/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { static Singleton> s_list; SpinLockProtectedValue& Thread::all_instances() { return *s_list; } KResultOr> Thread::try_create(NonnullRefPtr process) { auto kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow); if (!kernel_stack_region) return ENOMEM; kernel_stack_region->set_stack(true); auto block_timer = AK::try_create(); if (!block_timer) return ENOMEM; auto name = KString::try_create(process->name()); auto thread = adopt_ref_if_nonnull(new (nothrow) Thread(move(process), kernel_stack_region.release_nonnull(), block_timer.release_nonnull(), move(name))); if (!thread) return ENOMEM; return thread.release_nonnull(); } Thread::Thread(NonnullRefPtr process, NonnullOwnPtr kernel_stack_region, NonnullRefPtr block_timer, OwnPtr name) : m_process(move(process)) , m_kernel_stack_region(move(kernel_stack_region)) , m_name(move(name)) , m_block_timer(block_timer) { bool is_first_thread = m_process->add_thread(*this); if (is_first_thread) { // First thread gets TID == PID m_tid = m_process->pid().value(); } else { m_tid = Process::allocate_pid().value(); } { // FIXME: Go directly to KString auto string = String::formatted("Kernel stack (thread {})", m_tid.value()); m_kernel_stack_region->set_name(KString::try_create(string)); } Thread::all_instances().with([&](auto& list) { list.append(*this); }); if constexpr (THREAD_DEBUG) dbgln("Created new thread {}({}:{})", m_process->name(), m_process->pid().value(), m_tid.value()); reset_fpu_state(); #if ARCH(I386) // Only IF is set when a process boots. m_regs.eflags = 0x0202; if (m_process->is_kernel_process()) { m_regs.cs = GDT_SELECTOR_CODE0; m_regs.ds = GDT_SELECTOR_DATA0; m_regs.es = GDT_SELECTOR_DATA0; m_regs.fs = 0; m_regs.ss = GDT_SELECTOR_DATA0; m_regs.gs = GDT_SELECTOR_PROC; } else { m_regs.cs = GDT_SELECTOR_CODE3 | 3; m_regs.ds = GDT_SELECTOR_DATA3 | 3; m_regs.es = GDT_SELECTOR_DATA3 | 3; m_regs.fs = GDT_SELECTOR_DATA3 | 3; m_regs.ss = GDT_SELECTOR_DATA3 | 3; m_regs.gs = GDT_SELECTOR_TLS | 3; } #else // Only IF is set when a process boots. m_regs.rflags = 0x0202; if (m_process->is_kernel_process()) m_regs.cs = GDT_SELECTOR_CODE0; else m_regs.cs = GDT_SELECTOR_CODE3 | 3; #endif m_regs.cr3 = m_process->address_space().page_directory().cr3(); m_kernel_stack_base = m_kernel_stack_region->vaddr().get(); m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & ~(FlatPtr)0x7u; if (m_process->is_kernel_process()) { #if ARCH(I386) m_regs.esp = m_regs.esp0 = m_kernel_stack_top; #else m_regs.rsp = m_regs.rsp0 = m_kernel_stack_top; #endif } else { // Ring 3 processes get a separate stack for ring 0. // The ring 3 stack will be assigned by exec(). #if ARCH(I386) m_regs.ss0 = GDT_SELECTOR_DATA0; m_regs.esp0 = m_kernel_stack_top; #else m_regs.rsp0 = m_kernel_stack_top; #endif } // We need to add another reference if we could successfully create // all the resources needed for this thread. The reason for this is that // we don't want to delete this thread after dropping the reference, // it may still be running or scheduled to be run. // The finalizer is responsible for dropping this reference once this // thread is ready to be cleaned up. ref(); } Thread::~Thread() { { // We need to explicitly remove ourselves from the thread list // here. We may get pre-empted in the middle of destructing this // thread, which causes problems if the thread list is iterated. // Specifically, if this is the last thread of a process, checking // block conditions would access m_process, which would be in // the middle of being destroyed. ScopedSpinLock lock(g_scheduler_lock); VERIFY(!m_process_thread_list_node.is_in_list()); // We shouldn't be queued VERIFY(m_runnable_priority < 0); } } void Thread::block(Kernel::Mutex& lock, ScopedSpinLock>& lock_lock, u32 lock_count) { VERIFY(!Processor::current().in_irq()); VERIFY(this == Thread::current()); ScopedCritical critical; VERIFY(!Memory::s_mm_lock.own_lock()); ScopedSpinLock block_lock(m_block_lock); ScopedSpinLock scheduler_lock(g_scheduler_lock); switch (state()) { case Thread::Stopped: // It's possible that we were requested to be stopped! break; case Thread::Running: VERIFY(m_blocker == nullptr); break; default: VERIFY_NOT_REACHED(); } // If we're blocking on the big-lock we may actually be in the process // of unblocking from another lock. If that's the case m_blocking_lock // is already set auto& big_lock = process().big_lock(); VERIFY((&lock == &big_lock && m_blocking_lock != &big_lock) || !m_blocking_lock); auto previous_blocking_lock = m_blocking_lock; m_blocking_lock = &lock; m_lock_requested_count = lock_count; set_state(Thread::Blocked); scheduler_lock.unlock(); block_lock.unlock(); lock_lock.unlock(); dbgln_if(THREAD_DEBUG, "Thread {} blocking on Mutex {}", *this, &lock); for (;;) { // Yield to the scheduler, and wait for us to resume unblocked. VERIFY(!g_scheduler_lock.own_lock()); VERIFY(Processor::in_critical()); if (&lock != &big_lock && big_lock.own_lock()) { // We're locking another lock and already hold the big lock... // We need to release the big lock yield_and_release_relock_big_lock(); } else { // By the time we've reached this another thread might have // marked us as holding the big lock, so this call must not // verify that we're not holding it. yield_without_releasing_big_lock(VerifyLockNotHeld::No); } VERIFY(Processor::in_critical()); ScopedSpinLock block_lock2(m_block_lock); if (should_be_stopped() || state() == Stopped) { dbgln("Thread should be stopped, current state: {}", state_string()); set_state(Thread::Blocked); continue; } VERIFY(!m_blocking_lock); m_blocking_lock = previous_blocking_lock; break; } lock_lock.lock(); } u32 Thread::unblock_from_lock(Kernel::Mutex& lock) { ScopedSpinLock block_lock(m_block_lock); VERIFY(m_blocking_lock == &lock); auto requested_count = m_lock_requested_count; block_lock.unlock(); auto do_unblock = [&]() { ScopedSpinLock scheduler_lock(g_scheduler_lock); ScopedSpinLock block_lock(m_block_lock); VERIFY(m_blocking_lock == &lock); VERIFY(!Processor::current().in_irq()); VERIFY(g_scheduler_lock.own_lock()); VERIFY(m_block_lock.own_lock()); VERIFY(m_blocking_lock == &lock); dbgln_if(THREAD_DEBUG, "Thread {} unblocked from Mutex {}", *this, &lock); m_blocking_lock = nullptr; if (Thread::current() == this) { set_state(Thread::Running); return; } VERIFY(m_state != Thread::Runnable && m_state != Thread::Running); set_state(Thread::Runnable); }; if (Processor::current().in_irq()) { Processor::current().deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() { if (auto this_thread = self.strong_ref()) do_unblock(); }); } else { do_unblock(); } return requested_count; } void Thread::unblock_from_blocker(Blocker& blocker) { auto do_unblock = [&]() { ScopedSpinLock scheduler_lock(g_scheduler_lock); ScopedSpinLock block_lock(m_block_lock); if (m_blocker != &blocker) return; if (!should_be_stopped() && !is_stopped()) unblock(); }; if (Processor::current().in_irq()) { Processor::current().deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() { if (auto this_thread = self.strong_ref()) do_unblock(); }); } else { do_unblock(); } } void Thread::unblock(u8 signal) { VERIFY(!Processor::current().in_irq()); VERIFY(g_scheduler_lock.own_lock()); VERIFY(m_block_lock.own_lock()); if (m_state != Thread::Blocked) return; if (m_blocking_lock) return; VERIFY(m_blocker); if (signal != 0) { if (is_handling_page_fault()) { // Don't let signals unblock threads that are blocked inside a page fault handler. // This prevents threads from EINTR'ing the inode read in an inode page fault. // FIXME: There's probably a better way to solve this. return; } if (!m_blocker->can_be_interrupted() && !m_should_die) return; m_blocker->set_interrupted_by_signal(signal); } m_blocker = nullptr; if (Thread::current() == this) { set_state(Thread::Running); return; } VERIFY(m_state != Thread::Runnable && m_state != Thread::Running); set_state(Thread::Runnable); } void Thread::set_should_die() { if (m_should_die) { dbgln("{} Should already die", *this); return; } ScopedCritical critical; // Remember that we should die instead of returning to // the userspace. ScopedSpinLock lock(g_scheduler_lock); m_should_die = true; // NOTE: Even the current thread can technically be in "Stopped" // state! This is the case when another thread sent a SIGSTOP to // it while it was running and it calls e.g. exit() before // the scheduler gets involved again. if (is_stopped()) { // If we were stopped, we need to briefly resume so that // the kernel stacks can clean up. We won't ever return back // to user mode, though VERIFY(!process().is_stopped()); resume_from_stopped(); } if (is_blocked()) { ScopedSpinLock block_lock(m_block_lock); if (m_blocker) { // We're blocked in the kernel. m_blocker->set_interrupted_by_death(); unblock(); } } } void Thread::die_if_needed() { VERIFY(Thread::current() == this); if (!m_should_die) return; u32 unlock_count; [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count); dbgln_if(THREAD_DEBUG, "Thread {} is dying", *this); { ScopedSpinLock lock(g_scheduler_lock); // It's possible that we don't reach the code after this block if the // scheduler is invoked and FinalizerTask cleans up this thread, however // that doesn't matter because we're trying to invoke the scheduler anyway set_state(Thread::Dying); } ScopedCritical critical; // Flag a context switch. Because we're in a critical section, // Scheduler::yield will actually only mark a pending context switch // Simply leaving the critical section would not necessarily trigger // a switch. Scheduler::yield(); // Now leave the critical section so that we can also trigger the // actual context switch Processor::clear_critical(); dbgln("die_if_needed returned from clear_critical!!! in irq: {}", Processor::current().in_irq()); // We should never get here, but the scoped scheduler lock // will be released by Scheduler::context_switch again VERIFY_NOT_REACHED(); } void Thread::exit(void* exit_value) { VERIFY(Thread::current() == this); m_join_condition.thread_did_exit(exit_value); set_should_die(); u32 unlock_count; [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count); if (m_thread_specific_range.has_value()) { auto* region = process().address_space().find_region_from_range(m_thread_specific_range.value()); process().address_space().deallocate_region(*region); } #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION KCOVDevice::free_thread(); #endif die_if_needed(); } void Thread::yield_without_releasing_big_lock(VerifyLockNotHeld verify_lock_not_held) { VERIFY(!g_scheduler_lock.own_lock()); VERIFY(verify_lock_not_held == VerifyLockNotHeld::No || !process().big_lock().own_lock()); // Disable interrupts here. This ensures we don't accidentally switch contexts twice InterruptDisabler disable; Scheduler::yield(); // flag a switch u32 prev_critical = Processor::clear_critical(); // NOTE: We may be on a different CPU now! Processor::restore_critical(prev_critical); } void Thread::yield_and_release_relock_big_lock() { VERIFY(!g_scheduler_lock.own_lock()); // Disable interrupts here. This ensures we don't accidentally switch contexts twice InterruptDisabler disable; Scheduler::yield(); // flag a switch u32 lock_count_to_restore = 0; auto previous_locked = unlock_process_if_locked(lock_count_to_restore); // NOTE: Even though we call Scheduler::yield here, unless we happen // to be outside of a critical section, the yield will be postponed // until leaving it in relock_process. relock_process(previous_locked, lock_count_to_restore); } LockMode Thread::unlock_process_if_locked(u32& lock_count_to_restore) { return process().big_lock().force_unlock_if_locked(lock_count_to_restore); } void Thread::relock_process(LockMode previous_locked, u32 lock_count_to_restore) { // Clearing the critical section may trigger the context switch // flagged by calling Scheduler::yield above. // We have to do it this way because we intentionally // leave the critical section here to be able to switch contexts. u32 prev_critical = Processor::clear_critical(); // CONTEXT SWITCH HAPPENS HERE! // NOTE: We may be on a different CPU now! Processor::restore_critical(prev_critical); if (previous_locked != LockMode::Unlocked) { // We've unblocked, relock the process if needed and carry on. process().big_lock().restore_lock(previous_locked, lock_count_to_restore); } } auto Thread::sleep(clockid_t clock_id, const Time& duration, Time* remaining_time) -> BlockResult { VERIFY(state() == Thread::Running); return Thread::current()->block({}, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time); } auto Thread::sleep_until(clockid_t clock_id, const Time& deadline) -> BlockResult { VERIFY(state() == Thread::Running); return Thread::current()->block({}, Thread::BlockTimeout(true, &deadline, nullptr, clock_id)); } StringView Thread::state_string() const { switch (state()) { case Thread::Invalid: return "Invalid"sv; case Thread::Runnable: return "Runnable"sv; case Thread::Running: return "Running"sv; case Thread::Dying: return "Dying"sv; case Thread::Dead: return "Dead"sv; case Thread::Stopped: return "Stopped"sv; case Thread::Blocked: { ScopedSpinLock block_lock(m_block_lock); if (m_blocking_lock) return "Mutex"sv; if (m_blocker) return m_blocker->state_string(); VERIFY_NOT_REACHED(); } } PANIC("Thread::state_string(): Invalid state: {}", (int)state()); } void Thread::finalize() { VERIFY(Thread::current() == g_finalizer); VERIFY(Thread::current() != this); #if LOCK_DEBUG VERIFY(!m_lock.own_lock()); if (lock_count() > 0) { dbgln("Thread {} leaking {} Locks!", *this, lock_count()); ScopedSpinLock list_lock(m_holding_locks_lock); for (auto& info : m_holding_locks_list) { const auto& location = info.lock_location; dbgln(" - Mutex: \"{}\" @ {} locked in function \"{}\" at \"{}:{}\" with a count of: {}", info.lock->name(), info.lock, location.function_name(), location.filename(), location.line_number(), info.count); } VERIFY_NOT_REACHED(); } #endif { ScopedSpinLock lock(g_scheduler_lock); dbgln_if(THREAD_DEBUG, "Finalizing thread {}", *this); set_state(Thread::State::Dead); m_join_condition.thread_finalizing(); } if (m_dump_backtrace_on_finalization) dbgln("{}", backtrace()); drop_thread_count(false); } void Thread::drop_thread_count(bool initializing_first_thread) { bool is_last = process().remove_thread(*this); if (!initializing_first_thread && is_last) process().finalize(); } void Thread::finalize_dying_threads() { VERIFY(Thread::current() == g_finalizer); Vector dying_threads; { ScopedSpinLock lock(g_scheduler_lock); for_each_in_state(Thread::State::Dying, [&](Thread& thread) { if (thread.is_finalizable()) dying_threads.append(&thread); }); } for (auto* thread : dying_threads) { RefPtr process = thread->process(); dbgln_if(PROCESS_DEBUG, "Before finalization, {} has {} refs and its process has {}", *thread, thread->ref_count(), thread->process().ref_count()); thread->finalize(); dbgln_if(PROCESS_DEBUG, "After finalization, {} has {} refs and its process has {}", *thread, thread->ref_count(), thread->process().ref_count()); // This thread will never execute again, drop the running reference // NOTE: This may not necessarily drop the last reference if anything // else is still holding onto this thread! thread->unref(); } } void Thread::update_time_scheduled(u64 current_scheduler_time, bool is_kernel, bool no_longer_running) { if (m_last_time_scheduled.has_value()) { u64 delta; if (current_scheduler_time >= m_last_time_scheduled.value()) delta = current_scheduler_time - m_last_time_scheduled.value(); else delta = m_last_time_scheduled.value() - current_scheduler_time; // the unlikely event that the clock wrapped if (delta != 0) { // Add it to the global total *before* updating the thread's value! Scheduler::add_time_scheduled(delta, is_kernel); auto& total_time = is_kernel ? m_total_time_scheduled_kernel : m_total_time_scheduled_user; ScopedSpinLock scheduler_lock(g_scheduler_lock); total_time += delta; } } if (no_longer_running) m_last_time_scheduled = {}; else m_last_time_scheduled = current_scheduler_time; } bool Thread::tick() { if (previous_mode() == PreviousMode::KernelMode) { ++m_process->m_ticks_in_kernel; ++m_ticks_in_kernel; } else { ++m_process->m_ticks_in_user; ++m_ticks_in_user; } return --m_ticks_left; } void Thread::check_dispatch_pending_signal() { auto result = DispatchSignalResult::Continue; { ScopedSpinLock scheduler_lock(g_scheduler_lock); if (pending_signals_for_state()) { ScopedSpinLock lock(m_lock); result = dispatch_one_pending_signal(); } } switch (result) { case DispatchSignalResult::Yield: yield_without_releasing_big_lock(); break; default: break; } } u32 Thread::pending_signals() const { ScopedSpinLock lock(g_scheduler_lock); return pending_signals_for_state(); } u32 Thread::pending_signals_for_state() const { VERIFY(g_scheduler_lock.own_lock()); constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1)); if (is_handling_page_fault()) return 0; return m_state != Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask; } void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender) { VERIFY(signal < 32); ScopedSpinLock scheduler_lock(g_scheduler_lock); // FIXME: Figure out what to do for masked signals. Should we also ignore them here? if (should_ignore_signal(signal)) { dbgln_if(SIGNAL_DEBUG, "Signal {} was ignored by {}", signal, process()); return; } if constexpr (SIGNAL_DEBUG) { if (sender) dbgln("Signal: {} sent {} to {}", *sender, signal, process()); else dbgln("Signal: Kernel send {} to {}", signal, process()); } m_pending_signals |= 1 << (signal - 1); m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release); if (m_state == Stopped) { ScopedSpinLock lock(m_lock); if (pending_signals_for_state()) { dbgln_if(SIGNAL_DEBUG, "Signal: Resuming stopped {} to deliver signal {}", *this, signal); resume_from_stopped(); } } else { ScopedSpinLock block_lock(m_block_lock); dbgln_if(SIGNAL_DEBUG, "Signal: Unblocking {} to deliver signal {}", *this, signal); unblock(signal); } } u32 Thread::update_signal_mask(u32 signal_mask) { ScopedSpinLock lock(g_scheduler_lock); auto previous_signal_mask = m_signal_mask; m_signal_mask = signal_mask; m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release); return previous_signal_mask; } u32 Thread::signal_mask() const { ScopedSpinLock lock(g_scheduler_lock); return m_signal_mask; } u32 Thread::signal_mask_block(sigset_t signal_set, bool block) { ScopedSpinLock lock(g_scheduler_lock); auto previous_signal_mask = m_signal_mask; if (block) m_signal_mask &= ~signal_set; else m_signal_mask |= signal_set; m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release); return previous_signal_mask; } void Thread::clear_signals() { ScopedSpinLock lock(g_scheduler_lock); m_signal_mask = 0; m_pending_signals = 0; m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release); m_signal_action_data.fill({}); } // Certain exceptions, such as SIGSEGV and SIGILL, put a // thread into a state where the signal handler must be // invoked immediately, otherwise it will continue to fault. // This function should be used in an exception handler to // ensure that when the thread resumes, it's executing in // the appropriate signal handler. void Thread::send_urgent_signal_to_self(u8 signal) { VERIFY(Thread::current() == this); DispatchSignalResult result; { ScopedSpinLock lock(g_scheduler_lock); result = dispatch_signal(signal); } if (result == DispatchSignalResult::Yield) yield_and_release_relock_big_lock(); } DispatchSignalResult Thread::dispatch_one_pending_signal() { VERIFY(m_lock.own_lock()); u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask; if (signal_candidates == 0) return DispatchSignalResult::Continue; u8 signal = 1; for (; signal < 32; ++signal) { if (signal_candidates & (1 << (signal - 1))) { break; } } return dispatch_signal(signal); } DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal) { VERIFY(signal != 0); ScopedSpinLock scheduler_lock(g_scheduler_lock); ScopedSpinLock lock(m_lock); u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask; if (!(signal_candidates & (1 << (signal - 1)))) return DispatchSignalResult::Continue; return dispatch_signal(signal); } enum class DefaultSignalAction { Terminate, Ignore, DumpCore, Stop, Continue, }; static DefaultSignalAction default_signal_action(u8 signal) { VERIFY(signal && signal < NSIG); switch (signal) { case SIGHUP: case SIGINT: case SIGKILL: case SIGPIPE: case SIGALRM: case SIGUSR1: case SIGUSR2: case SIGVTALRM: case SIGSTKFLT: case SIGIO: case SIGPROF: case SIGTERM: return DefaultSignalAction::Terminate; case SIGCHLD: case SIGURG: case SIGWINCH: case SIGINFO: return DefaultSignalAction::Ignore; case SIGQUIT: case SIGILL: case SIGTRAP: case SIGABRT: case SIGBUS: case SIGFPE: case SIGSEGV: case SIGXCPU: case SIGXFSZ: case SIGSYS: return DefaultSignalAction::DumpCore; case SIGCONT: return DefaultSignalAction::Continue; case SIGSTOP: case SIGTSTP: case SIGTTIN: case SIGTTOU: return DefaultSignalAction::Stop; } VERIFY_NOT_REACHED(); } bool Thread::should_ignore_signal(u8 signal) const { VERIFY(signal < 32); auto& action = m_signal_action_data[signal]; if (action.handler_or_sigaction.is_null()) return default_signal_action(signal) == DefaultSignalAction::Ignore; if ((sighandler_t)action.handler_or_sigaction.as_ptr() == SIG_IGN) return true; return false; } bool Thread::has_signal_handler(u8 signal) const { VERIFY(signal < 32); auto& action = m_signal_action_data[signal]; return !action.handler_or_sigaction.is_null(); } static bool push_value_on_user_stack(FlatPtr& stack, FlatPtr data) { stack -= sizeof(FlatPtr); return copy_to_user((FlatPtr*)stack, &data); } void Thread::resume_from_stopped() { VERIFY(is_stopped()); VERIFY(m_stop_state != State::Invalid); VERIFY(g_scheduler_lock.own_lock()); if (m_stop_state == Blocked) { ScopedSpinLock block_lock(m_block_lock); if (m_blocker || m_blocking_lock) { // Hasn't been unblocked yet set_state(Blocked, 0); } else { // Was unblocked while stopped set_state(Runnable); } } else { set_state(m_stop_state, 0); } } DispatchSignalResult Thread::dispatch_signal(u8 signal) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(g_scheduler_lock.own_lock()); VERIFY(signal > 0 && signal <= 32); VERIFY(process().is_user_process()); VERIFY(this == Thread::current()); dbgln_if(SIGNAL_DEBUG, "Dispatch signal {} to {}, state: {}", signal, *this, state_string()); if (m_state == Invalid || !is_initialized()) { // Thread has barely been created, we need to wait until it is // at least in Runnable state and is_initialized() returns true, // which indicates that it is fully set up an we actually have // a register state on the stack that we can modify return DispatchSignalResult::Deferred; } VERIFY(previous_mode() == PreviousMode::UserMode); auto& action = m_signal_action_data[signal]; // FIXME: Implement SA_SIGINFO signal handlers. VERIFY(!(action.flags & SA_SIGINFO)); // Mark this signal as handled. m_pending_signals &= ~(1 << (signal - 1)); m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release); auto& process = this->process(); auto tracer = process.tracer(); if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) { dbgln_if(SIGNAL_DEBUG, "Signal {} stopping this thread", signal); set_state(State::Stopped, signal); return DispatchSignalResult::Yield; } if (signal == SIGCONT) { dbgln("signal: SIGCONT resuming {}", *this); } else { if (tracer) { // when a thread is traced, it should be stopped whenever it receives a signal // the tracer is notified of this by using waitpid() // only "pending signals" from the tracer are sent to the tracee if (!tracer->has_pending_signal(signal)) { dbgln("signal: {} stopping {} for tracer", signal, *this); set_state(Stopped, signal); return DispatchSignalResult::Yield; } tracer->unset_signal(signal); } } auto handler_vaddr = action.handler_or_sigaction; if (handler_vaddr.is_null()) { switch (default_signal_action(signal)) { case DefaultSignalAction::Stop: set_state(Stopped, signal); return DispatchSignalResult::Yield; case DefaultSignalAction::DumpCore: process.set_dump_core(true); process.for_each_thread([](auto& thread) { thread.set_dump_backtrace_on_finalization(); }); [[fallthrough]]; case DefaultSignalAction::Terminate: m_process->terminate_due_to_signal(signal); return DispatchSignalResult::Terminate; case DefaultSignalAction::Ignore: VERIFY_NOT_REACHED(); case DefaultSignalAction::Continue: return DispatchSignalResult::Continue; } VERIFY_NOT_REACHED(); } if ((sighandler_t)handler_vaddr.as_ptr() == SIG_IGN) { dbgln_if(SIGNAL_DEBUG, "Ignored signal {}", signal); return DispatchSignalResult::Continue; } VERIFY(previous_mode() == PreviousMode::UserMode); VERIFY(current_trap()); ProcessPagingScope paging_scope(m_process); u32 old_signal_mask = m_signal_mask; u32 new_signal_mask = action.mask; if (action.flags & SA_NODEFER) new_signal_mask &= ~(1 << (signal - 1)); else new_signal_mask |= 1 << (signal - 1); m_signal_mask |= new_signal_mask; m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release); auto setup_stack = [&](RegisterState& state) { #if ARCH(I386) FlatPtr stack = state.userspace_esp; FlatPtr old_esp = stack; FlatPtr ret_eip = state.eip; FlatPtr ret_eflags = state.eflags; dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to EIP {:p}, ESP {:p}", ret_eip, old_esp); #elif ARCH(X86_64) FlatPtr stack = state.userspace_rsp; FlatPtr old_rsp = stack; FlatPtr ret_rip = state.rip; FlatPtr ret_rflags = state.rflags; dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to RIP {:p}, RSP {:p}", ret_rip, old_rsp); #endif #if ARCH(I386) // Align the stack to 16 bytes. // Note that we push 56 bytes (4 * 14) on to the stack, // so we need to account for this here. // 56 % 16 = 8, so we only need to take 8 bytes into consideration for // the stack alignment. FlatPtr stack_alignment = (stack - 8) % 16; stack -= stack_alignment; push_value_on_user_stack(stack, ret_eflags); push_value_on_user_stack(stack, ret_eip); push_value_on_user_stack(stack, state.eax); push_value_on_user_stack(stack, state.ecx); push_value_on_user_stack(stack, state.edx); push_value_on_user_stack(stack, state.ebx); push_value_on_user_stack(stack, old_esp); push_value_on_user_stack(stack, state.ebp); push_value_on_user_stack(stack, state.esi); push_value_on_user_stack(stack, state.edi); #else // Align the stack to 16 bytes. // Note that we push 176 bytes (8 * 22) on to the stack, // so we need to account for this here. // 22 % 2 = 0, so we dont need to take anything into consideration // for the alignment. // We also are not allowed to touch the thread's red-zone of 128 bytes FlatPtr stack_alignment = stack % 16; stack -= 128 + stack_alignment; push_value_on_user_stack(stack, ret_rflags); push_value_on_user_stack(stack, ret_rip); push_value_on_user_stack(stack, state.r15); push_value_on_user_stack(stack, state.r14); push_value_on_user_stack(stack, state.r13); push_value_on_user_stack(stack, state.r12); push_value_on_user_stack(stack, state.r11); push_value_on_user_stack(stack, state.r10); push_value_on_user_stack(stack, state.r9); push_value_on_user_stack(stack, state.r8); push_value_on_user_stack(stack, state.rax); push_value_on_user_stack(stack, state.rcx); push_value_on_user_stack(stack, state.rdx); push_value_on_user_stack(stack, state.rbx); push_value_on_user_stack(stack, old_rsp); push_value_on_user_stack(stack, state.rbp); push_value_on_user_stack(stack, state.rsi); push_value_on_user_stack(stack, state.rdi); #endif // PUSH old_signal_mask push_value_on_user_stack(stack, old_signal_mask); push_value_on_user_stack(stack, signal); push_value_on_user_stack(stack, handler_vaddr.get()); push_value_on_user_stack(stack, 0); // push fake return address // We write back the adjusted stack value into the register state. // We have to do this because we can't just pass around a reference to a packed field, as it's UB. #if ARCH(I386) state.userspace_esp = stack; #else state.userspace_rsp = stack; #endif VERIFY((stack % 16) == 0); }; // We now place the thread state on the userspace stack. // Note that we use a RegisterState. // Conversely, when the thread isn't blocking the RegisterState may not be // valid (fork, exec etc) but the tss will, so we use that instead. auto& regs = get_register_dump_from_stack(); setup_stack(regs); auto signal_trampoline_addr = process.signal_trampoline().get(); regs.set_ip_reg(signal_trampoline_addr); dbgln_if(SIGNAL_DEBUG, "Thread in state '{}' has been primed with signal handler {:#04x}:{:p} to deliver {}", state_string(), m_regs.cs, m_regs.ip(), signal); return DispatchSignalResult::Continue; } RegisterState& Thread::get_register_dump_from_stack() { auto* trap = current_trap(); // We should *always* have a trap. If we don't we're probably a kernel // thread that hasn't been pre-empted. If we want to support this, we // need to capture the registers probably into m_regs and return it VERIFY(trap); while (trap) { if (!trap->next_trap) break; trap = trap->next_trap; } return *trap->regs; } RefPtr Thread::clone(Process& process) { auto thread_or_error = Thread::try_create(process); if (thread_or_error.is_error()) return {}; auto& clone = thread_or_error.value(); auto signal_action_data_span = m_signal_action_data.span(); signal_action_data_span.copy_to(clone->m_signal_action_data.span()); clone->m_signal_mask = m_signal_mask; clone->m_fpu_state = m_fpu_state; clone->m_thread_specific_data = m_thread_specific_data; return clone; } void Thread::set_state(State new_state, u8 stop_signal) { State previous_state; VERIFY(g_scheduler_lock.own_lock()); if (new_state == m_state) return; { ScopedSpinLock thread_lock(m_lock); previous_state = m_state; if (previous_state == Invalid) { // If we were *just* created, we may have already pending signals if (has_unmasked_pending_signals()) { dbgln_if(THREAD_DEBUG, "Dispatch pending signals to new thread {}", *this); dispatch_one_pending_signal(); } } m_state = new_state; dbgln_if(THREAD_DEBUG, "Set thread {} state to {}", *this, state_string()); } if (previous_state == Runnable) { Scheduler::dequeue_runnable_thread(*this); } else if (previous_state == Stopped) { m_stop_state = State::Invalid; auto& process = this->process(); if (process.set_stopped(false) == true) { process.for_each_thread([&](auto& thread) { if (&thread == this) return; if (!thread.is_stopped()) return; dbgln_if(THREAD_DEBUG, "Resuming peer thread {}", thread); thread.resume_from_stopped(); }); process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued); // Tell the parent process (if any) about this change. if (auto parent = Process::from_pid(process.ppid())) { [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process); } } } if (m_state == Runnable) { Scheduler::enqueue_runnable_thread(*this); Processor::smp_wake_n_idle_processors(1); } else if (m_state == Stopped) { // We don't want to restore to Running state, only Runnable! m_stop_state = previous_state != Running ? previous_state : Runnable; auto& process = this->process(); if (process.set_stopped(true) == false) { process.for_each_thread([&](auto& thread) { if (&thread == this) return; if (thread.is_stopped()) return; dbgln_if(THREAD_DEBUG, "Stopping peer thread {}", thread); thread.set_state(Stopped, stop_signal); }); process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal); // Tell the parent process (if any) about this change. if (auto parent = Process::from_pid(process.ppid())) { [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process); } } } else if (m_state == Dying) { VERIFY(previous_state != Blocked); if (this != Thread::current() && is_finalizable()) { // Some other thread set this thread to Dying, notify the // finalizer right away as it can be cleaned up now Scheduler::notify_finalizer(); } } } struct RecognizedSymbol { FlatPtr address; const KernelSymbol* symbol { nullptr }; }; static bool symbolicate(RecognizedSymbol const& symbol, Process& process, StringBuilder& builder) { if (!symbol.address) return false; bool mask_kernel_addresses = !process.is_superuser(); if (!symbol.symbol) { if (!Memory::is_user_address(VirtualAddress(symbol.address))) { builder.append("0xdeadc0de\n"); } else { if (auto* region = process.address_space().find_region_containing({ VirtualAddress(symbol.address), sizeof(FlatPtr) })) { size_t offset = symbol.address - region->vaddr().get(); if (auto region_name = region->name(); !region_name.is_null() && !region_name.is_empty()) builder.appendff("{:p} {} + {:#x}\n", (void*)symbol.address, region_name, offset); else builder.appendff("{:p} {:p} + {:#x}\n", (void*)symbol.address, region->vaddr().as_ptr(), offset); } else { builder.appendff("{:p}\n", symbol.address); } } return true; } unsigned offset = symbol.address - symbol.symbol->address; if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) { builder.appendff("{:p}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address)); } else { builder.appendff("{:p} {} + {:#x}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address), symbol.symbol->name, offset); } return true; } String Thread::backtrace() { Vector recognized_symbols; auto& process = const_cast(this->process()); auto stack_trace = Processor::capture_stack_trace(*this); VERIFY(!g_scheduler_lock.own_lock()); ProcessPagingScope paging_scope(process); for (auto& frame : stack_trace) { if (Memory::is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) { recognized_symbols.append({ frame }); } else { recognized_symbols.append({ frame, symbolicate_kernel_address(frame) }); } } StringBuilder builder; for (auto& symbol : recognized_symbols) { if (!symbolicate(symbol, process, builder)) break; } return builder.to_string(); } size_t Thread::thread_specific_region_alignment() const { return max(process().m_master_tls_alignment, alignof(ThreadSpecificData)); } size_t Thread::thread_specific_region_size() const { return align_up_to(process().m_master_tls_size, thread_specific_region_alignment()) + sizeof(ThreadSpecificData); } KResult Thread::make_thread_specific_region(Badge) { // The process may not require a TLS region, or allocate TLS later with sys$allocate_tls (which is what dynamically loaded programs do) if (!process().m_master_tls_region) return KSuccess; auto range = process().address_space().allocate_range({}, thread_specific_region_size()); if (!range.has_value()) return ENOMEM; auto region_or_error = process().address_space().allocate_region(range.value(), "Thread-specific", PROT_READ | PROT_WRITE); if (region_or_error.is_error()) return region_or_error.error(); m_thread_specific_range = range.value(); SmapDisabler disabler; auto* thread_specific_data = (ThreadSpecificData*)region_or_error.value()->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment())).as_ptr(); auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment); m_thread_specific_data = VirtualAddress(thread_specific_data); thread_specific_data->self = thread_specific_data; if (process().m_master_tls_size) memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size); return KSuccess; } RefPtr Thread::from_tid(ThreadID tid) { return Thread::all_instances().with([&](auto& list) -> RefPtr { for (Thread& thread : list) { if (thread.tid() == tid) return thread; } return nullptr; }); } void Thread::reset_fpu_state() { memcpy(&m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState)); } bool Thread::should_be_stopped() const { return process().is_stopped(); } } void AK::Formatter::format(FormatBuilder& builder, const Kernel::Thread& value) { return AK::Formatter::format( builder, "{}({}:{})", value.process().name(), value.pid().value(), value.tid().value()); }