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Zusammenfassung

Wiederauftretende lokale Ausbriiche von hoch pathogenen |Influenza A Virus (IAV)|Strin-

gen, verweisen auf eine stindig presente Gefahr fiir die Menschheit, die in der Vergangen-
heit mehrfach globale AusmaBe mit hohen Todeszahlen zufolge hatte. Dakein verlissliches
Medikament vorhanden ist, muss unausweichlich auf Impfungen zuriickgegriffen werden,
die verschieden hohe Immunisierung gewihren und jahrliche Erneuerung erfordern. Eine
Erweiterung der Kenntnisse iiber ist daher unerléasslich, um eine bessere Vorbere-
itung auf mogliche zukiinftige Pandemien zu ermoglichen. Hohe Evolutionsraten durch
die drastischeren Mutationsmechanismen von und eine wenig Einsicht gewihren-
den Klassifizierung, verkomplizieren dabei allerdings die Gewinnung neuer und exakter
Forschungsergebnisse. Diese Thesis dient daher der Herausarbeitung einer Pipeline, zur
segmentweisen Klassifizierung aller sequenzierten Genome von [[AV] Anstelle von Align-
ments, nutzt diese Methode besser skalierbare k-mer Frequenz-Vektoren mit dem neuen
hybriden Clustering Ansatz von HDBSCAN, der hierarchische und auf Dichte basierende
Methoden vereint. Geeignete Parameter wurden mit Hilfe verschiedener Validierungs-
Techniken ausgesucht und die Dimensionalitdt der genutzten Vektoren mit bekannten
Tools verringert. Die Ergebnisse wurden im Detail verglichen, wodurch ein Workflow
kreiert wurde, der eine neue Clustermethode, mit validierten Parametern und einer zuvor

erfolgten effizienten Reduzierung der Dimensionen, verbindet.






Abstract

Reoccurring local outbreaks of new, highly pathogenic strains of the |[nfluenza A Virus|

picture a unnoticed but still persisting major danger to the whole human population,
that reached global extend with high numbers of fatalities, several times in the past. Due
to the lack of a cure, resort to vaccines producing varying levels of immunization with
yearly expiration is inevitable. For better preparation on possible future pandemics,
enlarging the knowledge of the is crucial. High evolution-rates by more drastic
mutation mechanisms of the [[AV| and a classification giving little insight, complicate
accurate novel research though. This thesis, serves the elaboration of a segment-wise
clustering pipeline, usable on all sequenced genomes of Instead of being alignment
based, this method utilizes the better scalablity of k-mer frequency vectors, with the
novel hybrid clustering implementation of HDBSCAN, connecting hierarchical with density-
based clustering. Appropriate parameters were selected by different validation techniques
and well-known tools were used for dimension reduction of the vectors. By in depth
comparison of the results, a workflow combining a novel vector clustering method with

validated parameters, posterior to an efficient dimension reduction, is proposed.
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List of Abbreviations

Symbols

(-)-ssRNA negative-sense single stranded viral RNA

A
AA aminoacid

AIDS acquired immunodeficiency syndrome

C

COVID-19 coronavirus disease 2019

D

DBCV density based cluster validity

F

FFT fast Fourier transform

H

HA hemagglutinin

|
IAV Influenza A Virus
IRD Influenza Research Database

IRES internal ribosome entry site

L

LPAIV low-pathogenic avian influenza virus
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M

M1 matrix protein 1

M2 M2 ion channel

mRNA viral messenger RNA

MSA multiple sequence alignment

N

NA neuraminidase

NEP nuclear export protein
NP nucleoprotein

NPC nuclear pore complex

NS1 nonstructural protein 1

P
PA polimerase acid protein
PB1 polimerase basic protein 1

PB2 polimerase basic protein 2

R

RNP viral ribonucleoprotein

S

SARS severe acute respiratory syndrome

U

UPGMA unweighted pair group method with arithmetic mean

w

WHO world health organisation
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1 Introduction

1.1 Zoonoses and the risks of pandemics

In times where infectious disease outbreaks become more frequent and sometimes even
reach global appearance, unpredictable effects on humans, wildlife and whole ecosystems
are inevitable [[64]. Growing human population and persisting poverty has harmful impact
on the biodiversity and results in degradation of natural habitats and more frequent human-
wildlife contacts [[64]. Therefore, increasing numbers of zoonoses, transfers of animal
pathogens on humans, arise and are a major driving force in pathogen emergence on
humans in recent decades [29]. Most of the human pathogens emerging lately are of

animal origin, indeed, up to 75% [73]]. Well-known examples for diseases, that originate

from viral zoonoses are the avian and swine flu, thelacquired immunodeficiency syndrome]
and the[severe acute respiratory syndrome (SARS)|related to the current circulating
lcoronavirus disease 2019 (COVID-19)| 67,72, 75, 77].

While zoonoses can be of viral, bacterial and parasitic nature, emergences of higher mag-
nitude, like the mentioned well-known examples, are often linked back to viral infections
[73]. Harmfulness of viral infections can be diverse, ranging from mostly no sign of
infection in the natural hosts to very severe symptoms or death in accidental ones [81]. In
contrast to natural hosts, humans, accidental hosts to, e. g. , the West Nile Virus, develop
disease patterns upon infection and, thereby, are not able to fully support the virus life
cycle [22]. High variety in host circulation and transmission ways from such natural or
intermediate onto humans as accidental hosts, with long infectious periods without symp-
toms and high transmission pace have a high risk of pandemic events [28]. A prominent
virus detected in a variety of hosts and known for reoccurring local and global outbreaks
in the past is member of the Orthomyxoviridae family and also commonly known
as flu virus [81]. Analysis indicate a 1% chance of a pandemic with millions of deaths
every year and is, therefore, the pathogen most likely to be responsible for a sudden severe

pandemic [28]].
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1.2 Life-cycle and structure of the Influenza A Virus

In humans, infection by[[TAV]affects the upper respiratory tract [31]]. General symptoms like
fever, cough and headache characterize the infection [31]. In some cases complications
can occur, resulting in primary viral pneumonia or secondary bacterial pneumonia by
bacterial infection [31]]. The virus particles of called virions, are spherical in shape,
80—120 nm in size and enveloped by the hosts cell membrane lipids [[12, 49, 54|]. These
virions can sustain extensive forces in the hosts body and even survive deformation to
around 33% of its total diameter [63]]. Epithelial cells in the tissue of the respiratory tract,
are the main infection area of the virions [54]. The[[AV]virions attach themselves to the host

cells with their surface glycoproteins, the tetrameric neuraminidase (NA)|and the trimeric
lhemagglutinin (HA)] and enter the cells by clathrin-mediated endocytosis (29,
49,76, 86]. Equilibration of pH in the process of endocytosis involve the M2 1on channel|
protein of [60]]. The surface glycoprotein tails are also connected to the second
layer in the[TAV]virions, thematrix protein I (MT)][3]]. Following the endocytosis, the[virall
iribonucleoprotein (RNP) complexes are carried to the hosts cells nucleus by the
ipore complex (NPC)| for virus replication [19]]. These complexes contain the viral

megative-sense single stranded viral RNA ((-)-ssRNA)| holding the genetic information,

bound to multiple nucleoproteins (NPs)|and the polymerase complex [[19]. The trimeric

polymerase complex including the [polimerase basic protein 1 (PB1)| jpolimerase basic|

protein 2 (PB2) and polimerase acid protein (PA)| is essential for viral replication in
the hosts nucleus [5} [19]. is a segmented virus, one virion of contains eight
different short called segments, encoding in total 14 viral proteins [19]]. In
the nucleus, the eight are replicated and transcribed to [viral messenger RNAs|
with the latter translated to the virions proteins in the cytoplasm [[19]. The
translated [nuclear export protein (NEP)|, [MT], [NP|and proteins of the polymerase complex
are imported by the NPC]to build new with the replicated genomes and enable the
nuclear exit [19]. By budding through the plasma membrane with help of the translated
IM2]and [NA] while incorporating these proteins including[HAlinto the surface, new virions
are released coated in the host cell membrane lipids [[19].

1.3 Evolution of the Influenza A Virus

Present day research, indicate mallards (Anas platyrhynchos) as main reservoir and natural

host of less dangerous strains called [low-pathogenic avian influenza viruses (LPAIVs)|

[30]. Studies on Pekin ducks, descended from mallards, have shown minor immune
responses and antibody production to the infection with [LPAIV|strains and the possibility
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of a reinfection after two months with the same strain [|34]. Strains are lines of
related to a specific location and time point [I2]]. These [LPAIV] strains of [AV] seem
to repeatedly circulate in duck species and may evolve into human pathogenic strains
by zoonoses [30]. Simple transmission over species is not enough to start a pandemic
though, therefore, better understanding of the mostly unknown genetic changes vital for
zoonotic events is required [[75]. Circulation of these strains in aquatic bird species with
continued evolution enable the transmission possibilities to humans, lower animals, and
other birds [83]. The evolution occurs in all segments of the but is most prominent
in and [83]. Infection is mostly dependent on these surface glycoproteins, or
surface antigens, as they are crucial for antigenic attachment to host cells [12]]. Significant
variation in the surface antigens mostly occur by reassortment, also called genetic shift
and point mutations, also called antigenic drift [83]]. Current classification of [AV]|by the
subtypes nomenclature is solely based on characterization of the two antigens [2]]. Prior to
the current classification, subtypes were separated by host origin, based on defining
just major antigenic differences. These previous subtypes consisting of HO to H3, Hsw1,
Heql, Heq2 and Hav1 to Hav10 were replaced by the known subtypes H1 to H12 for[HA|
and in a similar for[NA|by replacement of N1, N2, Neql, Neq2 and Nav1 to Nav6 in favor
of N1 to N9 [[1]. The infixes denote equine, swine and avian origin or otherwise human
antigenic character[1]. The subtype nomenclature was changed to include more subtle
characterization of the [[AV|genome based on immunological relationships [61]. Thereby,
the subtypes were described by a sequential system involving the antigenic character
regardless of host origin. Origin and other informations are included in the strain naming

system involving position, number and year of detection [2]. The current subtypes were

also grouped according to the sequence homology of the [nonstructural protein 1 (NS1)|
with some major differences [61]]. Still, due to missing serological data for only [HA]

and[NA]were used for the classification. Other segments were not considered due to being

highly conserved [61]. However, future classification involving all the segments was not
negated, if appropriate [01]].

Point mutations in the segmented genome are very frequent, as the mutation rate in all
RNA viruses is very high [16]. Present poliovirus research, indicate higher selection for
faster replication and, therefore, acceptance of replication errors in favor of faster viral
polymerases [16, [58]. This finding is in line with research indicating the short length or
segmentation of RNA viruses and the high mutation rates as evolutionary trade-off [,
80]. Thereby, creating a cloud of offsprings, called quasispecies, with 1-2 mutations in
the genome each 8, 80]. The point mutations can affect the offsprings proteins
[(AA)] composition in the translation process, by possible missense and nonsense errors or
frameshifts [55] 83]].
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Fig. 1.1 Influenza A Virus life-cycle. The virion attaches itself to the host cell membrane using
(a) to bind to the cell receptors (i). By endocytosis (A), the virion infiltrates the host cell. After assimilation
into the cell, the virion escapes the endosome (j) by raising the pH involving the [M2] protein (f), spilling
the segments of the virus into the cytoplasm. After nuclear import (B) by the [NPC| (k), the segments are
transcribed and the is transported to the cytoplasm for translation (C). The newly build [MT](c) and
(9) proteins, as well as the (h) and the proteins of the polymerase complex (d) are transported
back into the nucleus (F) to create newwith the replicated genomes (D) and enable the nuclear exit
(G). The newly build [HA] [NA](b) and[M2] proteins are incorporated into the hosts cell membrane (E). Using
vesicle transport, the RNPs|are transported to the position in the membrane containing the surface proteins
and are incorporated into the progeny virion by embedding into [M1] proteins (H). The virion is released
involving@ andby budding the hosts cell membrane (I) and coating itself in it (e).
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Reassortment is a more drastical change in the surface proteins and likely to be related
to the pasts most horrible TAV| pandemic, the spanish flu in 1918 [52]. For reassortment
induced zoonoses, there practically always has to be a intermediate host or ,,mixing vessel®,
most likely pigs, able to be infected by strains of different hosts origin [68]. The
hosts cells can then be co-infected by two different[TAVs|and create offsprings with mixed
segments [7/0]. All segments can be exchanged, but, in case of segments coding for
surface proteins of different hosts are mixed together, can occur that are able to do
interspecies transmission [68]]. Avian strains can, thereby, evolve to human strains by

co-infection of a pig with human transferable and avian originating strains [68]].

1.4 Vaccines design and the link to reassortment

Reassortment events are a major source of danger, since no real cure to [[AV]infection is
available and generation of vaccines is straining and not always as effective as expected
[81, 87]]. Furthermore, the efficacy of vaccines vary in specific populations and there are

limitations to the manufacturing and the time frame of the production [87]. The strains most

likely to circulate for the season are selected twice a year by the world health organisation|
to be included in vaccines prepared for the winters in both hemispheres [7]. The
seasonal used [[AV]vaccines target the highly mutable head domain of surface proteins
to stimulate immune response [84} |87]. Therefore, the vaccines efficiency vary

depending on the similarity of the[HAJhead domain of the strains used for the vaccines and
the ones circulating in the season [84]]. The accuracy of the recommendation by the
is, therefore, especially crucial for the survival of humans with pre-existing conditions
or humans of old age that are more prone to infection. To manufacture the vaccines,
reassortment of the selected strain with a master strain is induced in chicken eggs [87].
The resulting hybrid strain contains the selected strains surface proteins and the master
strains high-growth properties, necessary for production of the vaccine in the short time
frame [87]. Therefore enlarging the knowledge of reassortment is important for the
prediction of future pandemic strains, creation of vaccines by high-growth hybrid strains
and the overall efficiency of the vaccines against circulating variable strains, most likely
to undergo reassortment [14, [87]]. For better understanding of reassortment and
estimation of resulting risks, the interaction mechanisms of the genome segments have to
be fully discovered [14].
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1.5 Importance of secondary structure predictions

The eight TAV][(-)-ssRNA] segments are single-stranded chains of nucleotides, by inter-

and intra-molecular base-pairing, various complex arrangements with different stabilities

can be build [14, 26]. Single-stranded RNA viruses can use secondary structures on the
as well as on the transcribed positive for different mechanisms, like the
initiation of the translation on the[mRNA|by the [internal ribosome entry site (IRES)|[35]].
Segmented viruses are able to perform inter-molecular binding of different
segments to each other [14, 46]. Gerber et al. [23]] described the selective[[AVs|packaging
by segment interactions with consequences for reassortment. It is assumed, that different

interactions favor reassortment, while others prevent specific segment incorporation in the
reassortant virus. Fully understanding the conserved structures and interactions of
segments would, thereby, enlarge our knowledge of to a great extend. Prediction of
these viral secondary structures is mostly done by lab methods in virio and in vitro or
computationally with in silico methods, with the latter mostly based on thermodynamic
calculations alone [14, |46[]. In virio methods involve modification inside a virion and
in vitro methods involve modification on transcribed RNA in a probe, both can used
with SHAPE-MaP and SPLASH methods [14} 69]]. Following the lab methods, structure
prediction, is performed by tools using the gained insight for better accuracy, in Dadonaite
et al. [14] using IntaRNA [42]. Prediction of present day secondary structures by in silico
thermodynamic energy minimization calculations is mostly performed by tools involving
the ViennaRNA package, like on single sequences, RNAfold [38]. Both lab methods can
only be used to analyze secondary structure folding on single viruses at once, but reveal
structures at single-nucleotide resolution [14]]. In silico methods, that are used without
support by experiments, are not limited by prediction on single viruses, only require prior
sequenced genomes [14, 46]. Since in silico methods can be used on a higher number
of sequences at once, consensus structures can be predicted together to find conserved,
possibly equal folding regions in the sequenced genomes. by prior multiple sequence

alignments [46].

1.6 Alignments and clustering

Aligning multiple sequences to each other is possible by a number of different methods
nowadays. The core of most multiple alignment methods were created by Needleman and
Wunsch [51]], with an algorithm usable to aligns two sequences in a pairwise manner using
fast dynamic programming. The algorithm was intended to be used solely on proteins but

could be transfered to any problems involving pairwise distance and was soon used for
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nucleotide sequence comparisons [59]. Other algorithms were created in the following
years but the one proposed by Needleman and Wunsch was soon used to not only align
two sequences but multiple sequences, creating the possibility sequence comparisons of
multiple sequences [59]. Due to inability to be used on high numbers of sequences
other algorithms, like the one proposed by Feng and Doolittle [21]], were created. These
algorithms did not offer the same accuracy but could be performed on higher number
of sequences, thereby, creating first heuristic multiple sequence alignment methods. The
way for present multiple sequence alignments was paved, offering the possibility to align
higher numbers of sequences in reasonable time. Present day multiple alignment tools
offering global comparisons of the complete sequences are still based on these heuristic
methods. Famous ones are up-to-date versions of CLUSTALW first proposed in Thompson
et al. [74] and T-COFFEE proposed in Notredame et al. [53]. While steps in terms of
accuracy had been made in the development of newer versions, calculations still have high
CPU times and hardware offering high amounts of computational power are still needed
[32]. Other alignment methods exist, searching for similar short profiles in the sequences

and extend these matches. MAFFT first proposed in Katoh [32] and evolved to the present

day version as described in Katoh and Standley [33]] uses [fast Fourier transform (FFT)| for

similar profile search, resulting in faster and less costly nucleotide sequence comparison.

MUSCLE also prominent for [multiple sequence alignments (MSAs)| creation, is based on

k-mers profiles instead, also improving speed [[18]]. More alignments in shorter time-spans
enable searching for conserved structures in a higher magnitude. created by the
available present day tools can be used in structure predictions by e. g. , RNAalifold [9].

Since in silico methods are based on sole predictions involving thermodynamic calcula-
tions, the choice of a set to use when aiming to make statements about higher amounts
of sequences is crucial. Prediction of conserved consensus structures is, therefore, highly
fragile in terms of high genomic differences of the used sequences. Prior clustering to
discover related groups can be helpful in improving the accuracy of consensus structures as
performed in Moss et al. [46]] for prediction of a tetraloop structure. Clustering techniques
are broadly used to discover new insights of biological data, not only to predict more
accurate structures in segments, but are also used on post-genomic data in all fields
of bioinformatics [24]]. Clustering methods exist, based on entirely different concepts to
separate the data. They can split given data in groups by connectedness, compactness or
spatial separation of data points [24]]. By separation based on compactness, the method
aims to reduce the intra-cluster variation as much as possible, thereby, mostly creating
spherical clusters [24]]. The concept of connectedness connects neighbors to
each other, thus, creating chains of associated data points (Fig. 1.2b). The clusters are
mostly arbitrarily shaped. Spatial separation is a concept aiming for splitting the data in
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Fig. 1.2 Clustering methods. Clustering is most frequently used by density-based separation, using the
compactness concept or agglomerative hierarchical clustering with the connectedness concept. The letters
denote datapoints with the clusters most meaningful points as centroids in red, when using threshold #;. Both
methods are highly dependent on the used parameters for the clustering. Therefore, the thresholds #; and #,
illustrate major differences on the resulting clustering. Choosing #; or t, in the hierarchical connectedness
clustering either produce a cluster containing ¢, d and e or two clusters, one containing ¢ and d and the
other containing only e, leaving e unclustered. Setting the threshold to high can on the other hand result
in a even smaller number of large clusters containing higher differences. Setting the value to small results
in more unclustered datapoints. Threshold definition in the density-based compactness clustering defines
the magnitude of the density necessary to induce cluster separation. For the illustration of the compactness
clustering, the values for 71 and #, are used as cluster selection by a radius including at least a number of two
points for ¢ and five points for #,. Therefore, r; would create three clusters leaving f out unclustered. The
value #, on the other hand would create a bigger cluster with higher differences, including f but would most
likely leave b e and g unclustered.

different regions and is related to the concept of compactness [24]]. Existing clustering al-
gorithms try to best separate the data based on these concepts. Still, no existing clustering
algorithm can take all of these concepts into consideration. Most clustering algorithms
follow the principle of either connectedness, like hierarchical clustering algorithms, or the
compactness concept, involving also the spatial separation, like density-based clustering
algorithms [24]]. Hierarchical clustering algorithms can be used by starting with each data-
point in a single cluster and merging while climbing the hierarchy, called agglomerative or

divisive, when starting in on cluster and dividing in smaller ones [[50]. Prominent widely

used examples for agglomerative hierarchical clustering are the junweighted pair group]
method with arithmetic mean (UPGMA )| method, that is also present in MAFFT for guide

tree creation [32]. Also the recent published HDBCSCAN tool. using the single-linkage
hierarchical clustering method [43]]. A well-known examples for density-based clustering
is the tool DBSCAN [40, 65]]. Regardless of which clustering methods is used, there is

always a threshold that has to be defined in order for the algorithm to work as expected
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[40]. Visual inspection on the clustering is not always possible making these
threshold parameters a tough choice. Hierarchical clustering methods need a threshold
to define the cutoff in the tree and density-based methods depend on choosing the size
of an area with a given density to be handled as cluster [40]. Estimation of a reasoned
number of clusters is possible in some clustering methods by the elbow method, thus,
reverse estimating the threshold parameter necessary for the number of clusters [40, |62].
Clustering methods, like USEARCH and CD-HIT, that are especially developed to be used
for sequence clustering, require a threshold based on sequence similarity only [17, [37].
However, the majority of cluster tool use data points as vectors for clustering in statistical
data analysis and distance measurements instead of sequence similarity [40]. The dimen-
sionality of these vectors is dependent on the amount of information. Using vectors with
a high amount of information for clustering requires lowering the dimensionality of the
data prior to clustering [6]. Therefore, combination of the clustering with methods, that
reduce dimensionality is crucial in the most cases. Widely used methods for reducing
the dimensionality of vectors are PCA, t-SNE and UMAP. Choosing the right amount of
preserved information in combination with wisely selected thresholds define, thus, a well

conducted high-dimensional vector clustering [39, 44, |56].

1.7 The proposed project

The present subtype classification of is solely based on immunological research on
the surface proteins. Since release of this classification around 40 years, with enormous
progress in computer technology, have passed. Aside from the raw number of new
sequenced genomes of in these years, also ways for faster sequence comparisons
methods using profiles like k-mer comparisons and more accurate clustering algorithms
were paved. Using knowledge from this elapsed time, the current classification will be
reevaluated from the perspective of bioinformatics, to possibly find subtle differences to
renew the classification with more detailed subgroups [2]. Due to the usage of the raw
amount of all high quality sequences available for [AV] the clustering into groups were
performed without any alignments, searching for a faster, more scaleable and hopefully
more accurate method. Instead of alignments, a distance measurement using vector
representation based on genomic k-mers will be used in combination with high dimensional
clustering methods. As already mentioned, k-mer distance for genomic comparison was
also described in RC Edgar [ 18] for faster alignments. To handle the high dimensionality of
the used k-mer representation vectors used in this project, different dimension reduction
methods were described and compared. For clustering, hybrid HDBSCAN will be used,

combining compactness and connectedness for the best accuracy possible, aiming for
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high quality clustering of the huge amount of highly variable sequences. Threshold
definition is a complex procedure with high impact on the results and will be solved by
different approaches, involving the Kneedle Algorithm, implementing the elbow method
for the most appropriate results. This project aims for a clustering based classification of
all eight segments of hopefully paving the way for future research to discover more
detailed consensus structures and new insights into the molecular life-cycle of the[[AV] The
current subtype classification will support the clustering of segment 4 in this project
and, thereby, create a blueprint to cluster the other segments in a similar way. Nevertheless,
due to the lower evolutionary pressure, less clusters for the segments not coding for surface
proteins are to be expected. For a simple and usable new classification, less than 100
clusters per segment would be comfortable and are anticipated, when considering the

number of reassortment events in HIN1 proposed in Nelson et al. [52].



23

2 Materials and Methods

2.1 Data and pipeline

The tools listed in were installed using the Conda package distribution
system version 2-2.4.0 [4]]. A configuration file for recreation of the used environment is

present in the projects GitHub repositoryE]

Table 2.1 Pipeline tools. All packages used in the project are listed, including their purpose in the project
and their source.

Name Version Purpose Source
BioPython 1.78 alignments and tree construction [13]]
ETE3 3.1.2 tree plotting and labeling [27]
HDBSCAN 0.8.26 hybrid vector clustering [43]
kneed 0.7.0 Kneedle Algorithm implementation  [[62]]
MAFFT 7.475 multiple sequence alignment] [33]
numpy 1.19.5 matrix and vector calculations [25]]
pandas 1.2.2 dataframe creation and management  [45]]
seaborn 0.11.1 plotting and data visualization [82]
scikit-learn 0.24.1 PCA and vector normalization 11571
SciPy 1.6.0 vector distance calculations [[66]
UMAP 0.4.6 UMAP dimension reduction [44]

Since its file size exceeds the limits of GitHub, the FASTA file containing all the sequences
of the|lnfluenza A Virus (IAV)| that are used in this project is present on the attached USB
stick and in the FSU—Cloucﬂ The FASTA file can be manually retrieved from the
[Research Database (IRD)|using the settings in for nucleotide sequence search.
The header of the FASTA file has to be formatted as Accession Number, Strain Name,
Segment, Protein Symbol, Type, SubType, Date, Host Species, Curation Flag, in the given

order before downloading from [RD] for the tool to work as expected. The version used
for the proposed results was acquired at 08/1 1/2()2@ Newer Versionf] might change the
results slightly.

Uhttps://github.com/ahenoch/Masterthesis.git
Zhttps://cloud.uni-jena.de/s/f'YkQ2NAwjNDS8oEM
3https://www.fludb.org/brc/home.spg?decorator=influenza
“GenBank Genome Sequence/Annotation Update <= 11/2020
>GenBank Genome Sequence/Annotation Update >= 05/2021


https://github.com/ahenoch/Masterthesis.git
https://cloud.uni-jena.de/s/fYkQ2NAwjND8oEM
https://www.fludb.org/brc/home.spg?decorator=influenza
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Table 2.2 Search parameter. The parameters to use on the nucleotide sequence search interface of the

Field Parameter

Data Type Genome Segments
Virus Type A

Complete Genome Complete Genome Only
Select Segments All

Complete All

Table 2.3 Summary of the clustering methods. For easier separation, the different Methods are listed.
The methods PD and PK use the same dimension reduction by workflow 1, followed by different
€ exploration by workflow 3 for method PD and 4 for PK. Method UD and UK, use the [Fig. 2.1]
workflow 2 for dimension reduction instead.

Reduction
Abbreviation 100 Components 30 Components Exploration
PB — PCA DBCV
PK — PCA Kneedle Algorithm
UD PCA UMAP DBCV|
UK PCA UMAP Kneedle Algorithm

In this project four different ways to cluster the segments of| are described and discussed
(Table 2.3). The methods were compared to each other and analyzed for their capability of
TAV|clustering. Abbreviations of the four methods were used in the following as indicated
in A combined version of the pipelines in [Fig. 2.1] [Fig. 2.2] and [Fig. 2.3 is
available in the projects GitHub repositoryﬁ as a novel clustering tool for genomes
(Sec. 3.6). The tool contains the method elaborated as best suitable for clustering
and is intended to be used for future research. Execution of the tool on the FASTA file

containing 449462 sequences takes around one and a half hours. The sequences are,
thereby, clustered segment-wise, based on their 7-mer frequencies. The output consists
of database ready CSV files holding the cluster assignment of every sequence, analysis

graphics and a labeled clustering tree of each used segment.

The method is based on Viehweger et al. [/8]]. Instead of using the tool nanotext, as
proposed in Viehweger et al. [79]], a simple 7-mer frequency calculation was implemented
and used as described in Similar to Viehweger et al. [78]], the calculated vectors
were clustered using the same tool HDBSCAN but with settings described in the[Sec. 2.4|in-
stead. Since nanotext was not used in this project, different types of dimension reduction

were performed and compared, as described in and discussed in With

Shttps://github.com/ahenoch/Masterthesis.git


https://github.com/ahenoch/Masterthesis.git
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Sequences
——@>
(FASTA) UMAP
D
Frequency 7-mer- reduced
-7 ——>| frequency PCA —®—>| frequency

Calculation

vectors vectors

Fig. 2.1 Preprocessing pipeline. To create high-quality vectors representing the sequences, the FASTA file
was translated to normalized vectors containing the 7-mer frequencies of the specific sequences (A and B).
By workflow 1, a low complexity representation of the vectors was obtained for clustering, using PCA (C).
Workflow 2 describes additional execution of UMAP, that can be used after PCA as intermediate instead of
final step (D). Reduction with workflow 1 or 2 resulted in reduced frequency vectors with 30 components.
A red frame denotes a result of the given workflow.

reduced :
Linkage Kneedle
frequency W Algorlthm
vectors
A
o standard hybrid
Norm(igz)at'o”—> HDBSCAN G HDBSCAN |—>| Cluster
F (euclidean) H (euclidean)

hybrid
HDBSCAN
(euclidean)

Fig. 2.2 Clustering pipeline. Following the preprocessing pipeline normalization was used again
with L2-norm as preparation for HDBSCAN (E). Initial HDBSCAN clustering (F) was performed in preparation
to the e exploration using either workflow 3 or 4. Final hybrid clustering (H) was then executed on the
results of the & exploration using the Kneedle Algorithm (I and workflow 4 or DBCV (workflow 3 and G).
A red frame denotes a result of the given workflow.

reference to the use of cosine similarity s¢o5(X, y) as measurement for genomic similarity

in nanotext, the use of the complementary cosine distance dcos(X,y) in HDBSCAN was
targeted in this project (Eq. 2.1)) [79].

deos(X,y) = 1 — scos(X,y)
X'y

Ixll2[lyll2
=1 - cos(®)

2.1)
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Linkage
Cluster Matrix
CDIST
(euclidean) 3 Centr0|ds Hlerarchy —| Cluster-Tree

Fig. 2.3 Postprocessing pipeline. Following the clustering plpehne Fig. 2.2) the cluster-tree is build by
BioPython and visualized by ETE3 (J). For every cluster the vectors w1th the smallest distance to the other
cluster members are calculated and determined as the clusters centroids (K). A red frame denotes a result of
the given workflow.

reduced
frequency
vectors

2.2 7-mer frequency calculation

The FASTA file containing the genomes of for clustering, was converted to vectors
to enable clustering in high dimension by counting their 7-mer frequency A)
[18]. 47 possible constellations of the nucleotides A,C,G and T with length seven exist.
Therefore, taking every constellation into consideration, the vectors of the sequences had
47 components. The numbers in the vectors components were the number of occurrences
of the related 7-mer in the sequence. The first constellation of the 47 possible ones with
length length was AAAAAAA, given a example sequence containing this 7-mer ten times,
the first component of the sequences vector would be 10. [Fig. 2.4]illustrates the calculation

with 3-mers instead of 7-mers.

CAACAAGATGCAT.] [AAA| [0
I AAC| [1
| .

| M .
L ACAl 11

t1 S lcaAl |2

Fig. 2.4 k-mer vector creation. An example genomic sequence (red box) is splitted into 3-mers. The
sequences 3-mers are then compared to the list of all 4 possible 3-mer constellations (blue box) Based on
the occurrence number of the lists 3-mers in the sequence, a vector with 43 components is created (green
box).

To gain the frequency of the 7-mers, all the vectors were normalized to a vector sum of
one, according to L1-norm (Eq. 2.2]and [Fig. 2.1| B).

X

%=
lIx]11

(2.2)
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2.3 Dimension reduction

PCA was used to handle the complexity of the vectors by simplification with the least loss

of information possible C) [56] [57].

Without posterior use of UMAP, 30 components were extracted by the PCA (Fig. 2. Tworkflow
1) and otherwise 100 workflow 2). Extraction of 30 or 100 components out of
47 in total equals ~ 0.18% or ~ 0.61%. The size limit of the PCA function for calculation
with default setting svd_solver="auto’ is 500 different vectors, with 500 components
and at least 80% of the components to extract. Since every maximum for this standard

settings was exceeded, svd_solver=’"randomized’ setting was used automatically.

UMAP was used for dimension reduction similar to PCA, aiming to better preserve the global
structure of the data D and workflow 2) [44]]. It is similar to the well-known
t-SNE, with better run time performance and better structure preservation in the lower
dimension and less restrictions [39, 44]. The used parameters of UMAP match most of the
ones listed in the manual under section ,,UMAP enhanced clustering‘ The settings are
proposed to be used with UMAP prior to HDBSCAN clustering. Since the goal was clustering,
not plotting 30 components were used instead of the proposed two. The neighbors number
was also changed. It is recommended to be set in a range of one to 100. Based on the high
number of sequences used e. g. , 56617 for segment 4, the highest recommended setting
of 100 was used to better preserve the global picture of the data. Also based on the input

size n_epochs=200 setting was used automatically.

UMAP was used posterior to dimension reduction with PCA, because of the similarity to
t-SNE. As explained in the manual of t—SN the dimension should be reduced to a
reasonable amount prior to execution to reduce noise. Furthermore, in section ,,What
is the difference between PCA / UMAP / VAEs?* of the UMAP manua]ﬂ a pipeline is
proposed, to also reduce from high dimension with PCA, continue with reduction by UMAP
and cluster with HDBSCAN and is, therefore, also used as reference. Reduction with UMAP
to 30 components posterior to PCA with 100 components also provided a comfortable
balancing of computational effort of both methods, while preserving ~ 85% explained
variance with PCA [44].

https://umap-learn.readthedocs.io/en/latest/clustering.html (accessed 07/01/2021)
8https://scikit-learn.org/stable/modules/generated/sklearn.manifold. TSNE.html (accessed 07/01/2021)
%https://umap-learn.readthedocs.io/en/latest/faq.html (accessed 07/01/2021)


https://umap-learn.readthedocs.io/en/latest/clustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://umap-learn.readthedocs.io/en/latest/faq.html
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2.4 Hybrid clustering

HDBSCAN was used to cluster the reduced vectors. It is an clustering algorithm proposed
by Campello et al. [11], as a novel version of the well-known DBSCAN [[10]. Execution of
HDBSCAN involves varying values of €, thus, not one specific threshold is used to define the
clusters, but instead clusters of varying densities are extracted based on their stability [43]].
HDBSCAN was used with hybrid clustering setting as proposed in Malzer and Baum [41]],
combining HDBSCAN with DBSCAN. Thereby, some of the disadvantages of using either
of these methods could be avoided [43) 47]. Since DBSCAN is a density-based clustering
tool, it is dependent on the parameters k and & for clustering. Vectors not surrounded by
k other vectors in a radius defined by this threshold value & are omitted as single vector
clusters or noise [20, 65]]. Standard HDBSCAN, on the other hand, tend to create unwanted
micro-clusters in areas of high density [43]]. Using the hybrid HDBSCAN proposed in [41]],
a threshold value & can be used to extract these high density areas as single clusters with
DBSCAN, but still use the standard HDBSCAN for the otherwise omitted vectors and
H). Hybrid HDBSCAN is, thus, clustering with DBSCAN, resulting in a raw cluster
number, containing finished clusters and omitted single vector clusters, and subsequent

standard HDBSCAN, clustering the omitted vectors, reducing the final cluster number.

This method is useful when intending to cluster with a small cluster size value, while still
aiming to cluster high-density areas together. Thereby it is well suited for the proposed
clustering. Specific strains of [AV] were sequenced a lot more, thus, probably creating
high-density areas, that should be clustered together with the DBSCAN part. The standard
HDBSCAN part of the hybrid clustering is then used with a small minimum cluster size to
find clusters of rare sequenced variants, with possibly important mutations in low-density
areas [41]]. The smallest minimum cluster size of two was used. To declare as least vectors
as possible as noise, the minimum samples value k£ was also set to the minimum of one.
The appropriate £ was identified with explorations by different methods. In preparation
of the & exploration, as described in it was necessary to use standard HDBSCAN
once alone, without the hybrid setting F). The standard HDBSCAN and the hybrid
HDBSCAN, involving, as described, also the standard version, were used with the same
settings plus a respective € value in the latter one H).

Distance calculations by HDBSCAN were performed with the metric=’"euclidean’ set-
ting, due to an open issue in the GitHub Repository of HDBSCAI\F_GL In the issue, the
inability to use cosine distance metric with HDBSCAN and the approximation of it by
euclidean distance of L2-norm normalized vectors, is described (Eq. 2.3|and [Fig. 2.2| E).

1%https://github.com/scikit-learn-contrib/hdbscan/issues/69) (accessed 06/02/21)
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Fig. 2.5 Hybrid clustering threshold. The hybrid clustering HDBSCAN differentiate between clusters where
vectors are connected by distances smaller and higher than €. When the distance is smaller, the DBSCAN
algorithm is used and clusters are generated based on this threshold value &€ by combining vectors with
smaller distance. Omitted vectors, not having a given number of & = 1 vectors in reachable distance
of & and are, therefore, impossible to be clustered by DBSCAN, are subsequently clustered with HDBSCAN
building clusters with higher threshold if appropriate. The graphic is based on ,,Combining HDBSCAN*
with DBSCAN* in the manuaE}and adapted to the euclidean distance calculations in this project, as a two
dimensional example.

X

l1xI2

X =

(2.3)

1 https://hdbscan.readthedocs.io/en/latest/how_to_use_epsilon.html (accessed 07/01/2021)
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(a) Cosine distance

(b) Euclidean distance and L2-norm normalization
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Fig. 2.6 Distance differences as graphical example. The cosine distance of two vectors x and y is based on
the cosine of the angle ® between the vectors (left picture). Since this information is not always available or
the alternative calculation using the vectors only is to expensive for a high number of vectors, the euclidean
distance can be used for approximation of cosine distance, with the precondition of a L2-norm of both
vectors equal to one. L2-norm normalization was used on every vector scaling them to the unit sphere to
match this condition (right picture).

Approximation is possible by euclidean distance calculation on vectors with an L2-norm

of one Due to the L2-norm normalization, according to[Eq. 2.3] all vectors satisfy
this condition (Eq. 2.4)).

IX][> = [|§ll2 =1 (2.4)

The euclidean distance of the L2-norm normalized vectors, is in close relation to the cosine

distance as proven in[Eq. 2.5|and [Fig. 3.2] Dividing the squared euclidean distance of the
L2-norm normalized vectors by two, results in the cosine distance of the vectors [36].

dewct (%, 9)% = 1% - 9113
=®-9T&-9)
= |IRII3 + 19115 - 2&"§ (2.5)
=2(1 —cos(0))
= 2dcos (%, §)
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Thus, in this project, approximation of cosine distance with the euclidean distance metric,

posterior to the normalization with the L2-norm, which scales the vectors to the unit

sphere, was used (Eq. 2.6|and [Fig. 2.6D).

deycl (ﬁ’ 5’) = ”52 - 57”2 (2.6)

Due to the use of the euclidean distance metric in HDBSCAN, the calculation of the euclidean
distance of the L2-norm normalized vectors is integrated into the mutual reachability
distance calculation of HDBSCAN. The mutual reachability distance is the maximum of the
described euclidean distance and the core distances of two L2-norm normalized vectors
(Eq. 2.7 and [Fig. 2.7). It is the main calculation of HDBSCAN used for clustering. The

core distance is the minimum radius necessary to include k = 1 other vector around a

given vector [43]. Threshold ¢ is used on the mutual reachability distances between the
vectors Due to the parameter choice of k = 1, the core distance can never be
higher than the euclidean distance, making the mutual reachability distance always equal

the euclidean distance of the L2-norm normalized vectors.

dmreach—k (ﬁ’ 5’) = max{corek ()’Z), Corey (y)a deucl (ﬁ’ 5’)} (27)

2.5 Epsilon selection

To find an appropriate value for £, two different methods were used and compared
workflow 3 and 4). The first method, the|density based cluster validity (DBCV)|exploration
in G, is based on repeated execution of hybrid HDBSCAN with different settings
for & and comparison by the The is a calculation based on the minimum
spanning tree, to estimate overall cluster density [47]. To enable the calculation hybrid

HDBSCAN was performed with gen_min_span_tree=True setting.

Second method for & exploration was performed using the Kneedle Algorithm on the link-
age matrix created by the initially performed standard HDBSCAN clustering without hybrid
setting F and I) [62]. With increasing cluster number, the distance threshold
decreases in hierarchical clustering methods. This describes a decreasing curve of convex
type, with distance threshold on the y- and cluster number on the x-axis. The knee is
the number of clusters at the point in the polynomial representation of the curve with

maximal acceleration. Polynomial representation was used to find the maximum accel-
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Fig. 2.7 Mutual reachability calculation. A low dimension representation of the calculation HDBSCAN
performed in this project. To calculate the mutual reachability distance, the smallest radius is calculated to
include exactly k = 1 vectors. This example should demonstrate the calculation for two L2-norm normalized
vectors X in blue and § in red, with the value of one for k used in the project. The euclidean distance between
these vectors is then calculated and compared to the radii. The maximum of both radii and the euclidean
distance is the mutual reachability distance (Eq. 2.7). The used parameters make the mutual reachability
distance always fall back to the euclidean distance, since the radius including k£ = 1 other vectors can only
reach the euclidean distance at maximum.

eration of a more precise smoothed curve. Therefore, the settings curve=’concave’,
direction="increasing’ and interp_method="interpld’ were used to find the
optimal number of clusters. The optimal number of clusters was converted to the respec-
tive ¢ threshold. Knee point selection was restricted to a given area between one and a

maximum value of 500. The maximum was chosen to include the area with the highest
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expected differences. The best Knee point was expected to be less than 100, a higher value

was used to prevent bias creation by forcing the number of clusters to be maximal 100.

2.6 Alignments and vector calculations

H13/H16 N standard
frequency Normallzatlon_) CDI.ST HDBSCAN Cluster
(L1) (cosine)
vectors (precalc)

Distance
Matrix

Distance Tree
Constructor

Linkage

Fig. 2.8 Precalculation pipeline. For the precalculated trees the L1-normalized 7-mer frequency vectors
distances were calculated and used for clustering by HDBSCAN (B, K, N and workflow 7) and on the other
hand processed with BioPython for unweighted pair group method with arithmetic mean (UPGMA)| tree
creation and visualization by ETE3 (N and workflow 8). Results from this pipeline were visualized according
to A red frame denotes a result of the given workflow.

L

H13/H16 Distance standard Linkage
Sequences —® MAFFT  —®3 ,iculator HDBSCAN =@ "yjatrix
(FASTA) L N (precalc)

Fig. 2.9 Alignment pipeline. The sequences related to the centroid vectors were aligned using MAFFT
resulting in the output as guide-tree visualized by ETE3 (L and workflow 5). A small FASTA subset
of H13/H16 was also aligned by MAFFT prior to evolutionary distance calculation with BioPython and
clustering with HDBSCAN (L, M, N and workflow 6). Results from this pipeline were visualized according to
A red frame denotes a result of the given workflow.

The labeled clustering trees were created by ETE3 with a newick file, generated according
to a feature request, proposed for the SciPyiT_ZI J) [27]. Clusters centroid vectors
were selected by calculating euclidean distance between all the vectors of a cluster to each
other. The vector with the smallest mean distance was declared as centroid K).

The precalculated trees were created using cosine distance calculation on the L1-norm nor-

malized 7-mer frequency vectors of the segment 4 H13 and H16 sequences of the FASTA
B and K). The calculated distances were used for tree building with

Zhttps://github.com/scipy/scipy/issues/8274 (accessed 06/02/21)
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Fig. 2.10 Simplified clustering pipeline. For the simplified clustering on the sequence subset, the the
L1-normalized 7-mer vectors were reduced with PCA (B and C). Following the dimension reduction, the
vectors were normlized again acording to L2-norm and clustered by HDBCSCAN (E and N). Results from this
pipeline were visualized according to A red frame denotes a result of the given workflow.

BioPython (Fig. 2.9/0 and P). The vectors were also clustered by standard HDBSCAN with-

out hybrid setting, using the precalculated distances with metric="precalculated’.

MAFFT was used for [multiple sequence alignments (MSAs)| and guidetree creation with

treeout=True on the centroid sequences and on the FASTA subset containing H13 and
H16 sequences of segment 4 L) [33]. The MSA] of the FASTA subset was
converted to evolutionary distances with BioPython and clustered by standard HDBSCAN

without hybrid setting M and N). Pairwise alignments in[Sec. 3.6) were performed
using BioPython.
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3 Results and Discussion

For a basic overview of the sequences in the FASTA file, the numbers of sequences of

segment 4 and 6, related to the subtypes of hemagglutinin (HA)| and neuraminidase (NA)|
were counted and visualized (Fig. 3.1). Hereby, the high number of segment 4 sequences

of subtype H1 and H3 in and segment 6 sequences of N1 and N2 in

was noticeable. Furthermore, the similarity of the number of sequences of segment 4

subtype H1 and N1, as well as of segment 6 H3 and N2 was also remarkable. The
similarity seem to originate from the frequency of subtype combinations HIN1 and H3N2
of the full genomes, which is also in line with the most prominent subtypes of
mentioned in Deng et al. [15]. In addition to that, a high number of not
classified sequences named ,,none* is present in the data. These unclassified sequences
were possibly sequenced without prior subtype testing or are in fact sequences that do not

belong to either of the known subtypes [2].

As described in the clustering was performed multiple times to compare differ-
ent methods for their quality and efficiency of [AV] clustering. The four methods were
compared directly to each other in the following. For better separation, the four methods
were called by their abbreviation, to be found in As a short reminder, PD used
direct reduction to 30 components with PCA, following & exploration with the
Ibased cluster validity (DBCV)| and PK used the same reduction but exploration with the

Kneedle Algorithm instead. Method UD and UK were performed in a similar way but
with reduction to 100 components by PCA and to 30 afterwards by UMAP. The numbered

workflows in [Fig. 2.1 [Fig. 2.2] and [Fig. 2.3| represent the different methods.

To choose a reasonable number of components for the PCA, mentioned in the
7-mer frequency vectors of segment 4 were reduced by running PCA with different settings
(Fig. 2.T]and [Table 3.1)). The sum of explained variance for every setting were calculated
and listed in Because of the high increase of explained variance from 10 to 20
components with 58.7% to 68.7% and likewise to 30 components with 73.9% explained

variance, a value of 30 was used as default in this project. A fairly small value was used,
due to increasing computational effort of the PCA implementation and also to preserve the

usability of spanning tree calculation with HDBSCAN. Calculation of the spanning tree by
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Fig. 3.1 Antigen subtype frequency. The number of occurrences of segment 4 and segment 6 sequences
related to [HA] and [NA] subtypes was counted. Sequences related to subtypes H1 and H3 were the most
frequent ones from segment 4 with a total number of 17627 and 23074. Subtype HS was also slightly
over-represented with 3195 sequences. 1191 sequences from segment 4 in the data had no classification and
are listed as ,,none*. Likewise were sequences related to subtypes N1 and N2 the most frequent ones from
segment 6 with a total number of 17945 and 26129. 1305 sequences from segment 6 in the data had no
classification and are also listed as ,,none*.

HDBSCAN is, with the preferred settings, only possible up to ~ 50 components. For better
comparison of the methods, the final number of components of the UMAP reduction in UD
and UK was also set to 30. Therefore, clustering with all the methods was performed on

vectors with 30 components.
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Table 3.1 Explained variance by different PCA settings. The explained variance of specific PCA com-
ponent settings used on the 7-mer frequency vectors of segment 4. A result of 0.587, as for extracted 10
components, represents 58.7% of the variance explained by the first 10 components of the vector. The more
components were extracted the lower the increase in additional explained variance [56].

#Components Var(X)

10 0.587

20 0.687

30 0.739

40 0.771

50 0.793

60 0.809

70 0.821

80 0.831

90 0.839

100 0.846

(a) Dimension Reduction with PCA (b) Dimension Reduction with UMAP
2.00 2.00
1.75 1.75
1.50 1.50
1.25 1.25
U8 1.00 b8 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
dchord dchord

Fig. 3.2 Approximation proof on real data. Calculations for the L2-norm normalized euclidean and the
cosine distances were performed on subsets posterior to the PCA and the UMAP workflows and compared. In
both cases the difference is exactly matching the relation of squared euclidean distance divided by two equals
the cosine distance, as described in[Sec. 2.4] further proving the relation of the distances. Crowding of the
points in the right graph, representing reduction with UMAP, most likely can be explained by the embedding
mechanism of the tool, that further reduces the distance of similar vectors [44]].

For the graphical comparison of the demonstrated mathematical proof of the close relation

of the euclidean distance of the L2-norm normalized vectors and the cosine distance

(Sec. 2.4), subsets of the real data were used. In a subset of 100 7-mer

frequency vectors of segment 4 were reduced by PCA, L2-norm normalized and compared

to each other by euclidean and cosine distance, as described in [Sec. 2.3| and |Sec. 2.4]

All the calculated distances for euclidean distance were then plotted against the cosine
distances. The red line indicates the relation as calculated in All the points



38 Results and Discussion

are arranged exactly along the red line which confirmed the calculation and relation of
the used euclidean distance on L2-norm normalized vectors to the cosine distance, that
was intended to be used in the first place. The same procedure was repeated with the
use of the UMAP workflow, resulting in the same graphical proof (Fig. 3.2b). In[Fig. 3.2b]

all the points are crowded much more to a dense area of the curve. This is most likely

reasoned by the number of neighbors setting and the embedding behavior of UMAP and
will be discussed in

3.1 Method selection

Clustering with each of the four methods, resulted in a table containing the used settings
and a summary of the clustering. For better visualization, the tables were combined based
on the exploration method. contains the results of the two methods using the
Kneedle Algorithm (PK and UK) and the results that were based on using the
(PD and UD). Every segment of was clustered by each of the four methods.
By result comparison of methods using the € exploration by the Kneedle Algorithm (PK
and UK) in a major difference in the number of raw clusters stood out. Hybrid
HDBSCAN clustering of the only PCA reduced 7-mer vectors (PK) resulted in around 60 to
70 raw clusters (after DBSCAN part) and subsequently 40 to 50 final clusters (after standard
HDBSCAN part) per segment. The number of final clusters was relative close to the state of
the art subtype classification with 18[HAJand 11[NAJantigen subtypes [2]]. The UK method,
using UMAP for reduction, resulted in a higher number of clusters with no difference in
raw and final cluster number. Therefore, the hybrid HDBSCAN clustering only used the
DBSCAN part. This can be explained by the overall higher ¢ threshold compared to the
PCA version (PK). By a higher &, more points were included in the DBSCAN part of the
hybrid clustering. In addition to that, the embedding behavior of UMAP probably affected
the position of the vectors, decreasing the distances inside of groups of vectors, thereby,
leaving less vectors out by the DBSCAN part. With the UMAP reduction method (UK), all
vectors of every segment could be clustered, thus, zero vectors were left out unclustered.
The approach using PCA alone (PK) was unable to cluster the vectors of around 10 to 30
sequences per segment. However the number of unclustered with PK for, e. g., segment
4 was 6 of 56617 used sequences and, therefore, neglectable ~ 0.01%. As a comparison,
1191 sequences segment 4 are declared unclassified by the current subtype convention

making ~ 2%.

Comparison of the methods PK and UK to the ones using the [DBCV]for ¢ exploration,
instead of the Kneedle Algorithm (Table 3.3| did not result in much difference for the UMAP
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Table 3.2 Clustering results with the Kneedle Algorithm. The results of the clustering methods using
the Kneedle Algorithm (PK and UK). Listed is every used segment with the number of raw clusters and the
final cluster number by hybrid clustering with the given value of €. The mixed cluster numbers of H and
N denotes number of clusters that contained vectors related to more than one subtype. The variance was
calculated as the sum of the explained variance by the PCA.

#Cluster #Mixed
Method Segment Final Raw Normalized H N #Unclustered ¢ Var(X)
PK 1 29 65 0.128 20 21 30 0.258 0.773
2 39 63 0.124 18 18 21 0.285 0.756
3 42 72 0.142 20 20 20 0.310 0.777
4 56 67 0.132 2 41 6 0.191 0.739
5 32 71 0.140 18 20 27 0.277 0.800
6 44 58 0.114 30 3 9 0.215 0.754
7 41 72 0.142 20 21 22 0.348 0.822
8 37 61 0.120 18 19 20 0.311 0.826
UK 1 255 255 0.509 103 107 0 0.064 0.859
2 222 222 0.443 88 89 0 0.066 0.849
3 268 268 0535 92 94 0 0.055 0.865
4 266 266 0.531 2 104 0 0.043 0.846
5 309 309 0.617 94 95 0 0.056 0.882
6 271 271 0.541 90 4 0 0.035 0.855
7 437 437 0.874 100 112 0 0.093 0.903
8 360 360 0.719 111 111 0 0.089 0.899

reduction with exploration method (UD). The numbers of clusters found were a
little higher compared to the results with the Kneedle Algorithm exploration (UK). Using
the to find the optimal & with the PCA workflow (PD) on the other hand changed the
results drastically in comparison to PK. The numbers of final clusters were between 9000
and 12000 depending on the segment, with the exception of segment 4 and the raw cluster
numbers were nearly equivalent to the total number of sequences for the other segments.
Also the numbers of unclustered sequences were increased by a major amount to around
20% for most segments, making the method in any case unusable for[[AV|clustering. Only
the clustering of segment 4 with € exploration (PD) seemed to be as stable as with
the Kneedle Algorithm (PK). The numbers of clusters for the other segments were higher,
because the method was searching for the € value setting that results in the highest
possible. In all the segments except 4 this resulted in a value of zero. Hybrid
clustering with a € value of zero results in clustering with the standard HDBSCAN part only,
without prior DBSCAN and is, considering the amount of unclustered sequences, not suited
for TAV] clustering. Based on the results in [Table 3.2] and [Table 3.3 the best method for
clustering seemed to be the combination of PCA and the Kneedle Algorithm (PK).
The method resulted in an appropriate number of clusters and was the only combination
using all the benefits of the hybrid HDBSCAN clustering.
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Table 3.3 Clustering results with the DBCV. The results of the clustering methods using the [DBCV](PD
and UD). Listed is every used segment with the number of raw clusters and the final cluster number by
hybrid clustering with the given value of €. The mixed cluster numbers of H and N denotes number of
clusters that contained vectors related to more than one subtype. The variance is calculated as the sum of
the explained variance by the PCA.

#Cluster #Mixed
Method Segment Final Raw H N #Unclustered & DBCV Var(X)
PD 1 11,599 55,436 1,152 1,225 13,548 0.000 0.404 0.773
2 11,596 55,292 1,067 1,169 13,457 0.000 0.417 0.756
3 11,521 55,351 1,080 1,168 13,017 0.000 0.422 0.777
4 51 58 2 38 4 0.200 0.572 0.739
5 10,717 32,818 1,074 1,158 11,478 0.000 0.479 0.800
6 11,143 34,600 713 3 12,065 0.000 0.455 0.754
7 8,866 55,620 1,119 1,227 8,753 0.000 0.513 0.822
8 9,189 55,563 1,125 1,225 9,794 0.000 0.493 0.826
UD 1 279 279 110 116 0 0.041 0.860 0.859
2 242 242 92 93 0 0.052 0.838 0.849
3 265 265 92 94 0 0.060 0.897 0.865
4 261 261 2 103 0 0.049 0.891 0.846
5 283 283 87 88 0 0.094 0.868 0.882
6 255 255 85 4 0 0.061 0.919 0.855
7 462 463 103 115 0 0.050 0.869 0.903
8 364 364 111 111 0 0.079 0.868 0.899

To backup this assumption, the results were visualized for better understanding and anal-
ysis. Since investigation of all segments would overfill this section, only the methods
PK, UK and UD and their clustering behavior on segment 4 were discussed in detail.
As described, the PCA method in combination with the (PD) used only standard
HDBSCAN, resulting in a very high number of clusters and 20% unclustered sequences.
Therefore, the method was already rejected and not included in the following discussions.

Nevertheless, similar graphics for PD with segment 4, as well as, all used method for the

other segments can be found in the

A big difference in the cluster size distribution stood out, when comparing the method with
PCA (PK) to the ones with UMAP (UK and UD). Only the method using PCA and the Kneedle
Algorithm created clusters with more than 10000 vectors (Fig. 3.3c). The different cluster
sizes using UMAP were spreaded more equally with no cluster containing 3000 vectors or
more (Fig. A.2c¢|and [Fig. A.3c). Since the UMAP methods also used prior PCA reduction,
the major difference was the additional use of UMAP (Sec. 3.5)). Therefore, the difference in

cluster size distribution was most likely caused by UMAP itself. As already mentioned UMAP

not only reduces the dimension of the data but also changes the position of the vectors in
the embedded dimension according to the used settings. The n_neighbors=100 setting

seemed to be most likely the cause of a change of this magnitude. By this high number
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Fig. 3.3 Clustering of segment 4 with PK. Segment 4 clustering using the combination of PCA and the
Kneedle Algorithm (PK) results in the given figure. The green curve in the top left subfigure describes the
change of the distance in the single linkage tree with increasing normalized cluster number and, therefore,
the location of the knee, at the maximum, highlighted by the red line. The blue line represents the inverse
polynomial representation of the blue line in top right subfigure. The top right subfigure shows the absolute
relation of the distance in the single linkage tree to the total number of clusters as the blue line. The red
line, indicates the number of raw clusters, by the DBSCAN part of the hybrid HDBSCAN clustering and the final
cluster number in green. The yellow line describes the threshold, extracted from the knee and, therefore,
the ¢ value used to perform the hybrid clustering. The normalized cluster number in the red line in the top
left subfigure is equivalent to the raw cluster number in the top right subfigure. The bottom subfigures give
information about the distribution of the clusters sizes, by plotting the number of clusters containing a given
counted number of sequences in continuous and logarithmic scale.

number of neighbors, the vectors were more crowded in large groups to support the bigger

picture of the data and, therefore, seemed to build more crowded clusters of similar sizes.
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With the distribution of segment 4 sequences in the data in[Fig. 3.Ta]in mind, it was expected
that a distribution of cluster sizes in segment 4 clustering would in fact approximate the
distribution of the sequences in the former one. Therefore, a clustering with PCA in
combination with Kneedle Algorithm exploration seemed to give the expected results and
appeared again as the best method for[[AV|clustering. Taking also the relation of the cluster
number and the distance into consideration, indicated continuous merging of
clusters with decreasing cluster number in the linkage tree. Thereby, exponential behavior,

with a knee point that is easily distinguishable, even without computationally methods,

developed. The behavior is not present in [Fig. A.2bland [Fig. A.3b/in a similar degree, as

at least two knees occurred.

The results of the method using PCA in combination with the Kneedle Algorithm (PK)
were visualized by the clustering tree in[Fig. 3.4] Labeling of the tree was performed based
on the antibody subtype, as shown in Therefore, clusters only containing
sequences of a given subtype were labeled as such. If a cluster only contained sequences
of one subtype, plus some not classified sequences, the not classified sequences were
declared as the subtype too. That way, a clear presentation of the subtype distribution
by labeling was possible, since the not classified sequences were very likely to actually
belong to an existing subtype when clustered that way. If they actually did not belong to
a existing subtype, a cluster only containing these not classified sequences would most
likely have occurred, which did not happen. Furthermore, the chance to eventually break
the classification of subtypes, by declaring not classified sequences to a existing subtype
was not given. The clusters were not based on subtypes in any way and the visualization
was only for guidance and not possible for any segments other than 4 and 6 anyway. Also,
without this assignment of the not classified sequences, no presentation would be possible

since they were present in a high number and distributed over mostly all clusters.

If a cluster contained sequences of more than one subtype plus some not classified se-
quences, no labeling was performed, since the cluster was not homogeneous for one
subtype and a declaration of the unclassified was not possible. In the following the term
vector will be mostly replaced by the term sequence, to aid the discussion in terms of tree
placement and subtype relation. Since the vectors represented the sequences, the terms

were linked to each other and used as synonyms.

The prime example of the not classified sequence annotation was the yellow labeled
cluster 29 of subtype H9 A). While the vectors of all sequences of subtype
H9 were accumulated in this single cluster, the cluster size of 1569 was bigger than the
number of H9 sequences in with 1454. This was justified by the presence of
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Table 3.4 Unclassified sequences in segment 4 cluster 29 with PK. The multiple sequence alignments|
mean distance of the given sequences in comparison to a sample of H9 sequences of the same
cluster and a sample of unclassified sequences from other clusters was calculated. Only the first 20 columns
are presented, the full table can be found in the projects GitHub Repositoryﬂ

Accession H9 unclassified
>CY 125733 0.167 0.499
>KP286620 0.104 0.509
>KP286635 0.105 0.510
>CY206227 0.166 0.499
>MG042357 0.140 0.500
>MG957616 0.139 0.501
>MG957513 0.138 0.501
>MG957519 0.139 0.500
>MH791733 0.141 0.501
>MN209446 0.145 0.501
>MN209378 0.145 0.502
>KP416339 0.104 0.509
>KP416375 0.104 0.510
>KP416404 0.104 0.509
>KP415847 0.104 0.510
>KP416464 0.105 0.511
>KP415453 0.106 0.509
>KP286584 0.112 0.503
>KP414685 0.113 0.506
>KP415520 0.105 0.511

115 not classified sequences in the cluster, which were declared as H9, since only H9
and unclassified sequences were present in the cluster. The declaration of the unclassified
sequences to be the H9 sequences was supported by the very small evolutionary distance of
the unclassified sequences to a sample of H9 sequences from the same cluster (Table 3.4]).
The sequences were also compared to unclassified sequences from other clusters to prove
the smaller evolutionary distance to H9 sequences. This comparison was performed to
prove that, even when only used for visualization reasons, the annotation of not classified

sequences in the described way was most likely appropriate.

The number of clusters for a given subtype of [HA| seemed to correspond roughly to
the overview of sequences in Clusters of very low represented subtypes, like
H15, contained mostly all the subtypes sequences, while the high represented subtypes

sequences, like H1 and H3, were spreaded over more clusters.

Striking anomalies divergent from the expected nearly uniform allocation of the subtypes

in [Fig. 3.3| are annotated by B, C and D and will be discussed in the following. For final

Uhttps://github.com/ahenoch/Masterthesis.git
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Fig. 3.4 Clustering tree of segment 4 with PK. The clustering tree of segment 4 clustering, using the

combination of PCA and the Kneedle Algorithm (PK) (Fig. 3.3). The labeling of the clusters in the tree is
based on the subtype of the contained sequences. Unclassified sequences of a cluster were reclassified as a

given subtype if sequences of only this subtype were present in the cluster, in addition to the unclassified ones.
Unlabeled clusters contain sequences from at least two subtypes and zero or more unclassified sequences.

Two clusters were mixed since they contained sequences of more than one subtype (Table 3.2)). These non
homogeneous clusters are marked by B and C. The cluster 29 marked by A was an example for a cluster

consisting of all sequences from a given subtype. The misplaced cluster from subtype H3 is marked by D.
Dotted lines in the tree indicate the same host.

acceptance of the method PK as the prime [TAV]clustering method proposed in this project,
the clustering tree was compared to a similar one created on the results from method UK

(Fig. A.4). While the labeling of the clustering tree of method PK resemble the subtype

classification of [AV] very closely, no recognizable subtype separation is present in the
clustering tree of UK.
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3.2 Database annotation errors

To evaluate the anomalies in B and C, an evolutionary distance was calculated by
[MSA]for every eventually misplaced sequence to ten other sequences ((Sec. 2.6). A sample
of five sequences from the same cluster, related to the dominant subtype of the cluster,
and a sample of five sequences with subtype equal to the misplaced sequence but from
other clusters. The mean of the evolutionary distance was then calculated for both sample
comparisons independently to rate the assignment and reveal possible misannotations in
the [Influenza Research Database (IRD)|

Table 3.5 Anomalies in segment 4 cluster 2 with PK. The mean distance of the given sequences
in comparison to a sample of H1 sequences of the same cluster and a sample of H10 sequences from other
clusters was calculated.

Accession H1 H10
>MK?237334 0.049 0.488

Table 3.6 Anomalies in segment 4 cluster 48 with PK. The mean distance of the given sequences
in comparison to a sample of H16 sequences of the same cluster and a sample of H13 sequences from other
clusters was calculated. Only the first 20 columns are presented, the full table can be found in the projects
GitHub Repositoryﬂ

Accession H16 H13

>MH498778 0.278 0.217
>MF682848 0.299 0.244
>KX979327 0.298 0.238
>KX978913 0.300 0.241
>KX979541 0.300 0.240
>KX978076 0.301 0.241
>KX978980 0.299 0.242
>KX979063 0.298 0.238
>KX978876 0.299 0.239
>KX979544 0.301 0.241
>KX979380 0.300 0.240
>MF682844 0.300 0.240
>KX978929 0.298 0.238
>MF575207 0.297 0.239
>KR087564 0.290 0.251
>MF147289 0.298 0.241
>MF147869 0.298 0.241
>CY 185569 0.287 0.258
>CY 185489 0.287 0.250
>MF461180 0.297 0.244

Zhttps://github.com/ahenoch/Masterthesis.git
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In case of C, a single sequence with subtype H10 was classified as belonging to
cluster 2, which other than that, completely consists of H1 and unclassified sequences. By
investigation on this possible misplacement, comparison with was used. The results
for this comparison in pointed to the fact, that the as H10 annotated sequence
with accession MK237334 is related to subtype H1. The mean of evolutionary distance
based on with the sequence and a sample of cluster 0 H1 sequences was very
low. Considering the large size of cluster 0, a higher difference was expected, pointing
in direction of many very similar sequences in the cluster. In addition, the evolutionary
distance of the sequence in comparison to a sample of random H10 sequences was much
higher (Table 3.5). Furthermore, only this sole sequence, annotated as subtype H10, was
present in a cluster of over 900 sequences of H1, with a very low evolutionary distance to

a sequence sample of the cluster, rendering the error most likely as a misannotation.

When comparing the distances for the same calculation performed on C in
no decision for misannotation can be made. The dominant subtype in the cluster
48 1s H16 but the sequences of subtype H13 that seem to be misplaced in the cluster had a
smaller distance to the sample of sequences from subtype H13. The difference in distance
to sample sequences of H13 as well as to sequences of H16 gave indeed no clear finding.
Both results are quite similar and the misclustered sequences seemed to share much
sequence similarity with both subtypes. The misclustered sequences in cluster 48 possibly
pointed to a more complex classification. Cluster 48 remained a mixed cluster with many
sequences from subtype H13 and H16 and, thus, was treated as clustering error. Therefore,
subtype H13 and H16 will be the focus of investigations of the clustering behavior in the
following sections to reveal possible subdivisions responsible for the clustering error.

The last error involved cluster 4, that was homogeneous for subtype H3 but split off the
other H3 clusters by nearly all the non H3 clusters D. By evaluation of the clusters
relation with a created guidetree generated from the centroid vectors sequences,
the error persists (Fig. 3.5). Every of the 55 clusters had a sequence intended to best
represent the whole cluster, the centroid sequence, calculated as described in
When using the guidetree as comparison, the uniform labeled distribution stood out. Even
the centroid of the mentioned cluster 4 is arranged in a line with all the centroids of clusters
homogeneous for subtype H3. This subset of centroid sequences used for the guidetree
was possibly to small for a sure proof but still, the arrangement pointed to a clear subtype
separation. Therefore, cluster 4 and 48 (Fig. 3.3|C and D) remained as identified clustering

mistakes and will be further examined in the following.
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Fig. 3.5 Centroid guidetree of segment 4 with PK. The guidetree was created by building a [MSA| on
the centroid sequences of clusters resulting from the PCA and Kneedle Algorithm (PK) workflow. The
labeling of the tree is based on the related subtype of the centroid sequence used for the [MSA] The leaves
are annotated by the used centroid sequences accession and the cluster it represents.

3.3 k-mer representation quality

Investigation on the anomalies resulted in two persistent clustering errors B and
D). To evaluate if the method is suitable for the clustering of [[AV] possible error sources

will be discussed in the following.
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Fig. 3.6 UPGMA tree of H13/H16 with cosine distance. Calculated cosine distance between the k-mer
frequency vectors of sequences related to subtype H13 and H16 clusters in [Fig. 3.4] were used to build a

[unweighted pair group method with arithmetic mean (UPGMA)|tree. The same labeling of the previous tree
was used to clarify the difference between H13 and H16 sequences. Unlabeled sequences were unclassified
sequences from the mixed cluster 48 and, thereby, not assigned to a single subtype. The numbers in the
green arrows indicate the cluster number of the subtrees sequences in[Fig. 3.4] The red arrows will be used
in the following to point to the trees division into H13 A and H16 B. [Fig. 3.7 is a enlarged view on the
highlighted square at C.

By building a[UPGMA|tree with cosine distance calculation on the non-reduced segment
4 H13 and H16 k-mer frequency vectors with 4’ components, the unbiased relation of
sequences from these subtypes were analyzed workflow 7). These calculations
required high computation power and were only possible due to the small amount of
segment 4 H13 and H16 sequences. Since no component reduction was performed in this

case the fundamental use of k-mer frequencies could be validated or rejected. The tree
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was labeled in a similar way to the previous ones. Therefore, aiding the visualization,
unclassified sequences were declared as a given subtype based on the clusters of
again. The small amount of not labeled sequences in the tree were unclassified
sequences, that also could not be assigned to a given subtype in the previous sections
(not assigned sequences from mixed cluster 48). The labeling based on the clusters in
F1g. 3.4{ was used to better visualize the separation and also reversely evaluate the labeling
too. Outstanding labeling mistakes breaking the uniform separation would, thus, reject the
assignment of not classified sequences, that was performed. All sequences in the[UPGMA|
tree were also annotated by their cluster number in to enable better comparison.
The green arrows indicate subtrees in the[UPGMA|tree containing the sequences assigned
to a given cluster in the previous section. In[Fig. 3.6] sequences from cluster 46, 45 and 47
are contained in well separated subtrees, while the sequences of cluster 48 are spreaded
over half the tree. This finding is in line with clustering error B and

1g. 3.5|indicating the existence of a clear separation of both subtypes, even when a degree

of similarity exist.

While both subtypes in are completely separated directly after the trees root,
there are also subsequent subdivisions for both subtypes directly after that. This early
subdivision possibly point to the existence of more subtle variations, with major difference
to each other than the existing subtype classification reveals. In this case it appeared as
if at least two subgroups for H13 and at least two or three subgroups for H16 exist. The
threshold was difficult to define, as no clustering was performed here. Thereby, this
statement was based only on the early subdivision in the[UPGMA|tree (Fig. 3.6/ A and B).
The exact separation from the root is in line with the centroid guidetree based on
where both subtypes were completely separated too (Fig. 3.5). Since this is also in line with
the subtype classification, the k-mer frequency approach seemed to work as expected in
this project. Furthermore, when focusing on a portion of the[UPGMA|tree with very small
distance in[Fig. 3.6|C, the similar collection date of all these sequences (12/13/2016) stood
out. The only sequences not from this collection date but, nevertheless, included in this
subtree are MH499057, MH498978, MH346972, MH499085, and MH499160. Two of the
first three mentioned sequences are from the same collection date but some days prior to the

rest, while the third was collected some days after the 12/13/2016. These three sequences
are the last linked sequences in the subtree with the highest distance in comparison to the
rest and their collection date is nearly the same as for the rest. The other two sequences
with different date MH499085 and MH499160 are in the middle of the subtree but also
collected just one day after the rest. These findings pointed in the direction, that even
small differences were noticed by the k-mer approach. The collection date was used as

comparison here because many of the sequences in the subtree have very different strain
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Fig. 3.7 Relation of collection date and k-mer vector distance. Enlarged view of the by C highlighted
square in[Fig. 3.6l The sequences were labeled according to their collection date to indicate the correlation
of the close k-mer frequency vector distance in the tree with their sequences similarity. Labeling with the
strain name could misleadingly point in a false direction, since the strain names indicate major difference
while the sequences having a very high degree of similarity. Thereby the close distance of the vectors of
sequences collected on the same date with high sequence similarity point to the precise representation by
the k-mer frequency vectors.

names but are almost or completely similar and, thereby, usage of the strain name instead
could cause a misinterpretation. MH499085 of strain A/environment/Chile/C20369/2016
and MH498671 of strain A/white_backed_stilt/Chile/C20090/2016 differ by their strain
names, as the virus was collected apparently completely different but the sequenced
genomes are in fact 100% identical. Around the tree in nearly every case similar collection
dates have a small distance based on the k-mer frequency vectors, supporting the statement

of the usability of k-mer frequencies for [AV|clustering.
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3.4 A ground truth for clustering

Since the use of k-mer frequencies proved to be valid for clustering, further investiga-
tion on the source of the persisting errors[Fig. 3.3|B and D was performed. For investigation
standard HDBSCAN clustering was used without hybrid setting and & exploration on the
same small subset of HI3 and H16 sequences used in the previous section. Standard
HDBCSCAN was used for simplification and minimization of error sources. Also, the subset
used with 662 sequences was smaller than e. g. , the one for full segment 4 clustering with

56617 sequences, making the use of hybrid HDBSCAN unnecessary.

Two different clusterings on this small subset, without the necessity of any dimension
reduction were performed and compared to find a ground truth. Subsequently the results
were compared to a clustering on the same subset with a simple version of the PK method
and, therefore, involvement of dimension reduction. The first input was the non-reduced
set of k-mer frequency vectors used in as precalculated cosine distance matrix
(Fig. 2.8|workflow 8). HDBSCAN can use precalculated distances as input instead of vectors.
Therefore, no distance calculation is performed by HDBSCAN. Precalculated distances on
n vectors create matrices of size n X n, therefore, precalculation is very RAM intensive
and not usable on a high number of sequences. Still, since this approach involved no
dimension reduction and less calculation by the clustering tool, thereby less error sources,
the resulting clustering could be used as ground truth. The result of the clustering was

visualized as clustering tree ( 8)).

In a similar manner to the precalculated tree in the subtypes in

are completely separated and split on both sides in two subgroups. This pointed to the fact,
that the HDBSCAN clustering of the precalculated cosine distances of the k-mer frequencies
are as usable as the k-mer frequencies itself to draw a clear line to separate the subtypes.
This finding is in line with the second clustering tree based on similar clustering on the
same sequences with evolutionary distances of aMSA]instead (Fig. 2.9|workflow 6). There,
the same separation is even more obvious, as the subtypes subtrees are farther away from
the separation at the trees root in[Fig. 3.9] On the side of the H13 sequences, a subdivision
is also clearly noticeable. Subgroups in the H16 sequences are, on the other hand, not
that clear separated. The different distances between the subtypes and the subgroups in
[Fig. 3.8] and [Fig. 3.9] were most likely caused by evolutionary aspects integrated in the
calculation of distances by the By the k-mer frequencies, the pure constellation

of nucleotides was used, evolutionary aspects were neglected. However, clustering with
the precalculated approach as well as with the evolutionary distances used the full
information available from the sequences themselves. No reduction with PCA or UMAP
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Fig. 3.8 Simple clustering tree of H13/H16 with cosine distance. Clustering tree, based on the clustering
by standard HDBSCAN without & exploration and hybrid clustering. The matrix used as input contained
precalculated cosine distances. The distances were calculated from the k-mer frequency vectors related
to the sequences, present in the H13 and H16 clusters in without reduction with PCA or UMAP.
Therefore, HDBSCAN was used with precalculation input instead of a distance metric.

was performed and both clustering trees indicate full subtype separation. Therefore, these
clustering trees (Fig. 3.8 and [Fig. 3.9) were the only ground truth for H13/H16 clustering
with HDBSCAN available. As already mentioned precalculated clustering with HDBSCAN,
is highly computationally expensive, as the matrices of size n X n have to be calculated
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Fig. 3.9 Simple clustering tree of H13/H16 with evolutionary distance. Clustering tree, based on the
clustering by standard HDBSCAN without & exploration and hybrid clustering. The matrix used as input
contained precalculated [MSA] based evolutionary distances. The sequences, present in the H13 and H16
clusters in were used for the[MSA| Therefore, HDBSCAN was used with precalculation input instead
of a distance metric.

and saved to be used in HDBSCAN. The calculation is, therefore, not possible without the
availability of major RAM space. When using HDBSCAN with the k-mer vectors posterior

to reduction with PCA to 30 dimensions, only a matrix of size nx 30 has to be saved without
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Fig. 3.10 Simple clustering tree of H13/H16 with PCA. Clustering tree, based on the clustering by standard
HDBSCAN without & exploration and hybrid clustering. The used vectors were related to the sequences, present
in the H13 and H16 clusters in and reduced by PCA to 30 dimensions.

the necessity of any distance precalculation. This is a major reduction of computational

power necessary.

A third clustering was performed using PCA reduced vectors of the same H13/H16 se-
quences (Fig. 2.10). To validate the accuracy of the dimension reduction by PCA, used
in this project, the clustering tree in should have represented the ground truth
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of the previous trees as best as possible. As described in the method using PCA
and the Kneedle Algorithm was declared as best method for [AV]clustering (PK). In this
comparison by standard HDBSCAN clustering without & exploration, the sole reduction with
PCA, representing simplified PK method was, therefore, used (Fig. 3.10). Unfortunately,
some major differences between the clustering trees using PCA and the two trees using
precalculated cosine distance and evolutionary distance stood out. In the
whole tree of H16 is first joined to a subtree of H13, before joining to the other H13
subtree. Therefore, no clear separation is present. The same clustering behavior, without
a clear separation was observed in the complete clustering tree in the previous section
B). The euclidean distance calculation included in the mutual reachability dis-
tance of HDBSCAN is related to the cosine distance as proven in[Chap. 2] Furthermore, the
Kneedle Algorithm was not used as no € exploration was performed. Thus, excluding the
distance calculation and the Kneedle Algorithm from the error sources. Thereby, the PCA
dimension reduction step seemed to be the origin of the clustering error in[Fig. 3.3]|B and D.
The behavior of the dimension reduction will be fully examined in the following section.
Similar clustering with standard HDBSCAN was also performed with the same subset of

H13 and H16 sequences reduced with UMAP and PCA, with results inferior to the sole use
of PCA, thus, proving again the unsuitability of UMAP for [AV]|clustering (Fig. A.5).

3.5 Differences in dimension reduction

To investigate the dimension reduction behavior prior to the clustering and, thereby, find
explanations for the mentioned errors, the small H13 and H16 subset of segment 4 k-mer
frequencies, was reduced by PCA and UMAP to two components for visualization. Compar-
ison to UMAP was done although the method was already declared as not appropriate, to

validate this statement again and see the impact of different neighbor values mentioned in
The target of the dimension reduction prior to the HDBSCAN clustering, was to find a
representation of the data with lower complexity, that is suitable to be used for the
clustering, while preserve as much information as possible. As explained in
and the optimal representation of the vectors should make a clear difference
between H13 and H16. This finding will also be used as the ground truth in the following.

Since the vectors were visualized in two dimensions, the term point instead of vector will

be used.

The visualization of the reduction by PCA is denoted as neighbors value -1 (Fig. 3.11]).
It shows five different accumulations of points. Labeling of these points is based on the
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Fig. 3.11 Comparison of H13/H16 component reductions. The subset of sequences from the H13 and H16
clusters in were reduced down to two dimensions enabling simple visualization. Cluster labeling
was performed according to Sole use of PCA (top left picture) as well as the combination with
UMAP (other three pictures) was performed as described in with the reduction to two components
for visualization. For the combination of PCA and UMAP different values for the neighbors setting were used,
the UMAP standard value 15, a average value 50 and the standard value of this project 100. The subtypes of
the sequences are labeled by different types of points.

original clustering example in This is becoming apparent when focusing on the
cluster 48 points containing H13 and H16 sequences. That way a fundamental distribution

on the points of H13 and H16 could be reviewed as well.

The reduction with PCA on the subset resulted in easy separable accumulations of the
cluster 46 and 48 points in [Fig. 3.11| (neighbors = -1). The distribution of these points is
basically in line with the result shown in[Fig. 3.3] as their accumulations are well separated,
building the two clusters with the same sequences in both figures. The major difference,
however, is the distance between the accumulations of cluster 48 points to each other as

well as to the ones of cluster 47. This would probably result in a imaginary clustering of
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unchanged cluster 46 and 45 and two or three clusters consisting of the cluster 48 points of
which one also contains the points of cluster 47. It seems as if the distance of the cluster
47 points and the H13 cluster 48 points is largely affected by the reduction. The difference
between cluster 46 and 45 in (neighbors = -1) is on the other hand preserved
and would result in clustering similar to [Fig. 3.3] In|[Fig. 3.3| cluster 47 and 48 are also

relatively close related as they would be linked on the next higher tree-node.

In[Fig. 3.T1|(neighbors =-1) it appears as if the points of cluster 47 and 48 are possibly quite
similar, which is not the case as the subtrees clearly show the wanted separation
of H13 and H16 in cluster 48, as well as the wanted distance to 47. Keeping the lower
complexity in mind, the consequence of lowering the dimension by PCA to two dimension
seemed to preserve most of the information related to the difference of cluster 45 and 46.
The difference of the subtype separation inside 48 as well as the overall difference to 47
on the other hand, seemed to be lost completely and caused the unwanted effects. Since
the ground truth separation of seems to be partially present in by at least
separating 47 completely from 48, the higher number of dimensions might be in direct
connection to the correct separation of some part of H13 and H16. Therefore, even when
raising the computationally effort, the number of components should be increased to the

maximum of 50, that still preserves all functions of HDBSCAN for spanning tree building.

Comparing these results to the use of UMAP with different settings of the neighbors value,
the impact of this parameter becomes clear. The higher the value, the more crowded the
points. This also explains the crowded behavior in Since a neighbors value
of 100 was used as standard in this project, the values were overall crowded in groups
of at least 100 points. The random subset for was reduced by the same setting
with UMAP, despite the small sample size of 100 used there. The small random sample
in addition to a high neighbors value resulted in a low number of overall distribution to
clarify the behavior. Aside from the example in the usage of a high neighbors
value through the project was well reasoned and based on the huge size of the dataset used
as described in The same value of 100, as well as, 15 and 50 was used on the
subset of H13 and H16 segment 4 sequences to visualize the difference in

None of the settings resulted in a separation as good as with the sole use of PCA. With the
UMAP standard neighbors value of 15, all the points are placed next to each other and there
is no reasonable cluster building possible (neighbors = 15). Furthermore, H13
points would be merged with H16 points before merging with others from H13, thereby
breaking the subtype division similar to the PCA use. Aside from the fact that the other
points, when using PCA, are well separated. Setting the neighbors value to 50 results in a
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spreading of the cluster 46 points and mixing with little islands of cluster 48 points[Fig. 3.11]
(neighbors = 50). With a neighbors value of 100, a separation into imaginary clusters is
possible, when ignoring the cluster labeling and only taking the subtypes labeling into
consideration. This is, therefore, the only setting with use of UMAP that would provide
a more of less reasonable separation of the subtypes in imaginary clusters. However,
clusters of different subtypes are closer than to similar subtypes, resulting also in no real
subtype separation, even when ignoring the cluster 47 points that might be very sensible

to the magnitude of preserved information.

In conclusion, the use of PCA generated better results compared the ones with additional
use of UMAP. Still, there were challenges to overcome as could be seen with the position of
the cluster 47 points. Increasing the information preserved by the PCA would possibly give
clearer results. This project aimed to find high-quality representations of genomes for
the purpose or clustering in a extend that was never reached before. Therefore, the usability
of hybrid HDBSCAN with parameters as good as possible was of higher importance than the
use of UMAP at all costs. In the results of the project, PCA performed better than UMAP but
only with all the tested parameters. Thus, it might be possible to find parameters for UMAP
not explored in this project to represent the genomes even better in a equal low-dimension
in the future. Also, change of UMAP in favor of t-SNE could be tested in terms of vector

representation quality.

3.6 A new classification

Reannotation of the most likely false annotated sequence in[Fig. 3.4|C, as well as increasing
of the components in PCA, successfully raised the accuracy of the workflow. Thus, the
clustering was performed according to the PK method, that proved to give the most
stable results, with 50 components reduction instead of 30. Clustering errors found in
the previous section were resolved successfully as H13 and H16 are now completely
divided in with the mentioned small but still present difference between these
subtypes. Also, all clusters of H3 are now present in direct connection to each other and no
cluster not homogeneous for one subtype existed anymore. Comparison of the associated
clustering information graphics in to the previous ones in also indicated
a small improvement in stability of the Kneedle Algorithm & exploration. Little changes
in the distribution of the cluster sizes were also noticeable, as a cluster came to existence,
containing 20000 of the H3 sequences and pointing in direction of a merge of two big

clusters by the availability of a higher amount of information.



A new classification 59

——
0.354253

Fig. 3.12 Clustering tree of segment 4. The clustering tree of segment 4 clustering, using the combination
of PCA and the Kneedle Algorithm (PK) with a reduction to 50 instead of 30 dimensions (Fig. 3.3). The
labeling of the clusters in the tree is based on the subtype of the contained sequences. Unclassified sequences
of a cluster are reclassified as a given subtype if sequences of only this subtype are present in the cluster in
addition to the unclassified ones. Unlabeled clusters contain sequences from at least two subtypes and zero
or more unclassified sequences. Dotted lines in the tree indicate the same host.

Resulting from this improved clustering of segment 4 a new classification involving 57
clusters instead of 18 subtypes is proposed (Fig. 3.12). The big differences in the cluster
sizes related to H1 and H3 indicated a high amount of more similar sequences. This could
be caused by the higher abundance of more present-day sequences and continued evolution,
thus, higher differences in comparison to less sequenced strains of the past decades. Less

present mutations lowering the infectiousness and therefore, not established in a higher
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amount of strains or sequencing errors that produced undesired niches are also possible.

These possible error sources have to be examined in the next steps following this project.

Validation of the clusters was performed by pairwise comparison of random 10 sequence
samples of the clusters in Thereby, the degree of similarity inside these clusters
and in comparison to other clusters is described in All clusters were compared
to all other clusters and the clusters themselves with a second sample. To avoid creating
a bias, the result for accidental comparisons of sequences with the same accession were
ignored and not considered in calculations of respective mean values. Samples of 10
sequences were used due to the high amount of computational power that was necessary
for this calculation. For segment 4 calculation involved 10? pairwise alignments, for every
of the 57 clusters to each other. Making 572 - 10? calculations.

All clusters in have the highest similarities with themselves and in addition high
similarities with other clusters of the same subtype. For instance the sample of cluster
0, shared some degree of sequence identity with other samples of clusters also stemming
from the same subtype H1 (cluster 1 to 7, 16 and 17). However, the highest similarity of
around 90% is only shared with the other sequence sample of the cluster O itself, which

makes these clusters highly self-contained.

Exceptions are the subtype H7 and H15 clusters 45 to 50, as well as subtype H4 and H14
clusters 35 to 38, that share a high degree of similarity despite of the subtype difference
in In the clustering tree no clear separation is visible involving these subtypes,
as the clusters of H7 merge with H15 in a higher tree nodes, although other clusters of H7
are still available (Fig. 3.12)). Similar behavior can be observed for H4 with H14. These
same merges were also present in the previous clustering with reduction to 30 dimensions
(Fig. 3.4). Due to the high similarities inside these two groups of clusters, a relation
neglected by the current subtype classification could be possible. The almost uniform H7
subtree of clusters 45, 46, 48, 49, and 50 is, therefore, divided by the one and only cluster
of subtype H15 cluster 47. When comparing the sequence similarities in the
highest similarity persist inside the clusters themselves, but the cross similarities of cluster
45 and 46 to 47, 48, 49, and 50 are around 65% without big difference between subtype H7
and H15. Further pointing to more subtle, but present differences between and inside of
the current subtypes. Aside from that, the amount of information that was preserved by the
PCA could still be to small to fully separate the subtypes H4 and H14 and the subtypes H7
and H15, that possibly involve even more subtle differences than the previously discussed

separation of H13 and H16. The inclusion of evolution into the vectors, as described in
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Fig. 3.13 Similarity matrix of segment 4 clusters.. Random samples of up to 10 sequences of every cluster
in were compared by pairwise alignments with the samples of all other clusters. Less than 10
sequences were only used in clusters containing less than 10 sequences. The percentage of similarity was
calculated for very alignment making a matrix of up to 10 X 10 holding the similarity values of the samples
comparisons. The mean of the matrix was then calculated and written as the given cluster interactions
mean similarity. This was repeated for every possible cluster interaction resulting in the presented figure.
Interactions of the same clusters were reduced to only different sequences, results of alignments with
sequences having the same accession were removed, thereby, preventing bias creation. The mean of these
up to 100 comparisons for every cluster interaction is colored according to their similarity from 1.0 or 100%
similarity in red to 0.0 or 0% similarity in blue.

the following can be the necessary step to increase the amount of information, without

further raising the components by PCA, to successfully separate these subtypes.

While the clusters of segment 4 in seem to be highly self-contained and gave
a good representation on possible subdivisions inside the subtypes, the trees based on
evolutionary distances increase the subtypes distance even more (Fig. 3.3 and [Fig. 3.9).
Present day research propose a phylogenic tree of [[AV]that is split in four subtrees [84].
The subdivisions are mostly present in the clustering tree in Still, there are

some difference primarily the higher-ranking structure of the subtypes. In Wei et al. [84]

subtype H3 is contained in a subtree alongside H4 and H14 and H9 in a subtree with
H8 and H12. This relations are not present in While other subtrees contain
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subtypes similar to the proposed phylogenic tree in Wei et al. [84]], the order of the subtrees
in also do not match the one from the phylogenic tree. However, all the clusters
in are highly self-contained and homogeneous for one subtype, only the position
in the tree might be inaccurate and, therefore, should be subject of improvements.

ICAACAAGATGCAT..] [AAA 0

+0.85, |caal [0.85

Transition +0.05, [caGl l0.05

Transition +0.05, [cgal l0.05

Transition +0.05, |t aA l0.05

Fig. 3.14 7-mer vector calculation involving transitions. By changing to include e. g. , all
transitions possible with one mutation, evolutionary distance can be included in the vectors themselves.
Thereby, vectors involving sequences different by a small amount of mutations with higher evolutionary
significance move closer to each other. All weightings used here are only exemplary and useful values have
to be selected in the future based on novel publications involving mutation probabilities.

As already mentioned the proposed method for clustering did not acknowledge evo-
lutionary distances. Transitions and transversion for example were handled as nucleotide
differences without a higher or lower chance of change. When including mutation chances
in the k-mer frequency clustering, the relation of whole subtypes subtrees might improve
and give a result more similar to the one proposed in Wei et al. [84]. Because HDBSCAN
only uses existing distance metrics, when not using the precalculated option, which should
be avoided at any case, the k-mer frequency vectors themselves have to be change in some
way. Therefore, [Fig. 3.14illustrate a possible option for inclusion of evolution inside k-mer
frequency vectors, by considering all mutations of a given k-mer with low representation
value. Vectors containing k-mers only apart with single mutations are, thus, closer to
each other in the high-dimensional vector space. The magnitude of these values have to
be considered wisely and should be subject of future research optimizing the proposed
clustering even more. For choice of appropriate values representing the transversions or
transitions, consideration of PAM or BLOSUM substitution matrices could be beneficial

[48]. Since k-mers of a sequence are generated by shifting a window of size k by one,

all laminoacid (AA)| constellations are automatically included, independent of the k value

itself. Thereby, weighting of the mutation possibility could be also implemented by con-
sidering the actual k-mer with a fixed value e. g. 0.85 and the mutations with fractures of

0.15 given by the priority in the BLOSUM or the PAM matrices. Summing up the values
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would, thus, still result in one but the weightings are distributed based on the score of the
[AA] change. Expanding the minimal example in that way, involving BLOSUM

could result in something similar to CAA — 0.85, CAG — % -5,CGA — % -1,

and TAA — % - 0. The portion of 0.15 is divided by the sum of all considered |AAs

change values and subsequently multiplied by the value of the given one.

With this workflow blueprint created by adjusting the clustering for segment 4 in the
previous sections, all segments could be clustered the same way, since no subtype
information was necessary for the clustering. Subtype labeling of the tree was performed
as guideline and was the only part involving actual subtype evaluation of the sequences.
Thereby, the clustering trees for other segments, except segment 6, are unlabeled. All
other clustering trees and similarity matrix graphics, as well as tables containing sequence
cluster assignment and the tables containing the values used to create the graphics are
presented in the[Appendix A] Hereby, new classifications for all segments based on k-mer
frequency vectors are proposed, containing 28 clusters for segment 1, 28 for segment 2,
29 for segment 3, the shown 57 for segment 4, 26 for segment 5, 40 for segment 6, 30 for

segment 7 and 24 clusters for segment 8

The clusters of the segments 1 to 3, 5, 7, and 8 shared by far more overall similarity,
therefore, less clusters were created (Appendix A). Still, the similarity inside the clusters
themselves were higher than the cross similarity and, thereby, solid clustering by the
proposed clustering method was possible despite the overall higher similarity. Higher
similarity of the segments not encoding the surface protein is most likely reasoned by the
lower evolutionary pressure, since the higher pressure on the surface proteins is necessary

to ensure continued infectiousness of [AV]
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4 Conclusions and Outlook

The existing classification of the |[nfluenza A Virus (IAV)|is solely based on the surface

proteins and gives, therefore, no real insight on the differences of the other segments. While
many publications exist, involving evolutionary research on these, as well as, the other
segments, that propose subgroups or clusters, most are based on alignments for comparison

(52,71, [385]. Present day alignment methods offer accurate insight of sequence relation.

Nevertheless, downsides exist, as the use of jmultiple sequence alignments (MSAs)| as

distance measurement for clustering of is bound to the necessity of high nearly
unfeasible computational power, when involving all the existing sequences. Even with the
hardware available, a threshold for usability at a given number of sequences still exist or
a drop of alignment quality is unavoidable. The usage of distance precalculation on the
non-reduced k-mer frequency vectors, mentioned in this project, is another method aside
from involving also no dimension reduction methods. The exhibited results are,
indeed, of mostly equal quality to the MSA| as shown in and drawing a similar
clear line between subtypes. Still, similar downsides exist also, making scaling to the
enormous number of existing [TAV]|sequences nearly impossible and render both methods

mostly usable on smaller subsets.

This project proposed a method, scale-able to a much higher degree for clustering all seg-
ments of that is usable on multi-core computers with around 32Gb of RAM available
in less than two hours. The fast execution time of the method makes it usable to even cluster
novel sequenced [AV|genomes with the existing ones to find associated well-known strains
in short time. The dimension reduction with PCA proved to preserve the necessary amount
of information for robust clustering and with the Kneedle Algorithm a solid threshold was
defined. The present day version of the method already produced self contained clusters,
with a higher order mostly in line with the current subtypes classification. Furthermore,
increasing the amount of informations by reasonable subdivision in smaller subordinated
groups. Still, there are options to fathom in the future to possibly produce even better

results.

Including measurement possibilities for evolutionary distances by slight changes in the

vector creation process as described in could possibly improve the accuracy in
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comparison to[MSAs| In addition to that, PCA as a tool for dimension reduction performed
sufficient enough, still, the usage of a methods offering better low dimension representa-
tions and higher information preservation of the vectors could be beneficial. Therefore,
repeating the comparisons to PCA with t-SNE instead of UMAP might be rewarding. Also
all clusters and especially the high difference in the cluster sizes also have to be examined

for possible clustering errors or rare mutations with possibly yet unknown purpose.

However, the results point in the direction of a bioinformatical[[AV]classification with more
subdivisions as the known subtypes classification can offer. Renewing the classification in
a similar way and, thereby, including more subtle differences might considerably improve
future large scale in silico secondary structure analyses. With better and more self
contained subgroups of searching for conserved structures would probably make a
step ahead and could offer new insights into the
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UMAP/ Folder containing all UK and UD method comparison results
A.fasta The FASTA file used in the project

Clustering.py The Influenza A Virus clustering tool

Environment.yml  The configuration file for recreation of the used environment
PCA.ipynb The pipeline used for the PK and PD method comparison
README . md The instructions for usage of the clustering tool
Thesis.pdf The written thesis

UMAP. ipynb The pipeline used for the UK and UD method comparison

Supplementary tables and graphics directly linked in the thesis can be found on the

following pages.

Uhttps://github.com/ahenoch/Masterthesis.git
Zhttps://cloud.uni-jena.de/s/f YkQ2NAwWjNDSoEM


https://github.com/ahenoch/Masterthesis.git
https://cloud.uni-jena.de/s/fYkQ2NAwjND8oEM
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(a) DBCYV exploration (b) DBCYV knee
1.0 1 .
—— Distance = 0.200 0.8 Distance = 0.200
—— #Cluster = 58
0.8 0.7 —— #Cluster = 51
0.6
0.6 o
§ E 0.5
%]
204 ’_\ 504
0.3
0.2 0.2 \
0.1
0.0
0.0 0.1 0.2 0.3 0.4 100 200 300 400 500
Distance #Cluster
(¢) Cluster distribution (d) Logarithmic distribution
3.0 3.0
2.5 2.5
2.0 _ 2.0
] @
s +—
- :
=] =)
o 1.5 o 1.5
# #
1.0 1.0
0.0 0.0
0 5000 10000 10! 10? 10° 10*
Count log(Count)

Fig. A.1 Clustering of segment 4 with PD. Segment 4 clustering, using the combination of PCA and the

|density based cluster validity (DBCV)| exploration (PD) results in the given figure. The blue line is the

[DBCV] value resulting from hybrid HDBSCAN clustering with a given distance value &. The highest[DBCV]
value and, therefore,resulting & value is described with the red line. The top right subfigure shows the
absolute relation of the distance in the single linkage tree to the total number of clusters as the blue line.
With the red line, the number of raw clusters, prior to the HDBSCAN part of the hybrid clustering is marked
and the final cluster number after it in green. The yellow line describes the threshold, extracted from the
maximum distance threshold €, used to perform the hybrid clustering and to get the final cluster
number. The red line in the top left subfigure denotes, thus, the same value as the yellow line in the top
right subfigure, the distance threshold & located by the DBCV] exploration. The bottom subfigures give
information about the distribution of the clusters sizes in continuous and logarithmic scale.
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(a) DBCYV exploration (b) DBCYV knee
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Fig. A.2 Clustering of segment 4 with UD. Segment 4 clustering, using the combination of PCA, UMAP and
the exploration (UD) results in the given figure. The blue line is the value resulting from
hybrid HDBSCAN clustering with a given distance value &. The highestDBCV]value and, therefore, resulting
¢ value is described with the red line. The top right subfigure shows the absolute relation of the distance in
the single linkage tree to the total number of clusters as the blue line. With the red line, the number of raw
clusters, prior to the HDBSCAN part of the hybrid clustering is marked and the final cluster number after it
in green. The yellow line describes the threshold, extracted from the maximum [DBCVs|distance threshold
g, used to perform the hybrid clustering and to get the final cluster number. The red line in the top left
subfigure denotes, thus, the same value as the yellow line in the top right subfigure,the distance threshold
€ located by the DBCV]exploration. The bottom subfigures give information about the distribution of the
clusters sizes in continuous and logarithmic scale.
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(a) Kneedle Algorithm (b) Knee Point
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Fig. A.3 Clustering of segment 4 with UK. Segment 4 clustering, using the combination of PCA, UMAP
and the Kneedle Algorithm (UK) results in the given figure. The green curve in the top left subfigure
describes the change of the distance in the single linkage tree with increasing normalized cluster number
and, therefore, the location of the knee, as normalized cluster size at the maximum, highlighted by the red
line. The blue line represents the inverse polynomial representation of the blue line in top right subfigure.
The top right subfigure shows the absolute relation of the distance in the single linkage tree to the total
number of clusters as the blue line. With the red line, the number of raw clusters, prior to the HDBSCAN part
of the hybrid clustering is marked and the final cluster number after it in green. The yellow line describes
the threshold, extracted from the knees raw cluster number and, therefore, the & value used to perform the
hybrid clustering and to get the final cluster number. The normalized cluster number in the red line in the
top left subfigure is the raw cluster number in the top right subfigure calculated on the range of one to 500
clusters, thus, directly derived from it. The bottom subfigures give information about the distribution of the
clusters sizes in continuous and logarithmic scale.



85

—
0.137313

Fig. A.4 Clustering tree of segment 4 with UK. The cluster tree of segment 4 clustering, using the
combination of PCA, UMAP and the Kneedle Algorithm (UK) (Fig. A.3). The labeling of the clusters in the
tree is based on the subtype of the contained sequences. Unclassified sequences of a cluster were reclassified
as a given subtype if sequences of only this subtype are present in the cluster in addition to the unclassified
ones. Unlabeled clusters contain sequences from at least two subtypes and zero or more unclassified
sequences. Two clusters are mixed since containing sequences of more than one subtype .
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Fig. A.5 Simple clustering tree of H13/H16 with UMAP. Clustering tree, based on the clustering by
standard HDBSCAN without & exploration and hybrid clustering. The used vectors were related to the
sequences, present in the H13 and H16 clusters in [Fig. 3.4] and reduced by PCA to 100 and afterwards by
UMAP to 30 dimensions.
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Table A.1 Clustering results. The results of the final clustering using the combination of the PCA reduction
and the Kneedle Algorithm . Listed is every used segment with the number of raw clusters and the final
cluster number after hybrid clustering with the given value of €. The numbers of mixed cluster numbers of
H and N denotes number of clusters that contained vectors related to more than one subtype. The variance
is calculated as the sum of the explained variance by the PCA.

#Cluster #Mixed
Segment Final Raw Normalized H N #Unclustered & Var(X)
1 28 71 0.140 19 20 29 0.345 0.811
2 28 66 0.130 17 17 23 0.375 0.798
3 29 70 0.138 18 19 28 0.402 0.816
4 57 78 0.154 1 44 11 0.251 0.793
5 26 74 0.146 22 22 19 0.362 0.837
6 40 58 0.114 28 3 17 0.293 0.803
7 30 75 0.148 16 17 28 0.454 0.858
8 24 67 0.132 16 16 23 0.409 0.860
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(a) Kneedle Algorithm (b) Knee Point
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Fig. A.6 Clustering of segment 4. Segment 4 clustering, using the combination of PCA with 50 extracted
components and the Kneedle Algorithm results in the given figure. The green curve in the top left subfigure
describes the change of the distance in the single linkage tree with increasing normalized cluster number
and, therefore, the location of the knee, at the maximum, highlighted by the red line. The blue line represents
the inverse polynomial representation of the blue line in top right subfigure. The top right subfigure shows
the absolute relation of the distance in the single linkage tree to the total number of clusters as the blue line.
The red line, indicates the number of raw clusters, by the DBSCAN part of the hybrid HDBSCAN clustering
and the final cluster number in green. The yellow line describes the threshold, extracted from the knee
and, therefore, the & value used to perform the hybrid clustering. The normalized cluster number in the red
line in the top left subfigure is equivalent to the raw cluster number in the top right subfigure. The bottom
subfigures give information about the distribution of the clusters sizes, by plotting the number of clusters
containing a given counted number of sequences in continuous and logarithmic scale.
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