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OpenGAN: Open-Set Recognition via Open
Data Generation

Shu Kong, and Deva Ramanan

Abstract—Real-world machine learning systems need to analyze test data that may differ from training data. In K-way classification,
this is crisply formulated as open-set recognition, core to which is the ability to discriminate open-set data outside the K closed-set
classes. Two conceptually elegant ideas for open-set discrimination are: 1) discriminatively learning an open-vs-closed binary
discriminator by exploiting some outlier data as the open-set, and 2) unsupervised learning the closed-set data distribution with a GAN,
using its discriminator as the open-set likelihood function. However, the former generalizes poorly to diverse open test data due to
overfitting to the training outliers, which are unlikely to exhaustively span the open-world. The latter does not work well, presumably due
to the unstable training of GANs. Motivated by the above, we propose OpenGAN, which addresses the limitation of each approach by
combining them with several technical insights. First, we show that a carefully selected GAN-discriminator on some real outlier data
already achieves the state-of-the-art. Second, we augment the available set of real open training examples with adversarially
synthesized “fake” data. Third and most importantly, we build the discriminator over the features computed by the closed-world K-way
networks. This allows OpenGAN to be implemented via a lightweight discriminator head built on top of an existing K-way network.
Extensive experiments show that OpenGAN significantly outperforms prior open-set methods.

Index Terms—Open-Set Recognition, Outlier, Out-of-Distribution Detection, Generative Adversarial Network, Discriminative
Adversarial Network, Open-World, Visual Perception, Semantic Segmentation.

✦

1 INTRODUCTION

M ACHINE learning systems that operate in the real open-
world invariably encounter test-time data that is unlike

training examples, such as anomalies or rare objects that were
insufficiently (or never) observed during training. Fig. 1 illus-
trates two cases in which a state-of-the-art semantic segmentation
network misclassifies a “stroller” / “street-market” — a rare
occurrence in either training or testing — as a “motorcycle” /
“building”. This failure could be catastrophic for an autonomous
vehicle.

Addressing the open-world has been explored through
anomaly detection [3], [4], and out-of-distribution detection [5].
In K-way classification, this task can be crisply formulated as
open-set recognition, which requires discriminating open-set data
that belongs to a (K+1)th “other” class, outside the K closed-set
classes [6]. Typically, open-set discrimination assumes no exam-
ples from the “other” class available during training [7], [8], [9].
In this setup, one elegant approach is to learn the closed-set data
distribution with a GAN, making use of the GAN-discriminator
as the open-set likelihood function (Fig. 2b) [10], [11], [12],
[13], [14]. However, this does not work well due to the unstable
training of GANs. Recent work has shown that outlier exposure
(Fig. 2a), or the ability to train on some outlier data as open-
training examples, can work surprisingly well via the training of
a simple open-vs-closed binary discriminator [4], [15]. However,
such discriminators fail to generalize to diverse open-set data [16]
because they overfit to the available set of training outliers, which
are often biased and fail to exhaustively span the open-world.
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Fig. 1: We motivate open-set recognition with safety concerns
in autonomous vehicles (AVs). Contemporary benchmarks such as
Cityscapes [1] focus on K classes of interest for evaluation, ignoring
a sizeable set of “other” pixels that include vulnerable objects like
wheelchairs and strollers (upper row). As a result, most state-of-the-
art segmentation models [2] also ignore these pixels during training,
resulting in a stroller misclassified as a “motorcycle” (top) and a
street-market misclassified as a “building”. Such misclassifications
may be critical for AVs because these objects may require different
plans for obstacle avoidance (e.g., “yield” or “slow-down”). Fig. 6
shows our approach, which explicitly augments state-of-the-art seg-
mentation models with open-set reasoning.

Motivated by above, we introduce OpenGAN, a simple approach
that dramatically improves open-set classification accuracy by
incorporating several key insights. First, we show that using outlier
data as a valset to select the “right” GAN-discriminator does
achieve the state-of-the-art on open-set discrimination. Second,
with outlier exposure, we augment the available set of open-
training data by adversarially generating fake open examples that
fool the binary discriminator (Fig. 2c). Third and most importantly,
rather than defining discriminators on pixels, we define them on
off-the-shelf (OTS) features computed by the closed-world K-
way classification network (Fig. 2d). We find such discriminators
generalize much better.
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Fig. 2: We explore open-set recognition, which requires the ability to discriminate open-set test examples outside K classes of interest. (a)
A discriminative method, Outlier Exposure [4], exploits outlier data to learn a binary discriminator D for open-set discrimination. Because
outliers observed during training will not exhaustively span the open-world, the discriminator D tends to generalize poorly to diverse open-
set data [16]. (b) To better span the open-world, one idea is to synthesize fake outliers using a generator that is trained to fool the binary
discriminator D. This is exactly the Generative Adversarial Network (GAN) architecture [17]. Because GAN is designed to learn the closed-set
data distribution, we can use the GAN discriminator as the open-set likelihood function. However, it does not work well due to the unstable
training of GANs [10], [11], [12], [13], [14]. (c) We introduce OpenGAN, which augments training outliers with fake open data synthesized by
a generator G trained to fool the discriminator D. Importantly, we find that a small number of outliers stabilizes training by enabling effective
model selection of the discriminator D. (d) Because we are concerned with accurate discrimination rather than realistic pixel generation, we
find it more efficient to generate (and discriminate) low-dimensional features from the off-the-shelf K-way classification network. This allows
OpenGAN to be implemented via a lightweight discriminator head built on top of an existing K-way network, enabling closed-world systems
to be readily modified for open-set recognition.

Our formulation differs in three ways from other open-set
approaches that employ GANs. (1) Our goal is not to generate
realistic pixel images, but rather to learn a robust open-vs-closed
discriminator that naturally serves as an open-set likelihood func-
tion. Because of this, our approach might be better characterized
as a Discriminative Adversarial Network! (2) We train the dis-
criminator with both fake data (synthesized from the generator)
and real open-training examples (cf. outlier exposure [4]). (3) We
train GANs on OTS features rather than RGB pixels. We show
that OpenGAN significantly outperforms prior work for open-set
recognition across a variety of tasks including image classification
and pixel segmentation. Moreover, we demonstrate that our tech-
nical insights improve the accuracy of other GAN-based open-
set methods: training them on OTS features and selecting their
discriminators via validation as the open-set likelihood functions.

2 RELATED WORK

Open-Set Recognition. There are multiple lines of work address-
ing open-set discrimination, such as anomaly detection [3], [5],
[18], outlier detection [11], [12], and open-set recognition [6],
[19]. The typical setup for these problems assumes that one
does not have access to training examples of open-set data.
As a result, many approaches first train a closed-world K-way
classification network on the closed-set [7], [20] and then exploit
the trained network for open-set discrimination [6], [9], [21]. Some
others train “ground-up” models for both closed-world K-way
classification and open-set discrimination by synthesizing fake
open data during training, oftentimes sacrificing the classification
accuracy on the closed-set [8], [22], [23], [24]. To recognize
open-set examples, they resort to post-hoc functions like density
estimation [3], [25], uncertainty modeling [5], [26], and input
image reconstruction [12], [24], [27], [28]. We also explore open-
set recognition through K-way classification networks, but we
show OpenGAN, a simple and direct method of training an open-
vs-closed classifier on adverserial data, performs significantly
better than prior work.

Open-Set Recognition with GANs. As GANs can learn data
distributions [17], conceptually, a GAN-discriminator trained on
the closed-set naturally serves as an open-set likelihood function.
However, this does not work well [10], [11], [12], [13], [14],
presumably due to instable training of GANs. As a result, previous

GAN-based methods focus on 1) generating fake open-set data
to augment the training set, and 2) relying on the reconstruction
error for open-set recognition [10], [11], [29], [30], [31]. With
OpenGAN, we show that GAN-discriminator can achieve the
state-of-the-art for open-set discrimination once we perform model
selection on a valset of outlier examples. Therefore, unlike prior
approaches, OpenGAN directly uses the discriminator as the open-
set likelihood function. Moreover, our final version of OpenGAN
generates features rather than pixel images.

Open-Set Recognition with Outlier Exposure. [4], [15], [32]
reformulate the problem with the concept of “outlier exposure”
which allows methods to access some outlier data as open-training
examples. In this setting, simply training a binary open-vs-closed
classifier works surprisingly well. However, such classifiers easily
overfit to the available set of open-training data and generalize
poorly, e.g., in a “cross-dataset” setting where open-set testing
data differs from open-training data [16]. It appears fundamentally
challenging to collect outlier data to curate an exhaustive training
set of open-set examples. Our approach, OpenGAN, attempts to
address this issue by augmenting the training set with adversarial
fake open-training examples.

3 OPENGAN FOR OPEN-SET RECOGNITION

Generally, solutions to open-set recognition contain two steps:
(1) open-set discrimination that classifies testing examples into
closed and open sets based on the open-set likelihoods, and (2) K-
way classification on the recognized closed-set [6], [9], [33]. The
core and challenging problem to open-set recognition is the first
step, i.e., open-set discrimination, because it typically assumes
that open-set examples are not available during training [9], [23].
However, [4], [15] demonstrate that outlier exposure, or the ability
to train on some outlier examples, can greatly improve open-set
discrimination via the training of a simple discriminative open-
vs-closed binary classifier (Fig. 2a). Because it is challenging to
construct a training set that exhaustively spans the open-world,
such a classifier may overfit to the outlier data and not sufficiently
generalize [16]. We demonstrate that OpenGAN alleviates this
challenge by generating fake open-set training examples using
a generator that is adversarially trained to fool the classifier.
Importantly, with model selection on a valset, OpenGAN is also
effective under the classic setup which assumes no availability of
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open-training data. We refer the reader to Fig. 2 for the nutshell of
our methodology.

3.1 Methodology

Let x be a data example, represented by either an RGB image
or its feature representation. We will show that using the latter
performs better. Let Dclosed(x) be the closed-world distribution
over x — that is, closed-set data from the K closed-set classes.
Let Dopen(x) be the open-set data distribution of examples which
do not belong to the closed-set.

Binary Classifier. We train a binary classifier D from both
closed- and open-set data:

max
D

Ex∼Dclosed
[ logD(x)] + λo · Ex∼Dopen

[ log (1−D(x))]

where D(x) = p(y=“closed-set”|x). Intuitively, we tune λo to
balance the closed- and open-set training examples. This sim-
ple method is effective when the open-training examples are
sufficiently representative of testing-time open-set data [4], but
underperforms when they fail to span the open-world [16].

Synthetic Open Data. One solution to the above is to exploit
synthetic training data, which might improve the generalizability
of classifier D. Assume we have a generator network G(z) that
produces synthetic images given (Gaussian normal) random noise
inputs z ∼ N . We can naively add them to the pool of negative or
open-set examples that D should not fire on. But these synthetic
images might be too easy for D to categorize as open-set data [34],
[35]. A natural solution is to adversarially train the generator G to
produce difficult examples that fool the classifier D using a GAN
loss:

min
G

Ez∼N

[
log (1−D(G(z)))

]
(1)

It is worth noting that a perfectly trained generator G would
generate realistic closed-set images that eventually make the
discriminator D inapplicable for open-set discrimination. We find
that the following two techniques easily resolve this issue.

OpenGAN trains with both the real open- and closed-set
data and the fake open-data into a single (GAN-like) minimax
optimization over D and G:

max
D

min
G

Ex∼Dclosed [ logD(x)]

+ λo · Ex̄∼Dopen [ log (1−D(x̄))]

+ λG · Ez∼N [ log (1−D(G(z)))]

(2)

where λG controls the contribution of generated fake open-data
by G. When there are no open training examples (i.e., λo=0),
the above minimax optimization can still train a discriminator D
for open-set classification. In this case, training an OpenGAN is
equivalent to training a normal GAN and using its discriminator
as the open-set likelihood function. While past work suggests that
GAN-discriminators do not work well as open-set likelihood func-
tions, we show they do achieve the state-of-the-art once selected
with a valset (detailed below). To distinguish our contribution on
the crucial step of model selection via validation, we call this
method OpenGAN-0.

Open Validation. Model selection is challenging for GANs.
Typically, one resorts to visual inspection of generated images
from different model checkpoints to select the generator G [17].
In our case, we must carefully select the discriminator D. We
experimented with many approaches such as using the last model
checkpoint or selecting the one with minimum training error, but
neither works. This is because adversarial training will eventually

lead to a discriminator D that is incapable of discriminating
closed-set data and fake open-set data generated by G (details
in the appendix). We find it crucial to use a validation set of
real outlier data to select D, when D achieves the best open-vs-
closed classification accuracy on the valset. We find the test-time
performance to be quite robust to the val-set of outlier examples,
even when they are drawn from a different distribution from those
encountered at test-time (Table 3 and 4).

3.2 Comparison to Prior GAN Methods
We compare OpenGAN to a number of prior methods that use
GANs for open-set discrimination.

Discriminator vs. Generator. Typically, GANs aim at gener-
ating realistic images [36], [37]. As a result, prior work in open-
set recognition has focused on using GANs to generate realistic
open-training images [22], [23], [38]. These additional images are
used to augment the training set for learning an open-set model,
which oftentimes is designed for both the closed-world K-way
classification and open-set discrimination [22], [23], [38]. In our
case, we do not learn a separate open-set model but directly use the
already-trained discriminator as the open-set likelihood function.

Features vs. Pixels. GANs are typically used to generate
realistic pixel images. As a result, many GAN-based open-set
methods focus on generating realistic images to augment the
closed-set training data [4], [12], [13]. However, generating high-
dimensional realistic images is challenging per se [36], [37] and
may not be necessary to open-set recognition [12]. As such, we
build GANs over OTS feature embeddings learned by the closed-
world K-way classification network, e.g., over pre-logit features
at the penultimate layer. This allows for exploiting an enormous
amount of engineering effort “for free” (e.g., network design).

Classification vs. Reconstruction. We note that most, if
not all, GAN-based methods largely rely on the reconstruction
error for open-set discrimination [9], [10], [11], [12], [13]. The
underlying assumption is that closed-set data produces lower
reconstruction error than the open-set. While this is reasonable
just like building generative models over closed-set data [39], it is
challenging to reconstruct complex, high-resolution images [36],
[37], such as the Cityscapes images shown in Fig. 1. On the con-
trary, we directly use the discriminator as the open-set likelihood
function. Such a baseline has been shown to perform poorly in
large body of prior work [10], [11], [12], [13], [14]. Importantly,
to the best of our knowledge, ours is the first result to demonstrate
the strong performance of GAN-discriminators, thanks in large
part to model selection via open validation (Section 3.1).

4 EXPERIMENT

We conduct extensive experiments to validate OpenGAN under
various setups, and justify the advantage of exploiting OTS fea-
tures and using the GAN-discriminator as the open-set likelihood
function. We first briefly introduce three experimental setups
below (details in later sections).
• Setup-I open-set discrimination splits a single dataset into open

and closed sets w.r.t class labels, e.g., define MNIST digits 0-5
as the closed-set for training, and digits 6-9 as the open-set in
testing. Although small-scale, this is a common experimental
protocol for open-set discrimination that classifies open-vs-
closed test examples [9], [23], [25], [42].

• Setup-II open-set recognition requires both K-way classifica-
tion on the closed-set and open-set discrimination. We follow a
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TABLE 1: Open-set discrimination (Setup-I) measured by area under ROC curve (AUROC)↑. We report methods marked by ∗ with their
best reported numbers in the compared papers. Recall that OpenGAN-0 does not train on outlier data (i.e., λ0=0 in Eq. 2) and only selects
discriminator checkpoints on the validation set. OpenGAN-0fea clearly performs the best. Defined on the off-the-shelf (OTS) features of
closed-world K-way networks, NNfea and OpenGAN-0fea work much better than their pixel version (NNpix and OpenGAN-0pix).

MSP MSPc MCdrop GDM OpenMax GOpenMax OSRCI GMM C2AE CROSR CGDL RPL Hybrid GDFR NNpix NNfea OpenGAN OpenGAN
Dataset [20] [5] [26] [21] [7] [22]∗ [23]∗ [39] [9]∗ [8]∗ [24] [35]∗ [25]∗ [40]∗ [41] [41] -0pix -0fea

MNIST .977 .985 .984 .989 .981 .984 .988 .993 .989 .991 .994 .996 .995 — .931 .981 .987 .999
SVHN .886 .891 .884 .866 .894 .896 .910 .914 .922 .899 .935 .968 .947 .935 .534 .888 .881 .988
CIFAR .757 .808 .732 .752 .811 .675 .699 .817 .895 .883 .903 .901 .950 .807 .544 .801 .971 .973
TinyIN .577 .713 .675 .712 .576 .580 .586 .817 .748 .589 — .809 .793 .608 .528 .692 .795 .907

“less biased” protocol [16] that constructs the open train&test-
sets with cross-dataset images [43].

• Setup-III examines the open-set discrimination at pixel level
in semantic segmentation, which evaluates pixel-level open-vs-
closed classification accuracy [44], [45].

Implementation. We describe how to train the closed-world
K-way classification networks which compute OTS features used
for training OpenGANfea (Fig. 2d) and other methods (e.g.,
OpenMax [7] and C2AE [9]). For training K-way networks under
Setup-I and II, we train a ResNet18 model [46] exclusively on the
closed-train-set (with K-way cross-entropy loss). Under Setup-
III, we use HRNet [2] as an OTS network, which is a top ranked
model for semantic segmentation on Cityscapes [1]. We choose
the penultimate/pre-logit layer of each K-way network to extract
OTS features. Other layers also apply but we do not explore
them in this work. Over the features, we train OpenGANfea

discriminator (2MB), as well as the generator (2MB), with a
multi-layer perceptron architecture. For comparison, we also train
a ground-up OpenGANpix over pixels with a CNN architecture
(∼14MB) [47]. We train our OpenGAN models using GAN
techniques [48]. Compared to the segmentation network HR-
Net (250MB), OpenGANfea is quite lightweight that induces
minimal compute overhead. We refer the reader to Appendix
B for network architectures. We conduct experiments with Py-
Torch [49] on a single Titan X GPU. Code is available at
https://github.com/aimerykong/OpenGAN

Evaluation Metric. To evaluate open-set discrimination that
measures the open-vs-closed binary classification performance, we
follow the literature [9], [21] and use the area under ROC curve
(AUROC) [50]. AUROC is a calibration-free and threshold-less
metric, simplifying comparisons between methods and reliable in
large open-closed imbalance situation. For open-set recognition
that measures (K+1)-way classification accuracy (K closed-set
classes plus the (K+1)th open-set class), we report the macro
average F1-score over all the (K+1) classes on the valsets [6], [7].

4.1 Compared Methods

We compare the following representative baselines and state-of-
the-art methods for open-set recognition.

Baselines. First, we explore classic generative models learned
on the closed-train-set, including Nearest Neighbors (NNs) [41]
and Gaussian Mixture Models (GMMs) which were found to
perform quite well over L2-normalized OTS features yet underex-
plored in the literature of open-set recognition [39]. We refer the
reader to the Appendix A for a brief overview how to learn these
models. For open-set discrimination, we threshold NN distances
or GMM likelihoods. We further examine the idea of outlier
exposure [4] that learns an open-vs-closed binary classifier (CLS).
Lastly, following classic work in semantic segmentation [51], we
evaluate a (K+1)-way classifier trained with outlier exposure, in

which we use the softmax score corresponding to the (K+1)th

“other” class as the open-set likelihood.
Likelihoods. Many methods compute open-set likelihood on

OTS features, including Max Softmax Probability (MSP) [20] and
Entropy [52] (derived from softmax probabilities), and calibrated
MSP (MSPc) [5]. OpenMax [7] fits logits to Weibull distribu-
tions [53] that recalibrate softmax outputs for open-set recogni-
tion. C2AE [9] learns an additional K-way classifier over the OTS
features using reconstruction errors, which are then used as the
open-set likelihoods. GDM [21] learns a Gaussian Discriminant
Model on OTS features and computes open-set likelihood based
on Mahalanobis distance.

Bayesian Networks. Bayesian neural networks estimate un-
certainties via Monte Carlo estimates (MCdrop) [26], [54]. The
estimated uncertainties are used as open-set likelihoods. We im-
plement MCdrop via 500 samples.

GANs. GOpenMax [22] and OSRCI [23] train GANs to
generate fake images to augment closed-set data for open-set
recognition. Other types of GANs can also be used for open-
set recognition, such as BiGANs [13], on which we show our
technical insights (e.g., training on OTS features and directly using
the discriminator) also apply (cf. Table 2).

When possible, we train the methods using their open-source
code. We implement NN, CLS and OpenGAN on both RGB
images (marked with pix) and OTS features (marked with fea)
for comparison. For fair comparison, we tune all the models for
all methods on the same val-sets.

4.2 Setup-I: Open-Set Discrimination

Datasets. MNIST/CIFAR/SVHN/TinyImageNet are widely used
in the open-set literature, and we follow the literature to exper-
iment with these datasets [9], [23]. For each of the first three
datasets that have ten classes, we randomly split 6 (4) classes
of train/val-sets as the closed (open) train/val-sets respectively.
For TinyImageNet that has 200 classes, we randomly split 20
(180) classes of train/val-sets as the closed (open) train/val-set.
On each dataset and for each method, we repeat five times with
different random splits and report the average AUROC on the val-
set [9], [23]. As all methods have small standard deviations in their
performance (<0.02), we omit them for brevity.

Results. As this setup assumes no open training data, we
cannot train discriminative classifiers like CLS. But we can
still train OpenGAN-0 that uses GAN-discriminator (with model
selection on the same val-set) as the open likelihood function.
We have two salient conclusions from the results in Table 1.
(1) Methods (e.g., NN and OpenGAN) work better on OTS
features than pixels, suggesting that OTS features computed by the
underlying K-way network are already good representations for
open-set discrimination. (2) OpenGAN-0fea performs the best and
OpenGAN-0pix is competitive with prior methods such as GDM
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TABLE 2: Our technical insights apply to other GAN-based open-
set discrimination methods: 1) using BiGAN-discriminator as the
open likelihood function works better than using reconstruction errors
(BiGANfea

d vs. BiGANfea
r ), and 2) learning BiGANs on OTS features

works much better than pixels (BiGANfea
d vs. BiGANpix

d ). The results
are comparable to Table 1.

dataset BiGANpix
r BiGANfea

r BiGANpix
d BiGANfea

d
MNIST .976 .998 .986 .999
SVHN .822 .976 .880 .993
CIFAR .924 .967 .968 .973

and GMM, suggesting that the GAN-discriminator is a powerful
open likelihood function.

Further Analysis. There are many other GAN-based open-set
methods, such as training BiGANs [10], [13], [55] or adversarial
autoencoders [11], [12] on raw images, and using the reconstruc-
tion error as open-set likelihoods [10], [11], [13], [30], [31]. We
show our technical insights apply to different GAN architectures
for open-set recognition: (1) using GAN-discriminator as the
open-set likelihood function instead of pixel reconstruction errors,
and (2) training them on OTS features rather than raw pixels.
We hereby analyze a typical BiGAN-based method [13], which
learns a BiGAN with both the reconstruction error and the GAN-
discriminator. We compare BiGAN’s performance by either using
the reconstruction error (BiGANr) or its discriminator (BiGANd)
for open-set recognition. We also compare building BiGANs
on either pixels (BiGANpix) or features (BiGANfea). Table 2
lists detailed comparisons under Setup-I (all models are selected
on the val-sets). Clearly, our conclusions hold regardless of the
base GAN architecture: 1) using OTS features rather than pixels
(cf. BiGANfea vs BiGANpix), and 2) more importantly, using
discriminators instead of reconstruction errors (cf. BiGANd vs.
BiGANr).

Visualization. Recall that OpenGAN-0pix trains a generator
that synthesizes fake open-set training images. We visualize the
synthesized images in Fig. 3. Interestingly, patterns, colors and
shapes in the synthesized images resemble those in the real closed-
set images. However, the GAN-discriminator produces very low
closed-set confidence scores for them, demonstrating that (1) these
synthesized images are classified as the open-set, and (2) they are
easy to recognize as fake / open-set. This also suggests that the
synthesized data are insufficient to be used for model selection,
which is studied further in Section 4.5.

4.3 Setup-II: Cross-Dataset Open-Set Recognition

Using cross-dataset examples as the open-set is another estab-
lished protocol [4], [5], [15], [21]. We follow the “less biased”
protocol introduced in [16], which uses three datasets for bench-
marking to reduce dataset-level bias [43]. This protocol tests
the generalization of open-set methods to diverse open testing
examples.

Datasets. We use TinyImageNet as the closed-set for K-
way classification (K=200). Images of each class are split into
500/50/50 images as the train/val/test sets. Following [16], we con-
struct open train/val and test sets using different datasets [43], in-
cluding MNIST (MN), SVHN (SV), CIFAR (CF) and Cityscapes
(CS). For example, we use MNIST train-set to tune/train a
model and CIFAR test-set as the open-set for testing. This allows
for analyzing how open-set methods generalize to diverse open
testing examples (cf. Table 4). As different datasets have different
resolutions of the images, we use bilinear interpolation to resize
all images to 64x64 to match TinyImageNet image resolution.

Results. Table 3 shows detailed results. First, methods perform
much better on features than pixels (e.g., CLSfea vs. CLSpix), and
our OpenGAN performs the best by learning to synthesize fake
open-set training data. Perhaps surprisingly, OpenMax, a classic
open-set, does not work well in this setup. This is consistent with
the results in [15], [16]. We conjecture that OpenMax cannot
effectively recognize cross-dataset open-set examples represented
by logit features (computed by the K-way network) which are too
invariant to be adequate for open-set discrimination. Moreover,
the (K+1)-way classifier works quite well, even better than the
open-vs-closed binary classifiers (CLS) in AUROC.

Further Analysis. Table 4 lists detailed results of OpenGAN,
CLS (λG=0 in Eq. 2) and OpenGAN-0 (λo=0 in Eq. 2), when
trained/tuned and tested on different cross-dataset open-set ex-
amples. All methods perform better on OTS features than pixels
(cf. CLSfea vs. CLSpix); and work almost perfectly when trained
and tested with the same open-set dataset, e.g., column-CF under
“CIFAR-train (CF)” where we use CIFAR images as the open-
set data. However, when tested on a different dataset of open-
set examples, CLS performs quite poorly (especially when built
on pixels) because it overfits easily to high-dimensional pixel
images [16]. In contrast, with fake open-data generated adver-
sarially, OpenGAN and its special form OpenGAN-0 perform and
generalize much better. Nevertheless, this implies a failure mode
of OpenGAN, because the open-set data used in training could
be quite different from those in testing, potentially leading to an
OpenGAN that performs poorly in the real open world. Perhaps
surprisingly, OpenGAN-0fea performs as well as OpenGANfea,
although it does not train on open-set data. This further shows the
merit of generating fake open examples to augment heavily-biased
open-set training data, and our technique insights (as previously
analyzed under Setup-I): (1) using GAN-discriminator as the open-
set likelihood function, and (2) training GANs on OTS features
rather than pixels.

Visualization. To intuitively illustrate how the synthesized
images help better span the open-world, we analyze why a simple
discriminator works so well when trained on the OTS features.
We visualize the features in Fig. 4 (a) and “decision landscape” in
Fig. 4 (b-e), demonstrating that the closed- and open-set images
are clearly separated in the feature space. Recall that OpenGAN-
0pix trains a generator that synthesizes fake open-set images. We
visualize some of these fake images in Fig. 5. The generated
images have similar colors and tones to the real closed-set ones
but their contents are not real objects. This suggests that the
synthesized fake open-set images are not closed-set but “real” out-
liers. However, from the low confidence scores of classifying the
generated fake images as closed-set, we can see the discriminator
easily recognizes them as open-set / outliers. This further shows
that using synthesized data is inadequate for model selection.

4.4 Setup-III: Open-Set Semantic Segmentation

Open-set semantic segmentation has been explored recently [44],
[45], which creates synthetic open-set pixels by pasting virtual
objects (e.g., cropped from PASCAL VOC [51]) on Cityscapes
images. In this work, we do not generate synthetic pixels but
instead repurpose “other” pixels (outside the K closed-set classes)
that already exist in Cityscapes. Interestingly, classic semantic
segmentation benchmarks evaluate these “other” pixels as a sep-
arate background class [51], but Cityscapes ignores them in its
evaluation (so do other contemporary datasets [56], [57], [58],
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0.001 0.005 0.037 0.003 0.296 0.001 0.002 0.002 0.002 0.006 0.001 0.0000.999 0.988 0.947 0.967 0.982 0.996

0.020 0.009 0.489 0.027 0.129 0.207 0.003 0.009 0.000 0.000 0.001 0.0050.950 0.995 0.998 0.946 0.994 0.999

0.020 0.010 0.005 0.014 0.004 0.0740.810 0.515 0.537 0.672 0.539 0.7820.999 0.998 0.995 0.998 0.997 0.999

0.008 0.004 0.035 0.052 0.118 0.0340.727 0.198 0.448 0.452 0.099 0.9810.997 1.000 0.996 0.999 0.998 0.999

0.030 0.002 0.037 0.001 0.005 0.0000.003 0.000 0.012 0.009 0.006 0.0140.999 0.985 0.981 0.982 0.980 0.999

0.005 0.009 0.002 0.015 0.001 0.0090.005 0.018 0.004 0.021 0.005 0.0030.958 0.997 0.997 0.978 0.981 0.984

Fig. 3: Visual examples of closed-set, open-set, and fake open-set images synthesized by the OpenGAN-0pix generator (for three datasets).
We mark the classification confidence scores as probabilities of being recognized as the closed-set by the OpenGAN-0pix discriminator. We
can see the synthesized images look realistic in terms of color and shape. But the discriminator can easily recognize them as the open-set, as
indicated by the low probabilities.

TABLE 3: Open-set recognition (Setup-II) measured by AUROC↑, and macro-averaged F1-score↑ over all (K+1) classes. We use
TinyImageNet (K=200) as the closed-set, and four different datasets as the open-sets. To report a method on a specific open-test-set out
of four (first column), we perform four runs in which we use one of the four datasets as a validation set for training/tuning, and then average
the performance measures over the four runs with a superscript marking the standard deviation. Methods such as Nearest Neighbor (NN)
do not need tuning and hence have zero deviations. We provide a summary number in the bottom macro row by averaging the results over
all open-test-sets. Detailed results in Table 4. Clearly, a binary classifier trained on features (CLSfea) already outperforms prior methods.
However, when trained on pixels, CLSpix works poorly in AUROC due to overfitting to high-dimensional raw images, but performs decently
in F1. To note, without handling the open-set, the K-way model (trained only on the closed-set TinyImageNet) achieves 0.553 F1-score over
(K+1) classes, suggesting that, when K is large (K=200 here), F1-score can hardly reflect open-set discrimination performance which is better
measured by AUROC. While largely underexplored in the literature, training a (K+1)-way model works quite well. Clearly, OpenGANfea

works the best in both AUROC and F1-score. Please refer to Fig. 4(f-i) for ROC curves, and F1-scores vs. thresholds on the open-set likelihood.
MSP OpenMax NNfea GMM C2AE MSPc MCdrop GDM CLSpix (K+1) CLSfea Open Open

open-test metric [20] [7] [41] [39] [9] [5] [26] [21] GANpix GANfea

CIFAR AUROC .769.000 .669.011 .927.000 .961.013 .767.020 .791.007 .809.005 .961.007 .754.367 .880.091 .928.113 .981.027 .980.011

F1 .548.002 .507.001 .525.000 .544.002 .564.002 .553.003 .564.001 .519.003 .545.032 .558.017 .555.027 .563.035 .585.003

SVHN AUROC .695.000 .691.014 .994.000 .990.016 .657.018 .863.013 .783.009 .999.006 .701.224 .948068 .955.052 .980.014 .991.013

F1 .567.002 .551.002 .545.000 .574.002 .565.001 .572.002 .572.001 .575.002 .572.027 .564.015 .578.014 .574.009 .583.008

MNIST AUROC .764.000 .690.019 .901.000 .964.021 .755.008 .832.017 .801.009 .957.007 .986.327 .944.015 .961.083 .983.068 .989.014

F1 .559.001 .536.013 .553.000 .547.008 .575.001 .564.001 .563.001 .552.002 .565.020 .586.021 .583.010 .569.016 .582.005

Citysc. AUROC .789.000 .693.021 .715.000 .867.016 .814.010 .851.003 .868.003 .513.005 .646.332 .971.050 .828.032 .933.026 .978.013

F1 .579.002 .514.002 .583.000 .572.003 .589.002 .583.001 .571.001 .546.003 .589.007 .561.029 .587.006 .588.007 .587.000

average AUROC .754 .686 .884 .945 .748 .834 .815 .857 .772 .936 .918 .969 .984
F1 .560 .527 .552 .559 .569 .568 .567 .548 .568 .565 .576 .573 .584

[59]). The historically-ignored pixels include vulnerable objects
(e.g., strollers in Fig. 1), and can be naturally evaluated as open-set
examples. We refer the reader to Appendix C for further details.

Dataset. Cityscapes [1] contains 1024x2048 high-resolution
urban scene images with 19 classes for semantic segmentation. We
construct our train- and val-sets from its 2,975 training images, in
which we use the last 10 images as val-set and the rest as train-
set. We use its official 500 validation images as our test-set. The
“other” pixels (cf. Fig. 1) are the open-set examples in this setup.

Pixel Generation. As Cityscapes images are high in resolution
(1024x2048), it is nontrivial to train an OpenGANpix to generate
high-res fake open-set images. We find the successful training of
OpenGAN-0pix depends on the resolution of images to be gener-
ated: we train OpenGAN-0pix by generating patches (64x64), not
full-resolution images.

Results. Table 5 lists quantitative results. As we train Open-
GAN and CLS with open pixels, we diagnose in Fig. 7 the
open-set performance by varying the number of training images
that provide the open-training pixels, along with closed-training
pixels from all training images. Firstly, these results show that

OpenGANfea substantially outperforms all other methods. Gener-
ally speaking, the methods that process features outperform those
that process pixels (e.g., OpenGAN and CLS in Fig. 7). This
suggests that OTS features (from the segmentation network) serve
as a powerful representation for open-set pixel recognition. The
curves in Fig. 7 imply that methods with enough data on pixels
should work (e.g., achieving similar performance as on features).
This is consistent with evidence from semantic segmentation
works. However, methods saturate more quickly on OTS features
than pixels, suggesting the benefit of using OTS features for open-
set recognition. Secondly, OpenGAN-0 performs better than CLS
when trained on fewer open-training images (e.g., 10). But with
modest number of open training images (e.g., 50), CLS outper-
forms OpenGAN-0 and other classic methods (e.g., OpenMax
and C2AE in Table 5) which assume no open training data. This
confirms the effectiveness of Outlier Exposure, even with a modest
amount of outliers [4]. We refer the reader to Appendix D for hy-
perparameter tuning. Moreover, Bayesian networks (MCdrop and
MSPc) outperform the baseline MSP, showing that uncertainties
can be reasonably used for open-set recognition. Lastly, we train
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Fig. 4: (a) We use t-SNE to visualize the embedding space through the OTS features computed by the K-way network trained on TinyImageNet
train-set. Images from the other datasets are open-set examples. Clearly, closed and open examples are well separated in the feature space.
We further visualize the “landscape” of the OpenGANfea open-set discriminator, by (b) projecting the OTS features into 2D using PCA; (c)
coloring them with their closed/open labels; (d) rendering them with their open-set likelihoods computed by OpenGANfea; (e) smoothing with
Gaussian Filtering overlaid with the OpenGAN’s decision boundary. We further compare OpenGANfea (tuned on SVHN) and MSP in (f-g)
for open-set discrimination by ROC curves, and in (h-i) for open-set recognition by curves of the F1-score vs. thresholds of open likelihold.
We render the density of open and closed testing data using shadows in (g) and (i). In these plots, we use each of the four cross-dataset open-
test-sets (unseen in training) as an independent open-set to draw the curves. The curves clearly show that OpenGAN significantly outperforms
MSP on open-set discrimination (AUROC) and open-set recognition (F1).

TABLE 4: Diagnostic analysis for cross-dataset open-set discrimination measured by AUROC↑. In this setup, the TinyImageNet
train/val/test sets serve as the closed train/val/test sets, and open train/test sets are the other two different datasets. Following outlier
exposure [20], we train/tune CLS and OpenGAN on a cross-dataset as the open train-set. Recall that we do not train OpenGAN-0 on
any open examples, although we tune it on the respective cross-dataset open train-set. CLS and OpenGAN use their last-epoch checkpoints to
report performance. For better comparison, we report the average AUROC performance across all open-val-sets in the last column. We color
the entries that have AUROC <0.9 with red, implying these models overfit to the open-train-set and generalize poorly on the other open-
test-set. OpenGANfea clearly performs the best; while CLS (esp. CLSpix which operates on pixels) generalizes poorly. Perhaps surprisingly,
OpenGAN-0 performs equally well although it does not train on outlier / open-set data.

open-val-set CIFAR10 (CF) SVHN (SV) MNIST (MN) Cityscapes (CS) avg.
open-test-set CF SV MN CS CF SV MN CS CF SV MN CS CF SV MN CS

CLSpix .999 .999 .101 .895 .935 .999 .453 .972 .411 .340 .999 .113 .317 .512 .100 .999 .634
OpenGAN-0pix .999 .998 .550 .999 .999 .999 .993 .999 .999 .968 .999 .911 .999 .999 .915 .999 .958
OpenGANpix .999 .999 .989 .933 .974 .999 .997 .967 .976 .998 .999 .835 .967 .928 .950 .999 .969
CLSfea .999 .933 .916 .699 .940 .999 .979 .863 .893 .961 .999 .781 .881 .926 .949 .968 .918
OpenGAN-0fea .999 .998 .997 .999 .964 .996 .996 .946 .952 .992 .994 .934 .994 .995 .992 .997 .984
OpenGANfea .999 .999 .990 .973 .974 .999 .996 .971 .976 .998 .999 .967 .973 .968 .970 .999 .984

TABLE 5: Comparison in open-set semantic segmentation on Cityscapes (AUROC ↑). All methods are implemented on top of the
segmentation network HRNet [2] except the ones operating on pixels (as marked by pix). Our approach OpenGANfea clearly performs the
best. Fig. 7 analyzes OpenGAN trained with varied number of open-set pixels, when built on either pixels or OTS features.
MSP [20] Entropy [52] OpenMax [7] C2AE [9] MSPc [5] MCdrop [26] GDM [21] GMM [39] HRNet-(K+1) OpenGAN-0fea CLSfea OpenGANfea

.721 .697 .751 .722 .755 .767 .743 .765 .755 .709 .861 .885

closed-set testing synthesized fake open-set
0.874 0.825 0.846 0.030 0.012 0.038

0.782 0.963 0.847 0.010 0.057 0.058

0.988 1.000 0.627 0.045 0.003 0.0260.943

0.885 0.056

0.016

0.0280.906

Fig. 5: Visual examples of closed-set testing images and fake
open-set images synthesized by OpenGAN-0pix. We mark the
classification confidence scores above each image as the probability of
being recognized as the closed-set. Left: The discriminator recognizes
the closed-set training examples with a high confidence score. Right:
OpenGAN-0pix synthesizes fake images that look realistic in terms of
color and tone but not content (i.e., they do not contain meaningful
objects); the discriminator easily recognizes these fake images (as
indicated by the low probability).

a “ground-up” (K+1)-way HRNet model that treats “other” pixels
as the (K+1)th background class [51], shown by HRNet-(K+1)
in Table 5. It performs better than other typical open-set methods

but much lower than the simple open-vs-closed binary classifier
CLSfea, presumably because the (K+1)-way model has to strike
a balance over all the (K+1) classes while the binary CLS benefits
from training on more balanced batches of closed/open pixels.

Visualization. Fig. 6 qualitatively compares OpenGAN and
the entropy method (more visual results are in the appendix).
The visualization shows OpenGAN sufficiently recognize open-
set pixels. It also implies failure happens when OpenGAN mis-
classifies open-vs-closed pixels. Fig. 8 compares some gener-
ated patches by OpenGAN-0fea and OpenGAN-0fea, intuitively
showing why using OTS features leads to better performance for
open-set recognition.

4.5 A Study of Model Selection
It is crucial and challenging to select a good discriminator for
open-set discrimination due to the unstable training of GANs [36].
For GANs that are typically used for generating realistic images,
one usually focuses on selecting generators by manually inspect-
ing the generated visual images by different model epochs [17].
In contrast, we must select the discriminator, rather than the
generator, because we use the discriminator as the open-set like-
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Fig. 6: Qualitative results of two testing images, on which a state-of-the-art network (HRNet) misclassifies the unknown categories
stroller/street-shop as motorcycle/building. From left to right of each row: the input image, its per-pixel semantic labels (in which white
regions are open-set pixels), the semantic segmentation result by HRNet, open-set likelihoods by Entropy, our OpenGANfea, and its thresholded
open-pixel map (threshold=0.7). OpenGAN clearly captures most open-set pixels (the white ones). Note that the street-shop is a real open-set
example because Cityscapes train-set does not have another street-shop like this size and content (i.e., selling clothes).
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Fig. 7: Diagnostic study w.r.t AUROC vs. number of open images
which provide open-set training pixels. Our methods perform better on
OTS features than pixels. Recall OpenGAN-0 is equivalent to training
a normal GAN (without open training data) and using its discriminator
as open-set likelihood. With some open training data (e.g., 100 open
images), CLS outperforms OpenGAN-0; but OpenGAN consistently
performs the best.

Real OpenGAN-0pix OpenGAN-0fea

Fig. 8: Visuals of Cityscapes real image patches (left), synthesized
patches by OpenGAN-0pix (mid) and OpenGAN-0fea (right). As
OpenGAN-0fea generates features instead of pixel patches, we “syn-
thesize” the patch for a generated feature by finding the closest pixel
feature on the training set and returning its surrounding image patch.
We can see OpenGAN-0pix synthesizes realistic patches w.r.t color
and tone, but it (0.549 AUROC) notably underperforms OpenGAN-
0fea (0.709 AUROC) for open-set segmentation. The “synthesized”
patches by OpenGAN-0fea capture many open-set objects, such
as bridge, back-of-traffic-sign and unknown-static-objects, none of
which belong to any of the 19 closed-set classes in the Cityscapes
benchmark. This intuitively shows why methods work better on OTS
features than pixels.

lihood function. It is important to note that, when reaching the
equilibrium of the minimax optimization between the discrim-
inator and generator in GAN training, the discriminator would
be incapable of recognizing fake open-set data [60]. Fortunately,
we find that model selection using a validation set can select
an intermediate discriminator that produces the state-of-the-art
open-set classification performance. Below we present the need of
model selection and demonstrate using synthetic data is inadequate
for model selection.

Model selection is crucial. In Fig. 9, we plot the open-
set classification performance as a function of training epochs.
We study both OpenGAN-0fea and OpenGAN-0pix on the three
datasets as typically used in open-set recognition (under Setup-
I). Recall that OpenGAN-0 trains a normal GAN and uses its
discriminator as the open-set likelihood function for open-set
discrimination. Clearly, longer training time does not necessarily

Fig. 9: Open-set discrimination performance vs. training epochs.
We show the performance (AUROC) by OpenGAN-0pix and
OpenGAN-0fea on the val-sets of the three datasets (cf. columns)
under Setup-I. Recall that OpenGAN-0 trains a normal GAN and uses
its discriminator as the open-set likelihood function. We can see that
many intermediate checkpoints of GAN-discriminators achieve very
high open-set discrimination accuracy, but longer training does not
necessarily improve further. This is due to the unstable training of
GANs via the minimax optimization. This motivates model selection
for the discriminators.

improve open-set classification performance. We posit that this is
due to the unstable training of GANs. This motivates the model
selection for discriminators.

Synthesized data are not sufficient for model selection.
To study how each checkpoint models perform in training (fake-
vs-real classification) and testing (open-vs-closed classification),
we scatter-plot Fig. 10, where we render the dots with colors to
indicate the model epoch (blue→red dots represent model epoch-
0→50). For the scatter plots, the ideal case is that the train-
time and test-time accuracy is correlated, i.e., all dots appear
in the diagonal line (from origin to top right). But the plots
demonstrate the opposite, suggesting that using the synthesized
data for model selection is not sufficient. Instead, we find it crucial
to use a validation set of real open examples to select the open-
set discriminator. Our observation is consistent to what reported
in [4]. It is worth noting that the models selected on the validation
set do generalize to test sets, as demonstrated by Table 3 and 4.

4.6 Failure Cases and Limitations

As we use a discriminator as the open-set likelihood function,
failure cases happen when the open-vs-closed classification is not
correct, as shown by some high confidence scores for open-set
images in Fig. 3.
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Fig. 10: Scatter plot of training performance (fake-vs-real clas-
sification accuracy in AUROC, x-axis) and testing performance
(open-vs-closed classification accuracy in AUROC, y-axis). We
train OpenGAN-0 models on the three datasets (cf. columns) under
Setup-I. A dot corresponds to a particular model checkpoint during
training. We color the dots from blue→red to mark models saved
at epoch-0→50. The ideal correlation between training and testing
accuracy is that all the dots lie in the diagonal from bottom-left to
top-right, and blue / red dots are on the bottom-left / top-right. Clearly,
they do not correlate well. Moreover, the dots appear to be on the right
part in the plots, suggesting that the training performance is much
higher than the testing performance. These scatter plots demonstrate
that (1) some intermediate discriminators can perform quite well in
open-set discrimination but (2) it requires careful selection of the right
discriminator, and (3) fake data synthesized by the GAN-generators
are insufficient to be used for model selection.

We point out other failure cases and limitations. First, although
we empirically show superior performance by model selection on
a validation set, there exist risks that the validation set is biased
in some way which could catastrophically hurt the final open-set
recognition performance. This is also true for the training outliers
which will not span the open world. Therefore, in the real open-
world, practitioners should be aware of such a bias and exploit
prior knowledge in constructing “reliable” training and validation
sets for training OpenGANs. Second, as we adopt adversarial
training for OpenGANs, it is straightforward to ask if OpenGAN
is robust to adversarial perturbations on the input images. We have
not investigated this point and leave it as future work.

5 CONCLUSION

We propose OpenGAN for open-set recognition by incorporating
two technical insights, 1) training an open-vs-closed classifier on
OTS features rather than pixels, and 2) adversarialy synthesizing
fake open data to augment the set of open-training data. With
OpenGAN, we show using GAN-discriminator does achieve the
state-of-the-art on open-set discrimination, once being selected
using a val-set of real outlier examples. This is effective even
when the outlier validation examples are sparsely sampled or
strongly biased. OpenGAN significantly outperforms prior art on
both open-set image recognition and semantic segmentation.
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APPENDIX A
STATISTICAL MODELS FOR OPEN-SET

In this section, we introduce a lightweight statistical pipeline
that repurposes off-the-shef (OTS) deep features for open-set
recognition. While details can be found in [39], the pipeline briefly
follows: (1) extracting OTS features (with appropriate processing
described below) of closed-set training examples using the under-
lying K-way classification model, (2) learning statistical models
over the OTS features. There are many statistical methods readily
available, such as nearest class centroids, Nearest Neighbors, and
(class-conditional) Gaussian Mixture Models (GMMs). During
testing, we extract the OTS features of the given example and use
the learned statistical models to compute an open-set likelihood,
e.g., based on the (inverse) closed-set probability from GMM. By
thresholding the open-set likelihood, we decide whether it is an
open-set example.

Feature extraction. OTS features generated at different layers
of the trained K-way classification network can be repurposed for
open-set recognition. Most methods leverage softmax [20] and
logits [7], [9], [62] which can be thought of as features extracted
at top layers. Similar to [21], we find it crucial to analyze features
from intermediate layers for open-set recognition, because logits
and softmax may be too invariant to be effective for open-set
recognition (Fig. 11). One immediate challenge to extract features
from an intermediate layer is their high dimensionality, e.g. of size
512x7x7 from ResNet18 [46]. To reduce feature dimension, we
simply (max or average) pool the feature activations spatially into
a 512-dim feature vectors [63]. We can further reduce dimension
by applying PCA, which can reduce dimensionality by 10× (from
512-dimensional to 50 dimensional) without sacrificing perfor-
mance. We find this dimensionality particularly important for
learning second-order covariance statistics as in GMM, described
below. Finally, following [64], [65], we find it crucial to L2-
normalize extracted features (Fig. 11). We refer the reader to [39]
for quantitative results.

Statistical models. Given the above extracted features, we
use various generative statistical methods to learn the confi-
dence/probability that a test example belongs to the closed-set
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Fig. 11: t-SNE plots [61] of open vs. closed-set testing data, as encoded by different features from a ResNet18 network trained from scratch on
the 200-way TinyImageNet dataset (under Setup-II). In the top-left subfigures of each of the three panels, we plot black dots as the closed-set
examples from TinyImageNet, and randomly color the open-set examples using their class labels provided by the respective datasets. Left:
Logit features mix open- and closed-set data, suggesting that methods based on them (e.g., Entropy, SoftMax and OpenMax) may struggle
in open-set discrimination. Mid: Pre-logit features at the penultimate layer show better separation between closed- and open-set data. Right:
L2-normalizing the pre-logits features separates them better. These plots intuitively demonstrate the benefit of L2-normalization and using OTS
features rather than the highly-invariant logits for open-set discrimination.

classes. Such statistical methods include simple parametric mod-
els such as class centroids [66] and class-conditional Gaussian
models [21], [62], non-parametric models such as NN [67], [68],
and mixture models such as (class-conditional) GMMs and k-
means [69]. A statistical model labels a test example as open-
set when the inverse probability (e.g., of the most-likely class-
conditional GMM) or distance (e.g., to the closest class centroid)
is above a threshold. One benefit of such simple statistical models
is that they are interpretable and relatively easier to diagnose
failures. For example, one failure mode is an open-set sample
being misclassified as a closed-set class. This happens when open-
set data lie close to a class-centroid or Gaussian component mean
(see Fig. 11). Note that a single statistical model may have several
hyperparameters – GMM can have multiple Gaussian components
and different structures of second-order covariance, e.g., either
a single scalar, a diagonal matrix or a general covariance per
component. We use the validation set to set these hyperparameters,
as opposed to prior works that conduct model selection either
unrealistically on the test-set [9] or on large-scale val-set which
could be arguably used for training [21].

Lightweight Pipeline. We emphasize that the above feature
extraction and statistical models result in a lightweight pipeline for
open-set recognition. To understand this, we analyze the number
of parameters involved in the pipeline. Assume we learn a GMM
over 512x7x7 feature activations, and specify a general covariance
and five Gaussian components. If we learn the GMM directly
on the feature activations, the number of parameters from the
second-order covariance alone is at the scale of (512 ∗ 7 ∗ 7)2.
With the help of our feature extraction (including spatial pooling
and PCA), we have 50-dim feature vectors, and the number of
parameters in the covariance matrices is now at the scale of 502.
This means a huge reduction (105 ×) in space usage! We count
the total number of parameters in this GMM: 3.3× 104 32-bit
float parameters including PCA and GMM’s five components,
amounting to 128KB storage space. Moreover, given that PCA
just runs once for all classes, even when we learn such GMMs
for each of 19 classes (as those defined in Cityscapes), it only

requires 594KB storage space! Compared to the modern networks
such as HRNet (>250MB), our statistical pipeline for open-set
recognition adds a negligible (0.2%) amount of compute, making
it quite practical for implementation on autonomy stacks.

APPENDIX B
MODEL ARCHITECTURE

We describe the network architectures of OpenGAN. Recall that
our final version OpenGANfea operates on off-the-shelf (OTS)
features. We use multi-layer perceptron (MLP) networks for the
generator and discriminator. As OpenGANpix operates on pixels,
we adopt convolutional neural network (CNN) architectures. We
begin with the former.

B.1 OpenGANfea architecture
OpenGANfea consists of a generator and a discriminator.
OpenGANfea is compact in terms of model size (∼2MB), because
it learns MLPs over OTS features which are low-dimensional (e.g.,
512-dim vectors). The MLP architectures are described below.

• The MLP discriminator in OpenGANfea takes a D-
dimensional feature as the input. Its architecture has
a set of fully-connected layers (fc marked with input
and output dimensions), Batch Normalization layers
(BN) and LeakyReLU layers (hyper-parameter as 0.2): fc
(D→64*8), BN, LeakyReLU, fc (64*8→64*4),
BN, LeakyReLU, fc (64*4→64*2), BN,
LeakyReLU, fc (64*2→64*1), BN,
LeakyReLU, fc (64*1→1), Sigmoid.

• The MLP generator synthesizes a D-dimensional feature
given a 64-dimensional random vector: fc (64→64*8),
BN, LeakyReLU, fc (64*8→64*4), BN,
LeakyReLU, fc (64*4→64*2), BN,
LeakyReLU, fc (64*2→64*4), BN,
LeakyReLU, fc (64*4→D), Tanh.

For open-set image classification, the image features have
dimension D = 512 from ResNet18 (the K-way classification
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Fig. 12: Cityscapes annotates a sizeable portion of pixels that do not
belong to the K closed-set classes on which the Cityscapes benchmark
evaluates. As a result, many methods ignore them during training [2].
We repurpose these historically-ignored pixels as open-set examples
that are from the (K+1)th “other” class, allowing for a large-scale
exploration of open-set recognition via semantic segmentation.

Fig. 13: Void pixels in Cityscapes that are not from the closed-set
classes nor open-set. We highlight these pixels over an image (left)
and its semantic annotations (right). Cityscapes labels these pixels as
rectification-border (artifacts at the image borders caused
by stereo rectification), ego-vehicle (a part of the car body at the
bottom of the image including car logo and hood) and out-of-roi
(narrow strip of 5 pixels along the image borders). As these void pixels
can be easily filtered out, we do not evaluate on them.

networks under Setup-I and II). For open-set semantic segmenta-
tion (Setup-III), the per-pixel features have dimension D = 720
at the penultimate layer of HRnet [2].

B.2 OpenGANpix architecture

OpenGANpix’s generator and discriminator follow the CycleGAN
architecture [47]. We change the stride size in the convolution lay-
ers to adapt the networks to specific image resolution (e.g., CIFAR
32x32 and TinyImageNet 64x64). The generator and discriminator
in OpenGANpix have model sizes as ∼14MB and ∼11MB,
respectively. We find it important to ensure that OpenGANpix has
a larger capacity than OpenGANfea to generate high-dimensional
RGB raw images.

APPENDIX C
SETUP FOR OPEN-SET SEMANTIC SEGMENTATION

We use Cityscapes to study open-set semantic segmentation. Prior
work suggests pasting virtual objects (e.g., cropped from PASCAL
VOC masks [51]) on Cityscapes images as open-set pixels [44],
[45]. We notice that Cityscapes ignores a sizeable portion of
pixels in its benchmark (presumably because of rare-classes have
too few examples to reliably learn their classifiers [70], [71], as
demonstrated by Fig. 12). As a result, many methods also ignore

Fig. 14: street-shop as open-set (left: RGB image; right: pixel
annotations). Fig. 1 shows open-set pixel recognition results for a
street-shop on a testing image (top-row). We verify that such a street-
shop does not appear in the training set. After manual inspection of
the training set, we find the one (bottom-row) most similar to the
testing example in terms of size. Importantly, we did not find any
other street-shops in the training set that sell clothes like the one in
the top row. In this sense, this street-shop is a real open-set example.

them in training. Therefore, instead of introducing artificial open-
set examples, we use the historically-ignored pixels in Cityscapes
as the real open-set examples. One might argue that testing open-
set examples are seen during training and hence not strictly open-
set anymore. But we argue that this is a realistic way to leverage
the real “known unknowns” (via the “other” class) for open-
set recognition. We further manually inspect recognized open-
set pixels and find that the detected open-set regions such as the
“street-shop” in Fig. 14 are real open-set that no training examples
are like such. We describe in detail our configuration for open-set
semantic segmentation setup and experiments on Cityscapes.

Data Setup. Cityscapes training set has 2,975 images. We use
the first 2,965 images for training and the last 10 as valset for
model selection. We use the 500 Cityscapes validation images as
our test set. Below are the statistics for the full train/val/test sets.

• train-set for closed-pixels: 2,965 images providing 334M
closed-set pixels.

• train-set for open-pixels: 2,965 images providing 44M open-
set pixels.

• val-set for closed-pixels: 10 images providing 1M closed-set
pixels.

• val-set for open-pixels: 10 images providing 0.2M open-set
pixels.

• test-set for closed-pixels: 500 images providing 56M pixels.
• test-set for open-pixels: 500 images providing 2M pixels.
Note that, we exclude the pixels labeled with

rectification-border (artifacts at the image borders
caused by stereo rectification), ego-vehicle (a part of the car
body at the bottom of the image including car logo and hood) and
out-of-roi (narrow strip of 5 pixels along the image borders).
These pixels can be easily localized using camera information, as
demonstrate in Fig. 13. We do not evaluate on such pixels.

Feature setup.
• Mpix, where M ∈ {CLS, OpenGAN}, corresponds to a

model defined on raw pixels.
• Mfea corresponds to a model defined on embedding features

at the penultimate layer of underlying semantic segmentation
network (i.e., HRNet as introduced below).

• HRNet [2] is a top-ranked semantic segmentation model on
Cityscapes. It has a multiscale pyramid head that produce
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TABLE 6: Hyper-parameter tuning for open-set semantic segmentation on Cityscapes. Given a fixed number of open training images, we
vary the hyper-parameter λG to train OpenGAN models. Recall that λG controls the contribution of synthesized data in the loss function. We
conduct model selection on the val-set (10 images), and report here the performance (AUROC↑) on the test set (500 images). We also mark
the λG for each of the selected models. It seems to be preferable to set a lower weight λG (for the term exploiting synthesized data examples)
when we have more real open-set data, but we do not see a tight correlation between λG and test-time performance. We believe this is because
of the (random) initialization of model weights that has a non-trivial impact on training GANs and their final performance.

#imagesopentrain 10 20 50 100 200 500 1000 2000 2900
OpenGANfea .761 .821 .849 .866 .891 .890 .873 .891 .885
λG 0.20 0.20 0.05 0.10 0.05 0.05 0.20 0.05 0.05

OpenGANpix .607 .632 .643 .661 .672 .705 .711 .748 .746
λG 0.60 0.40 0.80 0.90 0.70 0.60 0.60 0.60 0.70

Fig. 15: Tuning hyper-parameter λG. We plot the open-set discrim-
ination performance (AUROC) as a function of λG, which controls
the contribution of generated data in the loss function. We report
the OpenGANfea-1000 model which is trained with 1000 training
images. The val-set and test-set contain 10 and 500 images respec-
tively. While the val-set is much smaller than the test-set, its open-set
classification accuracy aligns well with that on the test set.

high-resolution segmentation prediction. We extract embed-
ding features at its penultimate layer (720-dimensional before
the 19-way classifier). We also tried other layers but we did
not observe significant difference in their performance.

Batch Construction. To fully shuffle open- and closed-set
training pixels, we cache all the open-set training pixel features
extracted from HRNet. We construct a batch consisting of 10,000
pixels for training OpenGANfea. To do so, we

• randomly sample a real image, run HRNet over it and
randomly extract 5,000 closed-set training pixel features;

• randomly sample 2,500 open-set training features from
cache;

• run the OpenGANfea generator (being trained on-the-fly) to
synthesize 2,500 “fake” open-set pixel features.

Similarly, to train OpenGANpix which is fully-convolutional, we
construct a batch of 10,000 pixels as below.

• We feed a random real image to the OpenGANpix discrimi-
nator, and penalize predictions on 5000 random closed pixels
and 2500 random open pixels.

• We run the OpenGANpix generator (being trained on-the-
fly) to synthesize a “fake” image. We feed this “fake” image
to the discriminator along with open-set labels. We penalize
2500 random “fake” pixels.

APPENDIX D
HYPER-PARAMETER TUNING

Strictly following the practice of machine learning, we tune hyper-
parameters on the validation set. We study parameter tuning
through open-set semantic segmentation (Setup-III). We select the
best OpenGAN model according to the performance on the valset
(10 images).

In training OpenGAN, a training batch contains both real
closed- and open-set pixels, and synthesized fake open pixels.
Correspondingly, our loss function has three terms (cf. Eq. 2).
Therefore, we tune the hyper-parameter λo and λG as below to
balance the terms in the loss function that exploits real open data
and generated data:

• The term exploiting real open data has a weight λo = 1.
We do not tune this as we presume the sparsely sampled
open-set examples are equally important as the real closed-
set examples.

• The term using the generated “fake” data has varied parame-
ter λG ∈ [0.05, 0.10, 0.15, . . . , 0.85, 0.90]. We mainly focus
on tuning λG to study how the synthesized data help training.

Table 6 shows the performance of OpenGANpix and
OpenGANfea on the test-set with varied training images. For each
selected model, we mark the corresponding λG that yields the best
performance (on the valset). Roughly speaking, it is preferable to
set a lower weight λG when we have more real open-set training
data. However, we do not see a clear correlation between the
weight λG and test-time performance. We believe this is due to
the random initialization which affects adversarial learning.

We also study how models trained with different λG perform
on the val-set and test-set, and if the model selected on the val-
set can reliably perform well on the test-set. Fig. 15 plots the
performance as a function of λG on val-set and test-set. We use
the OpenGANfea model trained with 1000 training images (con-
taining closed- and open-set pixels). We can see the performance
on the validation set reliably reflects the performance on the test
set. This confirms that model selection on the val-set is reliable.

HTTPS://DOI.ORG/10.1109/TPAMI.2022.3184052

	Introduction
	Related Work 
	OpenGAN for Open-Set Recognition
	Methodology
	Comparison to Prior GAN Methods

	Experiment
	Compared Methods
	Setup-I: Open-Set Discrimination
	Setup-II: Cross-Dataset Open-Set Recognition
	Setup-III: Open-Set Semantic Segmentation
	A Study of Model Selection
	Failure Cases and Limitations

	Conclusion
	References
	Appendix A: Statistical Models for Open-Set
	Appendix B: Model Architecture
	OpenGAN^fea architecture
	OpenGAN^pix architecture

	Appendix C: Setup for Open-Set Semantic Segmentation
	Appendix D: Hyper-Parameter Tuning

