomposition in terms of the
eigenvalues and eigenfunctions of this operator, a sort of continuous generalization of
the eigendecomposition of a symmetric positive semidefinite matrix.

Theorem 2.7 (Mercer’s theorem). Let 𝐾 be a continuous kernel on [0, 1]2. Then, there
exists an orthonormal basis {𝜙𝑗} of 𝐿2[0, 1] consisting of eigenfunctions of𝒦 , whose corre-
sponding eigenvalues are all positive2 and form a non-increasing sequence {𝜆𝑗} → 0, and
such that

𝐾(𝑡, 𝑠) =
∞
∑
𝑗=1

𝜆𝑗𝜙𝑗(𝑡)𝜙𝑗(𝑠)

for all 𝑡 and 𝑠, where the convergence is absolute and uniform.

In connection with our RKHS theory, it can be shown that the set {√𝜆𝑗𝜙𝑗} constitutes
an orthonormal basis ofℋ(𝐾) (see e.g. Cucker and Zhou, 2007, Sec. 4.4). Furthermore,
2Even though the spectral theorem only guarantees that the eigenvalues of𝒦 are non-negative, there is
no loss of generality in assuming 𝜆𝑗 > 0 for all 𝑗 ≥ 1; see Remark 3 in Cucker and Smale (2001, Ch. 3).
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2.1 Reproducing kernel Hilbert spaces

a similar orthogonal decomposition holds for the stochastic process𝑋 , an expansion that
lies at the base of many 𝐿2 functional regression models.

Theorem 2.8 (Karhunen-Loève expansion). With the assumptions and notations of The-
orem 2.7, the centered process 𝑋 = 𝑋(𝑡) with covariance function 𝐾 admits the quadratic-
mean representation

𝑋(𝑡) =
∞
∑
𝑗=1

𝜁𝑗𝜙𝑗(𝑡),

where the convergence is in 𝐿2(Ω) and uniform in 𝑡 . The 𝜁𝑗 are independent zero-mean
random variables withE[𝜁𝑖𝜁𝑗] = 𝛿𝑖𝑗𝜆𝑗 , given explicitly by the formula

𝜁𝑗 = ∫
1

0
𝑋(𝑡)𝜙𝑗(𝑡) 𝑑𝑡, 𝑗 ≥ 1.

In addition to these theorems, it is worth mentioning that the covariance operator𝒦
provides several alternative definitions ofℋ(𝐾). For example, the RKHS can be iden-
tified with the image of the operator’s square root, i.e.,ℋ(𝐾) = 𝒦 1/2(𝐿2[0, 1]), with
inner product ⟨𝑓 , 𝑔⟩𝐾 = ⟨𝒦−1/2(𝑓 ),𝒦−1/2(𝑔)⟩. Furthermore, we can think of the
norm in ℋ(𝐾) as an 𝐿2-like regularized norm, since this space can also be seen as the
set ℋ(𝐾) = {𝑓 ∈ 𝐿2[0, 1] ∶ ∑𝑗 𝜆−1𝑗 ⟨𝑓 , 𝜙𝑗⟩2 < ∞}, with corresponding inner prod-
uct ⟨𝑓 , 𝑔⟩𝐾 = ∑𝑗 𝜆−1𝑗 ⟨𝑓 , 𝜙𝑗⟩⟨𝑔, 𝜙𝑗⟩. Note that, since {𝜆𝑗} tends to zero, this definition
highlights the fact that functions inℋ(𝐾) are smooth, not only in that they inherit the
regularity of the kernel 𝐾 , but also in the sense that their components in an orthonor-
mal basis, namely ⟨𝑓 , 𝜙𝑗⟩, need to vanish quickly. A proof of the previous results can be
consulted for example in Berlinet and Thomas-Agnan (2004, Sec. 3.2).

Loève’s isometry

Until now we have seen that ℋ(𝐾) is a space related to 𝑋 only through its covariance
function. Nevertheless, we will now hopefully clarify that this space can indeed be seen
as theHilbert space inherently associated with the process 𝑋 itself. Let us shift the per-
spective momentarily and consider the space 𝐿2(Ω) of all zero-mean random variables
with finite second moment, endowed with the usual norm ‖𝑈 ‖2 = E[𝑈 2]. Then, the
linear span of 𝑋 in 𝐿2(Ω) is given by
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ℒ0(𝑋) = {𝑈 ∈ 𝐿2(Ω) ∶ 𝑈 =
𝑝
∑
𝑖=1

𝑎𝑖𝑋(𝑡𝑖) ∶ 𝑝 ∈ N, 𝑎𝑖 ∈ R, 𝑡𝑖 ∈ [0, 1]}.

It is well known that its completion in 𝐿2(Ω), denotedℒ(𝑋), is a Hilbert space, some-
times called the Hilbert space generated by 𝑋 . In the words of Berlinet and Thomas-
Agnan (2004), “ℒ(𝑋) contains the random variables attainable by linear operations, in-
cluding limits, on the measurements of the process”. As it happens, via Loève’s isometry
(Loève, 1948) one can establish a congruenceΨ𝑋 betweenℋ(𝐾) andℒ(𝑋) (see Lemma
1.1 in Lukić and Beder, 2001). This isometry is essentially the continuous extension of
the correspondence

𝑝
∑
𝑖=1

𝑎𝑖𝑋(𝑡𝑖) ⟷
𝑝
∑
𝑖=1

𝑎𝑖𝐾(𝑡𝑖, ⋅), (2.4)

and can be formally defined, in terms of its inverse, as Ψ−1𝑋 (𝑈 )(𝑡) = E[𝑈𝑋(𝑡)] for all
𝑈 ∈ ℒ(𝑋). Thus,ℋ(𝐾) can be regarded as an isometric copy ofℒ(𝑋), an approach
that is often useful in statistics.

However, despite the close connection between the process 𝑋 and the space ℋ(𝐾),
special care must be taken when dealing with concrete realizations of the process. It can
be shown that under rather general conditions the trajectories of 𝑋 do not belong to the
corresponding RKHS with probability one (e.g. Lukić and Beder, 2001, Cor. 7.1; Pillai
et al., 2007, Th. 11). For instance, the trajectories of a Brownian motion are known to
be nowhere differentiable, but as shown in Example 2.4, the elements of the associated
RKHS are differentiable almost everywhere. A heuristic argument to justify this fact,
given inWahba (1990), is as follows: consider the Karhunen-Loève expansion of 𝑋 , i.e.,

𝑋(𝑡) =
∞
∑
𝑗=1

𝜁𝑗𝜙𝑗(𝑡),

and the truncated version 𝑋𝑁 (𝑡) up to the 𝑁 -th term. On the one hand, for each fixed 𝑡
we have 𝑋𝑁 (𝑡) → 𝑋(𝑡) in the quadratic mean sense (by the Karhunen-Loève theorem),
but on the other hand observe that

E[‖𝑋𝑁 (⋅)‖2𝐾] = E[
𝑁
∑
𝑗=1

𝜁 2𝑗
𝜆𝑗
] = 𝑁 → ∞ (𝑁 → ∞).
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As a consequence, the expression ⟨𝑥, 𝑓 ⟩𝐾 is ill-defined and lacks meaning when 𝑥 is a
realization of𝑋 . However, following Parzen’s approach in his seminal work (e.g. Parzen,
1961, Th. 4E), we can leverage Loève’s isometry and identify ⟨𝑥, 𝑓 ⟩𝐾 with the image
Ψ𝑥(𝑓 ) ∶= Ψ𝑋 (𝑓 )(𝜔), for 𝑥 = 𝑋(𝜔) and 𝑓 ∈ ℋ(𝐾). This notation, viewed as a formal
extension of the inner product, often proves to be useful and convenient. Some proper-
ties stemming from this interpretation are stated below (see Parzen, 1961, p. 974).

Proposition 2.9. For every 𝑡 ∈ [0, 1] and 𝑓 , 𝑔 ∈ ℋ(𝐾), the following relations hold:
(i) ⟨𝑋 , 𝐾(𝑡, ⋅)⟩𝐾 = 𝑋(𝑡), a particular reproducing property.
(ii) E[⟨𝑋 , 𝑓 ⟩𝐾 ] = 0.
(iii) E[⟨𝑋 , 𝑓 ⟩𝐾 ⟨𝑋 , 𝑔⟩𝐾 ] = ⟨𝑓 , 𝑔⟩𝐾 .
Note that statement (iii) aboveprovides yet another characterizationof the innerprod-

uct inℋ(𝐾), where ⟨𝑋 , 𝑓 ⟩𝐾 and ⟨𝑋 , 𝑔⟩𝐾 are understood as the random variables repre-
senting 𝑓 and 𝑔 inℒ(𝑋), respectively.

Applications in machine learning

Although not the main concern of this work, the theory of reproducing kernels and the
associated kernelmethods find applications inmany areas ofmachine learning. For exam-
ple, the well-known kernel trick can be seen as a specific usage of the reproducing prop-
erty. First, a feature map Φ(𝑥) ∈ ℋ is applied to the objects in the space of interest,
transforming them into richer elements in a RKHS. Then, many computations can be
efficiently carried out in an implicit manner by means of the corresponding kernel

𝐾(𝑥, 𝑦) = ⟨Φ(𝑥), Φ(𝑦)⟩ℋ .

The fact that one does not need to explicitly compute Φ(𝑥) is especially relevant for ker-
nels with a simple expression but a possibly complex (e.g. infinite-dimensional) feature
space, such as the Gaussian kernel 𝐾(𝑥, 𝑦) = exp(−𝛾 ‖𝑥 − 𝑦‖2).

Another example of the use of RKHS’s is in the context of regularization problems,
where the celebrated representer theorems provide a way of obtaining closed-form solu-
tions to a penalized optimization problem. For instance, learning techniques that rely on
empirical riskminimization (e.g.Vapnik, 1991)benefit fromone such result bySchölkopf
et al. (2001), stated below.
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Theorem 2.10 (Generalized representer theorem). Consider aRKHS of functionsℋ(𝐾)
defined over a non-empty set𝒳 , a training set {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 ⊂ (𝒳 ×R)𝑛, an arbitrary error
function ℛ ∶ (𝒳 × R2)𝑛 → R ∪ {∞}, and a strictly increasing real-valued function
Ω ∶ [0,∞) → R. Then, any minimizer 𝑓 ∗ of the regularized empirical risk

ℛ({(𝑥𝑖, 𝑦𝑖, 𝑓 (𝑥𝑖))}𝑛𝑖=1) + Ω(‖𝑓 ‖𝐾 )

is of the form 𝑓 ∗(⋅) = ∑𝑛
𝑖=1 𝑎𝑖𝐾(𝑥𝑖, ⋅), where 𝑎𝑖 ∈ R for all 𝑖 = 1, … , 𝑛.

2.2 Markov chainMonte Carlo

In the context of Bayesian inference, there are many situations in which we would like to
sample from a distribution without using its explicit closed-form density, either because
we do not know it, or because it is computationally difficult to do so. In these cases, we
could work with a function 𝑓 (𝑥) proportional to our target density 𝜋(𝑥). More to the
point, in a Bayesian framework the posterior distribution is often intractable due to the
normalizing integral constant, but we do know that posterior ∝ prior × likelihood.
When 𝑥 ∈ R, we can use Monte Carlo algorithms such as rejection sampling. In a

nutshell, this method samples uniformly from the area under 𝑓 (𝑥) by means of an aux-
iliary density that encompasses this area. Specifically, one needs to find a density func-
tion 𝑔 with supp 𝑓 ⊂ supp 𝑔 and 𝑓 ≤ 𝑀𝑔 for some 𝑀 > 1. Then, sampling from 𝑔
and accepting the proposal, say 𝑥 , with probability 𝑓 (𝑥)/𝑀𝑔(𝑥) yields an approximate
set of samples from 𝑓 . Nevertheless, these kinds of algorithms are rapidly affected by
the so-called curse of dimensionality (see the schematic in Figure 3), so new techniques
are needed when sampling from multidimensional distributions. This is where Markov
chainMonte Carlo (MCMC) methods come into play.

Figure 3: To cover the volume of 𝑓 (𝑥) in higher dimensions we intuitively need a volume that
grows exponentially with the dimension itself.
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MCMC methods are based on the iterative construction of a Markov chain whose
stationary distribution is the objective distribution 𝜋(𝑥). In this way, we can take the
samples of a sufficiently advanced chain as approximate realizations of 𝑋 ∼ 𝜋(𝑥). When
it comes to building the chains, the transition probabilities are assigned in such a way
that regions with higher density with respect to 𝜋(𝑥) are favored (bymeans of the known
proportional function 𝑓 (𝑥)). The dimensionality issues are somewhatmitigated, and on
top of that there are specific tuning techniques to tackle them. However, the samples
obtained from this procedure are not independent, though they can be made more or
less so by thinning the chain and considering only one every few samples.

Another advantage of these methods is that they recover the marginal distributions
directly. Suppose that after a successfulMCMCrunwehave𝑀 multivariate approximate
samples {𝜃(𝑚)∗ = (𝜃(𝑚)∗1 , … , 𝜃(𝑚)∗𝑝 )} of a joint 𝑝-dimensional distribution. The marginal
distribution of each variable, which would be theoretically computed as

𝜋(𝜃𝑖) = ∫ 𝜋(𝜃) 𝑑𝜃1 ⋯ 𝑑𝜃𝑖−1 𝑑𝜃𝑖+1 ⋯ 𝑑𝜃𝑝 ,

can be approximated by just retaining the samples {𝜃(𝑚)∗𝑖 } corresponding to 𝜃𝑖.

Metropolis-Hastings

TheMetropolis-Hastings algorithm (Metropolis et al., 1953) is arguably the best known
algorithm in this context. As a matter of fact, it is actually more of a general framework
from which many other methods are derived. In its original formulation, it relies on
a symmetric proposal distribution 𝑔(𝑥′|𝑥𝑡) that generates a proposal for the next state
given the current one (e.g. a Gaussian distribution centered on 𝑥𝑡 ). Approximate sam-
ples from the intended distribution can then be generated through the following iterative
acceptance-based procedure:

1. Generate a proposal 𝑥′ ∼ 𝑔(𝑥′|𝑥𝑡).
2. Accept the proposal with probability 𝛼 = min{1, 𝑓 (𝑥′)/𝑓 (𝑥𝑡)}. If accepted, set

𝑥𝑡+1 = 𝑥′; otherwise set 𝑥𝑡+1 = 𝑥𝑡 .

Figure 4 shows a schematic representation of the process. Note that the acceptance ratio
𝑓 (𝑥′)/𝑓 (𝑥𝑡) = 𝜋(𝑥′)/𝜋(𝑥𝑡) is a measure of how more likely is 𝑥′ to be a sample from 𝜋
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Figure 4: Representation of the Metropolis-Hastings algorithm (taken from Lee et al. (2015)).
The discarded proposals are depicted as dashed circles.

than𝑥𝑡 . This specific acceptance value is also chosen so that thedetailedbalance equations
of the chain are satisfied, i.e., 𝜋(𝑥)𝑃(𝑥′|𝑥) = 𝜋(𝑥′)𝑃(𝑥|𝑥′), where𝑃(𝑥|𝑦) is the transition
probability from state 𝑥 to state 𝑦 . These conditions essentially guarantee that 𝜋 is the
stationary distribution of the chain; see Robert et al. (1999) for additional details. An
immediate generalization consists on choosing a general (possibly non-symmetric) jump
distribution 𝑔, in which case the acceptance probability is rewritten as

𝛼 = min{1, 𝑓 (𝑥
′)𝑔(𝑥𝑡 ∣ 𝑥′)

𝑓 (𝑥𝑡)𝑔(𝑥′ ∣ 𝑥𝑡)
}.

Although this algorithm performs well on a wide range of problems, it can be difficult
to find a suitable jump distribution when the number of dimensions is high. If we know
the distribution of each variable conditional on the rest of them, an alternative approach
to sampling is Gibb’s algorithm (S. Geman and D. Geman, 1984), which is a particular
case of Metropolis-Hastings that considers separate samples for each dimension. Specif-
ically, in each step we get unidimensional samples in turn (e.g. via rejection sampling)
of each variable conditional on the rest of them, using always the more up-to-date values
available:

𝜋(𝑥(𝑖+1)𝑙 ∣ 𝑥(𝑖+1)1 , … , 𝑥(𝑖+1)𝑙−1 , 𝑥(𝑖)𝑙+1, … , 𝑥(𝑖)𝐿 ), 𝑙 = 1, … , 𝐿.

Lastly, there are several methods based onMetropolis-Hastings that are the subject of
active research, both from a theoretical and computational standpoint. A good exam-
ple areHamiltonianMonte Carlomethods (e.g. Neal, 2011), which are a family of algo-
rithms that introduce gradient information to guide the proposals in the sample space.

20



2.2 Markov chainMonte Carlo

They arebasedonHamiltoniandynamics, and in general they improve convergence speed
due to a more intelligent choice of new points on the chain. With automatic differentia-
tion being developed in the last few decades, these algorithms have become computation-
ally feasible and have been widely adopted by the scientific community.

Affine-invariant ensemble sampler

An interesting and often desirable property of sampling algorithms is that they be affine-
invariant, which means that they regard two distributions that differ in an affine trans-
formation, say 𝜋(𝑥) and 𝜋𝐴,𝑏(𝐴𝑥 + 𝑏), as equally difficult to sample from. This is useful
when one is working with very asymmetrical or skewed distributions, for an affine trans-
formation can turn them into ones with simpler shapes.

Generally speaking, a MCMC algorithm can be described through a function 𝑅 as
Λ(𝑡 + 1) = 𝑅(Λ(𝑡), 𝜉 (𝑡), 𝜋), where Λ(𝑡) is the state of the chain at instant 𝑡 , 𝜋 is the
objective distribution, and 𝜉 (𝑡) is a sequence of i.i.d. random variables that represent the
random behavior of the chain. With this notation, the affine-invariance property can be
characterized as (Goodman andWeare, 2010):

𝑅(𝐴𝜆 + 𝑏, 𝜉 (𝑡), 𝜋𝐴,𝑏) = 𝐴𝑅(𝜆, 𝜉 (𝑡), 𝜋) + 𝑏,

for all 𝐴, 𝑏 and 𝜆, and almost all 𝜉 (𝑡). This means that if we fix a random generator and
run the algorithm twice, one time using 𝜋 and starting in Λ(0) and a second time using
𝜋𝐴,𝑏 with initial point Γ(0) = 𝐴Λ(0) + 𝑏, then Γ(𝑡) = 𝐴Λ(𝑡) + 𝑏 for all 𝑡 . In Goodman
andWeare (2010) the authors consider an ensemble of samplers with the affine invariance
property. Specifically, they work with a setΛ = (Λ1, … , Λ𝐿) of walkers, whereΛ𝑙(𝑡) rep-
resents an individual chain at time 𝑡 . At each iteration, an affine-invariant transformation
is used to find the next point, which is constructed using the current values of the rest of
the walkers (similar to Gibb’s algorithm), namely the complementary ensemble

Λ−𝑙(𝑡) = {Λ1(𝑡 + 1), … , Λ𝑙−1(𝑡 + 1), Λ𝑙+1(𝑡), … , Λ𝐿(𝑡)}, 𝑙 = 1, … , 𝐿.

Tomaintain the affine invariance and the joint distribution of the ensemble, the walk-
ers are advanced one by one following a Metropolis-Hastings acceptance scheme. There
are mainly two types of moves.
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2 Background and related work

Stretch move. For each walker 1 ≤ 𝑙 ≤ 𝐿 another walker Λ𝑗 ∈ Λ−𝑙(𝑡) is chosen at
random, and the proposal is constructed as

Λ𝑙(𝑡) → Γ = Λ𝑗 + 𝑍(Λ𝑙(𝑡) − Λ𝑗),

where 𝑍 𝑖.𝑖.𝑑.∼ 𝑔(𝑧) satisfying the symmetry condition 𝑔(𝑧−1) = 𝑧𝑔(𝑧). In particular, the
suggested density is

𝑔𝑎(𝑧) ∝ {
1
√𝑧 , if 𝑧 ∈ [𝑎−1, 𝑎],
0, otherwise.

, 𝑎 > 1.

SupposingR𝑝 is the sample space, the corresponding acceptance probability (chosen so
that the detailed balance equations are satisfied) is:

𝛼 = min{1, 𝑍𝑝−1 𝜋(Γ)
𝜋(Λ𝑙(𝑡))

}.

Walk move. For each walker 1 ≤ 𝑙 ≤ 𝐿 a random subset 𝑆𝑙 ⊆ Λ−𝑙(𝑡) with |𝑆𝑙 | ≥ 2 is
selected, and the proposed move is

Λ𝑙(𝑡) → Γ = Λ𝑙(𝑡) + 𝑊 ,

where𝑊 is a normal distribution with mean 0 and the same covariance as the sample co-
variance of all walkers in 𝑆𝑙 . The acceptance probability in this case is just theMetropolis
ratio, i.e., 𝛼 = min{1, 𝜋(Γ)/𝜋(Λ𝑙(𝑡))}.

From a computational perspective, the Python library emcee3 (Foreman-Mackey et al.,
2013) provides a parallel implementation of this algorithm. The idea is to divide the en-
sembleΛ into two equally-sized subsetsΛ(0) andΛ(1), and then proceed on each iteration
in the following alternate fashion:

1. Update all walkers in Λ(0) through one of the available moves explained above,
using Λ(1) as the complementary ensemble.

2. Use the new values in Λ(0) to update Λ(1).

In this way the detailed balance equations are still satisfied, and each of the steps can
benefit from the computing power of an arbitrary number of processors (up to 𝐿/2).
3https://emcee.readthedocs.io
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3 Bayesian methodology for
RKHS-based functional
regression models

In this chapter we present the precise functional models and Bayesian methodologies
explored in this work. The RKHS-based functional models under consideration (see
Berrendero et al., 2019, 2022) are those obtained by substituting the functional param-
eter 𝛽 ∈ 𝐿2[0, 1] for 𝛼 ∈ ℋ(𝐾), replacing also the scalar product ⟨𝑋 , 𝛽⟩ for ⟨𝑋 , 𝛼⟩𝐾 in
the 𝐿2-models (2.1) and (2.2). However, to further simplify things we will follow a para-
metric approach and suppose that 𝛼 is in fact a member of the dense subspace ℋ0(𝐾)
defined in (2.3), i.e.:

𝛼(⋅) =
𝑝
∑
𝑗=1

𝛽𝑗𝐾(𝑡𝑗 , ⋅), for some 𝑝 ∈ N, 𝛽𝑗 ∈ R and 𝑡𝑗 ∈ [0, 1]. (3.1)

Moreover, as we said before, with a slight abuse of notation we will understand the ex-
pression ⟨𝑥, 𝛼⟩𝐾 as Ψ𝑥(𝛼), where 𝑥 = 𝑋(𝜔) and Ψ𝑥 is Loève’s isometry. Hence, taking
into account that Ψ𝑋 (𝐾(𝑡, ⋅)) = 𝑋(𝑡) by definition (see (2.4)), when 𝛼 is as in (3.1) we
can write ⟨𝑥, 𝛼⟩𝐾 ≡ ∑𝑝

𝑗=1 𝛽𝑗𝑥(𝑡𝑗).
In thiswayweget a simpler, finite-dimensional approximationof the functionalRKHS

model, which we argue reduces the overall complexity of the model while still capturing
most of the relevant information. When it comes to parameter estimation, a direct op-
timization of some loss function would probably require a tailored algorithm that took
into account the whole functional trajectories 𝑥(𝑡) to select the appropriate times 𝑡𝑗 . In-
deed, such an idea is explored in Berrendero et al. (2022) for the logistic regression case,
where the authors propose a “greedymax-max”method reminiscent of the EMalgorithm
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3 Bayesian methodology for RKHS-based functional regression models

that alternates between estimating the coefficients and the time instants through a maxi-
mum likelihood approach.

At this point we propose to follow a Bayesian approach to estimate the parameters
of the model, which we believe is in line with the idea of simplicity we pursue, and also
introduces an additional layer of flexibility into the model. In this way, we can include
problem-specific information through the use of prior distributions, and on top of that,
this method works almost unaltered for both linear and logistic regression models. The
general idea will be to impose a prior distribution on the functional parameter to eventu-
ally derive a posterior distribution after incorporating the available sample information.

In view of (3.1), to set a prior distribution on the unknown function 𝛼 (that is, a prior
distribution on the functional space ℋ0(𝐾)) it suffices to first consider a discrete dis-
tribution on 𝑝, and then impose 𝑝-dimensional continuous prior distributions on the
coefficients 𝛽𝑗 and the times 𝑡𝑗 given 𝑝. Thanks to this parametric approach, the challeng-
ing task of setting a prior distribution on a space of functions is considerably simplified,
while simultaneously not constraining themodel to any specific distribution (in contrast
to, for instance, Gaussian process regressionmethods). Moreover, note that starting from
a probability distribution P0 onℋ0(𝐾) we can obtain a probability distribution P on
ℋ(𝐾)merely by definingP(𝐵) = P0(𝐵∩ℋ0(𝐾)) for all Borel sets𝐵. Consequently, our
simplifying assumption on 𝛼 is not actually very restrictive, since any prior distribution
onℋ0(𝐾) can be directly extended to a prior distribution onℋ(𝐾).
However, after some initial experimentation we found that, for practical and compu-

tational reasons, the value of 𝑝 (the dimensionality of themodel) is best fixed beforehand
in a suitable way; see Chapter 4 for details. Thus, we will regard only the 𝛽𝑗 and 𝑡𝑗 as free
parameters, and search for our functional parameter in the space

ℋ0,𝑝(𝐾) = {
𝑝
∑
𝑗=1

𝛽𝑗𝐾(𝑡𝑗 , ⋅) ∶ 𝛽𝑗 ∈ R, 𝑡𝑗 ∈ [0, 1]}. (3.2)

Even thoughwe actuallyworkonℋ0,𝑝(𝐾), the discrete parameter𝑝 can still be selected in
several meaningful ways that make use of the available data, and the set of feasible values
is not very large in practice. Moreover, we could think of this approach as imposing a
degenerate prior distribution on 𝑝, so it is in a way a particular case of the more general
model discussed above.
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3.1 Functional linear regression

In any case, after selecting a suitable prior distribution 𝜋(𝜃) for the finite-dimensional
parameter vector 𝜃 (which will be specified shortly), we can resort to Bayes’ theorem to
perform the inference step, which in the case of i.i.d. samples amounts to

𝜋(𝜃 ∣ 𝒟𝑛) ∝ (
𝑛

∏
𝑖=1

𝜋(𝑌𝑖 ∣ 𝑋𝑖, 𝜃))𝜋(𝜃). (3.3)

In Sections 3.1 and 3.2 we proceed to specify the parameter spaces, prior distributions
and concrete models for 𝜋(𝑌 |𝑋 , 𝜃) considered in the case of functional linear regression
and functional logistic regression, respectively. Even though in (3.3) we have omitted
the possibly intractable integral related to the normalizing constant, sampling from the
(approximate) posterior distribution can still be accomplished via MCMCmethods (see
Chapter 4 for implementation details).

3.1 Functional linear regression

In the case of functional linear regression, the simplified RKHSmodel considered is

𝑌 = 𝛼0 + ⟨𝑋 , 𝛼⟩𝐾 + 𝜀 = 𝛼0 +
𝑝
∑
𝑗=1

𝛽𝑗𝑋(𝑡𝑗) + 𝜀, (3.4)

where 𝛼(⋅) = ∑𝑝
𝑗=1 𝛽𝑗𝐾(𝑡𝑗 , ⋅) ∈ ℋ0,𝑝(𝐾), 𝛼0 ∈ R, and 𝜀 ∼ 𝒩 (0, 𝜎2) is an error term

independent from𝑋 . This model is essentially a finite-dimensional approximation from
a functional perspective to the more general RKHS model that assumes 𝛼 ∈ ℋ(𝐾),
proposed in Berrendero et al. (2019).

When 𝑝 is fixed, the parameter space becomes Θ𝑝 = R𝑝 × [0, 1]𝑝 × R × R+, and
in the sequel a generic element of this (2𝑝 + 2)-dimensional space will be denoted by
𝜃 = (𝛽1, … , 𝛽𝑝 , 𝑡1, … , 𝑡𝑝 , 𝛼0, 𝜎2) ≡ (𝑏, 𝜏 , 𝛼0, 𝜎2). Before proceeding further, observe that
we can rewritemodel (3.4) in amore explicit andpractical fashion in terms of the available
sample information in𝒟𝑛. Indeed, for 𝜃 ∈ Θ𝑝 the reinterpretedmodel assumes the form

𝑌𝑖 ∣ 𝑋𝑖, 𝜃 i.i.d.∼ 𝒩 (𝛼0 +
𝑝
∑
𝑗=1

𝛽𝑗𝑋𝑖(𝑡𝑗), 𝜎2), 𝑖 = 1, … , 𝑛. (3.5)
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3 Bayesian methodology for RKHS-based functional regression models

It is worthmentioning that themodel remains linear in the sense that it fundamentally
involves a random variable ⟨𝑋 , 𝛼⟩𝐾 = Ψ𝑋 (𝛼) belonging to the linear span of the process
𝑋 in𝐿2(Ω). Also, note that given the time instants 𝑡𝑗 , themodel becomes amultiple linear
model with the 𝑋(𝑡𝑗) as scalar covariates. As a matter of fact, this model is particularly
suited as a basis for variable selectionmethods, and furthermore the generalRKHSmodel
entails the classical 𝐿2-model (2.1) under certain conditions (see Berrendero et al., 2020b,
Sec. 3). In addition, this model could be easily extended to the case of several covariates
via an expression of type 𝑌 = 𝛼0+⟨𝑋 1, 𝛼1⟩𝐾 +⋯+⟨𝑋 𝑞 , 𝛼𝑞⟩𝐾 +𝜀. In that case, as argued
in Grollemund et al. (2019) for a similar situation, if we were to set a prior distribution
on all the parameters involved, we could recover the full posterior by looking alternately
at the posterior distribution of each covariate conditional on the rest of them.

The Bayesian approach: prior and posterior

The prior distribution suggested for the parameter vector 𝜃 ∈ Θ𝑝 is given by

𝜋(𝛼0, 𝜎2) ∝ 1/𝜎2,
𝜏 ∼ 𝒰([0, 1]𝑝),

𝑏 ∣ 𝜏 , 𝜎2 ∼ 𝒩𝑝(𝑏0, 𝑔𝜎2(𝒳 ′𝜏𝒳𝜏 + 𝜂𝐼 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐺𝜏

−1),
(3.6)

where 𝐼 is the identity matrix, 𝒳𝜏 is the data matrix (𝑋𝑖(𝑡𝑗))𝑖,𝑗 , and 𝑏0 ∈ R𝑝 , 𝑔 ∈ R

and 𝜂 ∈ R+ are hyperparameters of the model. On the one hand, note the use of a joint
prior distribution on 𝛼0 and 𝜎2, which is a widely used non-informative prior known
in the standard linear regression setting as Jeffrey’s prior (Jeffreys, 1946). In any event,
the estimation of 𝛼0 = E[𝑌 ] is straightforward, so it could have been left out of the
model altogether. On the other hand, the prior on 𝑏 is a slight modification of the well-
knownZellner’s g-prior (Zellner, 1986), inwhich a regularizing term is added to avoid ill-
conditioningproblems in theGrammatrix, obtaining a ridge-likeZellner prior controlled
by the tuning parameter 𝜂 (Baragatti and Pommeret, 2012). All in all, with a slight abuse
of notation the proposed prior distribution becomes 𝜋(𝜃) = 𝜋(𝑏|𝜏 , 𝜎2)𝜋(𝜏)𝜋(𝛼0, 𝜎2).

As for the posterior distribution, we only compute a function proportional to its log-
density, since that is all that is needed for a MCMC algorithm to work. A standard alge-
braic manipulation in (3.3) yields the following result.
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3.1 Functional linear regression

Proposition 3.1. Under the linear model (3.5), the prior distribution implied in (3.6)
produces the log-posterior distribution

log 𝜋(𝜃 ∣ 𝒟𝑛) ∝ 1
2𝜎2(‖𝐘 − 𝛼0𝟏 − 𝒳𝜏 𝑏‖2 + 1

𝑔 (𝑏 − 𝑏0)′𝐺𝜏 (𝑏 − 𝑏0))

+ (𝑝 + 𝑛 + 2) log 𝜎 − 1
2 log |𝐺𝜏 |,

where 𝐘 = (𝑌1, … , 𝑌𝑛)′ and 𝟏 is an 𝑛-dimensional vector of ones.

Making predictions

In order to generate predictions, let us recall that when performing the empirical poste-
rior approximation, on each of the𝑀 steps of the iterative MCMC algorithm we get an
approximate sample 𝜃(𝑚)∗ = (𝑏(𝑚)∗, 𝜏 (𝑚)∗, 𝛼 (𝑚)∗0 , (𝜎2)(𝑚)∗) of the posterior distribution
𝜋(𝜃|𝒟𝑛). Assuming now a previously unseen test set𝒟 ′𝑛′ in the same conditions as𝒟𝑛,
we propose to construct three different kinds of predictors based on theMCMCsamples,
each of them following a different strategy.

Summarize-then-predict. If we consider a point-estimate statistic 𝑇 that acts as a
summary of themarginal posterior distributions, we can get the corresponding estimates
̂𝜃 = (𝑏̂, ̂𝜏 , 𝛼̂0, 𝜎̂2) = 𝑇 {𝜃(𝑚)∗} ≡ (𝑇 {𝑏(𝑚)∗}, 𝑇 {𝜏 (𝑚)∗}, 𝑇 {𝛼 (𝑚)∗0 }, 𝑇 {(𝜎2)(𝑚)∗}), and thenwe
can predict the responses in the usual way following model (3.4), i.e.:

𝑌̂𝑖 = 𝛼̂0 +
𝑝
∑
𝑗=1

̂𝛽𝑗𝑋𝑖( ̂𝑡𝑗), 𝑖 = 1, … , 𝑛′. (3.7)

Note that in this case the variance 𝜎2 is treated as a nuisance parameter. Although it
contributes to measure the uncertainty in the approximations, its estimates are discarded
in the final prediction.

Predict-then-summarize. Alternatively, we can look at the approximate posterior
distribution as a whole, and compute the predictive distribution of the simulated re-
sponses at each step of the chain following model (3.5):

𝐘(𝑚)∗ ∶= {𝑌 (𝑚)∗𝑖 ≡ 𝑌𝑖 ∣ 𝑋𝑖, 𝜃(𝑚)∗ ∶ 𝑖 = 1, … , 𝑛′}, 𝑚 = 1,… ,𝑀. (3.8)
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3 Bayesian methodology for RKHS-based functional regression models

Then, we can take the mean of all such simulated responses as a proxy for each response
variable, that is,

𝑌̂𝑖 = 1
𝑀

𝑀
∑
𝑚=1

𝑌 (𝑚)∗𝑖 , 𝑖 = 1, … , 𝑛′.

This method differs from the previous one in that it takes into account the full approxi-
mate posterior distribution instead of summarizing it directly.

Variable selection. Lastly, we can focus only on the marginal posterior distribu-
tion of 𝜏 |𝒟𝑛 and select 𝑝 time instants using a point-estimate statistic 𝑇 as in our first
strategy, but discarding the rest of the parameters. Specifically, we can consider the times
̂𝑡𝑗 = 𝑇 {𝑡(𝑚)∗𝑗 } and reduce the original data set to just the 𝑛 × 𝑝 real matrix given by
{𝑋𝑖( ̂𝑡𝑗) ∶ 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑝}. After this variable selection has been carried out,
we can tackle the problem using a finite-dimensional linear regression model and apply
any of the well-known prediction algorithms suited for this situation.

Note that these predictors can be obtained all at once after only one round of train-
ing (that is, an individual MCMC run to approximate the posterior distribution). As a
consequence, what we have in practice is a single algorithm that can produce multiple
predictors at the same computational cost, so that any of them can be chosen (or even
switched back and forth) depending on the particularities of the problem at hand. More-
over, one could even contemplate an ensemble model in which some kind of aggregation
of several of the available prediction methods is performed to produce a final result.

Besides, observe that the choice of a specific point estimator to summarize the poste-
rior distribution results in a veiled assumption of an underlying loss function between
the estimated and real parameters. In general, the mean is more sensitive to outliers and
the median is more robust, but the latter assumes an 𝑙1-type loss function while the for-
mer implicitly optimizes an 𝑙2 loss. On the other hand, the mode is also a good candidate
because it represents the point of highest probability density, following amaximumapos-
teriori (MAP) approach. At any rate, these decisions are strongly dependent on several
factors such as the skewness or the number of modes in the resulting posterior distribu-
tion, and thus should be made on a case-by-case basis.
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3.2 Functional logistic regression

3.2 Functional logistic regression

In the case of functional logistic regression, we regard the response variable 𝑌 ∈ {0, 1}
as a Bernoulli random variable given 𝑋 = 𝑥 ∈ 𝐿2[0, 1], and as usual suppose that
log(𝑝(𝑥)/(1 − 𝑝(𝑥))) is linear in 𝑥 , where 𝑝(𝑥) = P(𝑌 = 1|𝑋 = 𝑥). Then, follow-
ing the approach suggested by Berrendero et al. (2022), a RKHS model might be given,
in terms of the correspondence ⟨𝑋 , 𝛼⟩𝐾 = Ψ𝑋 (𝛼), by the equation

P(𝑌 = 1 ∣ 𝑋) = 1
1 + exp{−𝛼0 − ⟨𝑋 , 𝛼⟩𝐾 }

, 𝛼0 ∈ R, 𝛼 ∈ ℋ0,𝑝(𝐾). (3.9)

Indeed, note that this canbe seen as a finite-dimensional approximation (but, still, with
a functional interpretation) to the general RKHS functional logistic model proposed by
these authors, which can be obtained by replacingℋ0,𝑝(𝐾)with the whole RKHS space
ℋ(𝐾). Now, if we aim at a classification problem, our strategy will be similar to that
followed in the functional linear model: after incorporating the sample information, we
can rewrite (3.9) as

𝑌𝑖 ∣ 𝑋𝑖, 𝜃 i.i.d.∼ Bernoulli(𝑝𝑖), 𝑖 = 1, … , 𝑛, (3.10)

with

𝑝𝑖 = P(𝑌𝑖 = 1 ∣ 𝑋𝑖, 𝜃) = 1

1 + exp{−𝛼0 −
𝑝
∑
𝑗=1

𝛽𝑗𝑋𝑖(𝑡𝑗)}
, 𝑖 = 1, … , 𝑛, (3.11)

where in turn 𝛼0, 𝛽𝑗 ∈ R and 𝑡𝑗 ∈ [0, 1].
In much the same way as the linear regression model described above, this RKHS-

based logistic regression model offers some advantages over the 𝐿2-model (2.2). First and
foremost, it has amore straightforward interpretation and allows for a workable Bayesian
approach, as we will demonstrate below. Secondly, it can be shown that under mild con-
ditions the general RKHS functional logistic model holds whenever the conditional dis-
tributions 𝑋|𝑌 = 0 and 𝑋|𝑌 = 1 are homoscedastic Gaussian processes, and in some
cases it also entails the 𝐿2-model (see Theorem 1 in Berrendero et al., 2022); this pro-
vides a sound theoretical motivation for the reduced model. Furthermore, a maximum
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3 Bayesian methodology for RKHS-based functional regression models

likelihood approach for parameter estimation (although not considered here) is possible
as well. Indeed, the use of a finite-dimensional approximation mitigates the problem of
non-existence of theMLE in the functional case. However, let us recall that even in finite-
dimensional settings there are cases of quasi-complete separation in which theMLE does
not exist (Albert and Anderson, 1984), though this issue can be circumvented using, for
example, Firth’s corrected estimator (Firth, 1993).

The Bayesian approach: prior and posterior

As far as prior distributions go, we propose to use the same ones as we did in (3.6) for the
linear regression model. However, in this case the nuisance parameter 𝜎2 only appears
as part of the hierarchical prior distribution, and not in the final model. The posterior
distribution is again derived after a routine calculation.

Proposition 3.2. Under the logistic model (3.10), the prior distribution implied in (3.6)
produces the log-posterior distribution

log 𝜋(𝜃 ∣ 𝒟𝑛) ∝
𝑛
∑
𝑖=1

[(𝛼0 + ⟨𝑋𝑖, 𝛼⟩𝐾)𝑌𝑖 − log(1 + exp{𝛼0 + ⟨𝑋𝑖, 𝛼⟩𝐾 })]

+ 1
2 log |𝐺𝜏 | − (𝑝 + 2) log 𝜎 − 1

2𝑔𝜎2 (𝑏 − 𝑏0)′𝐺𝜏 (𝑏 − 𝑏0).

Remember that ⟨𝑋𝑖, 𝛼⟩𝐾 = ∑𝑝
𝑗=1 𝛽𝑗𝑋𝑖(𝑡𝑗).

Making predictions

Bear inmind that in this casewe are essentially approximating theprobabilities𝑝𝑖 in (3.11),
so before producing a responsewe need to transform the predicted values to a binary out-
put in {0, 1}. According to the usual criterion of minimizing the misclassification proba-
bility, it is known that the Bayes optimal rule is recovered by predicting 𝑌̂ = 1 whenever
P(𝑌 = 1|𝑋) ≥ 1/2. Nevertheless, for a more general cost function one could consider
other criteria that would lead to evaluating whetherP(𝑌 = 1|𝑋) ≥ 𝛾 for some threshold
𝛾 ∈ [0, 1].
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3.2 Functional logistic regression

With this last strategy in mind, the summarize-then-predict approach on the approxi-
mate posterior distribution is analogous to the linear regression case:

𝑌̂𝑖 = I([1 + exp{−𝛼̂0 −
𝑝
∑
𝑗=1

̂𝛽𝑗𝑋𝑖( ̂𝑡𝑗)}]
−1

≥ 𝛾), 𝑖 = 1, … , 𝑛′, (3.12)

where I is the indicator function (I(𝑃) is 1 if 𝑃 is true and 0 otherwise). The hat estimates
are obtainedonce again through a summary statistic 𝑇 of the correspondingmarginal pos-
terior distributions. On the other hand, the prediction method that takes into account
the entire posterior approximation (i.e. the predict-then-summarize approach) is some-
what different now, since there is the question of which response (the Bernoulli variables
in (3.10) or the raw probabilities in (3.11)) to consider when averaging the posterior sam-
ples. Hence, there are primarily two possible outcomes.

Average sampled probability. If we choose to average the approximate probabil-
ities 𝑝(𝑚)∗𝑖 = P(𝑌𝑖 = 1|𝑋𝑖, 𝜃(𝑚)∗) computed following (3.11), the resulting predictor
is

𝑌̂𝑖 = I( 1
𝑀

𝑀
∑
𝑚=1

𝑝(𝑚)∗𝑖 ≥ 𝛾), 𝑖 = 1, … , 𝑛′.

Average sampledresponse. Deciding to average the approximate binary responses
𝑌 (𝑚)∗𝑖 instead (see (3.8)) leads to computing the predictions as

𝑌̂𝑖 = I( 1
𝑀

𝑀
∑
𝑚=1

𝑌 (𝑚)∗𝑖 ≥ 𝛾), 𝑖 = 1, … , 𝑛′.

In this case, each 𝑌 (𝑚)∗𝑖 is a random variable that follows a Bernoulli distribution with pa-
rameter 𝑝(𝑚)∗𝑖 , for𝑚 = 1,… ,𝑀 . Note that when 𝛾 = 1/2 this is equivalent to predicting
𝑌̂𝑖 according to the majority vote of all the 𝑌 (𝑚)∗𝑖 .

Lastly, the variable selection method is essentially the same as in the case of functional
linear regression: we select 𝑝 time instants from each trajectory based on a summary of
the posterior distribution 𝜏 |𝒟𝑛, and then feed the reduced data set to a finite-dimensional
binary classification procedure.
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4 Model choice,
implementation and
validation

In this chapter we gather together several remarks on the main choices made during the
design and implementation of ourmodel, aswell as some examples of validation strategies
that attempt to measure the goodness-of-fit of the model given the observed data.

4.1 Model specification

Firstwedescribe someproblems andmodelingdecisions thatwehad todealwith through-
out the development of the model.

Label switching

Awell-known issue found inmixture-likemodels like the ones we propose is label switch-
ing, which in short refers to thenon-identifiability of the components of themodel caused
by their interchangeability. In our case, this happens because the likelihood is symmetric
with respect to the ordering of the parameters 𝑏 and 𝜏 , i.e., 𝜋(𝑌 |𝑋 , 𝜃) = 𝜋(𝑌 |𝑋 , 𝜈(𝜃)) for
any permutation 𝜈 that rearranges the indices 𝑗 = 1, … , 𝑝. Thus, since the components
are arbitrarily ordered, they may be inadvertently exchanged from one iteration to the
next in any MCMC algorithm. This can cause nonsensical answers when summarizing
the marginal posterior distributions to perform inference, as different labelings might be
mixed on each component (Stephens, 2000).

However, this phenomenon is perhaps surprisingly a condition for the convergence of
the MCMC method: as pointed out by many authors (e.g. Celeux et al., 2000), a lack
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4 Model choice, implementation and validation

of switching would indicate that not all modes of the posterior distribution were being
explored by the sampler. For this reason, many ad-hoc solutions revolve around post-
processing and relabeling the samples to eliminate the switching effect, but they generally
do not prevent it from happening in the first place.

The most straightforward solutions consist on imposing an artificial identifiability
constraint on the parameters to break the symmetry of their posterior distributions; see
Jasra et al. (2005) and references therein. A common approach that seems to work well
is to simply enforce an ordering in the parameters in question, which in our case would
mean requiring for example that 𝛽𝑖 < 𝛽𝑗 for 𝑖 < 𝑗, or the analogous with the times 𝜏 .
We have implemented a variation of this method described in Simola et al. (2021), which
works by post-processing the samples and relabeling the components to satisfy the order
constraint mentioned above, choosing either 𝑏 or 𝜏 depending on which set of ordered
parameters would produce the largest separation between any two of them (suitably av-
eraged across all iterations of the chains).

This is an area of ongoing research, and thus there are other, more complex relabel-
ing strategies, both deterministic and probabilistic. A summary of several such methods
can be found for example in Rodrı́guez andWalker (2014) and Papastamoulis (2015). In
particular, we tested the pivot method proposed byMarin et al. (2005), in which all sam-
ples are aligned to minimize their distance to a reference element (the “pivot”), which is
chosen as the sample that maximizes the posterior density. However, the process of find-
ing the appropriate permutation in each case was time-consuming, and the results were
similar, if not worse, than the ones obtained with the simpler order constraints. For this
reason, the latter were chosen as the default relabeling method of our algorithm, though
the pivot method can still be enabled through a dedicated argument in the sampling pro-
cedure.

The choice of 𝑝
One of the key decisions in our Bayesian modeling scheme was whether to consider the
number of components 𝑝 as a member of the parameter space and integrate it into the
model. While theoretically we could impose a prior distribution on 𝑝 as well (e.g. a cat-
egorical distribution with a fixed maximum value), we found that it would have some
unwanted practical implications. For instance, it would make the implementation more
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4.1 Model specification

complex, since the dimensionality of the parameters 𝑏 and 𝜏 would need to be fixed at a
certainmaximum value beforehand, but the working value of 𝑝 within theMCMCalgo-
rithmwould vary fromone iteration to the next. In this casewewould have no immediate
way of tracking down which set of parameters is “active” at any given time. A simple ap-
proach would be to always consider the first 𝑝 parameters and ignore the rest, and we did
indeed try this technique, but it gave rise to new difficulties and the results obtained were
not good. In fact, the label switching issue is accentuated when 𝑝 is allowed to vary (c.f.
Grollemund et al., 2019, Sec. 2.3), and on top of that, the interpretation of, say, the first
coefficient 𝛽1 in a model with 3 components is different than the interpretation of the
same coefficient in a model with only 2 components.

This inconsistency in the interpretation of the components when the dimensionality
of the model increases or decreases can be mitigated using a particular type of MCMC
method known as reversible-jump MCMC (Green, 1995). Theoretically, these algo-
rithms are specifically designed to approximate the posterior distribution in mixture-like
models when the number of components is unknown, allowing the underlying dimen-
sionality to change between iterations. However, since they are not yet widely adopted in
practice and a reference implementation is not available, we decided against using them
in our applications.

Another possibility would be to adapt a purely Bayesian model selection technique
to our framework (see Gelman et al., 2013; Piironen and Vehtari, 2017), or even derive
some model aggregation methods to combine the posterior distributions obtained for
different-sizedmodels. Thesemethods are usually based in computing a quantity known
as the Bayes factor, which in turn requires the specific value of the normalizing integral
constant we have been trying to avoid all along. In the end, for the sake of simplicity we
decided to let 𝑝 be an hyperparameter, so that we could use any model selection criteria
(e.g. BIC, DIC, cross-validation, …) to select its optimal value. As we will see shortly in
Chapter 5, the experiments carried out indicate that even low values of 𝑝 provide suffi-
cient flexibility in most scenarios, and they suggest that our models are not very sensitive
to small variations of this parameter.

Other hyperparameters

As for the default values of the rest of hyperparameters in the prior distributions in (3.6),
several comments are in order:
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• For the expected value 𝑏0wepropose to use theMLEof 𝑏. Although the likelihood
function is rather involved, an approximation of the optimal value is enough for
our purposes. Our numerical studies suggest that the results are much better with
this choice than, say, with a random or null vector.

• We found that the parameter 𝑔 does not have asmuch influence on the final result,
and the experimentation indicates that 𝑔 = 5 is a good value.

• Lastly, we observed that the choice of 𝜂 can have a considerable impact on the final
estimator. That is why, in an effort to normalize its scale, we consider a compound
parameter 𝜂 = 𝜂̃𝜆max(𝒳 ′𝜏𝒳𝜏 ), where 𝜆max(𝒳 ′𝜏𝒳𝜏 ) is the largest eigenvalue of the
matrix𝒳 ′𝜏𝒳𝜏 , and 𝜂̃ > 0 is the actual tuning parameter (which can be selected for
instance by cross-validation strategies). This standardization technique has been
used previously in the literature; see for example Grollemund et al. (2019).

4.2 MCMC implementation

TheMCMCmethod chosen for approximating the posterior distribution in ourmodels
is the affine-invariant ensemble sampler described in Section 2.2. As mentioned there,
we utilize the computational implementation in the Python library emcee, which is both
reliable and easy to use; it aims to be a general-purpose package that performs well in
a wide class of problems. One advantage of this method, apart from the property of
affine-invariance, is that it only requires us to specify a few hyperparameters, irrespective
of the underlying dimension. This contrasts to, say, the𝒪(𝑁 2) degrees of freedom corre-
sponding to the covariancematrix of an𝑁 -dimensional jumpdistribution inMetropolis-
Hastings. Furthermore, followingGoodman andWeare (2010) we can use the integrated
autocorrelation time to compute an estimate of the effective sample size (i.e. the number
of independent samples) after the sampling is done.

After selecting the number of iterations and the number of chains we want, we need
to specify the initial points for each of them. As pointed out in Foreman-Mackey et al.
(2013), a good initial choice is a Gaussian ball around a point in Θ𝑝 that is expected to
have a high probability with respect to the objective distribution. In our implementa-
tion we adopt this method, choosing an approximation of the MLE of 𝜃 as the central
point in each case. To perform this approximation we employ the optimization suite of
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the Python library scipy4, and in particular we use the Basin-hopping algorithm (Wales
and Doye, 1997). This is a two-phase stochastic method that combines global steps with
local optimization, in the hope of avoiding getting stuck too quickly in local maxima. To
reduce the effects of randomness, we run the algorithm a few times and retain the point
with the highest likelihood, and to avoid biasing the sampler too much towards the spe-
cific point selected, we let a fraction of the initial points be random (within reasonable
bounds). This approximation is also used to specify the hyperparameter 𝑏0.

Other less relevant hyperparameters include the burn-in period for the chains, which
is the number of initial samples discarded, or the amount of thinning performed, which
is the number of consecutive samples discarded to reduce the correlation among them.
Another computational decisionwemade is workingwith log 𝜎 instead of 𝜎2, so that the
domain of this parameter is an unconstrained space, which apparently helps increase the
efficiency of the method.

Finally, it isworthmentioning thatwe experimentedwith anotherMCMCframework
called pymc5. This is a well-established project aimed at developing a probabilistic pro-
gramming language for Bayesianmodelingwith emphasis onMCMCmethods (Salvatier
et al., 2016). This package is more complex to use and has a steeper learning curve, but at
the same time offers a richer experience and a wide variety of samplers. Apart from stan-
dardMetropolis-Hastings techniques, themain algorithm in this library is theNoU-Turn
Sampler (NUTS), a Hamiltonian Monte Carlo method proposed in Hoffman and Gel-
man (2014) that performs an automatic adjustment of hyperparameters. However, while
the results obtained were similar to that of emcee, the execution time of the NUTS sam-
pler was considerably higher (most likely due to parametrization issues with the model).
Nevertheless, we decided to include this package as part of the developed code for future
use (the Metropolis-Hastings sampler is fully functional and shows comparable perfor-
mance to emcee), although we do not report the corresponding experimental results.

4.3 Validation techniques

To conclude, it is worth mentioning that the Bayesian aspects of our model allow us to
perform somemodel validation checks straight away. For example, we can derive credible

4https://docs.scipy.org/doc/scipy/
5https://docs.pymc.io
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4 Model choice, implementation and validation

intervals for each of the parameters (see Figure 5), and in the case of linear regression, we
can use the sampled values of 𝜎2 as a measure of the uncertainty of the predictions.

Figure 5: Example of 94% credible intervals on the posterior distribution of the impact points.

Moreover, we can perform various visual checks, such as a plot comparing both the ob-
served and posterior predictive distribution of the responses (see Figure 6). The posterior
predictive distribution for a new sample 𝑥 is formally defined as

𝜋(𝑦 ∣ 𝑥, 𝒟𝑛) = ∫Θ 𝜋(𝑦 ∣ 𝑥, 𝜃)𝜋(𝜃 ∣ 𝒟𝑛) 𝑑𝜃,

and in our context it can be approximated by the simulated responses 𝐘∗ ≡ {𝐘(𝑚)∗},
following the notation of (3.8). This distribution accounts for the uncertainty about 𝜃 ,
and we do indeed use it for prediction in our predict-then-summarize approach.

Figure 6: Example of posterior predictive graphical checks on a fitted linear regression model. We
show a comparison between the observed distribution of the response variable and the
posterior predictive distribution consisting on the approximate sampled responses.
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4.3 Validation techniques

In addition, we can calculate the so-calledBayesian p-values for several statistics, which
are defined as 𝑃(𝑇 (𝐘∗) ≤ 𝑇 (𝐘)|𝐘), and are computed by simply measuring the propor-
tion of the𝑀 estimates 𝑇 {𝐘(𝑚)∗} that fall below the observed value of the statistic, 𝑇 (𝐘).
They are expected to be around 0.5 when the model accurately represents the data, and a
deviation either way can be indicative of modeling issues; see Chapter 6 of Gelman et al.
(2013) for details.
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5 Experiments

In this chapter we present the results of the experiments carried out to test the perfor-
mance of ourmodels in different scenarios, both simulated andwith real data. The struc-
ture of the code and other minor computational details are discussed in Appendix A.

Experimental setting

First and foremost, we consider 𝑇 = {mean, median, mode} for our summarize-then-
predict approach to prediction (see (3.7) and (3.12)). As a result, in linear regression we
have 4 predictionmethods (one for each statistic and one for the predict-then-summarize
approach) and3 variable selectionmethods (one for each statistic), while in logistic regres-
sion there are similarly 5 predictionmethods and 3 variable selection procedures. In each
case, after variable selection is performed, we use a 𝑙2-penalized multiple linear/logistic
regression method to generate the corresponding predictions. All in all, we are looking
at 7 (8 in the case of logistic regression) predictionmethods, and although all of them are
derived from a single MCMC run, we will treat them as separate for the purposes of the
experimentation. In what follows we relax the notation and use the expressions “model”,
“prediction method” and “algorithm” almost interchangeably when referring to these 7
(or 8) cases.

We consider 𝑛 = 150 training samples and 𝑛′ = 100 testing samples on an equis-
paced grid of𝑁 = 100 points on [0, 1] for the simulated data sets, and we do a 66%/33%
train/test split on the real data sets. We then perform 5-fold cross validation (CV) on the
training set to select the best values of 𝑝 and 𝜂 for each model, and after refitting the best
model in each case on the whole training set, we evaluate it and measure the predictive
performance on the test set. We look for𝑝 in the set {1, 2, … , 10}, while the possible values
of 𝜂 are {10−4, 10−3, … , 102}.

41



5 Experiments

Because of execution time constraints, the hyperparameters of the MCMC method
are not part of the CV process, and are selected manually based on an initial set of exper-
iments, as well as recommendations from the original article. We use 64 chains and run
them for 900 iterations in total, discarding the first 500 iterations as burn-in. Moreover,
we use a weightedmixture of walk and stretchmoves in the emcee sampler to advance the
chains in each iteration, selecting the stretch move (the default) with probability 0.7 or
the walk move with probability 0.3.

Lastly, since the use of MCMC algorithms introduces a source of stochasticity in the
prediction procedure, we independently repeat the whole process 10 times (each with
a different train/test configuration), and average the results across these executions. The
metrics used to evaluate theperformanceof themodels are theRMSE for linear regression
and the accuracy for logistic regression. Recall that

RMSE({ ̂𝑦𝑖}) =
√

1
𝑛′

𝑛′
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

and

Accuracy({ ̂𝑦𝑖}) = 1
𝑛′

𝑛′
∑
𝑖=1

I(𝑦𝑖 = ̂𝑦𝑖).

Data sets

We consider a set of functional regressors common to linear and logistic regression prob-
lems. They are fourGaussian processes (GP’s), eachwith a different covariance function:

(i) BM. A Brownian motion 𝐾1(𝑡, 𝑠) = min{𝑡 , 𝑠}.
(ii) fBM. A fractional Brownian motion 𝐾2(𝑡, 𝑠) = 1/2(𝑠2𝐻 + 𝑡2𝐻 − |𝑡 − 𝑠|2𝐻 ), with

Hurst parameter𝐻 = 0.8.
(iii) O-U. An Ornstein-Uhlenbeck process 𝐾3(𝑡, 𝑠) = 𝑒−|𝑡−𝑠|.
(iv) Gaussian. AGaussian processwithGaussian kernel𝐾4(𝑡, 𝑠) = 𝑒−(𝑡−𝑠)2/2𝜈2 , where

𝜈 = 0.2.
Also, when applicable, we fix a variance 𝜎2 = 0.5 for the error terms 𝜀.

Linear regression data sets. We consider three different types of simulated data
sets, all with a common value of 𝛼0 = 5.
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• A finite-dimensional RKHS model where the response is generated as 𝑌 = 5 −
5𝑋(0.1) + 𝑋(0.4) + 10𝑋(0.8) + 𝜀, for each of the four GP’s mentioned above.

• A 𝐿2-model with underlying coefficient function 𝛽(𝑡) = log(1 + 4𝑡), again for the
same four GP’s.

• A model based on non-GP regressors. Specifically, we use a geometric Brownian
motion (GBM) defined as 𝑋(𝑡) = 𝑒𝐵𝑀(𝑡), where 𝐵𝑀(𝑡) is a standard Brownian
motion. In this case we consider two data sets, one with a RKHS response and
one with a 𝐿2 response, with the same parameters as above.

As for the real data sets, we use the (twice-differentiated) Tecator data set introduced in
Chapter 1 to predict fat content of 193meat samples, as well as what we call theMoisture
(Kalivas, 1997) and Sugar (Bro, 1999) data sets. The first consists of near-infrared spec-
tra of 100 wheat samples and the objective is to predict the samples’ moisture content,
whereas the second contains 268 samples of sugar fluorescence data in order to predict
ash content. The three data sets are measured on a grid of 100, 101 and 115 equispaced
points on [0, 1], respectively.

Logistic regression data sets. Again we consider three different types of simu-
lated data sets, with a common value of 𝛼0 = −0.5. In this case we randomly permute
10% of the labels to introduce some noise in the simulations.

• Four logistic finite-dimensional RKHS models with the same functional parame-
ter as in the linear regression case (one for each GP). Specifically,

P(𝑌 = 1 ∣ 𝑋) = 1
1 + exp{0.5 + 5𝑋(0.1) − 𝑋(0.4) − 10𝑋(0.8)} .

• Four logistic 𝐿2-models with the same coefficient function as in the linear regres-
sion case, i.e.:

P(𝑌 = 1 ∣ 𝑋) = 1
1 + exp{0.5 − ∫

1

0
log(1 + 4𝑡)𝑋(𝑡) 𝑑𝑡}

.

• A “mixture” model based on non-GP regressors, in which we mix regressors from
two different GP’s (with equal probability 𝑝 = 1/2) and label them according
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to their origin. Firstly, we consider a homoscedastic case to distinguish between
a standard Brownian motion and a Brownian motion with a mean function that
is zero until 𝑡 = 0.5, and then becomes 𝑚(𝑡) = 0.75𝑡 . Secondly, we consider
a heteroscedastic case to distinguish between a standard Brownian motion and a
Brownian motion with variance 2, that is, with kernel 𝐾(𝑡, 𝑠) = 2min{𝑡 , 𝑠}.

Additionally, we use three real data sets well known in the literature. The first one is a
subset of the Medflies data set (Carey et al., 1998), consisting on samples of the number
of eggs laid daily by 534 flies over 30 days, to predict if their longevity is high or low. The
second one is the BerkeleyGrowth Study data set (Tuddenhamand Snyder, 1954), which
records the height of 54 girls and 39 boys over 31 different points in their lives. Finally,
we selected a subset of the Phoneme data set (Hastie et al., 1995), based on 200 digitized
speech frames over 128 equispaced points to predict the phonemes “aa” and “ao”.

Comparison algorithms

We have included a fairly comprehensive suite of comparison algorithms, chosen among
the most common methods used in machine learning and FDA. There are purely func-
tionalmethods, finite-dimensionalmodels that work on the discretized data, and variable
selection/dimension reduction procedures.

Linear regression comparison algorithms. We consider the following regres-
sion methods:

• Manual. Dummy variable selectionmethod with a pre-specified number of com-
ponents (equispaced on [0, 1]).

• Lasso. Linear least squares with 𝑙1 regularization.
• Ridge. Linear least squares with 𝑙2 regularization.
• PLS. Partial least squares for dimension reduction.
• PCA. Principal component analysis for dimension reduction.
• PLS1. Partial least squares regression (e.g. Wegelin, 2000).
• APLS. Functional partial least squares regression proposed by Delaigle and Hall
(2012b).

• RMH. Recursive maxima hunting variable selection method proposed by Tor-
recilla and Suárez (2016).
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• FLin. Functional 𝐿2 linear regression model with fixed basis expansion.
• FPCA. Functional principal component analysis.
• FPLS1. Functional PLS regression through basis expansion, implemented as in
Aguilera et al. (2010).

Logistic regression comparison algorithms. All the variable selection and
dimension reduction algorithms from above are also considered in this case, plus the fol-
lowing classification methods:

• Log. Standard multiple logistic regression with 𝑙2 regularization.
• LDA. Linear discriminant analysis.
• QDA. Quadratic discriminant analysis.
• RKVS. RKHS-basedvariable selectionmethodproposed inBerrendero et al. (2018).
• APLS. Functional PLSused as a dimension reductionmethod, as proposed inDe-
laigle andHall (2012a) in combination with the nearest centroid (NC) algorithm.

• FLog. Functional RKHS-based logistic regression algorithm proposed in Berren-
dero et al. (2022).

• FLDA. Implementation of the functional version of linear discriminant analysis
proposed in Preda et al. (2007).

• MDC. Maximum depth classifier (e.g. Ghosh and Chaudhuri, 2005).
• FKNN. Functional K-nearest neighbors classifier with the 𝐿2-distance.
• FNC. Functional nearest centroid classifier with the 𝐿2-distance.

The main parameters of all these algorithms are selected by cross-validation, using
the same 5 folds as our proposed models so that the comparisons are fair. In partic-
ular, regularization parameters are searched among 20 values in the logarithmic space
[10−4, 104], the number ofmanually selected variables is one of {5, 10, 15, 20, 25, 50}, the
number of components for dimension reduction and variable selection techniques is in
the set {2, 3, 4, 5, 7, 10, 15, 20}, the number of basis elements for cubic spline bases is in
{8, 10, 12, 14, 16}, the number of basis elements for Fourier bases is one of {3, 5, 7, 9, 11},
and the number of neighbors in the KNN classifier is in {3, 5, 7, 9, 11}.

Most algorithms have been taken from the libraries scikit-learn6 and scikit-fda7, the
first oriented to machine learning in general and the second to functional data analysis
6https://scikit-learn.org
7https://fda.readthedocs.io
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in particular. However, some methods were not found in these packages and had to be
implemented from scratch. This is the case of the FLDA, FPLS and APLS methods,
which we coded following the corresponding articles.

Results display

We have adopted a visual approach to presenting the experimentation results, using col-
ored graphs to help visualize them. We felt that this was a better way of summarizing a
large empirical study such as the one we have carried out. Alternatively, tables represent-
ing these results can be consulted in Appendix B.

We show themean and standard deviation of the score obtained in each case across the
10 random runs, depicting our models in orange and the comparison algorithms in blue.
We also show the global mean of all the comparison algorithms with a dashed vertical
line, and we exclude extreme negative results from this mean to avoid distortion. More-
over, we separate complete prediction algorithms from two-stage methods, the latter be-
ing the ones that perform variable selection or dimension reduction prior to a multiple
linear/logistic regression method.

We do not expect our models to defeat all the comparison algorithms in all cases (and
indeed they do not), but we intend to show that they are competitive methods that on
average match or improve the performance of other usual alternatives. After all, there is
no such thing as a free lunch8!

5.1 Functional linear regression

Simulated data sets

In Figure 7 we see the results for the four GP regressors considered in the RKHS case.
This is the most favorable case for us, as the underlying model coincides with our as-
sumed model. Indeed, we can see that in most cases our algorithms are the ones with
lower RMSE, save for a few exceptions, notably the Gaussian kernel. A subsequent anal-

8The phrase alludes to theNo Free Lunch theorem, which loosely speaking asserts that all machine learn-
ing methods are equivalent when their performance is averaged across all possible problems. How-
ever, the practical implications of this statement are questionable (see e.g. Giraud-Carrier and Provost,
2005).
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5.1 Functional linear regression

ysis showed that this particular data set is especially sensitive to the value of the hyperpa-
rameter 𝜂 in our prior distribution, so a more customized approach would be needed to
obtain better results.

Figure 7: RMSE of predictors for simulated GP data that obeys an underlying RKHS model
(lower is better).

In Figure 8 we see the results for the case with an underlying 𝐿2-model, which would
be our most direct competitor. In this case the outcome is satisfactory, since for the most
part ourmodels are on a par with the rest, even beating othermethods that were designed
with the 𝐿2-model in mind. Moreover, whenever one of our models has a higher RMSE,
the difference is pretty small in comparison. Note that some of our Bayesian models
have a higher standard deviation, partly because there is an intrinsic randomness in the
methods (apart from the train/test splits), and it can be the cause of the occasional worse
performance. In relation to this, we observe that themethods that use themean as a sum-
mary statistic tend to perform much worse. This is because the mean is very sensitive to
outliers, so if at some point there is a chain that randomly deviates from the rest, themean
of the posterior distribution will be greatly impacted. In particular, very high values of
the parameter 𝜎2 were reported sometimes, producing misleading results when averaged
with the rest of the values.

Lastly, the results for the non-GP case can be seen in Figure 9, in which the regressors
are realizations of a GBM. In this case we still get better results under the RKHSmodel,
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while the results under the𝐿2-model are slightlyworse. However, as before, the difference
is small (except for the emcee_meanmethods).

Figure 8: RMSE of predictors for simulated GP data that obeys an underlying 𝐿2 model (lower is
better).

Figure 9: RMSE of predictors for simulated data with GBM regressors (lower is better).
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5.2 Functional logistic regression

Real data

Figure 10 shows the results for the real data sets. In these data sets there is a substantial
difference in performance between some of our methods and the reference algorithms.
However, the predict-then-summarize approach (represented as posterior_mean) seems
towork quitewell, always scoring near themeanRMSEof all the comparison algorithms.
Moreover, our two-stagemethods seemtooutperformthe summarize-then-predictmeth-
ods in Moisture and Sugar, scoring again very close to the mean of the reference models.

We have to bear in mind that real data is more complex and noisy than simulated data,
and it is possible that after a suitable pre-preprocessing we would obtain better results
with our methods. However, our goal was to perform a general comparison without
focusing too much on the specifics of any particular data set.

Figure 10: RMSE of predictors for real data sets (lower is better).

5.2 Functional logistic regression

Simulated data sets

In Figure 11 we see the results for the GP regressors in the logistic RKHS case. Ourmod-
els perform fairly well in this advantageous case, although they are not always better than
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the comparison methods. However, in most cases the differences observed account for
only one or two misclassified samples.

Figure 11: Accuracy of classifiers for simulated GP data that obeys an underlying logistic RKHS
model (higher is better).

Continuing with Figure 12, we see that in the 𝐿2 case the results are again promis-
ing, since our models score consistently on or above the mean of the reference models,
and in many cases surpassing most of them. The predict-then-summarize approaches
(emcee_posterior_mean and emcee_posterior_vote) are particularly good in this case, and in
general have low standard errors. Moreover, the overall accuracy of all methods is poor
(below60%), so this is indeed a difficult problem inwhich even small increases in accuracy
are relevant.

Finally, Figure 13 shows that our classifiers performbetter thanmost comparison algo-
rithms when separating two homoscedastic Gaussian processes, but they struggle in the
heteroscedastic case. Incidentally, this heteroscedastic case of two zero-mean Brownian
motions has a special interest, since it can be shown that the Bayes error is zero in the
limit of dense monitoring (i.e. with an arbitrarily fine measurement grid), a manifesta-
tion of the “near-perfect” classification phenomenon analyzed for example in Torrecilla
et al. (2020). Our results are in line with the empirical studies of this article, where the
authors conclude that even though the asymptotic theoretical error is zero, most classi-
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5.2 Functional logistic regression

fication methods are suboptimal in practice (possibly due to the high collinearity of the
data), with the notable exception of PCA+QDA.

Figure 12: Accuracy of classifiers for simulated GP data that obeys an underlying logistic 𝐿2-
model (higher is better).

Figure 13: Accuracy of classifiers for simulated data coming from two different GP’s, labeled ac-
cording to their origin (higher is better).
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Real data

As for the real data sets, in Figure 14 we see positive results in general, obtaining in most
cases accuracies well above the mean of the reference models, and sometimes above most
of them. In particular, the predict-then-summarize methods tend to have a good perfor-
mance and achieve a lower standard error across executions, which is a trend that we also
saw in the simulated data sets. As we have been seeing almost invariably, the models that
use emcee_mean are the exception, and in all these data sets they perform steadily worse
than the rest of our Bayesian models.

Figure 14: Accuracy of classifiers for real data sets (higher is better).

5.3 Additional experiments

In this sectionwe present some experiments that are not directly related tomeasuring the
predictive performance of our models relative to other methods.

Model misspecification

One requirement that our model should satisfy is that it ought to be able to recover the
trueparameter functionwhen theunderlyingdata generationmodel is a finite-dimensional
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RKHS model. This is generally the case when the value of 𝑝 in our model and the true
value of 𝑝 coincide, but what happens when we change the value of 𝑝 in the model?

Take for example a RKHS data set with two components generated according to the
formula 𝑌 = 5 − 5𝑋(0.1) + 10𝑋(0.8) + 𝜀, with 𝜀 ∼ 𝒩 (0, 0.5). Figure 15 shows the
resulting posterior distribution of the parameters 𝑏 = (𝛽1, 𝛽2, 𝛽3) and 𝜏 = (𝑡1, 𝑡2, 𝑡3)
for a model with 3 components. As we can see, one of the coefficients has gone to zero
to account for the overspecification of the model, while the other two have stabilized
very close to the true parameters. The same goes for the time instants, except that in this
case there is no default value to represent that a component is unused, so the time corre-
sponding to the null coefficient oscillates back and forth. The estimated function (based
for example in the mode of the posterior distributions) will not be perfect, essentially be-
cause of the noise in the response. But it should be close to the true parameter function
𝛼(𝑡) = −5𝐾(𝑡, 0.1) + 10𝐾(𝑡, 0.8), providing a good predictive performance.

Figure 15: Estimated posterior distribution for 𝑏 and 𝜏 in a linear model with 𝑝 = 3 (left) and the
corresponding trace evolution for 400 iterations in the MCMC sampler (right).

In contrast, if we consider now a model with 𝑝 = 4 with the same data, we might ob-
tain posterior distributions like the ones in Figure 16. In this situation two coefficients
should go to zero, but that is no longer the case. For example, while the green component
has a high density around 0, it also has a considerable mass around 10, effectively “com-
peting” with the red component. This is a manifestation of the label switching issue,
caused in this case by an excessive number of degrees of freedom in the model.
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Figure 16: Estimated posterior distribution for 𝑏 and 𝜏 in a linear model with 𝑝 = 4 (left) and the
corresponding trace evolution for 400 iterations in the MCMC sampler (right).

There is still another possible situation, one inwhich there is no label switching but the
estimated function has four non-negligible components. This can happen because the
different components exploit the additional freedom and “work together”, so to speak.
In this way wemight obtain an estimate that does not resemble the true coefficient func-
tion, but that has a very low prediction error. However, this could also work to our detri-
ment and cause the estimated function to be worse prediction-wise than simpler alterna-
tives. This phenomenon is expected to strengthen as the difference between the true and
assumed value of 𝑝 grows larger.

Dependence on 𝑝
Another thing we wanted to look at was the dependence of the final prediction result on
the chosen value of 𝑝, especially when there is no concept of “components” in the under-
lyingmodel. We can take for example the homoscedasticmixture data set described earlier
for the logistic regression problem, and fix the parameter 𝜂 = 0.01. The corresponding
mean accuracies (in 10 repetitions) for RKHS models with 𝑝 = 1, 2, … 10 components
are shown in Figure 17, along with their standard errors (which are arguably not very
informative).

It would appear that the methods that use the whole posterior distribution are more
stable and somewhat independent of the value of 𝑝 > 1. The other algorithms show
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5.3 Additional experiments

Figure 17: Mean accuracy in 10 repetitions for our logistic RKHS methods as a function of 𝑝,
using 𝜂 = 0.01 and the homoscedastic mixture data set. The corresponding standard
errors are shown in faded colors.

a slight downward trend as 𝑝 increases (although not so much in the variable selection
methods), and in general their best results are obtained at 𝑝 = 2 and 𝑝 = 8. We expect
that this effect or some small variation of it will remain valid in other situations; however,
a profound study of this would be the subject of a different experiment altogether.

Execution times

We summarize below the mean execution time for each independent run of our CV ex-
periment, grouping the simulated data sets by the underlying data generation strategy
(since the results within these groups were very similar).

RKHS 𝐿2 GBM Tecator Moisture Sugar

Linear regression 260 245 264 230 264 285

RKHS 𝐿2 Mixture Medflies Growth Phoneme

Logistic regression 277 263 246 250 218 277

Table 5.1: Mean execution times (inminutes) for the independent runs of the CV experiments in
Sections 5.1 and 5.2, groupedwhenpossible by the underlying data generation strategy.

The reference algorithms usedwere all fast methods that can complete their whole CV
loop in just a few seconds, so any comparison with them in this regard is uninteresting.
However, this outcome was to be expected, since in general the MCMC methods are
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known to have a high computational cost in exchange for the simplicity inmodeling they
provide. An individual MCMC run is not that expensive time-wise, but even for a mod-
est 5-fold cross-validation loop the effects add up quickly to a considerable amount of
time. In Figure 18 we show the evolution of the execution time (in seconds) versus the
number of training samples in a generic case, which not surprisingly has a more or less
linear behavior. This, however, is not an impediment for using our methods in practice.

Figure 18: Mean training times of a logisticRKHSmodelwith𝑝 = 5, as a function of the number
of training samples (averaged across 10 independent runs). The values are surrounded
by their corresponding standard deviations.

Non-reported experiments

Apart from all the experiments described above, we performed several tests with different
configurations and alternatives. Although these trials did not produce better results in
general, wemention some of them here to show how themodel could be easily extended.
In fact, most of these modifications, if not all, are still available in the provided code and
can be enabled through specific parameters.

The first thing we tried was to make the parameter 𝑝 part of the Bayesian model, im-
posing a categorical prior distribution on it. As explained in Chapter 4, this approach led
tomany complications and generally poor results. However, the idea of letting themodel
select how many components it should have based on the data is an interesting one, and
in some situations this could greatly improve the results of variable selection procedures
based on other model selection criteria.
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5.3 Additional experiments

We also tried changing some prior distributions. For instance, we swapped the im-
proper prior distribution on 𝜎2 for a Cauchy distribution onR+. The results were sim-
ilar, but we ultimately discarded this approach because it introduced yet another hyper-
parameter into the model with no clear benefit. In addition, we tried to impose a beta
distribution on each of the time instants 𝑡𝑗 , selecting the corresponding shape parameters
in a semi-automatic way so that most of the density fell in the areas where the variance of
the process was higher (and thus the effect of individual trajectories wasmore noticeable).
This approach does work, but in our estimation the computational overhead introduced
by the beta density function (sometimes resulting in a 1.5x increase in execution time) is
not worth the mild improvements, if any.

A lot of minor things were tried, such as standardizing the regressors and/or the re-
sponses, smoothing the functional data, changing the proposal of moves in the MCMC
sampler, or transforming the values of 𝜏 during sampling so that the domain was uncon-
strained. It is likely that some of these strategies would lead to better results in specific
cases, but overall they did not improve the general performance of the prediction proce-
dure.
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6 Conclusions

In this work we have addressed some inference and prediction issues involved in the task
of learning from functional data. In particular, we have tackled functional linear and
logistic regression problems, presenting an alternative to the 𝐿2-models predominant in
these scenarios. Our proposed models rely heavily on the theory of RKHS’s, offering
finite-dimensional approximations to the regression function, but still with a functional
perspective. This leads to a conceptually simpler approach that facilitates the interpre-
tation and subsequent analysis, which we believe is a compelling feature for most prac-
titioners. The underlying theoretical aspects are nevertheless far from trivial, so we have
also explored some of the related mathematical background in this text.

With the aid of Bayesian methods, we have introduced a computationally feasible ap-
proach to parameter estimationwithin the proposedRKHSmodels. The flexibility is im-
proved through the use of prior distributions that can introduce pre-existing information
into themodel. In addition, the fact that we have a complete posterior distribution at our
disposal enables us to derive different prediction and variable selection methods, or even
perform other types of inference such as the construction of credible intervals. More-
over, the use of MCMCmethods to approximate the posterior distribution results in an
implementation that is simpler than most existing alternatives. Although this simplicity
comes at the expense of increased computational requirements, this computational cost
is still reasonable and the model can be used in practice. The execution time only starts
to be of some relevance when performing extensive simulations and comparisons, but it
is not a serious burden for the use of our methods in practical cases.

We implemented the whole inference and prediction pipeline in the Python program-
ming language, and then used it to carry out a large empirical study to assess the per-
formance of our models against other usual alternatives, functional and otherwise. The
results were generally satisfactory, proving that we have competitivemethods that achieve
goodperformance indifferent scenarios, oftenwith lowdimensionality and thus increased
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tractability and interpretability. Lastly, we believe that with more computational re-
sources we could consider a larger pool of hyperparameters in the model selection phase,
and also increase the number of folds and random train/test splits, which would most
likely contribute to better results.

6.1 Future work

Some lines of further research suggested by our work are the following:

• To delve further into the relationship between RKHS’s and functional data prob-
lems, a connection that has proven to be fruitful in many scenarios. A first idea
would be to extend the RKHS-based logistic regression model to a generalized
functional linear model with an arbitrary link function.

• To try to derive some theoretical properties of our Bayesian predictors. For ex-
ample, consistency and/or robustness results regarding the posterior distribution
would be an excellent complement to the practical side of this work.

• To find other prior distributions for our parameters that performbetter in general,
or to eliminate the need of the hyperparameters 𝑏0 or 𝜂.

• To experimentwithotherMCMCalgorithms forposterior approximation. Specif-
ically, it would be interesting to implement an efficient and reliable reversible-jump
MCMCmethod in Python, which as we have already mentioned is a better fit for
our particularBayesianmodel. Moreover, we could also adopt a different approach
and use variational inference methods to approximate the posterior.
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A On the code developed

The Python source code developed for this work is available at the GitHub repository
https://github.com/antcc/rk-bfr, under aGPLv3 license. The code is adequately
documented and is structured in several directories as follows:

• In the rkbfr folder we find the files responsible for the implementation of our
models, separated according to the functionality they provide.

• The reference_methods folder contains our implementation of the functional
comparison algorithms that were not available through a standard Python library.

• The utils folder contains some utility files for simulation, experimentation and
visualization.

• At the root folder we have files for executing our experiments, which accept many
user-specified parameters (e.g. number of iterations, type of data set, …). In par-
ticular, the script results_cv.py contains the code for our comparison exper-
iments, while script the results_all.py allows the execution of our Bayesian
methods without a cross-validation loop.

When possible, the code was implemented in a generic way that would allow for easy
extensions or derivations. It was also developed with efficiency in mind, so many func-
tions andmethods exploit the vectorization capabilities of the numpy9 and scipy libraries.
Moreover, we followed closely the style of the scikit-learn and scikit-fda libraries, so our
methods are fully compatible and could be integrated (after some minor tweaking) with
both of them. The code for the experiments was executed in a machine with 4 cores,
and a random seed with value 2022 was set for reproducibility. We provide a script file
launch.sh that illustrates a typical execution.

Lastly, there are also Jupyter notebooks that demonstrate the use of our methods in a
more visual way. Inside these notebooks there is a step-by-step guide on how one might
9https://numpy.org
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A On the code developed

execute our algorithms, accompanied by many graphical representations, and offering
the possibility of changing multiple parameters to experiment with the code. In addi-
tion, there is also a notebook that can be used to generate all the tables and figures of this
document pertaining to the experimental results.
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B Tables of experimental
results

Herewe present the tables corresponding to the empirical studies in Sections 5.1 and 5.2.
In each case the best and second best results are shown in blue and bold, respectively.

Functional linear regression

Estimator BM fBM O-U Sq. exp

emcee_mean 0.913 (0.310) 0.759 (0.068) 0.806 (0.098) 1.408 (1.359)
emcee_median 0.729 (0.048) 0.729 (0.045) 0.740 (0.052) 0.743 (0.041)
emcee_mode 0.735 (0.039) 0.748 (0.068) 0.769 (0.102) 0.803 (0.147)
emcee_posterior_mean 0.743 (0.047) 0.726 (0.036) 0.863 (0.416) 0.766 (0.061)
apls 1.003 (0.045) 0.792 (0.030) 1.167 (0.068) 0.728 (0.035)
flin 1.219 (0.056) 0.800 (0.022) 1.630 (0.051) 0.738 (0.030)
fpls1 1.235 (0.069) 0.800 (0.024) 1.631 (0.053) 0.738 (0.035)
lasso 0.727 (0.034) 0.738 (0.027) 0.731 (0.039) 0.726 (0.032)
pls1 1.032 (0.116) 0.782 (0.034) 0.974 (0.063) 0.729 (0.041)
ridge 0.920 (0.043) 0.778 (0.021) 0.965 (0.059) 0.728 (0.035)

emcee_mean+ridge 0.816 (0.154) 0.749 (0.044) 0.734 (0.039) 0.799 (0.175)
emcee_median+ridge 0.759 (0.063) 0.741 (0.041) 0.751 (0.065) 0.755 (0.058)
emcee_mode+ridge 0.746 (0.058) 0.735 (0.036) 0.726 (0.038) 0.735 (0.036)
fpca+ridge 1.149 (0.041) 0.784 (0.020) 1.420 (0.063) 0.728 (0.033)
manual+ridge 1.221 (0.050) 0.784 (0.021) 1.548 (0.072) 0.727 (0.032)
pca+ridge 1.153 (0.041) 0.784 (0.022) 1.422 (0.050) 0.730 (0.033)
pls+ridge 0.955 (0.053) 0.783 (0.031) 0.962 (0.059) 0.729 (0.035)
rmh+ridge 1.423 (0.117) 0.847 (0.043) 1.375 (0.266) 1.226 (0.117)

Table B.1: MeanRMSEof predictors for simulatedGPdata obeying an underlyingRKHSmodel
(lower is better). The corresponding standard errors are shown between brackets.
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Estimator BM fBM O-U Sq. exp

emcee_mean 0.769 (0.037) 0.744 (0.061) 0.756 (0.054) 0.794 (0.129)
emcee_median 0.730 (0.049) 0.751 (0.071) 0.718 (0.031) 0.722 (0.030)
emcee_mode 0.732 (0.032) 0.739 (0.075) 0.730 (0.038) 0.730 (0.029)
emcee_posterior_mean 0.723 (0.040) 0.720 (0.032) 0.755 (0.079) 0.726 (0.026)
apls 0.715 (0.030) 0.710 (0.030) 0.710 (0.029) 0.726 (0.031)
flin 0.733 (0.035) 0.727 (0.033) 0.733 (0.035) 0.735 (0.032)
fpls1 0.718 (0.039) 0.726 (0.035) 0.731 (0.034) 0.726 (0.033)
lasso 0.712 (0.027) 0.712 (0.028) 0.717 (0.029) 0.722 (0.029)
pls1 0.717 (0.041) 0.720 (0.036) 0.722 (0.029) 0.729 (0.031)
ridge 0.716 (0.029) 0.717 (0.032) 0.716 (0.032) 0.727 (0.033)

emcee_mean+ridge 0.717 (0.029) 0.718 (0.030) 0.719 (0.027) 0.743 (0.052)
emcee_median+ridge 0.722 (0.038) 0.723 (0.038) 0.717 (0.035) 0.730 (0.025)
emcee_mode+ridge 0.726 (0.036) 0.735 (0.048) 0.736 (0.030) 0.743 (0.050)
fpca+ridge 0.717 (0.032) 0.718 (0.030) 0.718 (0.033) 0.727 (0.031)
manual+ridge 0.717 (0.030) 0.719 (0.030) 0.716 (0.032) 0.728 (0.031)
pca+ridge 0.717 (0.032) 0.720 (0.031) 0.716 (0.032) 0.727 (0.031)
pls+ridge 0.719 (0.033) 0.728 (0.046) 0.720 (0.033) 0.730 (0.031)
rmh+ridge 0.753 (0.029) 0.713 (0.030) 0.791 (0.037) 0.812 (0.027)

Table B.2: Mean RMSE of predictors for simulated GP data obeying an underlying 𝐿2 model
(lower is better). The corresponding standard errors are shown between brackets.
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Estimator GBM + 𝐋𝟐 GBM + RKHS

emcee_mean 0.948 (0.354) 1.278 (0.622)
emcee_median 0.737 (0.036) 0.747 (0.031)
emcee_mode 0.786 (0.106) 0.928 (0.275)
emcee_posterior_mean 0.763 (0.083) 0.786 (0.084)
apls 0.716 (0.034) 1.456 (0.170)
flin 0.726 (0.033) 2.427 (0.352)
fpls1 0.731 (0.040) 2.336 (0.365)
lasso 0.726 (0.042) 0.759 (0.073)
pls1 0.710 (0.029) 1.309 (0.122)
ridge 0.721 (0.035) 1.175 (0.205)

emcee_mean+ridge 0.725 (0.040) 1.432 (1.059)
emcee_median+ridge 0.738 (0.033) 0.780 (0.093)
emcee_mode+ridge 0.733 (0.040) 0.760 (0.073)
fpca+ridge 0.716 (0.036) 1.873 (0.302)
manual+ridge 0.724 (0.046) 2.253 (0.226)
pca+ridge 0.719 (0.036) 1.879 (0.304)
pls+ridge 0.713 (0.030) 1.299 (0.125)
rmh+ridge 0.805 (0.051) 1.640 (0.189)

Table B.3: Mean RMSE of predictors for simulated data with GBM regressors (lower is better).
The corresponding standard errors are shown between brackets.
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Estimator Moisture Sugar Tecator

emcee_mean 1.268 (1.096) 9.207 (9.248) 9.811 (7.446)
emcee_median 0.296 (0.051) 3.130 (2.584) 3.714 (0.922)
emcee_mode 0.301 (0.049) 2.628 (0.700) 3.531 (1.494)
emcee_posterior_mean 0.255 (0.039) 2.813 (0.897) 2.918 (0.222)
flin 0.257 (0.026) 1.978 (0.210) 2.604 (0.344)
fpls1 0.236 (0.038) 1.993 (0.223) 2.604 (0.294)
lasso 0.242 (0.028) 1.975 (0.199) 2.892 (0.270)
pls1 0.228 (0.023) 2.045 (0.190) 2.704 (0.467)
ridge 0.221 (0.026) 1.952 (0.235) 3.387 (0.218)
apls 0.234 (0.031) 2.050 (0.238) 2.349 (0.470)

emcee_mean+ridge 0.262 (0.043) 2.020 (0.198) 6.673 (1.037)
emcee_median+ridge 0.260 (0.034) 1.995 (0.219) 5.393 (1.210)
emcee_mode+ridge 0.302 (0.092) 2.037 (0.200) 5.442 (0.563)
fpca+ridge 0.289 (0.035) 1.976 (0.227) 9.521 (0.603)
manual+ridge 0.228 (0.026) 1.987 (0.227) 4.126 (0.305)
pca+ridge 0.226 (0.027) 1.963 (0.234) 3.388 (0.218)
pls+ridge 0.226 (0.025) 2.012 (0.218) 2.415 (0.501)
rmh+ridge 0.327 (0.086) 2.031 (0.216) 5.580 (0.513)

Table B.4: Mean RMSE of predictors for real data sets (lower is better). The corresponding stan-
dard errors are shown between brackets.
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Functional logistic regression

Estimator BM fBM O-U Sq. exp

emcee_mean 0.743 (0.052) 0.739 (0.040) 0.734 (0.029) 0.751 (0.039)
emcee_median 0.771 (0.048) 0.716 (0.048) 0.714 (0.049) 0.746 (0.055)
emcee_mode 0.777 (0.037) 0.752 (0.043) 0.724 (0.029) 0.760 (0.048)
emcee_posterior_mean 0.764 (0.044) 0.756 (0.046) 0.734 (0.029) 0.753 (0.040)
emcee_posterior_vote 0.765 (0.043) 0.753 (0.040) 0.747 (0.027) 0.753 (0.043)
fknn 0.765 (0.027) 0.768 (0.033) 0.743 (0.032) 0.738 (0.022)
flda 0.767 (0.055) 0.755 (0.048) 0.735 (0.036) 0.761 (0.050)
flog 0.771 (0.033) 0.761 (0.042) 0.745 (0.025) 0.777 (0.040)
fnc 0.743 (0.029) 0.775 (0.042) 0.661 (0.063) 0.755 (0.035)
lda 0.514 (0.054) 0.601 (0.030) 0.578 (0.032) 0.702 (0.059)
log 0.778 (0.031) 0.750 (0.042) 0.761 (0.039) 0.761 (0.031)
mdc 0.724 (0.033) 0.762 (0.037) 0.648 (0.052) 0.732 (0.023)
qda 0.499 (0.038) 0.488 (0.041) 0.472 (0.055) 0.483 (0.027)

emcee_mean+logistic 0.781 (0.036) 0.746 (0.038) 0.725 (0.051) 0.750 (0.034)
emcee_median+logistic 0.766 (0.041) 0.749 (0.045) 0.717 (0.024) 0.732 (0.066)
emcee_mode+logistic 0.776 (0.042) 0.746 (0.047) 0.726 (0.025) 0.761 (0.036)
apls+log 0.783 (0.025) 0.756 (0.036) 0.739 (0.020) 0.761 (0.028)
apls+nc 0.771 (0.048) 0.745 (0.045) 0.740 (0.022) 0.751 (0.034)
fpca+log 0.773 (0.028) 0.755 (0.038) 0.758 (0.032) 0.765 (0.039)
manual+log 0.753 (0.033) 0.758 (0.040) 0.742 (0.031) 0.754 (0.032)
pca+log 0.780 (0.032) 0.758 (0.036) 0.756 (0.032) 0.756 (0.033)
pca+qda 0.751 (0.037) 0.750 (0.049) 0.736 (0.019) 0.741 (0.030)
pls+log 0.786 (0.040) 0.768 (0.037) 0.740 (0.035) 0.766 (0.033)
pls+nc 0.744 (0.032) 0.766 (0.039) 0.745 (0.055) 0.767 (0.035)
rkvs+log 0.770 (0.037) 0.757 (0.040) 0.738 (0.026) 0.772 (0.039)
rmh+log 0.768 (0.047) 0.760 (0.043) 0.745 (0.019) 0.781 (0.036)

Table B.5: Mean accuracy of classifiers for simulated GP data obeying an underlying RKHS
model (higher is better). The corresponding standard errors are shown between brack-
ets.
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Estimator BM fBM O-U Sq. exp

emcee_mean 0.571 (0.053) 0.557 (0.037) 0.594 (0.021) 0.565 (0.082)
emcee_median 0.557 (0.033) 0.539 (0.045) 0.559 (0.059) 0.556 (0.049)
emcee_mode 0.553 (0.063) 0.513 (0.067) 0.575 (0.038) 0.550 (0.042)
emcee_posterior_mean 0.575 (0.049) 0.560 (0.036) 0.593 (0.022) 0.578 (0.039)
emcee_posterior_vote 0.576 (0.034) 0.554 (0.039) 0.579 (0.023) 0.576 (0.041)
fknn 0.557 (0.022) 0.505 (0.047) 0.576 (0.042) 0.557 (0.026)
flda 0.554 (0.032) 0.516 (0.053) 0.543 (0.057) 0.526 (0.049)
flog 0.587 (0.034) 0.542 (0.036) 0.576 (0.038) 0.578 (0.043)
fnc 0.601 (0.036) 0.545 (0.045) 0.587 (0.037) 0.546 (0.056)
lda 0.507 (0.041) 0.482 (0.056) 0.524 (0.042) 0.525 (0.052)
log 0.576 (0.034) 0.546 (0.033) 0.560 (0.053) 0.554 (0.037)
mdc 0.605 (0.039) 0.544 (0.055) 0.584 (0.039) 0.533 (0.042)
qda 0.476 (0.050) 0.518 (0.048) 0.470 (0.071) 0.485 (0.039)

emcee_mean+logistic 0.583 (0.038) 0.575 (0.043) 0.569 (0.021) 0.559 (0.030)
emcee_median+logistic 0.565 (0.044) 0.552 (0.037) 0.589 (0.029) 0.585 (0.041)
emcee_mode+logistic 0.568 (0.047) 0.544 (0.036) 0.581 (0.041) 0.557 (0.033)
apls+log 0.556 (0.066) 0.535 (0.040) 0.548 (0.070) 0.560 (0.055)
apls+nc 0.549 (0.056) 0.523 (0.040) 0.545 (0.054) 0.545 (0.047)
fpca+log 0.559 (0.037) 0.548 (0.033) 0.579 (0.034) 0.564 (0.032)
manual+log 0.573 (0.037) 0.542 (0.029) 0.575 (0.043) 0.568 (0.035)
pca+log 0.570 (0.036) 0.541 (0.033) 0.579 (0.028) 0.567 (0.033)
pca+qda 0.567 (0.030) 0.532 (0.045) 0.577 (0.037) 0.574 (0.059)
pls+log 0.564 (0.042) 0.556 (0.028) 0.559 (0.041) 0.564 (0.036)
pls+nc 0.581 (0.038) 0.535 (0.048) 0.589 (0.043) 0.558 (0.057)
rkvs+log 0.572 (0.058) 0.550 (0.023) 0.592 (0.018) 0.567 (0.024)
rmh+log 0.570 (0.036) 0.557 (0.033) 0.584 (0.024) 0.581 (0.025)

Table B.6: Mean accuracy of classifiers for simulated GP data obeying an underlying 𝐿2 model
(higher is better). The corresponding standard errors are shown between brackets.
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Estimator Heteroscedastic Homoscedastic

emcee_mean 0.513 (0.035) 0.667 (0.053)
emcee_median 0.492 (0.039) 0.647 (0.070)
emcee_mode 0.543 (0.033) 0.680 (0.038)
emcee_posterior_mean 0.497 (0.056) 0.690 (0.050)
emcee_posterior_vote 0.469 (0.058) 0.684 (0.048)
fknn 0.574 (0.031) 0.652 (0.034)
flda 0.489 (0.047) 0.696 (0.059)
flog 0.515 (0.045) 0.673 (0.040)
fnc 0.463 (0.069) 0.664 (0.053)
lda 0.493 (0.040) 0.548 (0.046)
log 0.509 (0.055) 0.686 (0.046)
mdc 0.521 (0.052) 0.601 (0.058)
qda 0.502 (0.056) 0.517 (0.039)

emcee_mean+logistic 0.503 (0.054) 0.678 (0.063)
emcee_median+logistic 0.504 (0.041) 0.680 (0.038)
emcee_mode+logistic 0.512 (0.036) 0.681 (0.036)
apls+log 0.529 (0.034) 0.684 (0.058)
apls+nc 0.496 (0.039) 0.674 (0.050)
fpca+log 0.481 (0.032) 0.704 (0.041)
manual+log 0.496 (0.029) 0.694 (0.044)
pca+log 0.483 (0.030) 0.699 (0.040)
pca+qda 0.748 (0.055) 0.703 (0.037)
pls+log 0.489 (0.043) 0.711 (0.055)
pls+nc 0.454 (0.037) 0.649 (0.076)
rkvs+log 0.499 (0.041) 0.684 (0.037)
rmh+log 0.516 (0.049) 0.691 (0.030)

Table B.7: Mean accuracy of classifiers for simulated data coming from two different GP’s, la-
beled according to their origin (higher is better). The corresponding standard errors
are shown between brackets.
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Estimator Growth Medflies Phoneme

emcee_mean 0.858 (0.147) 0.533 (0.041) 0.763 (0.041)
emcee_median 0.894 (0.112) 0.573 (0.032) 0.776 (0.044)
emcee_mode 0.932 (0.034) 0.582 (0.034) 0.770 (0.056)
emcee_posterior_mean 0.926 (0.032) 0.596 (0.044) 0.797 (0.035)
emcee_posterior_vote 0.919 (0.046) 0.575 (0.052) 0.801 (0.031)
fknn 0.942 (0.040) 0.534 (0.031) 0.760 (0.046)
flda 0.945 (0.032) 0.561 (0.020) 0.781 (0.037)
flog 0.935 (0.050) 0.601 (0.029) 0.766 (0.041)
fnc 0.735 (0.112) 0.546 (0.038) 0.703 (0.036)
lda 0.894 (0.052) 0.572 (0.019) 0.618 (0.040)
log 0.965 (0.030) 0.575 (0.028) 0.822 (0.026)
mdc 0.700 (0.087) 0.524 (0.026) 0.663 (0.031)
qda 0.581 (0.000) 0.569 (0.023) 0.457 (0.043)

emcee_mean+logistic 0.906 (0.118) 0.528 (0.029) 0.779 (0.033)
emcee_median+logistic 0.932 (0.049) 0.580 (0.031) 0.796 (0.036)
emcee_mode+logistic 0.935 (0.043) 0.585 (0.032) 0.791 (0.038)
apls+log 0.952 (0.026) 0.572 (0.016) 0.816 (0.028)
apls+nc 0.952 (0.041) 0.554 (0.020) 0.807 (0.032)
fpca+log 0.965 (0.030) 0.551 (0.032) 0.797 (0.021)
manual+log 0.961 (0.032) 0.584 (0.018) 0.778 (0.039)
pca+log 0.958 (0.029) 0.576 (0.030) 0.794 (0.030)
pca+qda 0.958 (0.032) 0.567 (0.036) 0.784 (0.034)
pls+log 0.952 (0.036) 0.578 (0.018) 0.804 (0.031)
pls+nc 0.829 (0.094) 0.570 (0.040) 0.754 (0.041)
rkvs+log 0.923 (0.052) 0.596 (0.032) 0.796 (0.031)
rmh+log 0.955 (0.030) 0.606 (0.025) 0.778 (0.048)

Table B.8: Mean accuracy of classifiers for real data sets (higher is better). The corresponding stan-
dard errors are shown between brackets.
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