forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
255 lines (201 loc) · 10.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import cv2
# Constants for warping/unwarping functions
IMSHAPE = (720, 1280) # hardcoded
SRC_POINTS = np.float32([
(0 + 185, IMSHAPE[0]),
(IMSHAPE[1]/2 - 55, 455),
(IMSHAPE[1]/2 + 55, 455),
(IMSHAPE[1] - 145, IMSHAPE[0])
])
DEST_POINTS = np.float32([
(0 + 325, IMSHAPE[0]),
(0 + 325, 0),
(IMSHAPE[1] - 325, 0),
(IMSHAPE[1] - 325, IMSHAPE[0])])
def warper(img):
# Compute and apply perpective transform
img_size = (img.shape[1], img.shape[0])
M = cv2.getPerspectiveTransform(SRC_POINTS, DEST_POINTS)
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_NEAREST) # keep same size as input image
return warped
def unwarper(img):
# Compute and apply perpective transform
img_size = (img.shape[1], img.shape[0])
Minv = cv2.getPerspectiveTransform(DEST_POINTS, SRC_POINTS)
dewarped = cv2.warpPerspective(img, Minv, img_size, flags=cv2.INTER_NEAREST) # keep same size as input image
return dewarped
def get_binary_img(image, ksize=15):
def abs_sobel_thresh(l_channel, orient='x', sobel_kernel=3, thresh=(0, 255)):
# Calculate directional gradient
# 2) Take the derivative in x or y given orient = 'x' or 'y'
if orient == 'x':
sobel = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0)
elif orient == 'y':
sobel = cv2.Sobel(l_channel, cv2.CV_64F, 0, 1)
# 3) Take the absolute value of the derivative or gradient
abs_sobel = np.absolute(sobel)
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
grad_binary = np.zeros_like(scaled_sobel)
grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
# 6) Return this mask as your binary_output image
return grad_binary
def mag_thresh(l_channel, sobel_kernel=3, mag_thresh=(0, 255)):
# Calculate gradient magnitude
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0)
sobely = cv2.Sobel(l_channel, cv2.CV_64F, 0, 1)
# 3) Calculate the magnitude
abs_sobel = np.sqrt(np.square(sobelx) + np.square(sobely))
# 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
# 5) Create a binary mask where mag thresholds are met
mag_binary = np.zeros_like(scaled_sobel)
mag_binary[(scaled_sobel >= mag_thresh[0]) & (scaled_sobel <= mag_thresh[1])] = 1
# 6) Return this mask as your binary_output image
return mag_binary
def dir_threshold(l_channel, sobel_kernel=3, thresh=(0, np.pi/2)):
# Calculate gradient direction
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(l_channel, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# 3) Take the absolute value of the x and y gradients
abs_sobelx = np.absolute(sobelx)
abs_sobely = np.absolute(sobely)
# 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
grad_dir = np.arctan2(abs_sobely, abs_sobelx)
# 5) Create a binary mask where direction thresholds are met
dir_binary = np.zeros_like(grad_dir)
dir_binary[(grad_dir >= thresh[0]) & (grad_dir <= thresh[1])] = 1
# 6) Return this mask as your binary_output image
return dir_binary
def color_threshold(s_channel, thresh=(0, 255)):
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= thresh[0]) & (s_channel <= thresh[1])] = 1
return s_binary
hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
l_channel = hls[:, :, 1]
s_channel = hls[:, :, 2]
# Apply each of the thresholding functions
gradx = abs_sobel_thresh(l_channel, orient='x', sobel_kernel=ksize, thresh=(20, 100))
grady = abs_sobel_thresh(l_channel, orient='y', sobel_kernel=ksize, thresh=(20, 100))
mag_binary = mag_thresh(l_channel, sobel_kernel=ksize, mag_thresh=(30, 100))
dir_binary = dir_threshold(l_channel, sobel_kernel=ksize, thresh=(0.7, 1.3))
col_binary = color_threshold(s_channel, thresh=(170, 255))
combined_grad = np.zeros_like(dir_binary)
combined_grad[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1
combined = np.zeros_like(combined_grad)
combined[((combined_grad == 1) | (col_binary == 1))] = 1
return combined
def fit_lane_lines(binary_warped, margin=75, minpix=50):
# margin: the width of the windows +/- margin
# minpix: set minimum number of pixels found to recenter window
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[int(binary_warped.shape[0] / 2 ):,:], axis=0)
# Trim noisy ends from influencing
histogram[:80]= 0
histogram[-80:] = 0
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height;
win_y_high = binary_warped.shape[0] - window*window_height;
win_xleft_low = leftx_current - margin;
win_xleft_high = leftx_current + margin;
win_xright_low = rightx_current - margin;
win_xright_high = rightx_current + margin;
# Draw the windows on the visualization image
_ = cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2);
_ = cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2);
# Identify the nonzero pixels in x and y within the window
good_left_inds = (
(nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & \
(nonzerox >= win_xleft_low) & \
(nonzerox < win_xleft_high)
).nonzero()[0];
good_right_inds = (
(nonzeroy >= win_y_low) & \
(nonzeroy < win_y_high) & \
(nonzerox >= win_xright_low) & \
(nonzerox < win_xright_high)
).nonzero()[0];
# Append these indices to the lists
left_lane_inds.append(good_left_inds);
right_lane_inds.append(good_right_inds);
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]));
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]));
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
return left_fit, right_fit, out_img
def fit_lane_lines_from_previous_fit(binary_warped, left_fit, right_fit, margin=75):
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
left_lane_inds = (
(nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & \
(nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))
)
right_lane_inds = (
(nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & \
(nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))
)
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
new_left_fit = np.polyfit(lefty, leftx, 2)
new_right_fit = np.polyfit(righty, rightx, 2)
return new_left_fit, new_right_fit
def draw_detected_lane(undist, binary_warped, ploty, left_fitx, right_fitx):
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0));
newwarp = unwarper(color_warp)
# Combine the result with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
return result