
DETAILED DESCRIPTION OF FEATURES

IMPLEMENTED IN THE OBJECT-ORIENTED

PAINTING APPLICATION

by

ADHAM MOHAMED ALY 6744

MOHAMED FARID ABDELAZIZ 6905

YOUSSEF AHMED ABOUEID 6883

YOUSSEF ASHRAF HASSAN KOTP 7140

REPORT

Submitted in Partial Fulfillment of the

Requirements of the Final Project of

Programming II

CC272 Course

Prof. Dr. Laila Abou Hadid

Dr. Mohamed Kholeif

1

Table of Contents

I. Introduction .. 1

II. Layout .. 4

III. Class Details ... 6

IV. Design Patterns ... 11

V. Custom Algorithm .. 13

VI. Sample Run ... 13

VII. UML diagrams……………………………………………………………………………………………………20

I. Introduction

 In a program in which we focused heavily on providing a highly user-

friendly interface, we also maintained a high level of readability to the source

code by implementing the S.O.L.I.D principles as much as possible. We were

also successful at implementing 6 different design patterns within our program

and putting them to use.

These are the design patterns used:

1. Singleton design pattern

2. Observer design pattern

3. Façade design pattern

4. Factory design pattern

5. Prototype design pattern

6. Iterator design pattern

2

 Details of how the design patterns were implemented will be discussed in

their respective section. The project was also written across twenty different

classes. The program’s GUI consists of two windows (2 JFrames) designed

using javax.swing as required.

 Efforts in coding and debugging were evenly distributed among the four

participating students which facilitated in adding additional features which are

not explicitly required in the assignment description.

The following table represents a list of all features implemented within the app

with a brief description for each one.

Feature Description

1. Draw line Draws a line segment from one point to

another set by dragging the mouse

2. Draw rectangle Draws a rectangle resized by pressing and

dragging the mouse cursor

3. Draw square Draws a square resized by pressing and

dragging the mouse cursor

4. Draw circle Draws a circle resized by pressing and

dragging the mouse cursor

5. Draw triangle Draws a triangle resized by pressing and

dragging the mouse cursor

6. Free Paint The user can draw freely by pressing and

dragging the mouse in any direction

7. Erase Similar to a real eraser, the user can erase

certain parts freely by pressing and dragging

8. Clear screen Clears the paint board completely

9. Undo Undo actions latest to oldest

3

10. Redo Redo undone actions latest to oldest

11. Choose paint color The user can choose the paint color from

quick buttons or from a wide-range palette

and can even colors by RGB

12. Fill shape The user can fill shape any drawn shape

with the current paint color by clicking on

it.

13. Move shape The user can press and hold on a certain

shape to choose and move it around the

paint board.

14. Resize shape The user can press and hold on a certain

shape to choose and resize it to the size of

their will.

15. Copy shape The user can copy a shape by pressing the

‘copy’ button then clicking on the shape.

16. Paste shape The user can paste a copied shape any

where and as many times as they want by

pressing the ‘paste’ button and clicking any

where on the paint board.

17. Set brush thickness The user can set the stroke of the brush.

This affects shape borders, free paint and

the eraser.

18. Return to start page User can return to the start page by pressing

on the app logo in the top center of the

window.

Figure 1.1 Table of features

4

II. Layout

 As mentioned above the program has a total of 20 classes that are

specifically designed for this program and all classes are named accurately

according to their role in the program, the program perfectly applies the

S.O.L.I.D principle.

 First of all the main classes that were implemented at first were

GeometricShape, Square, Rectangle, Circle, LineSegment, Triangle,

PaintBoard and Point classes. Afterwards more classes were created to add

more features and apply important design patterns principles as

ScreenShotter, FreePaint, Eraser, Observer, ShapeFactory,

ShapeMakerFacade, ClearedScreen and Finally two JFrames for GUI.

Square, Rectangle, Circle, LineSegment, Triangle classes all applies

Inheritance as they all (extends) from the super class GeometricShape. Each

class contains private variables, constructors and several methods and may

contain setters and getters.

 Let's have a detailed look at the 2 JFrame of the GUI the StartPage and

Paint, the StartPage is the first interface you see when you start the program,

this window contains two buttons as in fig-2.1 which are project details that

contains names and ID's of the students that participated in thinking and

coding this program.

Figure 2.1 Start page

5

 The second button is start that leads the user to the second JFrame which

is the Paint here all the magic happens. When the window opens you see in

the center of the tool bar our specially designed logo for this project which

also works as a button to go back to the start page, then on the left hand side

there are the color selector panel, free paint button that has a brush icon on it,

eraser button that is used to erase unwanted drawn shapes or even with free

paint and finally a slider to select the stroke thickness of shapes, free paint

and the eraser thickness too. On the right hand side there is the copy and

paste icons then the shapes with a clear icon on each button and the fill

button as well. Finally, there are the move, resize, undo, redo, clear buttons

and an extra feature that can facilitate saving of your drawing which is

screenshot button as shown in fig-2.2

Figure 2.2 Main app interface (Taken using our in-app

screenshot feature)

6

III. Class Details

1) GeometricShape

This class was created as super class to be extended later by the other

shapes classes and it contains main attributes, four constructors, setters

and getters and two abstract methods that should be implemented in

subclasses these methods are draw() and select(). This class applies

cloneable design pattern.

2) LineSegment

This is one of the subclasses that extends from the super class in this

class therefore it overrides the abstract methods draw, select and clone

method and also four constructors.

3) Rectangle

This is the second subclass that extends from GeometricShape super

class so it overrides the abstract methods implemented in the super

class draw, select, clone methods and as other classes it has four

constructors. In the draw method we handled an important part which

is drawing in different quadrants this made the program more reliable

and easy to use as you can drag the point in any direction you want.

The select() method uses an integrated method in Java which is

Rectangle that takes two integer parameters that indicate the location

of the mouse and it checks if the sent parameters are inside the

rectangle if yes it selects it if they does not match it does not work.

7

4) Square

This class is a subclass that extends from super class mentioned above

and it is similar to the Rectangle class and has four constructors. We

used the same method used to draw the rectangle but with length

equals width as the square is a special case of rectangle. Moreover, it

implements the abstract methods from super class draw, select and

clone methods, the draw method also handles the drawing in four

quadrants.

The select method uses an integrated method in Java which is

Rectangle that takes two integer parameters that indicate the location

of the mouse and it checks if the sent parameters are inside the

rectangle if yes it selects it if they does not match it does not work.

5) Circle

This class is also a subclass that extends super class's abstract methods

that are draw, select and clone and has four contractors inside it. The

circle is a special case of the oval with width equals height so we used

the method of drawing the oval while applying this special case and as

the other classes we can draw the circle in any desired quadrant.

The select method uses an integrated method in Java which is

Rectangle that takes two integer parameters that indicate the location

of the mouse and it checks if the sent parameters are inside the

rectangle if yes it selects it if they does not match it does not work.

6) Triangle

This is the last subclass that extends super class all abstract methods

draw, select and clone and has two constructors as well. This class is a

8

different from others as it has another attribute and a getter and setter

for this attribute.

The draw method calls the polygon drawing method and the added

attribute. The select method uses an integrated method in Java which

is Rectangle that takes two integer parameters that indicate the

location of the mouse and it checks if the sent parameters are inside

the rectangle if yes it selects it if they does not match it does not work.

7) Point

This class contains two private attributes x and y, 2 getters and setters

for x and y, a constructor and it implements cloneable interface and it

overrides a method from cloneable.

8) Free Paint

This class adds the feature of free drawing with no need to select

certain shape, it has 2 attributes: X-coordinates & Y-coordinates, those

attributes will be used later in the function drawPolyline() which takes

3 parameters: 2 arrays of integers and array size.

This class also extends GeometricShape class so both functions

draw() & select were overridden to perform the required task.

9) Eraser

This Class enables us to delete specific location inside the whole

board, this class has the same concept as FreePaint class but it has

white color instead, it also extends the GeometricShape class.

9

10) Cleared Screen

With the help of this class, the program can clear the whole screen

while maintaining the undo & redo functionality, it draws a rectangle

filled with white colors which makes the screen look like cleared one

but it is not.

This class also extends the GeometricShape class.

11) ScreenShotter

This class is one of the added features to make the program more

reliable and easy to be used, creates new object of type robot and then

a rectangle is created which takes dimensions and the robot method

takes these dimensions and calls the screenshot. This class applies two

important which are Singleton and observer, this application will be

illustrated later in the report.

12) PaintBoard

This class extends JPanel and implements MouseListener and

ActionMouseListner, we declared global static variables to be used

later. One of the most important variables is shapes array lists of

geometric shapes.

The method paintComponent was overridden to print what is inside

this array list, a variable named currentShape was used which

indicates the working mode (resize, draw, etc.).

The currentShape is responsible for handling the process of mouse

listening for example if the currentShape equals 1 this indicates that

the program should draw a rectangle.

10

13) ClearedScreen

This class extends from the super class GeometricShape as a result it

implements the abstract methods which are draw and select it also has

a constructor.

14) ShapeFactory

This class was created to apply design pattern principle, this class

contains a method that takes integer parameter named mode according

this function returns shape according to the entered parameter (mode).

15) Observer

This class was created to apply design pattern principle, and a void

method that updates the screenshots taken by user.

16)ShapeMakerFacade

This class was created to apply design pattern principle, this class has

private attributes, constructor for each attribute and five methods each

one for drawing one of the shapes.

17) MainMethod

This class contains two important methods which are draw and undo

18) FinalProjectPaint_V1

This class contains the main method to run the program.

11

IV. Design Patterns

Six different design patterns were used in this program which are as

follows:

1-Factory design Pattern:

(Creational design Pattern)

We have used Factory design patter in order to create new Objects

without need of construction and to avoid coupling and dependency

between Classes. So we constructed new instances of classes through

this factory and returning it in needed methods or classes.

2-Prototype design pattern:

(Creational design Pattern)

We have used Prototype design pattern by implementing “Cloneable”

interface and implementing “clone()”method in each and every Shape

class and also Cloning instances of “Point” class.It helped us making

copies of our Objects using values not references that helped us in

copy method.

3-Singleton design pattern:

(Creational design Pattern)

We have used Singleton design pattern to assure the creation of only

one object of “ScreenShotter” class which has main aim to take

screenshot of the painting board and it is the only instance that is

allowed to do such task.

12

4-Façade design pattern:

(Structural design Pattern)

We have used façade design pattern as it offers a simple interface to

more complex underlying objects. So we could use draw methods

using objects of “ShapeMakerFacade” class and not by accessing the

shapes classes itself.

5-Iterator design pattern:

(Behavioral design Pattern)

Iterator design Pattern facilitates looping across the array list of

Geometric shapes needed to be drawn by only using 2 basic methods

which are : “hasNext()” and “next()” avoiding looping with varying

conditions.

6-Observer design Pattern:

(Behavioral design Pattern)

Observer design pattern helped us with automatic

screenshotting(update method) while drawing (auto-documentation) as

it takes screenshot each and every time we release the mouse by only

changing the state in the PaintBoard class.

13

V. Custom Algorithm

 Upon implementing the undo and redo features, we found it

necessary to come up with a new algorithm to handle the undo

operation universally across all actions. Thus, we invented an

algorithm and called it “The Domzing Algorithm”.

 The algorithm depended on 2 stacks, ‘done’ and ‘redo’ in addition

to the main painting array list ‘shapes’ . As well as an attribute in the

parent class ‘GeometricShape’ called nextShape which is a private

GeometricShape object.

 Whenever a shape is painted, its nextShape is set to null. Then, it is

added to the shapes array list and pushed into the ‘done’ stack.

 If the shape is moved, a new cloned instance of the shape is created

and added to the ‘shapes’ array list and the old shape is removed from

it. The nextShape of the old shape is set to be the new instance. Then,

the old shape is pushed into the ‘done’ stack.

 Assume we draw a shape called 1. Then its nextShape is set to

null. Then it is moved to become shape 2. Therefore, 1 is pushed again

with nextShape = shape 2. Then shape 2 is resized to shape 3 and the

same procedures are done. As shown in figure 5.1.

14

When we press undo, the topShape in the done stack in popped. The

‘next’ shape is searched for in the shapes array list and removed. The

topShape is added to take its place in the array list. Then, the topShape

is pushed into the redo stack. As shown in figure 5.2.

Figure 5.2 Undo procedure

Figure 5.1 Example procedure

15

When we press redo, the topShape in the redo stack in popped. The

‘topShape’ is searched for in the shapes array list and removed. The

next is then added to take its place in the array list. Then, the topShape

is pushed into the done stack. As shown in figure 5.3.

Figure 5.3 Redo procedure

 In case the topShape (popped) in the ‘done’ stack has nextShape =

null, the topShape is searched in the shapes array list and removed.

Then it is added to the redo stack.

 If the done stack is empty, undo does nothing. Same for redo and

redo stack.

16

 Sample Run

17

18

19

20

 ClassDiagram

21

 Use-CaseDiagram

