
Nostr Book of NIPs
TODO

Abstract
This is the abstract.
It consists of two paragraphs.

Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Git Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Nostr Overview 11

NIP-01 12
Basic protocol flow description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Events and signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Communication between clients and relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Communication 16

NIP-10 17
On “e” and “p” tags in Text Events (kind 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Positional “e” tags (DEPRECATED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Marked “e” tags (PREFERRED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
The “p” tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

NIP-14 19
Subject tag in Text events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

NIP-23 20
Long-form Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Example Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

NIP-24 22
Extra metadata fields and tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

kind 0 22

kind 3 22

tags 22

NIP-17 23
Private Direct Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Direct Message Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Chat Rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Encrypting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



Benefits & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

NIP-04 26
Encrypted Direct Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Security Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Client Implementation Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

NIP-40 28
Expiration Timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Client Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Relay Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Suggested Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

NIP-09 29
Event Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Client Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Relay Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Deleting a Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

NIP-92 30
Media Attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Recommended client behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Social 31

NIP-02 32
Follow List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

NIP-05 34
Mapping Nostr keys to DNS-based internet identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Finding users from their NIP-05 identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

NIP-25 36
Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Custom Emoji Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

NIP-30 37
Custom Emoji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

NIP-18 38
Reposts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Quote Reposts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Generic Reposts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

NIP-27 39
Text Note References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Example of a profile mention process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Verbose and probably unnecessary considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

NIP-08 41
Handling Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

NIP-38 42

2



User Statuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Live Statuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Client behavior 42

Use Cases 42

NIP-58 44
Badges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

NIP-39 47
External Identities in Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
i tag on a metadata event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Claim types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Groups 49

NIP-28 50
Public Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Kind 40: Create channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Kind 41: Set channel metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Kind 42: Create channel message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Kind 43: Hide message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Kind 44: Mute user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Relay recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Additional info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

NIP-29 53
Relay-based Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Relay-generated events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Group identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
The h tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Timeline references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Late publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Event definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Storing the list of groups a user belongs to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Moderation 57

NIP-32 58
Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Label Namespace Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Label Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Label Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Self-Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Example events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Other Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Appendix: Known Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

NIP-51 61
Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Types of lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Standard lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Deprecated standard lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3



Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Encryption process pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

NIP-56 65
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Example events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Client behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Relay behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

NIP-36 67
Sensitive Content / Content Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

NIP-72 68
Moderated Communities (Reddit Style) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Community Definition 68

New Post Request 68

Post Approval by moderators 69

Displaying 69

NIP-13 71
Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Example mined note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Validating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Querying relays for PoW notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Delegated Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Relays 74

NIP-11 75
Relay Information Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Extra Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Protocol flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Signed Event Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

NIP-50 83
Search Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
search filter field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

NIP-45 84
Event Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Filters and return values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

NIP-65 86
Relay List Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
When to Use Read and Write Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4



NIP-48 88
Proxy Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Clients 90

NIP-21 91
nostr: URI scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

NIP-19 92
bech32-encoded entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Bare keys and ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Shareable identifiers with extra metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

NIP-03 94
OpenTimestamps Attestations for Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Payments 95

NIP-57 96
Lightning Zaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Protocol flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Reference and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

NIP-47 101
Nostr Wallet Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Nostr Wallet Connect URI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Example pay invoice flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Using a dedicated relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

NIP-75 109
Zap Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Nostr Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Client behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Third Parties 111

NIP-26 112
Delegated Event Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

NIP-59 114
Gift Wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Overview 114

Protocol Description 114
1. The Rumor Event Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2. The Seal Event Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3. Gift Wrap Event Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5



Encrypting Payloads 115

Other Considerations 115

An Example 115
1. Create an event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2. Seal the rumor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3. Wrap the seal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4. Broadcast Selectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Code Samples 116
JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

NIP-46 - Nostr Remote Signing 119
Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Initiating a connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
The flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Request Events kind: 24133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Response Events kind:24133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Remote Signer Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

NIP-90 125
Data Vending Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Job request (kind:5000-5999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Encrypted Params . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Job result (kind:6000-6999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Encrypted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Job feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Protocol Flow 128
Notes about the protocol flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Cancellation 128

Appendix 1: Job chaining 128

Appendix 2: Service provider discoverability 129

Application Features 130

NIP-52 131
Calendar Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Calendar Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Calendar Event RSVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Unsolved Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Intentionally Unsupported Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

NIP-53 135
Live Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6



NIP-84 138
Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

NIP-15 139
Nostr Marketplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Nostr Marketplace Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Merchant publishing/updating products (event) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Checkout events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Customize Marketplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Customer support events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Additional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

NIP-99 145
Classified Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Example Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

NIP-54 147
Wiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
How to decide what article to display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Forks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Deference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Why Markdown? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix 1: Merge requests 149

NIP-34 150
git stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Repository announcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Replies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Possible things to be added later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

NIP-94 153
File Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Event format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Suggested use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

NIP-96 155
HTTP File Storage Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Server Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Auth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Listing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Selecting a Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

NIP-78 161
Arbitrary custom app data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Nostr event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Some use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7



Security 162

NIP-06 163
Basic key derivation from mnemonic seed phrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

NIP-49 164
Private Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Symmetric Encryption Key derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Encrypting a private key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Password Unicode Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

NIP-98 166
HTTP Auth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Nostr event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Request Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Reference Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Developers 167

NIP-07 168
window.nostr capability for web browsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

NIP-31 169
Dealing with unknown event kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

NIP-89 170
Recommended Application Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Handler information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Client tag 171
User flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8



Introduction
Welcome to the nostr-book, which is a streamlined guide to the Nostr Notes in Progress (NIPs). Instead of sticking
to the original numerical order, I’ve grouped similar NIPs together to make them easier to understand and more
practical to use. Whether you’re new to Nostr or a seasoned participant, this reorganized format should help you
get a better grip on how things work and what’s being developed.
I want to be clear: I didn’t write the NIPs. All the credit goes to the original authors and contributors of these notes.
My contribution has been to sort these NIPs into a flow that makes sense and brings out the connections between
them, making everything more accessible.
Each section of this book kicks off with a short introduction to give you a heads-up on what to expect from the NIPs
that follow. The goal is to make the technical details a bit friendlier and the big ideas a bit clearer, so more people
can join in, understand, and contribute to the Nostr community.
Thanks for picking up this book! I hope it helps you navigate the excitingwaters ofNostrmore easily and encourages
you to dive deeper into this innovative project. Let’s explore and build the future of decentralized communication
together!

9

https://github.com/nostr-protocol/nips


Git Commit
To provide readers with the most up-to-date information, this page showcases the latest git commit from the nostr-
protocol/nips repository on GitHub. This commit log offers a snapshot of the most recent changes, updates, and
enhancements made to the Nostr Improvement Proposals (NIPs). By incorporating this information, readers can
gain insight into the ongoing development and evolution of the Nostr protocol, ensuring they are informed about
the latest contributions and modifications from the community. This inclusion underscores the dynamic nature of
the project and highlights the collaborative efforts driving its progress.
commit 2092fdd49a4f9fd274b24100283d73b193cf04e7
Merge: 66aae34 0c1dfa9
Author: Alex Gleason <alex@alexgleason.me>
Date: Sun Jul 28 15:19:42 2024 -0500

Merge pull request #1396 from gnostr-org/2015/854376/627789/6826f5a/18d3c2e-21.md

21.md:use relative link

10



Nostr Overview
…

11



NIP-01
Basic protocol flow description
draft mandatory

This NIP defines the basic protocol that should be implemented by everybody. New NIPs may add new optional
(or mandatory) fields and messages and features to the structures and flows described here.

Events and signatures
Each user has a keypair. Signatures, public key, and encodings are done according to the Schnorr signatures standard
for the curve secp256k1.
The only object type that exists is the event, which has the following format on the wire:
{
"id": <32-bytes lowercase hex-encoded sha256 of the serialized event data>,
"pubkey": <32-bytes lowercase hex-encoded public key of the event creator>,
"created_at": <unix timestamp in seconds>,
"kind": <integer between 0 and 65535>,
"tags": [
[<arbitrary string>...],
// ...

],
"content": <arbitrary string>,
"sig": <64-bytes lowercase hex of the signature of the sha256 hash of the serialized event data, which is the same

as the "id" field>
}

To obtain the event.id, we sha256 the serialized event. The serialization is done over the UTF-8 JSON-serialized
string (which is described below) of the following structure:
[
0,
<pubkey, as a lowercase hex string>,
<created_at, as a number>,
<kind, as a number>,
<tags, as an array of arrays of non-null strings>,
<content, as a string>

]

To prevent implementation differences from creating a different event ID for the same event, the following rules
MUST be followed while serializing: - UTF-8 should be used for encoding. - Whitespace, line breaks or other unnec-
essary formatting should not be included in the output JSON. - The following characters in the content field must
be escaped as shown, and all other characters must be included verbatim: - A line break (0x0A), use \n - A double
quote (0x22), use \" - A backslash (0x5C), use \\ - A carriage return (0x0D), use \r - A tab character (0x09), use \t -
A backspace, (0x08), use \b - A form feed, (0x0C), use \f

Tags
Each tag is an array of one or more strings, with some conventions around them. Take a look at the example below:
{
"tags": [
["e", "5c83da77af1dec6d7289834998ad7aafbd9e2191396d75ec3cc27f5a77226f36", "wss://nostr.example.com"],
["p", "f7234bd4c1394dda46d09f35bd384dd30cc552ad5541990f98844fb06676e9ca"],
["a", "30023:f7234bd4c1394dda46d09f35bd384dd30cc552ad5541990f98844fb06676e9ca:abcd", "wss://nostr.example.com"],
["alt", "reply"],
// ...

12

https://bips.xyz/340
https://bips.xyz/340


],
// ...

}

The first element of the tag array is referred to as the tag name or key and the second as the tag value. So we can safely
say that the event above has an e tag set to "5c83da77af1dec6d7289834998ad7aafbd9e2191396d75ec3cc27f5a77226f36",
an alt tag set to "reply" and so on. All elements after the second do not have a conventional name.
This NIP defines 3 standard tags that can be used across all event kinds with the same meaning. They are as follows:

• The e tag, used to refer to an event: ["e", <32-bytes lowercase hex of the id of another event>,
<recommended relay URL, optional>]

• The p tag, used to refer to another user: ["p", <32-bytes lowercase hex of a pubkey>, <recommended
relay URL, optional>]

• The a tag, used to refer to a (maybe parameterized) replaceable event
– for a parameterized replaceable event: ["a", <kind integer>:<32-bytes lowercase hex of a
pubkey>:<d tag value>, <recommended relay URL, optional>]

– for a non-parameterized replaceable event: ["a", <kind integer>:<32-bytes lowercase hex of a
pubkey>:, <recommended relay URL, optional>]

As a convention, all single-letter (only english alphabet letters: a-z, A-Z) key tags are expected to be in-
dexed by relays, such that it is possible, for example, to query or subscribe to events that reference the
event "5c83da77af1dec6d7289834998ad7aafbd9e2191396d75ec3cc27f5a77226f36" by using the {"#e":
["5c83da77af1dec6d7289834998ad7aafbd9e2191396d75ec3cc27f5a77226f36"]} filter.

Kinds
Kinds specify how clients should interpret the meaning of each event and the other fields of each event (e.g. an "r"
tag may have a meaning in an event of kind 1 and an entirely different meaning in an event of kind 10002). Each
NIP may define the meaning of a set of kinds that weren’t defined elsewhere. This NIP defines two basic kinds:

• 0: user metadata: the content is set to a stringified JSON object {name: <username>, about: <string>,
picture: <url, string>} describing the user who created the event. Extra metadata fields may be set. A
relay may delete older events once it gets a new one for the same pubkey.

• 1: text note: the content is set to the plaintext content of a note (anything the user wants to say). Content that
must be parsed, such as Markdown and HTML, should not be used. Clients should also not parse content as
those.

And also a convention for kind ranges that allow for easier experimentation and flexibility of relay implementation:
• for kind n such that 1000 <= n < 10000 || 4 <= n < 45 || n == 1 || n == 2, events are regular, which
means they’re all expected to be stored by relays.

• for kind n such that 10000 <= n < 20000 || n == 0 || n == 3, events are replaceable, which means that,
for each combination of pubkey and kind, only the latest event MUST be stored by relays, older versions MAY
be discarded.

• for kind n such that 20000 <= n < 30000, events are ephemeral, which means they are not expected to be
stored by relays.

• for kind n such that 30000 <= n < 40000, events are parameterized replaceable, which means that, for each
combination of pubkey, kind and the d tag’s first value, only the latest event MUST be stored by relays, older
versions MAY be discarded.

In case of replaceable events with the same timestamp, the event with the lowest id (first in lexical order) should be
retained, and the other discarded.
When answering to REQ messages for replaceable events such as {"kinds":[0],"authors":[<hex-key>]}, even if
the relay has more than one version stored, it SHOULD return just the latest one.
These are just conventions and relay implementations may differ.

13

24.md#kind-0


Communication between clients and relays
Relays expose a websocket endpoint to which clients can connect. Clients SHOULD open a single websocket con-
nection to each relay and use it for all their subscriptions. Relays MAY limit number of connections from specific
IP/client/etc.

From client to relay: sending events and creating subscriptions
Clients can send 3 types of messages, which must be JSON arrays, according to the following patterns:

• ["EVENT", <event JSON as defined above>], used to publish events.
• ["REQ", <subscription_id>, <filters1>, <filters2>, ...], used to request events and subscribe to new
updates.

• ["CLOSE", <subscription_id>], used to stop previous subscriptions.
<subscription_id> is an arbitrary, non-empty string of max length 64 chars. It represents a subscription
per connection. Relays MUST manage <subscription_id>s independently for each WebSocket connection.
<subscription_id>s are not guaranteed to be globally unique.
<filtersX> is a JSON object that determines what events will be sent in that subscription, it can have the following
attributes:
{
"ids": <a list of event ids>,
"authors": <a list of lowercase pubkeys, the pubkey of an event must be one of these>,
"kinds": <a list of a kind numbers>,
"#<single-letter (a-zA-Z)>": <a list of tag values, for #e — a list of event ids, for #p — a list of pubkeys,

etc.>,
"since": <an integer unix timestamp in seconds. Events must have a created_at >= to this to pass>,
"until": <an integer unix timestamp in seconds. Events must have a created_at <= to this to pass>,
"limit": <maximum number of events relays SHOULD return in the initial query>

}

Upon receiving a REQ message, the relay SHOULD query its internal database and return events that match the fil-
ter, then store that filter and send again all future events it receives to that same websocket until the websocket
is closed. The CLOSE event is received with the same <subscription_id> or a new REQ is sent using the same
<subscription_id>, in which case relay MUST overwrite the previous subscription.
Filter attributes containing lists (ids, authors, kinds and tag filters like #e) are JSON arrays with one or more values.
At least one of the arrays’ values must match the relevant field in an event for the condition to be considered amatch.
For scalar event attributes such as authors and kind, the attribute from the event must be contained in the filter list.
In the case of tag attributes such as #e, for which an event may have multiple values, the event and filter condition
values must have at least one item in common.
The ids, authors, #e and #p filter lists MUST contain exact 64-character lowercase hex values.
The since and until properties can be used to specify the time range of events returned in the subscription. If a
filter includes the since property, events with created_at greater than or equal to since are considered to match
the filter. The until property is similar except that created_at must be less than or equal to until. In short, an
event matches a filter if since <= created_at <= until holds.
All conditions of a filter that are specified must match for an event for it to pass the filter, i.e., multiple conditions
are interpreted as && conditions.
A REQ message may contain multiple filters. In this case, events that match any of the filters are to be returned, i.e.,
multiple filters are to be interpreted as || conditions.
The limit property of a filter is only valid for the initial query and MUST be ignored afterwards. When limit: n is
present it is assumed that the events returned in the initial query will be the last n events ordered by the created_at.
Newer events should appear first, and in the case of ties the event with the lowest id (first in lexical order) should
be first. It is safe to return less events than limit specifies, but it is expected that relays do not return (much) more
events than requested so clients don’t get unnecessarily overwhelmed by data.

14



From relay to client: sending events and notices
Relays can send 5 types of messages, which must also be JSON arrays, according to the following patterns:

• ["EVENT", <subscription_id>, <event JSON as defined above>], used to send events requested by
clients.

• ["OK", <event_id>, <true|false>, <message>], used to indicate acceptance or denial of an EVENTmessage.
• ["EOSE", <subscription_id>], used to indicate the end of stored events and the beginning of events newly
received in real-time.

• ["CLOSED", <subscription_id>, <message>], used to indicate that a subscription was ended on the server
side.

• ["NOTICE", <message>], used to send human-readable error messages or other things to clients.
This NIP defines no rules for how NOTICEmessages should be sent or treated.

• EVENTmessages MUST be sent only with a subscription ID related to a subscription previously initiated by the
client (using the REQmessage above).

• OK messages MUST be sent in response to EVENT messages received from clients, they must have the 3rd pa-
rameter set to truewhen an event has been accepted by the relay, false otherwise. The 4th parameter MUST
always be present, but MAY be an empty string when the 3rd is true, otherwise it MUST be a string formed by
a machine-readable single-word prefix followed by a : and then a human-readable message. Some examples:

– ["OK", "b1a649ebe8...", true, ""]
– ["OK", "b1a649ebe8...", true, "pow: difficulty 25>=24"]
– ["OK", "b1a649ebe8...", true, "duplicate: already have this event"]
– ["OK", "b1a649ebe8...", false, "blocked: you are banned from posting here"]
– ["OK", "b1a649ebe8...", false, "blocked: please register your pubkey at https://my-expensive-relay.example.com"]
– ["OK", "b1a649ebe8...", false, "rate-limited: slow down there chief"]
– ["OK", "b1a649ebe8...", false, "invalid: event creation date is too far off from the
current time"]

– ["OK", "b1a649ebe8...", false, "pow: difficulty 26 is less than 30"]
– ["OK", "b1a649ebe8...", false, "error: could not connect to the database"]

• CLOSEDmessages MUST be sent in response to a REQwhen the relay refuses to fulfill it. It can also be sent when
a relay decides to kill a subscription on its side before a client has disconnected or sent a CLOSE. This message
uses the same pattern of OK messages with the machine-readable prefix and human-readable message. Some
examples:

– ["CLOSED", "sub1", "duplicate: sub1 already opened"]
– ["CLOSED", "sub1", "unsupported: filter contains unknown elements"]
– ["CLOSED", "sub1", "error: could not connect to the database"]
– ["CLOSED", "sub1", "error: shutting down idle subscription"]

• The standardized machine-readable prefixes for OK and CLOSED are: duplicate, pow, blocked, rate-limited,
invalid, and error for when none of that fits.

15



Communication

16



NIP-10
On “e” and “p” tags in Text Events (kind 1).
draft optional

Abstract
This NIP describes how to use “e” and “p” tags in text events, especially those that are replies to other text events.
It helps clients thread the replies into a tree rooted at the original event.

Positional “e” tags (DEPRECATED)
This scheme is in common use; but should be considered deprecated.

["e", <event-id>, <relay-url>] as per NIP-01.
Where:

• <event-id> is the id of the event being referenced.
• <relay-url> is the URL of a recommended relay associated with the reference. Many clients treat this field as
optional.

The positions of the “e” tags within the event denote specific meanings as follows:
• No “e” tag: This event is not a reply to, nor does it refer to, any other event.
• One “e” tag: ["e", <id>]: The id of the event to which this event is a reply.
• Two “e” tags: ["e", <root-id>], ["e", <reply-id>] <root-id> is the id of the event at the root of the reply
chain. <reply-id> is the id of the article to which this event is a reply.

• Many “e” tags: ["e", <root-id>] ["e", <mention-id>], …, ["e", <reply-id>] There may be any number
of <mention-ids>. These are the ids of events which may, or may not be in the reply chain. They are citing
from this event. root-id and reply-id are as above.
This scheme is deprecated because it creates ambiguities that are difficult, or impossible to resolve when
an event references another but is not a reply.

Marked “e” tags (PREFERRED)
["e", <event-id>, <relay-url>, <marker>, <pubkey>]

Where:
• <event-id> is the id of the event being referenced.
• <relay-url> is the URL of a recommended relay associated with the reference. Clients SHOULD add a valid

<relay-URL> field, but may instead leave it as "".
• <marker> is optional and if present is one of "reply", "root", or "mention".
• <pubkey> is optional, SHOULD be the pubkey of the author of the referenced event

Those marked with "reply" denote the id of the reply event being responded to. Those marked with "root" denote
the root id of the reply thread being responded to. For top level replies (those replying directly to the root event),
only the "root"marker should be used. Those marked with "mention" denote a quoted or reposted event id.
A direct reply to the root of a thread should have a single marked “e” tag of type “root”.

This scheme is preferred because it allows events to mention others without confusing them with
<reply-id> or <root-id>.

<pubkey> SHOULD be the pubkey of the author of the e tagged event, this is used in the outbox model to search for
that event from the authors write relays where relay hints did not resolve the event.

17



The “p” tag
Used in a text event contains a list of pubkeys used to record who is involved in a reply thread.
When replying to a text event E the reply event’s “p” tags should contain all of E’s “p” tags as well as the "pubkey"
of the event being replied to.
Example: Given a text event authored by a1 with “p” tags [p1, p2, p3] then the “p” tags of the reply should be [a1,
p1, p2, p3] in no particular order.

18



NIP-14
Subject tag in Text events
draft optional

This NIP defines the use of the “subject” tag in text (kind: 1) events. (implemented in more-speech)
["subject": <string>]

Browsers often display threaded lists of messages. The contents of the subject tag can be used in such lists, instead of
the more ad hoc approach of using the first fewwords of the message. This is very similar to the way email browsers
display lists of incoming emails by subject rather than by contents.
When replying to a message with a subject, clients SHOULD replicate the subject tag. Clients MAY adorn the subject
to denote that it is a reply. e.g. by prepending “Re:”.
Subjects should generally be shorter than 80 chars. Long subjects will likely be trimmed by clients.

19



NIP-23
Long-form Content
draft optional

This NIP defines kind:30023 (a parameterized replaceable event) for long-form text content, generally referred to as
“articles” or “blog posts”. kind:30024 has the same structure as kind:30023 and is used to save long form drafts.
“Social” clients that deal primarily with kind:1 notes should not be expected to implement this NIP.

Format
The .content of these events should be a string text inMarkdown syntax. Tomaximize compatibility and readability
between different clients and devices, any client that is creating long form notes:

• MUST NOT hard line-break paragraphs of text, such as arbitrary line breaks at 80 column boundaries.
• MUST NOT support adding HTML to Markdown.

Metadata
For the date of the last update the .created_at field should be used, for “tags”/“hashtags” (i.e. topics about which
the event might be of relevance) the t tag should be used, as per NIP-12.
Other metadata fields can be added as tags to the event as necessary. Here we standardize 4 that may be useful,
although they remain strictly optional:

• "title", for the article title
• "image", for a URL pointing to an image to be shown along with the title
• "summary", for the article summary
• "published_at", for the timestamp in unix seconds (stringified) of the first time the article was published

Editability
These articles are meant to be editable, so they should make use of the parameterized replaceability feature and
include a d tag with an identifier for the article. Clients should take care to only publish and read these events from
relays that implement that. If they don’t do that they should also take care to hide old versions of the same article
they may receive.

Linking
The article may be linked to using the NIP-19 naddr code along with the a tag.

References
References to otherNostr notes, articles or profilesmust bemade according toNIP-27, i.e. by usingNIP-21 nostr:...
links and optionally adding tags for these (see example below).

Example Event
{
"kind": 30023,
"created_at": 1675642635,
"content": "Lorem

[ipsum][nostr:nevent1qqst8cujky046negxgwwm5ynqwn53t8aqjr6afd8g59nfqwxpdhylpcpzamhxue69uhhyetvv9ujuetcv9khqmr99e3k7mg8arnc9]
dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.\n\nRead more at
nostr:naddr1qqzkjurnw4ksz9thwden5te0wfjkccte9ehx7um5wghx7un8qgs2d90kkcq3nk2jry62dyf50k0h36rhpdtd594my40w9pkal876jxgrqsqqqa28pccpzu.",

20

19.md
27.md
21.md


"tags": [
["d", "lorem-ipsum"],
["title", "Lorem Ipsum"],
["published_at", "1296962229"],
["t", "placeholder"],
["e", "b3e392b11f5d4f28321cedd09303a748acfd0487aea5a7450b3481c60b6e4f87", "wss://relay.example.com"],
["a", "30023:a695f6b60119d9521934a691347d9f78e8770b56da16bb255ee286ddf9fda919:ipsum", "wss://relay.nostr.org"]

],
"pubkey": "...",
"id": "..."

}

21



NIP-24
Extra metadata fields and tags
draft optional

This NIP defines extra optional fields added to events.

kind 0
These are extra fields not specified in NIP-01 that may be present in the stringified JSON of metadata events:

• display_name: an alternative, bigger namewith richer characters than name. name should always be set regard-
less of the presence of display_name in the metadata.

• website: a web URL related in any way to the event author.
• banner: an URL to a wide (~1024x768) picture to be optionally displayed in the background of a profile screen.
• bot: a boolean to clarify that the content is entirely or partially the result of automation, such as with chatbots
or newsfeeds.

Deprecated fields
These are fields that should be ignored or removed when found in the wild:

• displayName: use display_name instead.
• username: use name instead.

kind 3
These are extra fields not specified in NIP-02 that may be present in the stringified JSON of follow events:

Deprecated fields
• {<relay-url>: {"read": <true|false>, "write": <true|false>}, ...}: an object of relays used by a
user to read/write. NIP-65 should be used instead.

tags
These tags may be present in multiple event kinds. Whenever a different meaning is not specified by some more
specific NIP, they have the following meanings:

• r: a web URL the event is referring to in some way
• title: name of NIP-51 sets, NIP-52 calendar event, NIP-53 live event or NIP-99 listing

22

65.md
51.md
52.md
53.md
99.md


NIP-17
Private Direct Messages
draft optional

This NIP defines an encrypted direct messaging scheme using NIP-44 encryption and NIP-59 seals and gift wraps.

Direct Message Kind
Kind 14 is a chat message. p tags identify one or more receivers of the message.
{
"id": "<usual hash>",

  "pubkey": "<sender-pubkey>",
"created_at": now(),

  "kind": 14,
  "tags": [
    ["p", "<receiver-1-pubkey>", "<relay-url>"],
    ["p", "<receiver-2-pubkey>", "<relay-url>"],
    ["e", "<kind-14-id>", "<relay-url>", "reply"] // if this is a reply

["subject", "<conversation-title>"],
    ...
  ],
  "content": "<message-in-plain-text>",
}

.contentMUST be plain text. Fields id and created_at are required.
Tags that mention, quote and assemble threading structures MUST follow NIP-10.
Kind 14s MUST never be signed. If it is signed, the message might leak to relays and become fully public.

Chat Rooms
The set of pubkey + p tags defines a chat room. If a new p tag is added or a current one is removed, a new room is
created with clean message history.
Clients SHOULD render messages of the same room in a continuous thread.
An optional subject tag defines the current name/topic of the conversation. Any member can change the topic by
simply submitting a new subject to an existing pubkey + p-tags room. There is no need to send subject in every
message. The newest subject in the thread is the subject of the conversation.

Encrypting
FollowingNIP-59, the unsigned kind:14 chat messagemust be sealed (kind:13) and then gift-wrapped (kind:1059)
to each receiver and the sender individually.
{
"id": "<usual hash>",

  "pubkey": randomPublicKey,
  "created_at": randomTimeUpTo2DaysInThePast(),
"kind": 1059, // gift wrap

  "tags": [
    ["p", receiverPublicKey, "<relay-url>"] // receiver
  ],
  "content": nip44Encrypt(
    {

"id": "<usual hash>",
      "pubkey": senderPublicKey,

23

44.md
59.md
10.md
59.md


      "created_at": randomTimeUpTo2DaysInThePast(),
      "kind": 13, // seal
      "tags": [], // no tags
      "content": nip44Encrypt(unsignedKind14, senderPrivateKey, receiverPublicKey),
      "sig": "<signed by senderPrivateKey>"
    },
    randomPrivateKey, receiverPublicKey
  ),
  "sig": "<signed by randomPrivateKey>"
}

The encryption algorithm MUST use the latest version of NIP-44.
Clients MUST verify if pubkey of the kind:13 is the same pubkey on the kind:14, otherwise any sender can imper-
sonate others by simply changing the pubkey on kind:14.
Clients SHOULD randomize created_at in up to two days in the past in both the seal and the gift wrap to make
sure grouping by created_at doesn’t reveal any metadata.
The gift wrap’s p-tag can be the receiver’s main pubkey or an alias key created to receive DMs without exposing the
receiver’s identity.
Clients CAN offer disappearing messages by setting an expiration tag in the gift wrap of each receiver or by not
generating a gift wrap to the sender’s public key

Publishing
Kind 10050 indicates the user’s preferred relays to receive DMs. The event MUST include a list of relay tags with
relay URIs.
{
"kind": 10050,
"tags": [
["relay", "wss://inbox.nostr.wine"],
["relay", "wss://myrelay.nostr1.com"],

],
"content": "",
//...other fields

}

Clients SHOULD publish kind 14 events to the 10050-listed relays. If that is not found that indicates the user is not
ready to receive messages under this NIP and clients shouldn’t try.

Relays
It’s advisable that relays do not serve kind:14 to clients other than the ones tagged in them.
It’s advisable that users choose relays that conform to these practices.
Clients SHOULD guide users to keep kind:10050 lists small (1-3 relays) and SHOULD spread it to as many relays
as viable.

Benefits & Limitations
This NIP offers the following privacy and security features:

1. NoMetadata Leak: Participant identities, eachmessage’s real date and time, event kinds, and other event tags
are all hidden from the public. Senders and receivers cannot be linked with public information alone.

2. No Public Group Identifiers: There is no public central queue, channel or otherwise converging identifier to
correlate or count all messages in the same group.

3. NoModeration: There are no group admins: no invitations or bans.

24

44.md


4. No Shared Secrets: No secret must be known to all members that can leak or be mistakenly shared
5. Fully Recoverable: Messages can be fully recoverable by any client with the user’s private key
6. Optional Forward Secrecy: Users and clients can opt-in for “disappearing messages”.
7. Uses Public Relays: Messages can flow through public relays without loss of privacy. Private relays can

increase privacy further, but they are not required.
8. Cold Storage: Users can unilaterally opt-in to sharing their messages with a separate key that is exclusive for

DM backup and recovery.
The main limitation of this approach is having to send a separate encrypted event to each receiver. Group chats with
more than 100 participants should find a more suitable messaging scheme.

Implementation
Clients implementing this NIP should by default only connect to the set of relays found in their kind:10050 list.
From that they should be able to load all messages both sent and received as well as get new live updates, making
it for a very simple and lightweight implementation that should be fast.
When sending a message to anyone, clients must then connect to the relays in the receiver’s kind:10050 and send
the events there, but can disconnect right after unless more messages are expected to be sent (e.g. the chat tab is still
selected). Clients should also send a copy of their outgoing messages to their own kind:10050 relay set.

Examples
This example sends themessage Hola, que tal? from nsec1w8udu59ydjvedgs3yv5qccshcj8k05fh3l60k9x57asjrqdpa00qkmr89m
to nsec12ywtkplvyq5t6twdqwwygavp5lm4fhuang89c943nf2z92eez43szvn4dt.
The two final GiftWraps, one to the receiver and the other to the sender, are:
{

"id":"2886780f7349afc1344047524540ee716f7bdc1b64191699855662330bf235d8",
"pubkey":"8f8a7ec43b77d25799281207e1a47f7a654755055788f7482653f9c9661c6d51",
"created_at":1703128320,
"kind":1059,
"tags":[

[ "p", "918e2da906df4ccd12c8ac672d8335add131a4cf9d27ce42b3bb3625755f0788"]
],
"content":"AsqzdlMsG304G8h08bE67dhAR1gFTzTckUUyuvndZ8LrGCvwI4pgC3d6hyAK0Wo9gtkLqSr2rT2RyHlE5wRqbCOlQ8WvJEKwqwIJwT5PO3l2RxvGCHDbd1b1o40ZgIVwwLCfOWJ86I5upXe8K5AgpxYTOM1BD+SbgI5jOMA8tgpRoitJedVSvBZsmwAxXM7o7sbOON4MXHzOqOZpALpS2zgBDXSAaYAsTdEM4qqFeik+zTk3+L6NYuftGidqVluicwSGS2viYWr5OiJ1zrj1ERhYSGLpQnPKrqDaDi7R1KrHGFGyLgkJveY/45y0rv9aVIw9IWF11u53cf2CP7akACel2WvZdl1htEwFu/v9cFXD06fNVZjfx3OssKM/uHPE9XvZttQboAvP5UoK6lv9o3d+0GM4/3zP+yO3C0NExz1ZgFmbGFz703YJzM+zpKCOXaZyzPjADXp8qBBeVc5lmJqiCL4solZpxA1865yPigPAZcc9acSUlg23J1dptFK4n3Tl5HfSHP+oZ/QS/SHWbVFCtq7ZMQSRxLgEitfglTNz9P1CnpMwmW/Y4Gm5zdkv0JrdUVrn2UO9ARdHlPsW5ARgDmzaxnJypkfoHXNfxGGXWRk0sKLbz/ipnaQP/eFJv/ibNuSfqL6E4BnN/tHJSHYEaTQ/PdrA2i9laG3vJti3kAl5Ih87ct0w/tzYfp4SRPhEF1zzue9G/16eJEMzwmhQ5Ec7jJVcVGa4RltqnuF8unUu3iSRTQ+/MNNUkK6Mk+YuaJJs6Fjw6tRHuWi57SdKKv7GGkr0zlBUU2Dyo1MwpAqzsCcCTeQSv+8qt4wLf4uhU9Br7F/L0ZY9bFgh6iLDCdB+4iABXyZwT7Ufn762195hrSHcU4Okt0Zns9EeiBOFxnmpXEslYkYBpXw70GmymQfJlFOfoEp93QKCMS2DAEVeI51dJV1e+6t3pCSsQN69Vg6jUCsm1TMxSs2VX4BRbq562+VffchvW2BB4gMjsvHVUSRl8i5/ZSDlfzSPXcSGALLHBRzy+gn0oXXJ/447VHYZJDL3Ig8+QW5oFMgnWYhuwI5QSLEyflUrfSz+Pdwn/5eyjybXKJftePBD9Q+8NQ8zulU5sqvsMeIx/bBUx0fmOXsS3vjqCXW5IjkmSUV7q54GewZqTQBlcx+90xh/LSUxXex7UwZwRnifvyCbZ+zwNTHNb12chYeNjMV7kAIr3cGQv8vlOMM8ajyaZ5KVy7HpSXQjz4PGT2/nXbL5jKt8Lx0erGXsSsazkdoYDG3U",
"sig":"a3c6ce632b145c0869423c1afaff4a6d764a9b64dedaf15f170b944ead67227518a72e455567ca1c2a0d187832cecbde7ed478395ec4c95dd3e71749ed66c480"

}

{
"id":"162b0611a1911cfcb30f8a5502792b346e535a45658b3a31ae5c178465509721",
"pubkey":"626be2af274b29ea4816ad672ee452b7cf96bbb4836815a55699ae402183f512",
"created_at":1702711587,
"kind":1059,
"tags":[

[ "p", "44900586091b284416a0c001f677f9c49f7639a55c3f1e2ec130a8e1a7998e1b"]
],
"content":"AsTClTzr0gzXXji7uye5UB6LYrx3HDjWGdkNaBS6BAX9CpHa+Vvtt5oI2xJrmWLen+Fo2NBOFazvl285Gb3HSM82gVycrzx1HUAaQDUG6HI7XBEGqBhQMUNwNMiN2dnilBMFC3Yc8ehCJT/gkbiNKOpwd2rFibMFRMDKai2mq2lBtPJF18oszKOjA+XlOJV8JRbmcAanTbEK5nA/GnG3eGUiUzhiYBoHomj3vztYYxc0QYHOx0WxiHY8dsC6jPsXC7f6k4P+Hv5ZiyTfzvjkSJOckel1lZuE5SfeZ0nduqTlxREGeBJ8amOykgEIKdH2VZBZB+qtOMc7ez9dz4wffGwBDA7912NFS2dPBr6txHNxBUkDZKFbuD5wijvonZDvfWq43tZspO4NutSokZB99uEiRH8NAUdGTiNb25m9JcDhVfdmABqTg5fIwwTwlem5aXIy8b66lmqqz2LBzJtnJDu36bDwkILph3kmvaKPD8qJXmPQ4yGpxIbYSTCohgt2/I0TKJNmqNvSN+IVoUuC7ZOfUV9lOV8Ri0AMfSr2YsdZ9ofV5o82ClZWlWiSWZwy6ypa7CuT1PEGHzywB4CZ5ucpO60Z7hnBQxHLiAQIO/QhiBp1rmrdQZFN6PUEjFDloykoeHe345Yqy9Ke95HIKUCS9yJurD+nZjjgOxZjoFCsB1hQAwINTIS3FbYOibZnQwv8PXvcSOqVZxC9U0+WuagK7IwxzhGZY3vLRrX01oujiRrevB4xbW7Oxi/Agp7CQGlJXCgmRE8Rhm+Vj2s+wc/4VLNZRHDcwtfejogjrjdi8p6nfUyqoQRRPARzRGUnnCbh+LqhigT6gQf3sVilnydMRScEc0/YYNLWnaw9nbyBa7wFBAiGbJwO40k39wj+xT6HTSbSUgFZzopxroO3f/o4+ubx2+IL3fkev22mEN38+dFmYF3zE+hpE7jVxrJpC3EP9PLoFgFPKCuctMnjXmeHoiGs756N5r1Mm1ffZu4H19MSuALJlxQR7VXE/LzxRXDuaB2u9days/6muP6gbGX1ASxbJd/ou8+viHmSC/ioHzNjItVCPaJjDyc6bv+gs1NPCt0qZ69G+JmgHW/PsMMeL4n5bh74g0fJSHqiI9ewEmOG/8bedSREv2XXtKV39STxPweceIOh0k23s3N6+wvuSUAJE7u1LkDo14cobtZ/MCw/QhimYPd1u5HnEJvRhPxz0nVPz0QqL/YQeOkAYk7uzgeb2yPzJ6DBtnTnGDkglekhVzQBFRJdk740LEj6swkJ",
"sig":"c94e74533b482aa8eeeb54ae72a5303e0b21f62909ca43c8ef06b0357412d6f8a92f96e1a205102753777fd25321a58fba3fb384eee114bd53ce6c06a1c22bab"

}

25



Warning unrecommended: deprecated in favor of NIP-17

NIP-04
Encrypted Direct Message
final unrecommended optional

A special event with kind 4, meaning “encrypted direct message”. It is supposed to have the following attributes:
content MUST be equal to the base64-encoded, aes-256-cbc encrypted string of anything a user wants to write,
encrypted using a shared cipher generated by combining the recipient’s public-key with the sender’s private-key;
this appended by the base64-encoded initialization vector as if it was a querystring parameter named “iv”. The
format is the following: "content": "<encrypted_text>?iv=<initialization_vector>".
tags MUST contain an entry identifying the receiver of the message (such that relays may naturally forward this
event to them), in the form ["p", "<pubkey, as a hex string>"].
tagsMAY contain an entry identifying the previous message in a conversation or a message we are explicitly reply-
ing to (such that contextual, more organized conversations may happen), in the form ["e", "<event_id>"].
Note: By default in the libsecp256k1 ECDH implementation, the secret is the SHA256 hash of the shared point (both
X and Y coordinates). In Nostr, only the X coordinate of the shared point is used as the secret and it is NOT hashed.
If using libsecp256k1, a custom function that copies the X coordinate must be passed as the hashfp argument in
secp256k1_ecdh. See here.
Code sample for generating such an event in JavaScript:
import crypto from 'crypto'
import * as secp from '@noble/secp256k1'

let sharedPoint = secp.getSharedSecret(ourPrivateKey, '02' + theirPublicKey)
let sharedX = sharedPoint.slice(1, 33)

let iv = crypto.randomFillSync(new Uint8Array(16))
var cipher = crypto.createCipheriv(
'aes-256-cbc',
Buffer.from(sharedX),
iv

)
let encryptedMessage = cipher.update(text, 'utf8', 'base64')
encryptedMessage += cipher.final('base64')
let ivBase64 = Buffer.from(iv.buffer).toString('base64')

let event = {
pubkey: ourPubKey,
created_at: Math.floor(Date.now() / 1000),
kind: 4,
tags: [['p', theirPublicKey]],
content: encryptedMessage + '?iv=' + ivBase64

}

Security Warning
This standard does not go anywhere near what is considered the state-of-the-art in encrypted communication be-
tween peers, and it leaks metadata in the events, therefore it must not be used for anything you really need to keep
secret, and only with relays that use AUTH to restrict who can fetch your kind:4 events.

26

17.md
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1/blob/master/src/modules/ecdh/main_impl.h#L29


Client Implementation Warning
Clients should not search and replace public key or note references from the .content. If processed like a regular text
note (where @npub... is replaced with #[0] with a ["p", "..."] tag) the tags are leaked and the mentioned user
will receive the message in their inbox.

27



NIP-40
Expiration Timestamp
draft optional

The expiration tag enables users to specify a unix timestamp at which themessage SHOULD be considered expired
(by relays and clients) and SHOULD be deleted by relays.

tag: expiration
values:
- [UNIX timestamp in seconds]: required

{
"pubkey": "<pub-key>",
"created_at": 1000000000,
"kind": 1,
"tags": [
["expiration", "1600000000"]

],
"content": "This message will expire at the specified timestamp and be deleted by relays.\n",
"id": "<event-id>"

}

Note: The timestamp should be in the same format as the created_at timestamp and should be interpreted as the
time at which the message should be deleted by relays.

Client Behavior
Clients SHOULD use the supported_nips field to learn if a relay supports this NIP. Clients SHOULD NOT send
expiration events to relays that do not support this NIP.
Clients SHOULD ignore events that have expired.

Relay Behavior
Relays MAY NOT delete expired messages immediately on expiration and MAY persist them indefinitely. Relays
SHOULD NOT send expired events to clients, even if they are stored. Relays SHOULD drop any events that are
published to them if they are expired. An expiration timestamp does not affect storage of ephemeral events.

Suggested Use Cases

• Temporary announcements - This tag can be used to make temporary announcements. For example, an event
organizer could use this tag to post announcements about an upcoming event.

• Limited-time offers - This tag can be used by businesses to make limited-time offers that expire after a certain
amount of time. For example, a business could use this tag to make a special offer that is only available for a
limited time.

Warning The events could be downloaded by third parties as they are publicly accessible all the time on the relays.
So don’t consider expiring messages as a security feature for your conversations or other uses.

28



NIP-09
Event Deletion
draft optional

A special event with kind 5, meaning “deletion” is defined as having a list of one or more e tags, each referencing
an event the author is requesting to be deleted.
Each tag entry must contain an “e” event id and/or a tags intended for deletion.
The event’s content field MAY contain a text note describing the reason for the deletion.
For example:
{
"kind": 5,
"pubkey": <32-bytes hex-encoded public key of the event creator>,
"tags": [
["e", "dcd59..464a2"],
["e", "968c5..ad7a4"],
["a", "<kind>:<pubkey>:<d-identifier>"]

],
"content": "these posts were published by accident",
...other fields

}

Relays SHOULDdelete or stop publishing any referenced events that have an identical pubkey as the deletion request.
Clients SHOULD hide or otherwise indicate a deletion status for referenced events.
Relays SHOULD continue to publish/share the deletion events indefinitely, as clients may already have the event
that’s intended to be deleted. Additionally, clients SHOULD broadcast deletion events to other relays which don’t
have it.
When an a tag is used, relays SHOULD delete all versions of the replaceable event up to the created_at timestamp
of the deletion event.

Client Usage
Clients MAY choose to fully hide any events that are referenced by valid deletion events. This includes text notes,
direct messages, or other yet-to-be defined event kinds. Alternatively, they MAY show the event along with an icon
or other indication that the author has “disowned” the event. The content field MAY also be used to replace the
deleted events’ own content, although a user interface should clearly indicate that this is a deletion reason, not the
original content.
A client MUST validate that each event pubkey referenced in the e tag of the deletion request is identical to the
deletion request pubkey, before hiding or deleting any event. Relays can not, in general, perform this validation and
should not be treated as authoritative.
Clients display the deletion event itself in any way they choose, e.g., not at all, or with a prominent notice.

Relay Usage
Relays MAY validate that a deletion event only references events that have the same pubkey as the deletion itself,
however this is not required since relays may not have knowledge of all referenced events.

Deleting a Deletion
Publishing a deletion event against a deletion has no effect. Clients and relays are not obliged to support “undelete”
functionality.

29



NIP-92
Media Attachments
Media attachments (images, videos, and other files) may be added to events by including a URL in the event content,
along with a matching imeta tag.
imeta (“inline metadata”) tags add information about media URLs in the event’s content. Each imeta tag SHOULD
match a URL in the event content. Clients may replace imeta URLs with rich previews.
The imeta tag is variadic, and each entry is a space-delimited key/value pair. Each imeta tag MUST have a url, and
at least one other field. imetamay include any field specified by NIP 94. There SHOULD be only one imeta tag per
URL.

Example
{
"content": "More image metadata tests ’dont mind me https://nostr.build/i/my-image.jpg",
"kind": 1,
"tags": [
[
"imeta",
"url https://nostr.build/i/my-image.jpg",
"m image/jpeg",
"blurhash eVF$̂ OI:${M{o#*0-nNFxakD-?xVM}WEWB%iNKxvR-oetmo#R-aen$",
"dim 3024x4032",
"alt A scenic photo overlooking the coast of Costa Rica",
"x <sha256 hash as specified in NIP 94>",
"fallback https://nostrcheck.me/alt1.jpg",
"fallback https://void.cat/alt1.jpg"

]
]

}

Recommended client behavior
When uploading files during a new post, clients MAY include this metadata after the file is uploaded and included
in the post.
When pasting URLs during post composition, the client MAY download the file and add this metadata before the
post is sent.
The client MAY ignore imeta tags that do not match the URL in the event content.

30

./94.md


Social

31



NIP-02
Follow List
final optional

A special event with kind 3, meaning “follow list” is defined as having a list of p tags, one for each of the followed/-
known profiles one is following.
Each tag entry should contain the key for the profile, a relay URL where events from that key can be found (can be
set to an empty string if not needed), and a local name (or “petname”) for that profile (can also be set to an empty
string or not provided), i.e., ["p", <32-bytes hex key>, <main relay URL>, <petname>].
The .content is not used.
For example:
{
"kind": 3,
"tags": [
["p", "91cf9..4e5ca", "wss://alicerelay.com/", "alice"],
["p", "14aeb..8dad4", "wss://bobrelay.com/nostr", "bob"],
["p", "612ae..e610f", "ws://carolrelay.com/ws", "carol"]

],
"content": "",
...other fields

}

Every new following list that gets published overwrites the past ones, so it should contain all entries. Relays and
clients SHOULD delete past following lists as soon as they receive a new one.
Whenever new follows are added to an existing list, clients SHOULD append them to the end of the list, so they are
stored in chronological order.

Uses
Follow list backup
If one believes a relay will store their events for sufficient time, they can use this kind-3 event to backup their fol-
lowing list and recover on a different device.

Profile discovery and context augmentation
A client may rely on the kind-3 event to display a list of followed people by profiles one is browsing; make lists of
suggestions on who to follow based on the follow lists of other people one might be following or browsing; or show
the data in other contexts.

Relay sharing
A client may publish a follow list with good relays for each of their follows so other clients may use these to update
their internal relay lists if needed, increasing censorship-resistance.

Petname scheme
The data from these follow lists can be used by clients to construct local “petname” tables derived fromother people’s
follow lists. This alleviates the need for global human-readable names. For example:
A user has an internal follow list that says
[
["p", "21df6d143fb96c2ec9d63726bf9edc71", "", "erin"]

]

32

http://www.skyhunter.com/marcs/petnames/IntroPetNames.html


And receives two follow lists, one from 21df6d143fb96c2ec9d63726bf9edc71 that says
[
["p", "a8bb3d884d5d90b413d9891fe4c4e46d", "", "david"]

]

and another from a8bb3d884d5d90b413d9891fe4c4e46d that says
[
["p", "f57f54057d2a7af0efecc8b0b66f5708", "", "frank"]

]

When the user sees 21df6d143fb96c2ec9d63726bf9edc71 the client can show erin instead; When the user sees
a8bb3d884d5d90b413d9891fe4c4e46d the client can show david.erin instead;When the user sees f57f54057d2a7af0efecc8b0b66f5708
the client can show frank.david.erin instead.

33



NIP-05
Mapping Nostr keys to DNS-based internet identifiers
final optional

On events of kind 0 (user metadata) one can specify the key "nip05" with an internet identifier (an email-like
address) as the value. Although there is a link to a very liberal “internet identifier” specification above, NIP-05
assumes the <local-part> part will be restricted to the characters a-z0-9-_., case-insensitive.
Upon seeing that, the client splits the identifier into <local-part> and <domain> and use these values to make a
GET request to https://<domain>/.well-known/nostr.json?name=<local-part>.
The result should be a JSON document object with a key "names" that should then be a mapping of names to hex
formatted public keys. If the public key for the given <name>matches the pubkey from the user's metadata event,
the client then concludes that the given pubkey can indeed be referenced by its identifier.

Example
If a client sees an event like this:
{
"pubkey": "b0635d6a9851d3aed0cd6c495b282167acf761729078d975fc341b22650b07b9",
"kind": 0,
"content": "{\"name\": \"bob\", \"nip05\": \"bob@example.com\"}"
...

}

It will make a GET request to https://example.com/.well-known/nostr.json?name=bob and get back a response
that will look like
{
"names": {
"bob": "b0635d6a9851d3aed0cd6c495b282167acf761729078d975fc341b22650b07b9"

}
}

or with the recommended "relays" attribute:
{
"names": {
"bob": "b0635d6a9851d3aed0cd6c495b282167acf761729078d975fc341b22650b07b9"

},
"relays": {
"b0635d6a9851d3aed0cd6c495b282167acf761729078d975fc341b22650b07b9": [ "wss://relay.example.com",

"wss://relay2.example.com" ]
}

}

If the pubkey matches the one given in "names" (as in the example above) that means the association is right and
the "nip05" identifier is valid and can be displayed.
The recommended "relays" attribute may contain an object with public keys as properties and arrays of relay URLs
as values. When present, that can be used to help clients learn in which relays the specific user may be found. Web
servers which serve /.well-known/nostr.json files dynamically based on the query string SHOULD also serve the
relays data for any name they serve in the same reply when that is available.

Finding users from their NIP-05 identifier
A client may implement support for finding users’ public keys from internet identifiers, the flow is the same as above,
but reversed: first the client fetches the well-known URL and from there it gets the public key of the user, then it tries
to fetch the kind 0 event for that user and check if it has a matching "nip05".

34

https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1


Notes
Clients must always follow public keys, not NIP-05 addresses
For example, if after finding that bob@bob.com has the public key abc...def, the user clicks a button to follow that
profile, the client must keep a primary reference to abc...def, not bob@bob.com. If, for any reason, the address
https://bob.com/.well-known/nostr.json?name=bob starts returning the public key 1d2...e3f at any time in the
future, the client must not replace abc...def in his list of followed profiles for the user (but it should stop displaying
“bob@bob.com” for that user, as that will have become an invalid "nip05" property).

Public keys must be in hex format
Keys must be returned in hex format. Keys in NIP-19 npub format are only meant to be used for display in client
UIs, not in this NIP.

User Discovery implementation suggestion
A client can also use this to allow users to search other profiles. If a client has a search box or something like that, a
user may be able to type “bob@example.com” there and the client would recognize that and do the proper queries
to obtain a pubkey and suggest that to the user.

Showing just the domain as an identifier
Clients may treat the identifier _@domain as the “root” identifier, and choose to display it as just the <domain>. For
example, if Bob owns bob.com, he may not want an identifier like bob@bob.com as that is redundant. Instead, Bob
can use the identifier _@bob.com and expect Nostr clients to show and treat that as just bob.com for all purposes.

Reasoning for the /.well-known/nostr.json?name=<local-part> format
By adding the <local-part> as a query string instead of as part of the path, the protocol can support both dynamic
servers that can generate JSON on-demand and static servers with a JSON file in it that may contain multiple names.

Allowing access from JavaScript apps
JavaScriptNostr appsmaybe restricted by browserCORSpolicies that prevent them fromaccessing /.well-known/nostr.json
on the user’s domain. When CORS prevents JS from loading a resource, the JS program sees it as a network failure
identical to the resource not existing, so it is not possible for a pure-JS app to tell the user for certain that the failure
was caused by a CORS issue. JS Nostr apps that see network failures requesting /.well-known/nostr.json files
may want to recommend to users that they check the CORS policy of their servers, e.g.:
$ curl -sI https://example.com/.well-known/nostr.json?name=bob | grep -i Âccess-Control
Access-Control-Allow-Origin: *

Users should ensure that their /.well-known/nostr.json is servedwith theHTTPheader Access-Control-Allow-Origin:
* to ensure it can be validated by pure JS apps running in modern browsers.

Security Constraints
The /.well-known/nostr.json endpoint MUST NOT return any HTTP redirects.
Fetchers MUST ignore any HTTP redirects given by the /.well-known/nostr.json endpoint.

35

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS


NIP-25
Reactions
draft optional

A reaction is a kind 7 event that is used to react to other events.
The generic reaction, represented by the content set to a + string, SHOULD be interpreted as a “like” or “upvote”.
A reactionwith content set to - SHOULD be interpreted as a “dislike” or “downvote”. It SHOULDNOT be counted
as a “like”, andMAY be displayed as a downvote or dislike on a post. A client MAY also choose to tally likes against
dislikes in a reddit-like system of upvotes and downvotes, or display them as separate tallies.
The content MAY be an emoji, or NIP-30 custom emoji in this case it MAY be interpreted as a “like” or “dislike”,
or the client MAY display this emoji reaction on the post. If the content is an empty string then the client should
consider it a “+”.

Tags
The reaction event SHOULD include e and p tags from the note the user is reacting to (and optionally a tags if the
target is a replaceable event). This allows users to be notified of reactions to posts they werementioned in. Including
the e tags enables clients to pull all the reactions associated with individual posts or all the posts in a thread. a tags
enables clients to seek reactions for all versions of a replaceable event.
The last e tag MUST be the id of the note that is being reacted to.
The last p tag MUST be the pubkey of the event being reacted to.
The a tag MUST contain the coordinates (kind:pubkey:d-tag) of the replaceable being reacted to.
The reaction event MAY include a k tag with the stringified kind number of the reacted event as its value.
Example code
func make_like_event(pubkey: String, privkey: String, liked: NostrEvent) -> NostrEvent {

var tags: [[String]] = liked.tags.filter {
tag in tag.count >= 2 && (tag[0] == "e" || tag[0] == "p")

}
tags.append(["e", liked.id])
tags.append(["p", liked.pubkey])
tags.append(["k", liked.kind])
let ev = NostrEvent(content: "+", pubkey: pubkey, kind: 7, tags: tags)
ev.calculate_id()
ev.sign(privkey: privkey)
return ev

}

Custom Emoji Reaction
The client may specify a custom emoji (NIP-30) :shortcode: in the reaction content. The client should refer to the
emoji tag and render the content as an emoji if shortcode is specified.
{
"kind": 7,
"content": ":soapbox:",
"tags": [
["emoji", "soapbox", "https://gleasonator.com/emoji/Gleasonator/soapbox.png"]

],
...other fields

}

The content can be set only one :shortcode:. And emoji tag should be one.

36

30.md
30.md


NIP-30
Custom Emoji
draft optional

Custom emoji may be added to kind 0, kind 1, kind 7 (NIP-25) and kind 30315 (NIP-38) events by including one or
more "emoji" tags, in the form:
["emoji", <shortcode>, <image-url>]

Where:
• <shortcode> is a name given for the emoji, which MUST be comprised of only alphanumeric characters and
underscores.

• <image-url> is a URL to the corresponding image file of the emoji.
For each emoji tag, clients should parse emoji shortcodes (aka “emojify”) like :shortcode: in the event to display
custom emoji.
Clients may allow users to add custom emoji to an event by including :shortcode: identifier in the event, and
adding the relevant "emoji" tags.

Kind 0 events
In kind 0 events, the name and about fields should be emojified.
{
"kind": 0,
"content": "{\"name\":\"Alex Gleason :soapbox:\"}",
"tags": [
["emoji", "soapbox", "https://gleasonator.com/emoji/Gleasonator/soapbox.png"]

],
"pubkey": "79c2cae114ea28a981e7559b4fe7854a473521a8d22a66bbab9fa248eb820ff6",
"created_at": 1682790000

}

Kind 1 events
In kind 1 events, the content should be emojified.
{
"kind": 1,
"content": "Hello :gleasonator: � :ablobcatrainbow: :disputed: yolo",
"tags": [
["emoji", "ablobcatrainbow", "https://gleasonator.com/emoji/blobcat/ablobcatrainbow.png"],
["emoji", "disputed", "https://gleasonator.com/emoji/Fun/disputed.png"],
["emoji", "gleasonator", "https://gleasonator.com/emoji/Gleasonator/gleasonator.png"]

],
"pubkey": "79c2cae114ea28a981e7559b4fe7854a473521a8d22a66bbab9fa248eb820ff6",
"created_at": 1682630000

}

37

25.md
38.md


NIP-18
Reposts
draft optional

A repost is a kind 6 event that is used to signal to followers that a kind 1 text note is worth reading.
The content of a repost event is the stringified JSON of the reposted note. It MAY also be empty, but that is not recom-
mended.
The repost event MUST include an e tag with the id of the note that is being reposted. That tag MUST include a
relay URL as its third entry to indicate where it can be fetched.
The repost SHOULD include a p tag with the pubkey of the event being reposted.

Quote Reposts
Quote reposts are kind 1 events with an embedded q tag of the note being quote reposted. The q tag ensures quote
reposts are not pulled and included as replies in threads. It also allows you to easily pull and count all of the quotes
for a post.

Generic Reposts
Since kind 6 reposts are reserved for kind 1 contents, we use kind 16 as a “generic repost”, that can include any
kind of event inside other than kind 1.
kind 16 reposts SHOULD contain a k tag with the stringified kind number of the reposted event as its value.

38



NIP-27
Text Note References
draft optional

This document standardizes the treatment given by clients of inline references of other events and profiles inside
the .content of any event that has readable text in its .content (such as kinds 1 and 30023).
When creating an event, clients should include mentions to other profiles and to other events in the middle of the
.content using NIP-21 codes, such as nostr:nprofile1qqsw3dy8cpu...6x2argwghx6egsqstvg.
Including NIP-10-style tags (["e", <hex-id>, <relay-url>, <marker>]) for each reference is optional, clients
should do it whenever they want the profile being mentioned to be notified of the mention, or when they want the
referenced event to recognize their mention as a reply.
A reader client that receives an event with such nostr:... mentions in its .content can do any desired context
augmentation (for example, linking to the profile or showing a preview of the mentioned event contents) it wants
in the process. If turning such mentions into links, they could become internal links, NIP-21 links or direct links to
web clients that will handle these references.

Example of a profile mention process
Suppose Bob is writing a note in a client that has search-and-autocomplete functionality for users that is triggered
when they write the character @.
As Bob types "hello @mat" the client will prompt him to autocomplete with mattn’s profile, showing a picture and
name.
Bob presses “enter” and now he sees his typed note as "hello @mattn", @mattn is highlighted, indicating that it is
a mention. Internally, however, the event looks like this:
{
"content": "hello nostr:nprofile1qqszclxx9f5haga8sfjjrulaxncvkfekj097t6f3pu65f86rvg49ehqj6f9dh",
"created_at": 1679790774,
"id": "f39e9b451a73d62abc5016cffdd294b1a904e2f34536a208874fe5e22bbd47cf",
"kind": 1,
"pubkey": "79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
"sig":

"f8c8bab1b90cc3d2ae1ad999e6af8af449ad8bb4edf64807386493163e29162b5852a796a8f474d6b1001cddbaac0de4392838574f5366f03cc94cf5dfb43f4d",
"tags": [
[
"p",
"2c7cc62a697ea3a7826521f3fd34f0cb273693cbe5e9310f35449f43622a5cdc"

]
]

}

(Alternatively, the mention could have been a nostr:npub1... URL.)
After Bob publishes this event and Carol sees it, her client will initially display the .content as it is, but later it will
parse the .content and see that there is a nostr:URL in there, decode it, extract the public key from it (and possibly
relay hints), fetch that profile from its internal database or relays, then replace the full URL with the name @mattn,
with a link to the internal page view for that profile.

Verbose and probably unnecessary considerations
• The example above was very concrete, but it doesn’t mean all clients have to implement the same flow. There
could be clients that do not support autocomplete at all, so they just allow users to paste raw NIP-19 codes
into the body of text, then prefix these with nostr: before publishing the event.

39

21.md
10.md
21.md
https://njump.me/npub1937vv2nf06360qn9y8el6d8sevnndy7tuh5nzre4gj05xc32tnwqauhaj6
19.md


• The flow for referencing other events is similar: a user could paste a note1... or nevent1... code and the
client will turn that into a nostr:note1... or nostr:nevent1...URL. Then upon reading such references the
client may show the referenced note in a preview box or something like that – or nothing at all.

• Other display procedures can be employed: for example, if a client that is designed for dealing with only
kind:1 text notes sees, for example, a kind:30023 nostr:naddr1... URL reference in the .content, it can, for
example, decide to turn that into a link to some hardcoded webapp capable of displaying such events.

• Clients may give the user the option to include or not include tags for mentioned events or profiles. If someone
wants tomention mattnwithout notifying them, but still have a nice augmentable/clickable link to their profile
inside their note, they can instruct their client to not create a ["p", ...] tag for that specific mention.

• In the same way, if someone wants to reference another note but their reference is not meant to show up along
other replies to that same note, their client can choose to not include a corresponding ["e", ...] tag for any
given nostr:nevent1... URL inside .content. Clients may decide to expose these advanced functionalities
to users or be more opinionated about things.

40

23.md


Warning unrecommended: deprecated in favor of NIP-27

NIP-08
Handling Mentions
final unrecommended optional

This document standardizes the treatment given by clients of inline mentions of other events and pubkeys inside
the content of text_notes.
Clients that want to allow tagged mentions they MUST show an autocomplete component or something analogous
to that whenever the user starts typing a special key (for example, “@”) or presses some button to include a mention
etc – or these clients can come up with other ways to unambiguously differentiate between mentions and normal
text.
Once amention is identified, for example, the pubkey 27866e9d854c78ae625b867eefdfa9580434bc3e675be08d2acb526610d96fbe,
the client MUST add that pubkey to the .tags with the tag p, then replace its textual reference (inside .content)
with the notation #[index] in which “index” is equal to the 0-based index of the related tag in the tags array.
The same process applies for mentioning event IDs.
A client that receives a text_note event with such #[index]mentions in its .content CAN do a search-and-replace
using the actual contents from the .tags array with the actual pubkey or event ID that is mentioned, doing any
desired context augmentation (for example, linking to the pubkey or showing a preview of the mentioned event
contents) it wants in the process.
Where #[index] has an index that is outside the range of the tags array or points to a tag that is not an e or p tag or a
tag otherwise declared to support this notation, the client MUST NOT perform such replacement or augmentation,
but instead display it as normal text.

41

27.md


NIP-38
User Statuses
draft optional

Abstract
This NIP enables a way for users to share live statuses such as what music they are listening to, as well as what they
are currently doing: work, play, out of office, etc.

Live Statuses
A special event with kind:30315 “User Status” is defined as an optionally expiring parameterized replaceable event,
where the d tag represents the status type:
For example:
{
"kind": 30315,
"content": "Sign up for nostrasia!",
"tags": [
["d", "general"],
["r", "https://nostr.world"]

],
}

{
"kind": 30315,
"content": "Intergalatic - Beastie Boys",
"tags": [
["d", "music"],
["r", "spotify:search:Intergalatic%20-%20Beastie%20Boys"],
["expiration", "1692845589"]

],
}

Two common status types are defined: general and music. general represent general statuses: “Working”, “Hik-
ing”, etc.
music status events are for live streaming what you are currently listening to. The expiry of the music status should
be when the track will stop playing.
Any other status types can be used but they are not defined by this NIP.
The status MAY include an r, p, e or a tag linking to a URL, profile, note, or parameterized replaceable event.
The content MAY include emoji(s), or NIP-30 custom emoji(s). If the content is an empty string then the client
should clear the status.

Client behavior
Clients MAY display this next to the username on posts or profiles to provide live user status information.

Use Cases
• Calendar nostr apps that update your general status when you’re in a meeting
• Nostr Nests that update your general status with a link to the nest when you join
• Nostr music streaming services that update your music status when you’re listening

42

30.md


• Podcasting apps that update your music status when you’re listening to a podcast, with a link for others to
listen as well

• Clients can use the system media player to update playing music status

43



NIP-58
Badges
draft optional

Three special events are used to define, award and display badges in user profiles:
1. A “Badge Definition” event is defined as a parameterized replaceable event with kind 30009 having a d tag

with a value that uniquely identifies the badge (e.g. bravery) published by the badge issuer. Badge definitions
can be updated.

2. A “Badge Award” event is a kind 8 event with a single a tag referencing a “Badge Definition” event and one
or more p tags, one for each pubkey the badge issuer wishes to award. Awarded badges are immutable and
non-transferrable.

3. A “Profile Badges” event is defined as a parameterized replaceable event with kind 30008 with a d tag with
the value profile_badges. Profile badges contain an ordered list of pairs of a and e tags referencing a Badge
Definition and a Badge Award for each badge to be displayed.

Badge Definition event
The following tags MUST be present:

• d tag with the unique name of the badge.
The following tags MAY be present:

• A name tag with a short name for the badge.
• image tag whose value is the URL of a high-resolution image representing the badge. The second value op-
tionally specifies the dimensions of the image as widthxheight in pixels. Badge recommended dimensions is
1024x1024 pixels.

• A description tag whose value MAY contain a textual representation of the image, the meaning behind the
badge, or the reason of its issuance.

• One or more thumb tags whose first value is an URL pointing to a thumbnail version of the image referenced
in the image tag. The second value optionally specifies the dimensions of the thumbnail as widthxheight in
pixels.

Badge Award event
The following tags MUST be present:

• An a tag referencing a kind 30009 Badge Definition event.
• One or more p tags referencing each pubkey awarded.

Profile Badges Event
The number of badges a pubkey can be awarded is unbounded. The Profile Badge event allows individual users to
accept or reject awarded badges, as well as choose the display order of badges on their profiles.
The following tags MUST be present:

• A d tag with the unique identifier profile_badges
The following tags MAY be present:

• Zero or more ordered consecutive pairs of a and e tags referencing a kind 30009 Badge Definition and kind
8 Badge Award, respectively. Clients SHOULD ignore a without corresponding e tag and viceversa. Badge
Awards referenced by the e tags should contain the same a tag.

44



Motivation
Users MAY be awarded badges (but not limited to) in recognition, in gratitude, for participation, or in appreciation
of a certain goal, task or cause.
Users MAY choose to decorate their profiles with badges for fame, notoriety, recognition, support, etc., from badge
issuers they deem reputable.

Recommendations
Clients MAY whitelist badge issuers (pubkeys) for the purpose of ensuring they retain a valuable/special factor for
their users.
Badge image recommended aspect ratio is 1:1 with a high-res size of 1024x1024 pixels.
Badge thumbnail image recommended dimensions are: 512x512 (xl), 256x256 (l), 64x64 (m), 32x32 (s) and 16x16 (xs).
Clients MAY choose to render less badges than those specified by users in the Profile Badges event or replace the
badge image and thumbnails with ones that fits the theme of the client.
Clients SHOULDattempt to render themost appropriate badge thumbnail according to the number of badges chosen
by the user and space available. Clients SHOULD attempt render the high-res version on user action (click, tap,
hover).

Example of a Badge Definition event
{
"pubkey": "alice",
"kind": 30009,
"tags": [
["d", "bravery"],
["name", "Medal of Bravery"],
["description", "Awarded to users demonstrating bravery"],
["image", "https://nostr.academy/awards/bravery.png", "1024x1024"],
["thumb", "https://nostr.academy/awards/bravery_256x256.png", "256x256"]

],
...

}

Example of Badge Award event
{
"id": "<badge award event id>",
"kind": 8,
"pubkey": "alice",
"tags": [
["a", "30009:alice:bravery"],
["p", "bob", "wss://relay"],
["p", "charlie", "wss://relay"]

],
...

}

Example of a Profile Badges event
Honorable Bob The Brave:
{
"kind": 30008,
"pubkey": "bob",

45



"tags": [
["d", "profile_badges"],
["a", "30009:alice:bravery"],
["e", "<bravery badge award event id>", "wss://nostr.academy"],
["a", "30009:alice:honor"],
["e", "<honor badge award event id>", "wss://nostr.academy"]

],
...

}

46



NIP-39
External Identities in Profiles
draft optional

Abstract
Nostr protocol users may have other online identities such as usernames, profile pages, keypairs etc. they control
and they may want to include this data in their profile metadata so clients can parse, validate and display this
information.

i tag on a metadata event
A new optional i tag is introduced for kind 0metadata event defined in NIP-01:
{
"id": <id>,
"pubkey": <pubkey>,
"tags": [
["i", "github:semisol", "9721ce4ee4fceb91c9711ca2a6c9a5ab"],
["i", "twitter:semisol_public", "1619358434134196225"],
["i", "mastodon:bitcoinhackers.org/@semisol", "109775066355589974"]
["i", "telegram:1087295469", "nostrdirectory/770"]

],
...

}

An i tag will have two parameters, which are defined as the following: 1. platform:identity: This is the platform
name (for example github) and the identity on that platform (for example semisol) joined together with :. 2. proof:
String or object that points to the proof of owning this identity.
Clients SHOULD process any i tags with more than 2 values for future extensibility. Identity provider names
SHOULD only include a-z, 0-9 and the characters ._-/ and MUST NOT include :. Identity names SHOULD be
normalized if possible by replacing uppercase letters with lowercase letters, and if there are multiple aliases for an
entity the primary one should be used.

Claim types
github

Identity: A GitHub username.
Proof: A GitHub Gist ID. This Gist should be created by <identity> with a single file that has the text Verifying
that I control the following Nostr public key: <npub encoded public key>. This can be located at
https://gist.github.com/<identity>/<proof>.

twitter

Identity: A Twitter username.
Proof: A Tweet ID. The tweet should be posted by <identity> and have the text Verifying my account on nostr
My Public Key: "<npub encoded public key>". This can be located at https://twitter.com/<identity>/status/<proof>.

mastodon

Identity: A Mastodon instance and username in the format <instance>/@<username>.
Proof: A Mastodon post ID. This post should be published by <username>@<instance> and have the text
Verifying that I control the following Nostr public key: "<npub encoded public key>". This can be
located at https://<identity>/<proof>.

47

01.md


telegram

Identity: A Telegram user ID.
Proof: A string in the format <ref>/<id> which points to a message published in the public channel or group
with name <ref> and message ID <id>. This message should be sent by user ID <identity> and have the text
Verifying that I control the following Nostr public key: "<npub encoded public key>". This can be lo-
cated at https://t.me/<proof>.

48



Groups

49



NIP-28
Public Chat
draft optional

This NIP defines new event kinds for public chat channels, channel messages, and basic client-side moderation.
It reserves five event kinds (40-44) for immediate use:

• 40 - channel create
• 41 - channel metadata
• 42 - channel message
• 43 - hide message
• 44 - mute user

Client-centric moderation gives client developers discretion over what types of content they want included in their
apps, while imposing no additional requirements on relays.

Kind 40: Create channel
Create a public chat channel.
In the channel creation content field, Client SHOULD include basic channel metadata (name, about, picture and
relays as specified in kind 41).
{
"content": "{\"name\": \"Demo Channel\", \"about\": \"A test channel.\", \"picture\":

\"https://placekitten.com/200/200\", \"relays\": [\"wss://nos.lol\", \"wss://nostr.mom\"]}",
...

}

Kind 41: Set channel metadata
Update a channel’s public metadata.
Kind 41 is used to update the metadata without modifying the event id for the channel. Only the most recent kind
41 per e tag value MAY be available.
Clients SHOULD ignore kind 41s from pubkeys other than the kind 40 pubkey.
Clients SHOULD support basic metadata fields:

• name - string - Channel name
• about - string - Channel description
• picture - string - URL of channel picture
• relays - array - List of relays to download and broadcast events to

Clients MAY add additional metadata fields.
Clients SHOULD use NIP-10 marked “e” tags to recommend a relay.
{
"content": "{\"name\": \"Updated Demo Channel\", \"about\": \"Updating a test channel.\", \"picture\":

\"https://placekitten.com/201/201\", \"relays\": [\"wss://nos.lol\", \"wss://nostr.mom\"]}",
"tags": [["e", <channel_create_event_id>, <relay-url>]],
...

}

50

10.md


Kind 42: Create channel message
Send a text message to a channel.
Clients SHOULDuseNIP-10marked “e” tags to recommend a relay and specifywhether it is a reply or rootmessage.
Clients SHOULD append NIP-10 “p” tags to replies.
Root message:
{
"content": <string>,
"tags": [["e", <kind_40_event_id>, <relay-url>, "root"]],
...

}

Reply to another message:
{
"content": <string>,
"tags": [

["e", <kind_40_event_id>, <relay-url>, "root"],
["e", <kind_42_event_id>, <relay-url>, "reply"],
["p", <pubkey>, <relay-url>],
...

],
...

}

Kind 43: Hide message
User no longer wants to see a certain message.
The contentmay optionally include metadata such as a reason.
Clients SHOULD hide event 42s shown to a given user, if there is an event 43 from that user matching the event 42
id.
Clients MAY hide event 42s for other users other than the user who sent the event 43.
(For example, if three users ‘hide’ an event giving a reason that includes the word ‘pornography’, a Nostr client that
is an iOS app may choose to hide that message for all iOS clients.)
{
"content": "{\"reason\": \"Dick pic\"}",
"tags": [["e", <kind_42_event_id>]],
...

}

Kind 44: Mute user
User no longer wants to see messages from another user.
The contentmay optionally include metadata such as a reason.
Clients SHOULD hide event 42s shown to a given user, if there is an event 44 from that user matching the event 42
pubkey.
Clients MAY hide event 42s for users other than the user who sent the event 44.
{
"content": "{\"reason\": \"Posting dick pics\"}",
"tags": [["p", <pubkey>]],
...

51

10.md
10.md


}

Relay recommendations
Clients SHOULD use the relay URLs of the metadata events.
Clients MAY use any relay URL. For example, if a relay hosting the original kind 40 event for a channel goes offline,
clients could instead fetch channel data from a backup relay, or a relay that clients trust more than the original relay.

Motivation
If we’re solving censorship-resistant communication for social media, wemay as well solve it also for Telegram-style
messaging.
We can bring the global conversation out from walled gardens into a true public square open to all.

Additional info
• Chat demo PR with fiatjaf+jb55 comments
• Conversation about NIP16

52

https://github.com/ArcadeCity/arcade/pull/28
https://t.me/nostr_protocol/29566


NIP-29
Relay-based Groups
draft optional

This NIP defines a standard for groups that are only writable by a closed set of users. They can be public for reading
by external users or not.
Groups are identified by a random string of any length that serves as an id.
There is no way to create a group, what happens is just that relays (most likely when asked by users) will create
rules around some specific ids so these ids can serve as an actual group, henceforth messages sent to that group will
be subject to these rules.
Normally a group will originally belong to one specific relay, but the community may choose to move the group to
other relays or even fork the group so it exists in different forms – still using the same id – across different relays.

Relay-generated events
Relays are supposed to generate the events that describe group metadata and group admins. These are parameter-
ized replaceable events signed by the relay keypair directly, with the group id as the d tag.

Group identifier
A groupmay be identified by a string in the format <host>'<group-id>. For example, a groupwith id abcdef hosted
at the relay wss://groups.nostr.com would be identified by the string groups.nostr.com'abcdef.

The h tag
Events sent by users to groups (chat messages, text notes, moderation events etc) must have an h tag with the value
set to the group id.

Timeline references
In order to not be used out of context, events sent to these groups may contain references to previous events seen
from the same relay in the previous tag. The choice of which previous events to pick belongs to the clients. The
references are to bemade using the first 8 characters (4 bytes) of any event in the last 50 events seen by the user in the
relay, excluding events by themselves. There can be any number of references (including zero), but it’s recommended
that clients include at least 3 and that relays enforce this.
This is a hack to prevent messages from being broadcasted to external relays that have forks of one group out of
context. Relays are expected to reject any events that contain timeline references to events not found in their own
database. Clients should also check these to keep relays honest about them.

Late publication
Relays should prevent late publication (messages published now with a timestamp from days or even hours ago)
unless they are open to receive a group forked or moved from another relay.

Event definitions
• text root note (kind:11)

This is the basic unit of a “microblog” root text note sent to a group.
"kind": 11,
"content": "hello my friends lovers of pizza",
"tags": [
["h", "<group-id>"],
["previous", "<event-id-first-chars>", "<event-id-first-chars>", ...]

53



]
...

• threaded text reply (kind:12)
This is the basic unit of a “microblog” reply note sent to a group. It’s the same as kind:11, except for the fact that it
must be used whenever it’s in reply to some other note (either in reply to a kind:11 or a kind:12). kind:12 events
SHOULD use NIP-10 markers, leaving an empty relay url:

• ["e", "<kind-11-root-id>", "", "root"]

• ["e", "<kind-12-event-id>", "", "reply"]

• chat message (kind:9)
This is the basic unit of a chat message sent to a group.
"kind": 9,
"content": "hello my friends lovers of pizza",
"tags": [
["h", "<group-id>"],
["previous", "<event-id-first-chars>", "<event-id-first-chars>", ...]

]
...

• chat message threaded reply (kind:10)
Similar to kind:12, this is the basic unit of a chat message sent to a group. This is intended for in-chat threads that
may be hidden by default. Not all in-chat replies MUST use kind:10, only when the intention is to create a hidden
thread that isn’t part of the normal flow of the chat (although clients are free to display those by default too).
kind:10 SHOULD use NIP-10 markers, just like kind:12.

• join request (kind:9021)
Any user can send one of these events to the relay in order to be automatically or manually added to the group.
If the group is open the relay will automatically issue a kind:9000 in response adding this user. Otherwise group
admins may choose to query for these requests and act upon them.
{
"kind": 9021,
"content": "optional reason",
"tags": [
["h", "<group-id>"]

]
}

• moderation events (kinds:9000-9020) (optional)
Clients can send these events to a relay in order to accomplish a moderation action. Relays must check if the pubkey
sending the event is capable of performing the given action. The relay may discard the event after taking action or
keep it as a moderation log.
{
"kind": 90xx,
"content": "optional reason",
"tags": [
["h", "<group-id>"],
["previous", ...]

]
}

Each moderation action uses a different kind and requires different arguments, which are given as tags. These are
defined in the following table:

54



kind name tags
9000 add-user p (pubkey hex)
9001 remove-user p (pubkey hex)
9002 edit-metadata name, about, picture (string)
9003 add-permission p (pubkey), permission (name)
9004 remove-permission p (pubkey), permission (name)
9005 delete-event e (id hex)
9006 edit-group-status public or private, open or closed
9007 create-group

• group metadata (kind:39000) (optional)
This event defines the metadata for the group – basically how clients should display it. It must be generated and
signed by the relay in which is found. Relays shouldn’t accept these events if they’re signed by anyone else.
If the group is forked and hosted in multiple relays, there will be multiple versions of this event in each different
relay and so on.
{
"kind": 39000,
"content": "",
"tags": [
["d", "<group-id>"],
["name", "Pizza Lovers"],
["picture", "https://pizza.com/pizza.png"],
["about", "a group for people who love pizza"],
["public"], // or ["private"]
["open"] // or ["closed"]

]
...

}

name, picture and about are basic metadata for the group for display purposes. public signals the group can be
read by anyone, while private signals that only AUTHed users can read. open signals that anyone can request to
join and the request will be automatically granted, while closed signals that members must be pre-approved or that
requests to join will be manually handled.

• group admins (kind:39001) (optional)
Similar to the group metadata, this event is supposed to be generated by relays that host the group.
Each admin gets a label that is only used for display purposes, and a list of permissions it has are listed afterwards.
These permissions can inform client building UI, but ultimately are evaluated by the relay in order to become effec-
tive.
The list of capabilities, as defined by this NIP, for now, is the following:

• add-user
• edit-metadata
• delete-event
• remove-user
• add-permission
• remove-permission
• edit-group-status

{
"kind": 39001,
"content": "list of admins for the pizza lovers group",
"tags": [
["d", "<group-id>"],
["p", "<pubkey1-as-hex>", "ceo", "add-user", "edit-metadata", "delete-event", "remove-user"],

55



["p", "<pubkey2-as-hex>", "secretary", "add-user", "delete-event"]
]
...

}

• group members (kind:39002) (optional)
Similar to group admins, this event is supposed to be generated by relays that host the group.
It’s a NIP-51-like list of pubkeys that are members of the group. Relays might choose to not to publish this informa-
tion or to restrict what pubkeys can fetch it.
{
"kind": 39002,
"content": "list of members for the pizza lovers group",
"tags": [
["d", "<group-id>"],
["p", "<admin1>"],
["p", "<member-pubkey1>"],
["p", "<member-pubkey2>"],

]
}

Storing the list of groups a user belongs to
A definition for kind 10009 was included in NIP-51 that allows clients to store the list of groups a user wants to
remember being in.

56

51.md


Moderation

57



NIP-32
Labeling
draft optional

A label is a kind 1985 event that is used to label other entities. This supports a number of use cases, including
distributed moderation, collection management, license assignment, and content classification.
This NIP introduces two new tags:

• L denotes a label namespace
• l denotes a label

Label Namespace Tag
An L tag can be any string, but publishers SHOULD ensure they are unambiguous by using a well-defined names-
pace (such as an ISO standard) or reverse domain name notation.
L tags are RECOMMENDED in order to support searching by namespace rather than by a specific tag. The special
ugc (“user generated content”) namespace MAY be used when the label content is provided by an end user.
L tags starting with # indicate that the label target should be associated with the label’s value. This is a way of
attaching standard nostr tags to events, pubkeys, relays, urls, etc.

Label Tag
An l tag’s value can be any string. If using an L tag, l tags MUST include a mark matching an L tag value in the
same event. If no L tag is included, a mark SHOULD still be included. If none is included, ugc is implied.

Label Target
The label event MUST include one or more tags representing the object or objects being labeled: e, p, a, r, or t tags.
This allows for labeling of events, people, relays, or topics respectively. As with NIP-01, a relay hint SHOULD be
included when using e and p tags.

Content
Labels should be short, meaningful strings. Longer discussions, such as for an explanation of why something was
labeled the way it was, should go in the event’s content field.

Self-Reporting
l and L tags MAY be added to other event kinds to support self-reporting. For events with a kind other than 1985,
labels refer to the event itself.

Example events
A suggestion that multiple pubkeys be associated with the permies topic.
{
"kind": 1985,
"tags": [
["L", "#t"],
["l", "permies", "#t"],
["p", <pubkey1>, <relay_url>],
["p", <pubkey2>, <relay_url>]

],
...

}

58



A report flagging violence toward a human being as defined by ontology.example.com.
{
"kind": 1985,
"tags": [
["L", "com.example.ontology"],
["l", "VI-hum", "com.example.ontology"],
["p", <pubkey1>, <relay_url>],
["p", <pubkey2>, <relay_url>]

],
...

}

A moderation suggestion for a chat event.
{
"kind": 1985,
"tags": [
["L", "nip28.moderation"],
["l", "approve", "nip28.moderation"],
["e", <kind40_event_id>, <relay_url>]

],
...

}

Assignment of a license to an event.
{
"kind": 1985,
"tags": [
["L", "license"],
["l", "MIT", "license"],
["e", <event_id>, <relay_url>]

],
...

}

Publishers can self-label by adding l tags to their own non-1985 events. In this case, the kind 1 event’s author is
labeling their note as being related to Milan, Italy using ISO 3166-2.
{
"kind": 1,
"tags": [
["L", "ISO-3166-2"],
["l", "IT-MI", "ISO-3166-2"]

],
"content": "It's beautiful here in Milan!",
...

}

Other Notes
When using this NIP to bulk-label many targets at once, events may be deleted and a replacement may be published.
We have opted not to use parameterizable/replaceable events for this due to the complexity in coming up with a
standard d tag. In order to avoid ambiguity when querying, publishers SHOULD limit labeling events to a single
namespace.
Before creating a vocabulary, explore how your use case may have already been designed and imitate that design
if possible. Reverse domain name notation is encouraged to avoid namespace clashes, but for the sake of interoper-

59



ability all namespaces should be considered open for public use, and not proprietary. In other words, if there is a
namespace that fits your use case, use it even if it points to someone else’s domain name.
VocabulariesMAYchoose to fully qualify all labelswithin a namespace (for example, ["l", "com.example.vocabulary:my-label"].
This may be preferred when defining more formal vocabularies that should not be confused with another names-
pace when querying without an L tag. For these vocabularies, all labels SHOULD include the namespace (rather
than mixing qualified and unqualified labels).
A good heuristic for whether a use case fits this NIP is whether labels would ever be unique. For example, many
events might be labeled with a particular place, topic, or pubkey, but labels with specific values like “John Doe” or
“3.18743” are not labels, they are values, and should be handled in some other way.

Appendix: Known Ontologies
Below is a non-exhaustive list of ontologies currently in widespread use.

• social.ontolo.categories

60

https://ontolo.social/


NIP-51
Lists
draft optional

This NIP defines lists of things that users can create. Lists can contain references to anything, and these references
can be public or private.
Public items in a list are specified in the event tags array, while private items are specified in a JSON array that
mimics the structure of the event tags array, but stringified and encrypted using the same scheme from NIP-04 (the
shared key is computed using the author’s public and private key) and stored in the .content.
When new items are added to an existing list, clients SHOULD append them to the end of the list, so they are stored
in chronological order.

Types of lists
Standard lists
Standard lists use non-parameterized replaceable events, meaning users may only have a single list of each kind.
They have special meaning and clients may rely on them to augment a user’s profile or browsing experience.
For example, mute list can contain the public keys of spammers and bad actors users don’t want to see in their feeds
or receive annoying notifications from.

name kind description expected tag items
Mute list 10000 things the user doesn’t

want to see in their feeds
"p" (pubkeys), "t"
(hashtags), "word"
(lowercase string), "e"
(threads)

Pinned notes 10001 events the user intends to
showcase in their profile
page

"e" (kind:1 notes)

Bookmarks 10003 uncategorized, “global”
list of things a user wants
to save

"e" (kind:1 notes), "a"
(kind:30023 articles), "t"
(hashtags), "r" (URLs)

Communities 10004 NIP-72 communities the
user belongs to

"a" (kind:34550
community definitions)

Public chats 10005 NIP-28 chat channels the
user is in

"e" (kind:40 channel
definitions)

Blocked relays 10006 relays clients should never
connect to

"relay" (relay URLs)

Search relays 10007 relays clients should use
when performing search
queries

"relay" (relay URLs)

Simple groups 10009 NIP-29 groups the user is
in

"group" (NIP-29 group ids
+ mandatory relay URL)

Interests 10015 topics a user may be
interested in and pointers

"t" (hashtags) and "a"
(kind:30015 interest set)

Emojis 10030 user preferred emojis and
pointers to emoji sets

"emoji" (see NIP-30) and
"a" (kind:30030 emoji set)

Good wiki authors 10101 NIP-54 user
recommended wiki
authors

"p" (pubkeys)

Good wiki relays 10102 NIP-54 relays deemed to
only host useful articles

"relay" (relay URLs)

61

04.md
72.md
28.md
29.md
29.md
30.md
54.md
54.md


Sets
Sets are lists with well-defined meaning that can enhance the functionality and the UI of clients that rely on them.
Unlike standard lists, users are expected to have more than one set of each kind, therefore each of them must be
assigned a different "d" identifier.
For example, relay sets can be displayed in a dropdown UI to give users the option to switch to which relays they
will publish an event or from which relays they will read the replies to an event; curation sets can be used by apps to
showcase curations made by others tagged to different topics.
Aside from their main identifier, the "d" tag, sets can optionally have a "title", an "image" and a "description"
tags that can be used to enhance their UI.

name kind description expected tag items
Follow sets 30000 categorized groups of

users a client may choose
to check out in different
circumstances

"p" (pubkeys)

Relay sets 30002 user-defined relay groups
the user can easily pick
and choose from during
various operations

"relay" (relay URLs)

Bookmark sets 30003 user-defined bookmarks
categories , for when
bookmarks must be in
labeled separate groups

"e" (kind:1 notes), "a"
(kind:30023 articles), "t"
(hashtags), "r" (URLs)

Curation sets 30004 groups of articles picked
by users as interesting
and/or belonging to the
same category

"a" (kind:30023 articles),
"e" (kind:1 notes)

Curation sets 30005 groups of videos picked
by users as interesting
and/or belonging to the
same category

"a" (kind:34235 videos)

Interest sets 30015 interest topics represented
by a bunch of “hashtags”

"t" (hashtags)

Emoji sets 30030 categorized emoji groups "emoji" (see NIP-30)
Release artifact sets 30063 groups of files of a

software release
"e" (kind:1063 file
metadata events), "i"
(application identifier,
typically reverse domain
notation), "version"

Deprecated standard lists
Some clients have used these lists in the past, but they should work on transitioning to the standard formats above.

kind “d” tag use instead
30000 "mute" kind 10000 mute list
30001 "pin" kind 10001 pin list
30001 "bookmark" kind 10003 bookmarks list
30001 "communities" kind 10004 communities list

Examples
A mute list with some public items and some encrypted items

62

30.md
94.md
94.md


{
"id": "a92a316b75e44cfdc19986c634049158d4206fcc0b7b9c7ccbcdabe28beebcd0",
"pubkey": "854043ae8f1f97430ca8c1f1a090bdde6488bd5115c7a45307a2a212750ae4cb",
"created_at": 1699597889,
"kind": 10000,
"tags": [
["p", "07caba282f76441955b695551c3c5c742e5b9202a3784780f8086fdcdc1da3a9"],
["p", "a55c15f5e41d5aebd236eca5e0142789c5385703f1a7485aa4b38d94fd18dcc4"]

],
"content":

"TJob1dQrf2ndsmdbeGU+05HT5GMnBSx3fx8QdDY/g3NvCa7klfzgaQCmRZuo1d3WQjHDOjzSY1+MgTK5WjewFFumCcOZniWtOMSga9tJk1ky00tLoUUzyLnb1v9x95h/iT/KpkICJyAwUZ+LoJBUzLrK52wNTMt8M5jSLvCkRx8C0BmEwA/00pjOp4eRndy19H4WUUehhjfV2/VV/k4hMAjJ7Bb5Hp9xdmzmCLX9+64+MyeIQQjQAHPj8dkSsRahP7KS3MgMpjaF8nL48Bg5suZMxJayXGVp3BLtgRZx5z5nOk9xyrYk+71e2tnP9IDvSMkiSe76BcMct+m7kGVrRcavDI4n62goNNh25IpghT+a1OjjkpXt9me5wmaL7fxffV1pchdm+A7KJKIUU3kLC7QbUifF22EucRA9xiEyxETusNludBXN24O3llTbOy4vYFsq35BeZl4v1Cse7n2htZicVkItMz3wjzj1q1I1VqbnorNXFgllkRZn4/YXfTG/RMnoK/bDogRapOV+XToZ+IvsN0BqwKSUDx+ydKpci6htDRF2WDRkU+VQMqwM0CoLzy2H6A2cqyMMMD9SLRRzBg==?iv=S3rFeFr1gsYqmQA7bNnNTQ==",
"sig":

"1173822c53261f8cffe7efbf43ba4a97a9198b3e402c2a1df130f42a8985a2d0d3430f4de350db184141e45ca844ab4e5364ea80f11d720e36357e1853dba6ca"
}

A curation set of articles and notes about yaks
{
"id": "567b41fc9060c758c4216fe5f8d3df7c57daad7ae757fa4606f0c39d4dd220ef",
"pubkey": "d6dc95542e18b8b7aec2f14610f55c335abebec76f3db9e58c254661d0593a0c",
"created_at": 1695327657,
"kind": 30004,
"tags": [
["d", "jvdy9i4"],
["name", "Yaks"],
["picture", "https://cdn.britannica.com/40/188540-050-9AC748DE/Yak-Himalayas-Nepal.jpg"],
["about", "The domestic yak, also known as the Tartary ox, grunting ox, or hairy cattle, is a species of

long-haired domesticated cattle found throughout the Himalayan region of the Indian subcontinent, the
Tibetan Plateau, Gilgit-Baltistan, Tajikistan and as far north as Mongolia and Siberia."],

["a", "30023:26dc95542e18b8b7aec2f14610f55c335abebec76f3db9e58c254661d0593a0c:95ODQzw3ajNoZ8SyMDOzQ"],
["a", "30023:54af95542e18b8b7aec2f14610f55c335abebec76f3db9e58c254661d0593a0c:1-MYP8dAhramH9J5gJWKx"],
["a", "30023:f8fe95542e18b8b7aec2f14610f55c335abebec76f3db9e58c254661d0593a0c:D2Tbd38bGrFvU0bIbvSMt"],
["e", "d78ba0d5dce22bfff9db0a9e996c9ef27e2c91051de0c4e1da340e0326b4941e"]

],
"content": "",
"sig":

"a9a4e2192eede77e6c9d24ddfab95ba3ff7c03fbd07ad011fff245abea431fb4d3787c2d04aad001cb039cb8de91d83ce30e9a94f82ac3c5a2372aa1294a96bd"
}

A release artifact set of an Example App
{
"id": "567b41fc9060c758c4216fe5f8d3df7c57daad7ae757fa4606f0c39d4dd220ef",
"pubkey": "d6dc95542e18b8b7aec2f14610f55c335abebec76f3db9e58c254661d0593a0c",
"created_at": 1695327657,
"kind": 30063,
"tags": [
["d", "ak8dy3v7"],
["i", "com.example.app"],
["version", "0.0.1"],
["title", "Example App"],
["image", "http://cdn.site/p/com.example.app/icon.png"],
["e", "d78ba0d5dce22bfff9db0a9e996c9ef27e2c91051de0c4e1da340e0326b4941e"], // Windows exe
["e", "f27e2c91051de0c4e1da0d5dce22bfff9db0a9340e0326b4941ed78bae996c9e"], // MacOS dmg
["e", "9d24ddfab95ba3ff7c03fbd07ad011fff245abea431fb4d3787c2d04aad02332"], // Linux AppImage
["e", "340e0326b340e0326b4941ed78ba340e0326b4941ed78ba340e0326b49ed78ba"] // PWA

],

63



"content": "Example App is a decentralized marketplace for apps",
"sig":

"a9a4e2192eede77e6c9d24ddfab95ba3ff7c03fbd07ad011fff245abea431fb4d3787c2d04aad001cb039cb8de91d83ce30e9a94f82ac3c5a2372aa1294a96bd"
}

Encryption process pseudocode
val private_items = [
["p", "07caba282f76441955b695551c3c5c742e5b9202a3784780f8086fdcdc1da3a9"],
["a", "a55c15f5e41d5aebd236eca5e0142789c5385703f1a7485aa4b38d94fd18dcc4"],

]
val base64blob = nip04.encrypt(json.encode_to_string(private_items))
event.content = base64blob

64



NIP-56
Reporting
optional

A report is a kind 1984 event that signals to users and relays that some referenced content is objectionable. The
definition of objectionable is obviously subjective and all agents on the network (users, apps, relays, etc.) may
consume and take action on them as they see fit.
The contentMAY contain additional information submitted by the entity reporting the content.

Tags
The report event MUST include a p tag referencing the pubkey of the user you are reporting.
If reporting a note, an e tag MUST also be included referencing the note id.
A report type string MUST be included as the 3rd entry to the e or p tag being reported, which consists of the
following report types:

• nudity - depictions of nudity, porn, etc.
• malware - virus, trojan horse, worm, robot, spyware, adware, back door, ransomware, rootkit, kidnapper, etc.
• profanity - profanity, hateful speech, etc.
• illegal - something which may be illegal in some jurisdiction
• spam - spam
• impersonation - someone pretending to be someone else
• other - for reports that don’t fit in the above categories

Some report tags only make sense for profile reports, such as impersonation
l and L tags MAY be also be used as defined in NIP-32 to support further qualification and querying.

Example events
{
"kind": 1984,
"tags": [
["p", <pubkey>, "nudity"],
["L", "social.nos.ontology"],
["l", "NS-nud", "social.nos.ontology"]

],
"content": "",
...

}

{
"kind": 1984,
"tags": [
["e", <eventId>, "illegal"],
["p", <pubkey>]

],
"content": "He's insulting the king!",
...

}

{
"kind": 1984,
"tags": [
["p", <impersonator pubkey>, "impersonation"]

],

65

32.md


"content": "Profile is impersonating nostr:<victim bech32 pubkey>",
...

}

Client behavior
Clients can use reports from friends to make moderation decisions if they choose to. For instance, if 3+ of your
friends report a profile for nudity, clients can have an option to automatically blur photos from said account.

Relay behavior
It is not recommended that relays perform automaticmoderation using reports, as they can be easily gamed. Admins
could use reports from trusted moderators to takedown illegal or explicit content if the relay does not allow such
things.

66



NIP-36
Sensitive Content / Content Warning
draft optional

The content-warning tag enables users to specify if the event’s content needs to be approved by readers to be shown.
Clients can hide the content until the user acts on it.
l and L tags MAY be also be used as defined in NIP-32 with the content-warning or other namespace to support
further qualification and querying.

tag: content-warning
options:
- [reason]: optional

{
"pubkey": "<pub-key>",
"created_at": 1000000000,
"kind": 1,
"tags": [
["t", "hastag"],
["L", "content-warning"],
["l", "reason", "content-warning"],
["L", "social.nos.ontology"],
["l", "NS-nud", "social.nos.ontology"],
["content-warning", "<optional reason>"]

],
"content": "sensitive content with #hastag\n",
"id": "<event-id>"

}

67

32.md


NIP-72

Moderated Communities (Reddit Style)
draft optional

The goal of this NIP is to create moderator-approved public communities around a topic. It defines the replaceable
event kind:34550 to define the community and the current list of moderators/administrators. Users that want to
post into the community, simply tag any Nostr event with the community’s a tag. Moderators issue an approval
event kind:4550 that links the community with the new post.

Community Definition
kind:34550 SHOULD include any field that helps define the community and the set of moderators. relay tagsMAY
be used to describe the preferred relay to download requests and approvals.
{
"created_at": <Unix timestamp in seconds>,
"kind": 34550,
"tags": [
["d", "<community-d-identifier>"],
["description", "<Community description>"],
["image", "<Community image url>", "<Width>x<Height>"],

//.. other tags relevant to defining the community

// moderators
["p", "<32-bytes hex of a pubkey1>", "<optional recommended relay URL>", "moderator"],
["p", "<32-bytes hex of a pubkey2>", "<optional recommended relay URL>", "moderator"],
["p", "<32-bytes hex of a pubkey3>", "<optional recommended relay URL>", "moderator"],

// relays used by the community (w/optional marker)
["relay", "<relay hosting author kind 0>", "author"],
["relay", "<relay where to send and receive requests>", "requests"],
["relay", "<relay where to send and receive approvals>", "approvals"],
["relay", "<relay where to post requests to and fetch approvals from>"]

],
...

}

New Post Request
Any Nostr event can be submitted to a community by anyone for approval. Clients MUST add the community’s a
tag to the new post event in order to be presented for the moderator’s approval.
{
"kind": 1,
"tags": [
["a", "34550:<community event author pubkey>:<community-d-identifier>", "<optional-relay-url>"],

],

68



"content": "hello world",
// ...

}

Community management clients MAY filter all mentions to a given kind:34550 event and request moderators to
approve each submission. Moderators MAY delete his/her approval of a post at any time using event deletions (See
NIP-09).

Post Approval by moderators
The post-approval event MUST include a tags of the communities the moderator is posting into (one or more), the e
tag of the post and p tag of the author of the post (for approval notifications). The event SHOULD also include the
stringified post request event inside the .content (NIP-18-style) and a k tag with the original post’s event kind to
allow filtering of approved posts by kind.
{
"pubkey": "<32-bytes lowercase hex-encoded public key of the event creator>",
"kind": 4550,
"tags": [
["a", "34550:<event-author-pubkey>:<community-d-identifier>", "<optional-relay-url>"],
["e", "<post-id>", "<optional-relay-url>"],
["p", "<port-author-pubkey>", "<optional-relay-url>"],
["k", "<post-request-kind>"]

],
"content": "<the full approved event, JSON-encoded>",
// ...

}

It’s recommended that multiple moderators approve posts to avoid deleting them from the community when a
moderator is removed from the owner’s list. In case the full list of moderators must be rotated, the new moderator
set must sign new approvals for posts in the past or the community will restart. The owner can also periodically
copy and re-sign of each moderator’s approval events to make sure posts don’t disappear with moderators.
Post Approvals of replaceable events can be created in three ways: (i) by tagging the replaceable event as an e tag if
moderators want to approve each individual change to the replaceable event; (ii) by tagging the replaceable event as
an a tag if the moderator authorizes the replaceable event author to make changes without additional approvals and
(iii) by tagging the replaceable event with both its e and a tag which empowers clients to display the original and
updated versions of the event, with appropriate remarks in the UI. Since relays are instructed to delete old versions
of a replaceable event, the .content of an e-approval MUST have the specific version of the event or Clients might
not be able to find that version of the content anywhere.
Clients SHOULD evaluate any non-34550:* a tag as posts to be included in all 34550:* a tags.

Displaying
Community clients SHOULD display posts that have been approved by at least 1 moderator or by the community
owner.
The following filter displays the approved posts.
[
"REQ",
"_",
{
"authors": ["<owner-pubkey>", "<moderator1-pubkey>", "<moderator2-pubkey>", "<moderator3-pubkey>", ...],

69

09.md
18.md


"kinds": [4550],
"#a": ["34550:<Community event author pubkey>:<d-identifier of the community>"],

}
]

Clients MAY hide approvals by blocked moderators at the user’s request.

70



NIP-13

Proof of Work
draft optional

This NIP defines a way to generate and interpret Proof of Work for nostr notes. Proof of Work (PoW) is a way to add
a proof of computational work to a note. This is a bearer proof that all relays and clients can universally validate
with a small amount of code. This proof can be used as a means of spam deterrence.
difficulty is defined to be the number of leading zero bits in the NIP-01 id. For example, an id of 000000000e9d97a1ab09fc381030b346cdd7a142ad57e6df0b46dc9bef6c7e2d
has a difficulty of 36 with 36 leading 0 bits.
002f... is 0000 0000 0010 1111... in binary, which has 10 leading zeroes. Do not forget to count leading zeroes
for hex digits <= 7.

Mining
To generate PoW for a NIP-01 note, a nonce tag is used:
{"content": "It's just me mining my own business", "tags": [["nonce", "1", "21"]]}

When mining, the second entry to the nonce tag is updated, and then the id is recalculated (see NIP-01). If the id
has the desired number of leading zero bits, the note has been mined. It is recommended to update the created_at
as well during this process.
The third entry to the nonce tag SHOULD contain the target difficulty. This allows clients to protect against situations
where bulk spammers targeting a lower difficulty get lucky and match a higher difficulty. For example, if you
require 40 bits to reply to your thread and see a committed target of 30, you can safely reject it even if the note has
40 bits difficulty. Without a committed target difficulty you could not reject it. Committing to a target difficulty
is something all honest miners should be ok with, and clients MAY reject a note matching a target difficulty if it is
missing a difficulty commitment.

Example mined note
{
"id": "000006d8c378af1779d2feebc7603a125d99eca0ccf1085959b307f64e5dd358",
"pubkey": "a48380f4cfcc1ad5378294fcac36439770f9c878dd880ffa94bb74ea54a6f243",
"created_at": 1651794653,
"kind": 1,
"tags": [
["nonce", "776797", "20"]

],
"content": "It's just me mining my own business",
"sig":

"284622fc0a3f4f1303455d5175f7ba962a3300d136085b9566801bc2e0699de0c7e31e44c81fb40ad9049173742e904713c3594a1da0fc5d2382a25c11aba977"
}

71

./01.md


Validating
Here is some reference C code for calculating the difficulty (aka number of leading zero bits) in a nostr event id:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int countLeadingZeroes(const char *hex) {
int count = 0;

for (int i = 0; i < strlen(hex); i++) {
int nibble = (int)strtol((char[]){hex[i], '\0'}, NULL, 16);
if (nibble == 0) {

count += 4;
} else {

count += __builtin_clz(nibble) - 28;
break;

}
}

return count;
}

int main(int argc, char *argv[]) {
if (argc != 2) {

fprintf(stderr, "Usage: %s <hex_string>\n", argv[0]);
return 1;

}

const char *hex_string = argv[1];
int result = countLeadingZeroes(hex_string);
printf("Leading zeroes in hex string %s: %d\n", hex_string, result);

return 0;
}

Here is some JavaScript code for doing the same thing:
// hex should be a hexadecimal string (with no 0x prefix)
function countLeadingZeroes(hex) {
let count = 0;

for (let i = 0; i < hex.length; i++) {
const nibble = parseInt(hex[i], 16);
if (nibble === 0) {
count += 4;

} else {
count += Math.clz32(nibble) - 28;
break;

}
}

return count;
}

72



Querying relays for PoW notes
If relays allow searching on prefixes, you can use this as a way to filter notes of a certain difficulty:
$ echo '["REQ", "subid", {"ids": ["000000000"]}]' | websocat wss://some-relay.com | jq -c '.[2]'
{"id":"000000000121637feeb68a06c8fa7abd25774bdedfa9b6ef648386fb3b70c387", ...}

Delegated Proof of Work
Since the NIP-01 note id does not commit to any signature, PoW can be outsourced to PoW providers, perhaps for
a fee. This provides a way for clients to get their messages out to PoW-restricted relays without having to do any
work themselves, which is useful for energy-constrained devices like mobile phones.

73



Relays

74



NIP-11

Relay Information Document
draft optional

Relays may provide server metadata to clients to inform them of capabilities, administrative contacts, and various
server attributes. This is made available as a JSON document over HTTP, on the same URI as the relay’s websocket.
When a relay receives an HTTP(s) request with an Accept header of application/nostr+json to a URI supporting
WebSocket upgrades, they SHOULD return a document with the following structure.
{
"name": <string identifying relay>,
"description": <string with detailed information>,
"pubkey": <administrative contact pubkey>,
"contact": <administrative alternate contact>,
"supported_nips": <a list of NIP numbers supported by the relay>,
"software": <string identifying relay software URL>,
"version": <string version identifier>

}

Any field may be omitted, and clients MUST ignore any additional fields they do not understand. Relays
MUST accept CORS requests by sending Access-Control-Allow-Origin, Access-Control-Allow-Headers, and
Access-Control-Allow-Methods headers.

Field Descriptions

Name
A relay may select a name for use in client software. This is a string, and SHOULD be less than 30 characters to avoid
client truncation.

Description
Detailed plain-text information about the relay may be contained in the description string. It is recommended that
this contain no markup, formatting or line breaks for word wrapping, and simply use double newline characters to
separate paragraphs. There are no limitations on length.

Pubkey
An administrative contact may be listed with a pubkey, in the same format as Nostr events (32-byte hex for a
secp256k1 public key). If a contact is listed, this provides clients with a recommended address to send encrypted
direct messages (See NIP-17) to a system administrator. Expected uses of this address are to report abuse or illegal
content, file bug reports, or request other technical assistance.
Relay operators have no obligation to respond to direct messages.

75

17.md


Contact
An alternative contact may be listed under the contact field as well, with the same purpose as pubkey. Use of a
Nostr public key and direct message SHOULD be preferred over this. Contents of this field SHOULD be a URI,
using schemes such as mailto or https to provide users with a means of contact.

Supported NIPs
As the Nostr protocol evolves, some functionality may only be available by relays that implement a specific NIP.
This field is an array of the integer identifiers of NIPs that are implemented in the relay. Examples would include 1,
for "NIP-01" and 9, for "NIP-09". Client-side NIPs SHOULD NOT be advertised, and can be ignored by clients.

Software
The relay server implementation MAY be provided in the software attribute. If present, this MUST be a URL to the
project’s homepage.

Version
The relay MAY choose to publish its software version as a string attribute. The string format is defined by the relay
implementation. It is recommended this be a version number or commit identifier.

Extra Fields

Server Limitations
These are limitations imposed by the relay on clients. Your client should expect that requests which exceed these
practical limitations are rejected or fail immediately.
{
"limitation": {
"max_message_length": 16384,
"max_subscriptions": 20,
"max_filters": 100,
"max_limit": 5000,
"max_subid_length": 100,
"max_event_tags": 100,
"max_content_length": 8196,
"min_pow_difficulty": 30,
"auth_required": true,
"payment_required": true,
"restricted_writes": true,
"created_at_lower_limit": 31536000,
"created_at_upper_limit": 3

},
...

}

76



• max_message_length: this is the maximum number of bytes for incoming JSON that the relay will attempt to
decode and act upon. When you send large subscriptions, you will be limited by this value. It also effectively
limits the maximum size of any event. Value is calculated from [ to ] and is after UTF-8 serialization (so some
unicode characters will cost 2-3 bytes). It is equal to the maximum size of the WebSocket message frame.

• max_subscriptions: total number of subscriptions that may be active on a single websocket connection to this
relay. It’s possible that authenticated clients with a (paid) relationship to the relay may have higher limits.

• max_filters: maximum number of filter values in each subscription. Must be one or higher.
• max_subid_length: maximum length of subscription id as a string.
• max_limit: the relay server will clamp each filter’s limit value to this number. This means the client won’t be
able to get more than this number of events from a single subscription filter. This clamping is typically done
silently by the relay, but with this number, you can know that there are additional results if you narrowed your
filter’s time range or other parameters.

• max_event_tags: in any event, this is the maximum number of elements in the tags list.
• max_content_length: maximum number of characters in the content field of any event. This is a count
of unicode characters. After serializing into JSON it may be larger (in bytes), and is still subject to the
max_message_length, if defined.

• min_pow_difficulty: new events will require at least this difficulty of PoW, based on NIP-13, or they will be
rejected by this server.

• auth_required: this relay requires NIP-42 authentication to happen before a new connection may perform
any other action. Even if set to False, authentication may be required for specific actions.

• payment_required: this relay requires payment before a new connection may perform any action.
• restricted_writes: this relay requires some kind of condition to be fulfilled in order to accept events (not
necessarily, but including payment_required and min_pow_difficulty). This should only be set to truewhen
users are expected to know the relay policy before trying to write to it – like belonging to a special pubkey-
based whitelist or writing only events of a specific niche kind or content. Normal anti-spam heuristics, for
example, do not qualify.

• created_at_lower_limit: ‘created_at’ lower limit
• created_at_upper_limit: ‘created_at’ upper limit

Event Retention
There may be a cost associated with storing data forever, so relays may wish to state retention times. The values
stated here are defaults for unauthenticated users and visitors. Paid users would likely have other policies.
Retention times are given in seconds, with null indicating infinity. If zero is provided, this means the event will not
be stored at all, and preferably an error will be provided when those are received.
{
"retention": [
{"kinds": [0, 1, [5, 7], [40, 49]], "time": 3600},
{"kinds": [[40000, 49999]], "time": 100},
{"kinds": [[30000, 39999]], "count": 1000},
{"time": 3600, "count": 10000}

]
}

retention is a list of specifications: each will apply to either all kinds, or a subset of kinds. Ranges may be specified
for the kind field as a tuple of inclusive start and end values. Events of indicated kind (or all) are then limited to a
count and/or time period.

77

13.md
42.md


It is possible to effectively blacklist Nostr-based protocols that rely on a specific kind number, by giving a retention
time of zero for those kind values. While that is unfortunate, it does allow clients to discover servers thatwill support
their protocol quickly via a single HTTP fetch.
There is no need to specify retention times for ephemeral events since they are not retained.

Content Limitations
Some relays may be governed by the arbitrary laws of a nation state. This may limit what content can be stored in
cleartext on those relays. All clients are encouraged to use encryption to work around this limitation.
It is not possible to describe the limitations of each country’s laws and policies which themselves are typically vague
and constantly shifting.
Therefore, this field allows the relay operator to indicate which countries’ laws might end up being enforced on
them, and then indirectly on their users’ content.
Users should be able to avoid relays in countries they don’t like, and/or select relays in more favourable zones.
Exposing this flexibility is up to the client software.
{
"relay_countries": [ "CA", "US" ],
...

}

• relay_countries: a list of two-level ISO country codes (ISO 3166-1 alpha-2) whose laws and policies may
affect this relay. EUmay be used for European Union countries.

Remember that a relay may be hosted in a country which is not the country of the legal entities who own the relay,
so it’s very likely a number of countries are involved.

Community Preferences
For public text notes at least, a relay may try to foster a local community. This would encourage users to follow
the global feed on that relay, in addition to their usual individual follows. To support this goal, relays MAY specify
some of the following values.
{
"language_tags": ["en", "en-419"],
"tags": ["sfw-only", "bitcoin-only", "anime"],
"posting_policy": "https://example.com/posting-policy.html",
...

}

• language_tags is an ordered list of IETF language tags indicating the major languages spoken on the relay.
• tags is a list of limitations on the topics to be discussed. For example sfw-only indicates that only “Safe For
Work” content is encouraged on this relay. This relies on assumptions of what the “work” “community” feels
“safe” talking about. In time, a common set of tags may emerge that allow users to find relays that suit their
needs, and client software will be able to parse these tags easily. The bitcoin-only tag indicates that any
altcoin, “crypto” or blockchain comments will be ridiculed without mercy.

• posting_policy is a link to a human-readable page which specifies the community policies for the relay. In
cases where sfw-only is True, it’s important to link to a page which gets into the specifics of your posting
policy.

78

https://en.wikipedia.org/wiki/IETF_language_tag


The description field should be used to describe your community goals and values, in brief. The posting_policy
is for additional detail and legal terms. Use the tags field to signify limitations on content, or topics to be discussed,
which could be machine processed by appropriate client software.

Pay-to-Relay
Relays that require payments may want to expose their fee schedules.
{
"payments_url": "https://my-relay/payments",
"fees": {
"admission": [{ "amount": 1000000, "unit": "msats" }],
"subscription": [{ "amount": 5000000, "unit": "msats", "period": 2592000 }],
"publication": [{ "kinds": [4], "amount": 100, "unit": "msats" }],

},
...

}

Icon
A URL pointing to an image to be used as an icon for the relay. Recommended to be squared in shape.
{
"icon": "https://nostr.build/i/53866b44135a27d624e99c6165cabd76ac8f72797209700acb189fce75021f47.jpg",
...

}

Examples
As of 2 May 2023 the following command provided these results:
~> curl -H "Accept: application/nostr+json" https://eden.nostr.land | jq

{
"description": "nostr.land family of relays (us-or-01)",
"name": "nostr.land",
"pubkey": "52b4a076bcbbbdc3a1aefa3735816cf74993b1b8db202b01c883c58be7fad8bd",
"software": "custom",
"supported_nips": [
1,
2,
4,
9,
11,
12,
16,
20,
22,
28,
33,
40

],
"version": "1.0.1",
"limitation": {

79



"payment_required": true,
"max_message_length": 65535,
"max_event_tags": 2000,
"max_subscriptions": 20,
"auth_required": false

},
"payments_url": "https://eden.nostr.land",
"fees": {
"subscription": [
{
"amount": 2500000,
"unit": "msats",
"period": 2592000

}
]

},
}

\pagebreak

NIP-42
======

Authentication of clients to relays
-----------------------------------

d̀raft̀ òptional̀

This NIP defines a way for clients to authenticate to relays by signing an ephemeral event.

## Motivation

A relay may want to require clients to authenticate to access restricted resources. For example,

- A relay may request payment or other forms of whitelisting to publish events -- this can naïvely be achieved by
limiting publication to events signed by the whitelisted key, but with this NIP they may choose to accept any
events as long as they are published from an authenticated user;

- A relay may limit access to k̀ind: 4̀ DMs to only the parties involved in the chat exchange, and for that it may
require authentication before clients can query for that kind.

- A relay may limit subscriptions of any kind to paying users or users whitelisted through any other means, and
require authentication.

## Definitions

### New client-relay protocol messages

This NIP defines a new message, ÀUTH̀ , which relays CAN send when they support authentication and clients can send
to relays when they want to authenticate. When sent by relays the message has the following form:

`` j̀son
["AUTH", <challenge-string>]

And, when sent by clients, the following form:
["AUTH", <signed-event-json>]

AUTHmessages sent by clients MUST be answered with an OKmessage, like any EVENTmessage.

80



Canonical authentication event
The signed event is an ephemeral event not meant to be published or queried, it must be of kind: 22242 and it
should have at least two tags, one for the relay URL and one for the challenge string as received from the relay.
Relays MUST exclude kind: 22242 events from being broadcasted to any client. created_at should be the current
time. Example:
{
"kind": 22242,
"tags": [
["relay", "wss://relay.example.com/"],
["challenge", "challengestringhere"]

],
...

}

OK and CLOSEDmachine-readable prefixes
This NIP defines two new prefixes that can be used in OK (in response to event writes by clients) and CLOSED (in
response to rejected subscriptions by clients):

• "auth-required: " - for when a client has not performed AUTH and the relay requires that to fulfill the query
or write the event.

• "restricted: " - for when a client has already performed AUTH but the key used to perform it is still not
allowed by the relay or is exceeding its authorization.

Protocol flow
At any moment the relay may send an AUTHmessage to the client containing a challenge. The challenge is valid for
the duration of the connection or until another challenge is sent by the relay. The client MAY decide to send its AUTH
event at any point and the authenticated session is valid afterwards for the duration of the connection.

auth-required in response to a REQmessage
Given that a relay is likely to require clients to perform authentication only for certain jobs, like answering a REQ or
accepting an EVENT write, these are some expected common flows:
relay: ["AUTH", "<challenge>"]
client: ["REQ", "sub_1", {"kinds": [4]}]
relay: ["CLOSED", "sub_1", "auth-required: we can't serve DMs to unauthenticated users"]
client: ["AUTH", {"id": "abcdef...", ...}]
relay: ["OK", "abcdef...", true, ""]
client: ["REQ", "sub_1", {"kinds": [4]}]
relay: ["EVENT", "sub_1", {...}]
relay: ["EVENT", "sub_1", {...}]
relay: ["EVENT", "sub_1", {...}]
relay: ["EVENT", "sub_1", {...}]
...

81



In this case, the AUTHmessage from the relay could be sent right as the client connects or it can be sent immediately
before the CLOSED is sent. The only requirement is that the client must have a stored challenge associated with that relay
so it can act upon that in response to the auth-required CLOSEDmessage.

auth-required in response to an EVENTmessage
The same flow is valid for when a client wants to write an EVENT to the relay, except now the relay sends back an OK
message instead of a CLOSEDmessage:
relay: ["AUTH", "<challenge>"]
client: ["EVENT", {"id": "012345...", ...}]
relay: ["OK", "012345...", false, "auth-required: we only accept events from registered users"]
client: ["AUTH", {"id": "abcdef...", ...}]
relay: ["OK", "abcdef...", true, ""]
client: ["EVENT", {"id": "012345...", ...}]
relay: ["OK", "012345...", true, ""]

Signed Event Verification
To verify AUTHmessages, relays must ensure:

• that the kind is 22242;
• that the event created_at is close (e.g. within ~10 minutes) of the current time;
• that the "challenge" tag matches the challenge sent before;
• that the "relay" tag matches the relay URL:

– URL normalization techniques can be applied. For most cases just checking if the domain name is correct
should be enough.

82



NIP-50

Search Capability
draft optional

Abstract
Many Nostr use cases require some form of general search feature, in addition to structured queries by tags or
ids. Specifics of the search algorithms will differ between event kinds, this NIP only describes a general extensible
framework for performing such queries.

search filter field
A new search field is introduced for REQmessages from clients:
{
...
"search": <string>

}

searchfield is a string describing a query in a human-readable form, i.e. “best nostr apps”. Relays SHOULD interpret
the query to the best of their ability and return events that match it. Relays SHOULD perform matching against
content event field, and MAY perform matching against other fields if that makes sense in the context of a specific
kind.
Results SHOULD be returned in descending order by quality of search result (as defined by the implementation), not
by the usual .created_at. The limit filter SHOULD be applied after sorting bymatching score. A query stringmay
contain key:value pairs (two words separated by colon), these are extensions, relays SHOULD ignore extensions
they don’t support.
Clients may specify several search filters, i.e. ["REQ", "", { "search": "orange" }, { "kinds": [1, 2],
"search": "purple" }]. Clients may include kinds, ids and other filter field to restrict the search results to
particular event kinds.
Clients SHOULD use the supported_nips field to learn if a relay supports search filter. Clients MAY send search
filter queries to any relay, if they are prepared to filter out extraneous responses from relays that do not support this
NIP.
Clients SHOULD query several relays supporting this NIP to compensate for potentially different implementation
details between relays.
Clients MAY verify that events returned by a relay match the specified query in a way that suits the client’s use case,
and MAY stop querying relays that have low precision.
Relays SHOULD exclude spam from search results by default if they support some form of spam filtering.

Extensions
Relay MAY support these extensions: - include:spam - turn off spam filtering, if it was enabled by default -
domain:<domain> - include only events from users whose valid nip05 domainmatches the domain - language:<two
letter ISO 639-1 language code> - include only events of a specified language - sentiment:<negative/neutral/positive>
- include only events of a specific sentiment - nsfw:<true/false> - include or exclude nsfw events (default: true)

83



NIP-45

Event Counts
draft optional

Relays may support the verb COUNT, which provides a mechanism for obtaining event counts.

Motivation
Some queries a clientmaywant to execute against connected relays are prohibitively expensive, for example, in order
to retrieve follower counts for a given pubkey, a client must query all kind-3 events referring to a given pubkey only
to count them. The result may be cached, either by a client or by a separate indexing server as an alternative, but
both options erode the decentralization of the network by creating a second-layer protocol on top of Nostr.

Filters and return values
This NIP defines the verb COUNT, which accepts a subscription id and filters as specified in NIP 01 for the verb REQ.
Multiple filters are OR’d together and aggregated into a single count result.
["COUNT", <subscription_id>, <filters JSON>...]

Counts are returned using a COUNT response in the form {"count": <integer>}. Relaysmay use probabilistic counts
to reduce compute requirements. In case a relay uses probabilistic counts, it MAY indicate it in the response with
approximate key i.e. {"count": <integer>, "approximate": <true|false>}.
["COUNT", <subscription_id>, {"count": <integer>}]

Whenever the relay decides to refuse to fulfill the COUNT request, it MUST return a CLOSEDmessage.

Examples

Followers count
["COUNT", <subscription_id>, {"kinds": [3], "#p": [<pubkey>]}]
["COUNT", <subscription_id>, {"count": 238}]

Count posts and reactions
["COUNT", <subscription_id>, {"kinds": [1, 7], "authors": [<pubkey>]}]
["COUNT", <subscription_id>, {"count": 5}]

84

01.md


Count posts approximately
["COUNT", <subscription_id>, {"kinds": [1]}]
["COUNT", <subscription_id>, {"count": 93412452, "approximate": true}]

Relay refuses to count
["COUNT", <subscription_id>, {"kinds": [4], "authors": [<pubkey>], "#p": [<pubkey>]}]
["CLOSED", <subscription_id>, "auth-required: cannot count other people's DMs"]

85



NIP-65

Relay List Metadata
draft optional

Defines a replaceable event using kind:10002 to advertise preferred relays for discovering a user’s content and
receiving fresh content from others.
The event MUST include a list of r tags with relay URIs and a read or writemarker. Relays marked as read / write
are called READ / WRITE relays, respectively. If the marker is omitted, the relay is used for both purposes.
The .content is not used.
{
"kind": 10002,
"tags": [
["r", "wss://alicerelay.example.com"],
["r", "wss://brando-relay.com"],
["r", "wss://expensive-relay.example2.com", "write"],
["r", "wss://nostr-relay.example.com", "read"]

],
"content": "",
...other fields

}

This NIP doesn’t fully replace relay lists that are designed to configure a client’s usage of relays (such as kind:3 style
relay lists). Clients MAY use other relay lists in situations where a kind:10002 relay list cannot be found.

When to Use Read and Write Relays
When seeking events from a user, Clients SHOULD use the WRITE relays of the user’s kind:10002.
When seeking events about a user, where the user was tagged, Clients SHOULD use the READ relays of the user’s
kind:10002.
When broadcasting an event, Clients SHOULD:

• Broadcast the event to the WRITE relays of the author
• Broadcast the event to all READ relays of each tagged user

Motivation
The old model of using a fixed relay list per user centralizes in large relay operators:

• Most users submit their posts to the same highly popular relays, aiming to achieve greater visibility among a
broader audience

• Many users are pulling events from a large number of relays in order to get more data at the expense of dupli-
cation

• Events are being copied between relays, oftentimes to many different relays

86



This NIP allows Clients to connect directly with the most up-to-date relay set from each individual user, eliminating
the need of broadcasting events to popular relays.

Final Considerations

1. Clients SHOULD guide users to keep kind:10002 lists small (2-4 relays).
2. Clients SHOULD spread an author’s kind:10002 event to as many relays as viable.
3. kind:10002 events should primarily be used to advertise the user’s preferred relays to others. A user’s own

client may use other heuristics for selecting relays for fetching data.
4. DMs SHOULD only be broadcasted to the author’s WRITE relays and to the receiver’s READ relays to keep

maximum privacy.
5. If a relay signals support for this NIP in their NIP-11 document that means they’re willing to accept kind 10002

events from a broad range of users, not only their paying customers or whitelisted group.
6. Clients SHOULD deduplicate connections by normalizing relay URIs according to RFC 3986.

87

11.md
https://datatracker.ietf.org/doc/html/rfc3986#section-6


NIP-48

Proxy Tags
draft optional

Nostr events bridged from other protocols such as ActivityPub can link back to the source object by including a
"proxy" tag, in the form:
["proxy", <id>, <protocol>]

Where:

• <id> is the ID of the source object. The ID format varies depending on the protocol. The IDmust be universally
unique, regardless of the protocol.

• <protocol> is the name of the protocol, e.g. "activitypub".
Clients may use this information to reconcile duplicated content bridged from other protocols, or to display a link
to the source object.
Proxy tags may be added to any event kind, and doing so indicates that the event did not originate on the Nostr
protocol, and instead originated elsewhere on the web.

Supported protocols
This list may be extended in the future.

Protocol ID format Example
activitypub URL https://gleasonator.com/objects/9f524868-c1a0-4ee7-ad51-aaa23d68b526
atproto AT URI at://did:plc:zhbjlbmir5dganqhueg7y4i3/app.bsky.feed.post/3jt5hlibeol2i
rss URL with guid fragment https://soapbox.pub/rss/feed.xml#https%3A%2F%2Fsoapbox.pub%2Fblog%2Fmostr-fediverse-nostr-bridge
web URL https://twitter.com/jack/status/20

Examples
ActivityPub object:
{
"kind": 1,
"content": "I'm vegan btw",
"tags": [
[
"proxy",
"https://gleasonator.com/objects/8f6fac53-4f66-4c6e-ac7d-92e5e78c3e79",
"activitypub"

]
],

88



"pubkey": "79c2cae114ea28a981e7559b4fe7854a473521a8d22a66bbab9fa248eb820ff6",
"created_at": 1691091365,
"id": "55920b758b9c7b17854b6e3d44e6a02a83d1cb49e1227e75a30426dea94d4cb2",
"sig":

"a72f12c08f18e85d98fb92ae89e2fe63e48b8864c5e10fbdd5335f3c9f936397a6b0a7350efe251f8168b1601d7012d4a6d0ee6eec958067cf22a14f5a5ea579"
}

See also

• FEP-fffd: Proxy Objects
• Mostr bridge

89

https://codeberg.org/fediverse/fep/src/branch/main/fep/fffd/fep-fffd.md
https://mostr.pub/


Clients

90



NIP-21

nostr: URI scheme
draft optional

This NIP standardizes the usage of a common URI scheme for maximum interoperability and openness in the net-
work.
The scheme is nostr:.
The identifiers that come after are expected to be the same as those defined in NIP-19 (except nsec).

Examples

• nostr:npub1sn0wdenkukak0d9dfczzeacvhkrgz92ak56egt7vdgzn8pv2wfqqhrjdv9
• nostr:nprofile1qqsrhuxx8l9ex335q7he0f09aej04zpazpl0ne2cgukyawd24mayt8gpp4mhxue69uhhytnc9e3k7mgpz4mhxue69uhkg6nzv9ejuumpv34kytnrdaksjlyr9p
• nostr:note1fntxtkcy9pjwucqwa9mddn7v03wwwsu9j330jj350nvhpky2tuaspk6nqc
• nostr:nevent1qqstna2yrezu5wghjvswqqculvvwxsrcvu7uc0f78gan4xqhvz49d9spr3mhxue69uhkummnw3ez6un9d3shjtn4de6x2argwghx6egpr4mhxue69uhkummnw3ez6ur4vgh8wetvd3hhyer9wghxuet5nxnepm

91

19.md


NIP-19

bech32-encoded entities
draft optional

This NIP standardizes bech32-formatted strings that can be used to display keys, ids and other information in clients.
These formats are not meant to be used anywhere in the core protocol, they are only meant for displaying to users,
copy-pasting, sharing, rendering QR codes and inputting data.
It is recommended that ids and keys are stored in either hex or binary format, since these formats are closer to what
must actually be used the core protocol.

Bare keys and ids
To prevent confusion and mixing between private keys, public keys and event ids, which are all 32 byte strings.
bech32-(not-m) encoding with different prefixes can be used for each of these entities.
These are the possible bech32 prefixes:

• npub: public keys
• nsec: private keys
• note: note ids

Example: the hex public key 3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d translates
to npub180cvv07tjdrrgpa0j7j7tmnyl2yr6yr7l8j4s3evf6u64th6gkwsyjh6w6.
The bech32 encodings of keys and ids are not meant to be used inside the standard NIP-01 event formats or inside
the filters, they’re meant for human-friendlier display and input only. Clients should still accept keys in both hex
and npub format for now, and convert internally.

Shareable identifiers with extra metadata
When sharing a profile or an event, an app may decide to include relay information and other metadata such that
other apps can locate and display these entities more easily.
For these events, the contents are a binary-encoded list of TLV (type-length-value), with T and L being 1 byte each
(uint8, i.e. a number in the range of 0-255), and V being a sequence of bytes of the size indicated by L.
These are the possible bech32 prefixes with TLV:

• nprofile: a nostr profile
• nevent: a nostr event
• naddr: a nostr replaceable event coordinate
• nrelay: a nostr relay (deprecated)

These possible standardized TLV types are indicated here:

• 0: special

92



– depends on the bech32 prefix:

* for nprofile it will be the 32 bytes of the profile public key
* for nevent it will be the 32 bytes of the event id
* for naddr, it is the identifier (the "d" tag) of the event being referenced. For non-parameterized re-
placeable events, use an empty string.

• 1: relay

– for nprofile, nevent and naddr, optionally, a relay in which the entity (profile or event) is more likely to
be found, encoded as ascii

– this may be included multiple times
• 2: author

– for naddr, the 32 bytes of the pubkey of the event
– for nevent, optionally, the 32 bytes of the pubkey of the event

• 3: kind

– for naddr, the 32-bit unsigned integer of the kind, big-endian
– for nevent, optionally, the 32-bit unsigned integer of the kind, big-endian

Examples

• npub10elfcs4fr0l0r8af98jlmgdh9c8tcxjvz9qkw038js35mp4dma8qzvjptg should decode into the public key
hex 7e7e9c42a91bfef19fa929e5fda1b72e0ebc1a4c1141673e2794234d86addf4e and vice-versa

• nsec1vl029mgpspedva04g90vltkh6fvh240zqtv9k0t9af8935ke9laqsnlfe5 should decode into the private key
hex 67dea2ed018072d675f5415ecfaed7d2597555e202d85b3d65ea4e58d2d92ffa and vice-versa

• nprofile1qqsrhuxx8l9ex335q7he0f09aej04zpazpl0ne2cgukyawd24mayt8gpp4mhxue69uhhytnc9e3k7mgpz4mhxue69uhkg6nzv9ejuumpv34kytnrdaksjlyr9p
should decode into a profile with the following TLV items:

– pubkey: 3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d
– relay: wss://r.x.com
– relay: wss://djbas.sadkb.com

Notes

• npub keysMUSTNOT be used inNIP-01 events or in NIP-05 JSON responses, only the hex format is supported
there.

• Whendecoding a bech32-formatted string, TLVs that are not recognized or supported should be ignored, rather
than causing an error.

93



NIP-03

OpenTimestamps Attestations for Events
draft optional

This NIP defines an event with kind:1040 that can contain an OpenTimestamps proof for any other event:
{
"kind": 1040
"tags": [
["e", <event-id>, <relay-url>],
["alt", "opentimestamps attestation"]

],
"content": <base64-encoded OTS file data>

}

• The OpenTimestamps proof MUST prove the referenced e event id as its digest.
• The content MUST be the full content of an .ots file containing at least one Bitcoin attestation. This file
SHOULD contain a single Bitcoin attestation (as not more than one valid attestation is necessary and less
bytes is better than more) and no reference to “pending” attestations since they are useless in this context.

Example OpenTimestamps proof verification flow
Using nak, jq and ots:
~> nak req -i e71c6ea722987debdb60f81f9ea4f604b5ac0664120dd64fb9d23abc4ec7c323 wss://nostr-pub.wellorder.net | jq -r

.content | ots verify
> using an esplora server at https://blockstream.info/api
- sequence ending on block 810391 is valid
timestamp validated at block [810391]

94

https://opentimestamps.org/
https://github.com/fiatjaf/nak
https://jqlang.github.io/jq/
https://github.com/fiatjaf/ots


Payments

95



NIP-57

Lightning Zaps
draft optional

This NIP defines two new event types for recording lightning payments between users. 9734 is a zap request,
representing a payer’s request to a recipient’s lightning wallet for an invoice. 9735 is a zap receipt, representing
the confirmation by the recipient’s lightning wallet that the invoice issued in response to a zap request has been
paid.
Having lightning receipts on nostr allows clients to display lightning payments from entities on the network. These
can be used for fun or for spam deterrence.

Protocol flow

1. Client calculates a recipient’s lnurl pay request url from the zap tag on the event being zapped (see Appendix
G), or by decoding their lud06 or lud16 field on their profile according to the lnurl specifications. The client
MUST send a GET request to this url and parse the response. If allowsNostr exists and it is true, and if
nostrPubkey exists and is a valid BIP 340 public key in hex, the client should associate this information with
the user, along with the response’s callback, minSendable, and maxSendable values.

2. Clients may choose to display a lightning zap button on each post or on a user’s profile. If the user’s lnurl
pay request endpoint supports nostr, the client SHOULD use this NIP to request a zap receipt rather than a
normal lnurl invoice.

3. When a user (the “sender”) indicates theywant to send a zap to another user (the “recipient”), the client should
create a zap request event as described in Appendix A of this NIP and sign it.

4. Instead of publishing the zap request, the 9734 event should instead be sent to the callback url received from
the lnurl pay endpoint for the recipient using a GET request. See Appendix B for details and an example.

5. The recipient’s lnurl server will receive this zap request and validate it. See Appendix C for details on how to
properly configure an lnurl server to support zaps, and Appendix D for details on how to validate the nostr
query parameter.

6. If the zap request is valid, the server should fetch a description hash invoice where the description is this
zap request note and this note only. No additional lnurl metadata is included in the description. This will be
returned in the response according to LUD06.

7. On receiving the invoice, the client MAY pay it or pass it to an app that can pay the invoice.
8. Once the invoice is paid, the recipient’s lnurl server MUST generate a zap receipt as described in Appendix

E, and publish it to the relays specified in the zap request.
9. Clients MAY fetch zap receipts on posts and profiles, but MUST authorize their validity as described in

Appendix F. If the zap request note contains a non-empty content, it may display a zap comment. Generally
clients should show users the zap request note, and use the zap receipt to show “zap authorized by…” but
this is optional.

Reference and examples

Appendix A: Zap Request Event
A zap request is an event of kind 9734 that is not published to relays, but is instead sent to a recipient’s lnurl pay
callback url. This event’s contentMAY be an optional message to send along with the payment. The event MUST
include the following tags:

• relays is a list of relays the recipient’s wallet should publish its zap receipt to. Note that relays should not
be nested in an additional list, but should be included as shown in the example below.

96

https://github.com/lnurl/luds
https://github.com/lnurl/luds/blob/luds/06.md


• amount is the amount in millisats the sender intends to pay, formatted as a string. This is recommended, but
optional.

• lnurl is the lnurl pay url of the recipient, encoded using bech32 with the prefix lnurl. This is recommended,
but optional.

• p is the hex-encoded pubkey of the recipient.
In addition, the event MAY include the following tags:

• e is an optional hex-encoded event id. Clients MUST include this if zapping an event rather than a person.
• a is an optional event coordinate that allows tipping parameterized replaceable events such as NIP-23 long-
form notes.

Example:
{
"kind": 9734,
"content": "Zap!",
"tags": [
["relays", "wss://nostr-pub.wellorder.com", "wss://anotherrelay.example.com"],
["amount", "21000"],
["lnurl", "lnurl1dp68gurn8ghj7um5v93kketj9ehx2amn9uh8wetvdskkkmn0wahz7mrww4excup0dajx2mrv92x9xp"],
["p", "04c915daefee38317fa734444acee390a8269fe5810b2241e5e6dd343dfbecc9"],
["e", "9ae37aa68f48645127299e9453eb5d908a0cbb6058ff340d528ed4d37c8994fb"]

],
"pubkey": "97c70a44366a6535c145b333f973ea86dfdc2d7a99da618c40c64705ad98e322",
"created_at": 1679673265,
"id": "30efed56a035b2549fcaeec0bf2c1595f9a9b3bb4b1a38abaf8ee9041c4b7d93",
"sig":

"f2cb581a84ed10e4dc84937bd98e27acac71ab057255f6aa8dfa561808c981fe8870f4a03c1e3666784d82a9c802d3704e174371aa13d63e2aeaf24ff5374d9d"
}

Appendix B: Zap Request HTTP Request
A signed zap request event is not published, but is instead sent using a HTTP GET request to the recipient’s
callback url, which was provided by the recipient’s lnurl pay endpoint. This request should have the following
query parameters defined:

• amount is the amount in millisats the sender intends to pay
• nostr is the 9734 zap request event, JSON encoded then URI encoded
• lnurl is the lnurl pay url of the recipient, encoded using bech32 with the prefix lnurl

This request should return a JSON response with a pr key, which is the invoice the sender must pay to finalize his
zap. Here is an example flow in javascript:
const senderPubkey // The sender's pubkey
const recipientPubkey = // The recipient's pubkey
const callback = // The callback received from the recipients lnurl pay endpoint
const lnurl = // The recipient's lightning address, encoded as a lnurl
const sats = 21

const amount = sats * 1000
const relays = ['wss://nostr-pub.wellorder.net']
const event = encodeURI(JSON.stringify(await signEvent({
kind: 9734,
content: "",
pubkey: senderPubkey,

97



created_at: Math.round(Date.now() / 1000),
tags: [
["relays", ...relays],
["amount", amount.toString()],
["lnurl", lnurl],
["p", recipientPubkey],

],
})))

const {pr: invoice} = await fetchJson(̀ ${callback}?amount=${amount}&nostr=${event}&lnurl=${lnurl}̀ )

Appendix C: LNURL Server Configuration
The lnurl server will need some additional pieces of information so that clients can know that zap invoices are
supported:

1. Add a nostrPubkey to the lnurl-pay static endpoint /.well-known/lnurlp/<user>, where nostrPubkey is the
nostr pubkey your server will use to sign zap receipt events. Clients will use this to validate zap receipts.

2. Add an allowsNostr field and set it to true.

Appendix D: LNURL Server Zap Request Validation
When a client sends a zap request event to a server’s lnurl-pay callback URL, there will be a nostr query parameter
whose value is that event which is URI- and JSON-encoded. If present, the zap request event must be validated in
the following ways:

1. It MUST have a valid nostr signature
2. It MUST have tags
3. It MUST have only one p tag
4. It MUST have 0 or 1 e tags
5. There should be a relays tag with the relays to send the zap receipt to.
6. If there is an amount tag, it MUST be equal to the amount query parameter.
7. If there is an a tag, it MUST be a valid event coordinate
8. There MUST be 0 or 1 P tags. If there is one, it MUST be equal to the zap receipt’s pubkey.

The event MUST then be stored for use later, when the invoice is paid.

Appendix E: Zap Receipt Event
A zap receipt is created by a lightning node when an invoice generated by a zap request is paid. Zap receipts
are only created when the invoice description (committed to the description hash) contains a zap request note.
When receiving a payment, the following steps are executed:

1. Get the description for the invoice. This needs to be saved somewhere during the generation of the description
hash invoice. It is saved automatically for you with CLN, which is the reference implementation used here.

2. Parse the bolt11 description as a JSON nostr event. This SHOULD be validated based on the requirements in
Appendix D, either when it is received, or before the invoice is paid.

3. Create a nostr event of kind 9735 as described below, and publish it to the relays declared in the zap request.

98



The following should be true of the zap receipt event:

• The content SHOULD be empty.
• The created_at date SHOULD be set to the invoice paid_at date for idempotency.
• tags MUST include the p tag (zap recipient) AND optional e tag from the zap request AND optional a tag
from the zap request AND optional P tag from the pubkey of the zap request (zap sender).

• The zap receiptMUST have a bolt11 tag containing the description hash bolt11 invoice.
• The zap receiptMUST contain a description tag which is the JSON-encoded zap request.
• SHA256(description)MUST match the description hash in the bolt11 invoice.
• The zap receiptMAY contain a preimage tag to match against the payment hash of the bolt11 invoice. This
isn’t really a payment proof, there is no real way to prove that the invoice is real or has been paid. You are
trusting the author of the zap receipt for the legitimacy of the payment.

The zap receipt is not a proof of payment, all it proves is that some nostr user fetched an invoice. The existence of
the zap receipt implies the invoice as paid, but it could be a lie given a rogue implementation.
A reference implementation for a zap-enabled lnurl server can be found here.
Example zap receipt:
{

"id": "67b48a14fb66c60c8f9070bdeb37afdfcc3d08ad01989460448e4081eddda446",
"pubkey": "9630f464cca6a5147aa8a35f0bcdd3ce485324e732fd39e09233b1d848238f31",
"created_at": 1674164545,
"kind": 9735,
"tags": [
["p", "32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245"],
["P", "97c70a44366a6535c145b333f973ea86dfdc2d7a99da618c40c64705ad98e322"],
["e", "3624762a1274dd9636e0c552b53086d70bc88c165bc4dc0f9e836a1eaf86c3b8"],
["bolt11",

"lnbc10u1p3unwfusp5t9r3yymhpfqculx78u027lxspgxcr2n2987mx2j55nnfs95nxnzqpp5jmrh92pfld78spqs78v9euf2385t83uvpwk9ldrlvf6ch7tpascqhp5zvkrmemgth3tufcvflmzjzfvjt023nazlhljz2n9hattj4f8jq8qxqyjw5qcqpjrzjqtc4fc44feggv7065fqe5m4ytjarg3repr5j9el35xhmtfexc42yczarjuqqfzqqqqqqqqlgqqqqqqgq9q9qxpqysgq079nkq507a5tw7xgttmj4u990j7wfggtrasah5gd4ywfr2pjcn29383tphp4t48gquelz9z78p4cq7ml3nrrphw5w6eckhjwmhezhnqpy6gyf0"],
["description",

"{\"pubkey\":\"97c70a44366a6535c145b333f973ea86dfdc2d7a99da618c40c64705ad98e322\",\"content\":\"\",\"id\":\"d9cc14d50fcb8c27539aacf776882942c1a11ea4472f8cdec1dea82fab66279d\",\"created_at\":1674164539,\"sig\":\"77127f636577e9029276be060332ea565deaf89ff215a494ccff16ae3f757065e2bc59b2e8c113dd407917a010b3abd36c8d7ad84c0e3ab7dab3a0b0caa9835d\",\"kind\":9734,\"tags\":[[\"e\",\"3624762a1274dd9636e0c552b53086d70bc88c165bc4dc0f9e836a1eaf86c3b8\"],[\"p\",\"32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245\"],[\"relays\",\"wss://relay.damus.io\",\"wss://nostr-relay.wlvs.space\",\"wss://nostr.fmt.wiz.biz\",\"wss://relay.nostr.bg\",\"wss://nostr.oxtr.dev\",\"wss://nostr.v0l.io\",\"wss://brb.io\",\"wss://nostr.bitcoiner.social\",\"ws://monad.jb55.com:8080\",\"wss://relay.snort.social\"]]}"],
["preimage", "5d006d2cf1e73c7148e7519a4c68adc81642ce0e25a432b2434c99f97344c15f"]

],
"content": "",

}

Appendix F: Validating Zap Receipts
A client can retrieve zap receipts on events and pubkeys using a NIP-01 filter, for example {"kinds": [9735],
"#e": [...]}. Zaps MUST be validated using the following steps:

• The zap receipt event’s pubkeyMUST be the same as the recipient’s lnurl provider’s nostrPubkey (retrieved
in step 1 of the protocol flow).

• The invoiceAmount contained in the bolt11 tag of the zap receipt MUST equal the amount tag of the zap
request (if present).

• The lnurl tag of the zap request (if present) SHOULD equal the recipient’s lnurl.

Appendix G: zap tag on other events
When an event includes one or more zap tags, clients wishing to zap it SHOULD calculate the lnurl pay request
based on the tags value instead of the event author’s profile field. The tag’s second argument is the hex string
of the receiver’s pub key and the third argument is the relay to download the receiver’s metadata (Kind-0). An

99

https://github.com/jb55/cln-nostr-zapper


optional fourth parameter specifies the weight (a generalization of a percentage) assigned to the respective receiver.
Clients should parse all weights, calculate a sum, and then a percentage to each receiver. If weights are not present,
CLIENTS should equally divide the zap amount to all receivers. If weights are only partially present, receivers
without a weight should not be zapped (weight = 0).
{

"tags": [
[ "zap", "82341f882b6eabcd2ba7f1ef90aad961cf074af15b9ef44a09f9d2a8fbfbe6a2", "wss://nostr.oxtr.dev", "1" ],

// 25%
[ "zap", "fa984bd7dbb282f07e16e7ae87b26a2a7b9b90b7246a44771f0cf5ae58018f52", "wss://nostr.wine/", "1" ],

// 25%
[ "zap", "460c25e682fda7832b52d1f22d3d22b3176d972f60dcdc3212ed8c92ef85065c", "wss://nos.lol/", "2" ]

// 50%
]

}

Clients MAY display the zap split configuration in the note.

Future Work
Zaps can be extended to be more private by encrypting zap request notes to the target user, but for simplicity it
has been left out of this initial draft.

100



NIP-47

Nostr Wallet Connect
draft optional

Rationale
ThisNIP describes away for clients to access a remote Lightningwallet through a standardized protocol. Custodians
may implement this, or the user may run a bridge that bridges their wallet/node and the Nostr Wallet Connect
protocol.

Terms

• client: Nostr app on any platform that wants to pay Lightning invoices.
• user: The person using the client, and want’s to connect their wallet app to their client.
• wallet service: Nostr app that typically runs on an always-on computer (eg. in the cloud or on a Raspberry
Pi). This app has access to the APIs of the wallets it serves.

Theory of Operation

1. Users who wish to use this NIP to send lightning payments to other nostr users must first acquire a special
“connection” URI from their NIP-47 compliant wallet application. The wallet application may provide this
URI using a QR screen, or a pasteable string, or some other means.

2. The user should then copy this URI into their client(s) by pasting, or scanning the QR, etc. The client(s) should
save this URI and use it later whenever the user makes a payment. The client should then request an info
(13194) event from the relay(s) specified in the URI. Thewallet servicewill have sent that event to those relays
earlier, and the relays will hold it as a replaceable event.

3. When the user initiates a payment their nostr client create a pay_invoice request, encrypts it using a token
from the URI, and sends it (kind 23194) to the relay(s) specified in the connection URI. Thewallet servicewill
be listening on those relays and will decrypt the request and then contact the user’swallet application to send
the payment. The wallet service will know how to talk to the wallet application because the connection URI
specified relay(s) that have access to the wallet app API.

4. Once the payment is complete the wallet service will send an encrypted response (kind 23195) to the user
over the relay(s) in the URI.

Events
There are three event kinds: - NIP-47 info event: 13194 - NIP-47 request: 23194 - NIP-47 response: 23195
The info event should be a replaceable event that is published by the wallet service on the relay to indicate which
commands it supports. The content should be a plaintext string with the supported commands, space-separated, eg.
pay_invoice get_balance. Only the pay_invoice command is described in this NIP, but other commands might
be defined in different NIPs.

101



Both the request and response events SHOULD contain one p tag, containing the public key of the wallet service if
this is a request, and the public key of the user if this is a response. The response event SHOULD contain an e tag
with the id of the request event it is responding to. Optionally, a request can have an expiration tag that has a unix
timestamp in seconds. If the request is received after this timestamp, it should be ignored.
The content of requests and responses is encrypted with NIP04, and is a JSON-RPCish object with a semi-fixed
structure:
Request:
{

"method": "pay_invoice", // method, string
"params": { // params, object

"invoice": "lnbc50n1..." // command-related data
}

}

Response:
{

"result_type": "pay_invoice", //indicates the structure of the result field
"error": { //object, non-null in case of error

"code": "UNAUTHORIZED", //string error code, see below
"message": "human readable error message"

},
"result": { // result, object. null in case of error.

"preimage": "0123456789abcdef..." // command-related data
}

}

The result_type fieldMUST contain the name of themethod that this event is responding to. The error fieldMUST
contain a message field with a human readable error message and a code field with the error code if the command
was not successful. If the command was successful, the error field must be null.

Error codes

• RATE_LIMITED: The client is sending commands too fast. It should retry in a few seconds.
• NOT_IMPLEMENTED: The command is not known or is intentionally not implemented.
• INSUFFICIENT_BALANCE: The wallet does not have enough funds to cover a fee reserve or the payment amount.
• QUOTA_EXCEEDED: The wallet has exceeded its spending quota.
• RESTRICTED: This public key is not allowed to do this operation.
• UNAUTHORIZED: This public key has no wallet connected.
• INTERNAL: An internal error.
• OTHER: Other error.

Nostr Wallet Connect URI
client discovers wallet service by scanning a QR code, handling a deeplink or pasting in a URI.
The wallet service generates this connection URI with protocol nostr+walletconnect:// and base path it’s hex-
encoded pubkey with the following query string parameters:

• relay Required. URL of the relay where the wallet service is connected and will be listening for events. May
be more than one.

102

04.md


• secret Required. 32-byte randomly generated hex encoded string. The client MUST use this to sign events
and encrypt payloads when communicating with the wallet service.

– Authorization does not require passing keys back and forth.
– The user can have different keys for different applications. Keys can be revoked and created at will and
have arbitrary constraints (eg. budgets).

– The key is harder to leak since it is not shown to the user and backed up.
– It improves privacy because the user’s main key would not be linked to their payments.

• lud16 Recommended. A lightning address that clients can use to automatically setup the lud16 field on the
user’s profile if they have none configured.

The client should then store this connection and use it when the user wants to perform actions like paying an invoice.
Due to this NIP using ephemeral events, it is recommended to pick relays that do not close connections on inactivity
to not drop events.

Example connection string
nostr+walletconnect://b889ff5b1513b641e2a139f661a661364979c5beee91842f8f0ef42ab558e9d4?relay=wss%3A%2F%2Frelay.damus.io&secret=71a8c14c1407c113601079c4302dab36460f0ccd0ad506f1f2dc73b5100e4f3c

Commands

pay_invoice

Description: Requests payment of an invoice.
Request:
{

"method": "pay_invoice",
"params": {

"invoice": "lnbc50n1...", // bolt11 invoice
"amount": 123, // invoice amount in msats, optional

}
}

Response:
{

"result_type": "pay_invoice",
"result": {

"preimage": "0123456789abcdef..." // preimage of the payment
}

}

Errors: - PAYMENT_FAILED: The payment failed. This may be due to a timeout, exhausting all routes, insufficient
capacity or similar.

multi_pay_invoice

Description: Requests payment of multiple invoices.
Request:

103



{
"method": "multi_pay_invoice",
"params": {

"invoices": [
{"id":"4da52c32a1", "invoice": "lnbc1...", "amount": 123}, // bolt11 invoice and amount in msats, amount

is optional
{"id":"3da52c32a1", "invoice": "lnbc50n1..."},

],
}

}

Response:
For every invoice in the request, a separate response event is sent. To differentiate between the responses, each
response event contains an d tag with the id of the invoice it is responding to, if no id was given, then the payment
hash of the invoice should be used.
{

"result_type": "multi_pay_invoice",
"result": {

"preimage": "0123456789abcdef..." // preimage of the payment
}

}

Errors: - PAYMENT_FAILED: The payment failed. This may be due to a timeout, exhausting all routes, insufficient
capacity or similar.

pay_keysend

Request:
{

"method": "pay_keysend",
"params": {

"amount": 123, // invoice amount in msats, required
"pubkey": "03...", // payee pubkey, required
"preimage": "0123456789abcdef...", // preimage of the payment, optional
"tlv_records: [ // tlv records, optional

{
"type": 5482373484, // tlv type
"value": "0123456789abcdef" // hex encoded tlv value

}
]

}
}

Response:
{

"result_type": "pay_keysend",
"result": {

"preimage": "0123456789abcdef...", // preimage of the payment
}

}

Errors: - PAYMENT_FAILED: The payment failed. This may be due to a timeout, exhausting all routes, insufficient
capacity or similar.

104



multi_pay_keysend

Description: Requests multiple keysend payments.
Has an array of keysends, these follow the same semantics as pay_keysend, just done in a batch
Request:
{

"method": "multi_pay_keysend",
"params": {

"keysends": [
{"id": "4c5b24a351", pubkey": "03...", "amount": 123},
{"id": "3da52c32a1", "pubkey": "02...", "amount": 567, "preimage": "abc123..", "tlv_records": [{"type":

696969, "value": "77616c5f6872444873305242454d353736"}]},
],

}
}

Response:
For every keysend in the request, a separate response event is sent. To differentiate between the responses, each
response event contains an d tag with the id of the keysend it is responding to, if no id was given, then the pubkey
should be used.
{

"result_type": "multi_pay_keysend",
"result": {

"preimage": "0123456789abcdef..." // preimage of the payment
}

}

Errors: - PAYMENT_FAILED: The payment failed. This may be due to a timeout, exhausting all routes, insufficient
capacity or similar.

make_invoice

Request:
{

"method": "make_invoice",
"params": {

"amount": 123, // value in msats
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"expiry": 213 // expiry in seconds from time invoice is created, optional

}
}

Response:
{

"result_type": "make_invoice",
"result": {

"type": "incoming", // "incoming" for invoices, "outgoing" for payments
"invoice": "string", // encoded invoice, optional
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"preimage": "string", // payment's preimage, optional if unpaid
"payment_hash": "string", // Payment hash for the payment

105



"amount": 123, // value in msats
"fees_paid": 123, // value in msats
"created_at": unixtimestamp, // invoice/payment creation time
"expires_at": unixtimestamp, // invoice expiration time, optional if not applicable
"metadata": {} // generic metadata that can be used to add things like zap/boostagram details for a payer

name/comment/etc.
}

}

lookup_invoice

Request:
{

"method": "lookup_invoice",
"params": {

"payment_hash": "31afdf1..", // payment hash of the invoice, one of payment_hash or invoice is required
"invoice": "lnbc50n1..." // invoice to lookup

}
}

Response:
{

"result_type": "lookup_invoice",
"result": {

"type": "incoming", // "incoming" for invoices, "outgoing" for payments
"invoice": "string", // encoded invoice, optional
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"preimage": "string", // payment's preimage, optional if unpaid
"payment_hash": "string", // Payment hash for the payment
"amount": 123, // value in msats
"fees_paid": 123, // value in msats
"created_at": unixtimestamp, // invoice/payment creation time
"expires_at": unixtimestamp, // invoice expiration time, optional if not applicable
"settled_at": unixtimestamp, // invoice/payment settlement time, optional if unpaid
"metadata": {} // generic metadata that can be used to add things like zap/boostagram details for a payer

name/comment/etc.
}

}

Errors: - NOT_FOUND: The invoice could not be found by the given parameters.

list_transactions

Lists invoices and payments. If type is not specified, both invoices and payments are returned. The from and until
parameters are timestamps in seconds since epoch. If from is not specified, it defaults to 0. If until is not specified,
it defaults to the current time. Transactions are returned in descending order of creation time.
Request:
{

"method": "list_transactions",
"params": {

"from": 1693876973, // starting timestamp in seconds since epoch (inclusive), optional

106



"until": 1703225078, // ending timestamp in seconds since epoch (inclusive), optional
"limit": 10, // maximum number of invoices to return, optional
"offset": 0, // offset of the first invoice to return, optional
"unpaid": true, // include unpaid invoices, optional, default false
"type": "incoming", // "incoming" for invoices, "outgoing" for payments, undefined for both

}
}

Response:
{

"result_type": "list_transactions",
"result": {

"transactions": [
{

"type": "incoming", // "incoming" for invoices, "outgoing" for payments
"invoice": "string", // encoded invoice, optional
"description": "string", // invoice's description, optional
"description_hash": "string", // invoice's description hash, optional
"preimage": "string", // payment's preimage, optional if unpaid
"payment_hash": "string", // Payment hash for the payment
"amount": 123, // value in msats
"fees_paid": 123, // value in msats
"created_at": unixtimestamp, // invoice/payment creation time
"expires_at": unixtimestamp, // invoice expiration time, optional if not applicable
"settled_at": unixtimestamp, // invoice/payment settlement time, optional if unpaid
"metadata": {} // generic metadata that can be used to add things like zap/boostagram details for a

payer name/comment/etc.
}

],
},

}

get_balance

Request:
{

"method": "get_balance",
"params": {
}

}

Response:
{

"result_type": "get_balance",
"result": {

"balance": 10000, // user's balance in msats
}

}

get_info

Request:

107



{
"method": "get_info",
"params": {
}

}

Response:
{

"result_type": "get_info",
"result": {

"alias": "string",
"color": "hex string",
"pubkey": "hex string",
"network": "string", // mainnet, testnet, signet, or regtest
"block_height": 1,
"block_hash": "hex string",
"methods": ["pay_invoice", "get_balance", "make_invoice", "lookup_invoice", "list_transactions",

"get_info"], // list of supported methods for this connection
}

}

Example pay invoice flow

0. The user scans the QR code generated by the wallet service with their client application, they follow a
nostr+walletconnect:// deeplink or configure the connection details manually.

1. client sends an event to thewallet servicewith kind 23194. The content is a pay_invoice request. The private
key is the secret from the connection string above.

2. wallet service verifies that the author’s key is authorized to perform the payment, decrypts the payload and
sends the payment.

3. wallet service responds to the event by sending an event with kind 23195 and content being a response either
containing an error message or a preimage.

Using a dedicated relay
This NIP does not specify any requirements on the type of relays used. However, if the user is using a custodial
service it might make sense to use a relay that is hosted by the custodial service. The relay may then enforce au-
thentication to prevent metadata leaks. Not depending on a 3rd party relay would also improve reliability in this
case.

108



NIP-75

Zap Goals
draft optional

This NIP defines an event for creating fundraising goals. Users can contribute funds towards the goal by zapping
the goal event.

Nostr Event
A kind:9041 event is used.
The .content contains a human-readable description of the goal.
The following tags are defined as REQUIRED.

• amount - target amount in milisats.
• relays - a list of relays the zaps to this goal will be sent to and tallied from.

Example event:
{
"kind": 9041,
"tags": [
["relays", "wss://alicerelay.example.com", "wss://bobrelay.example.com", ...],
["amount", "210000"],

],
"content": "Nostrasia travel expenses",
...

The following tags are OPTIONAL.

• closed_at - timestamp for determining which zaps are included in the tally. Zap receipts published after the
closed_at timestamp SHOULD NOT count towards the goal progress.

• image - an image for the goal
• summary - a brief description

{
"kind": 9041,
"tags": [
["relays", "wss://alicerelay.example.com", "wss://bobrelay.example.com", ...],
["amount", "210000"],
["closed_at", "<unix timestamp in seconds>"],
["image", "<image URL>"],
["summary", "<description of the goal>"],

],
"content": "Nostrasia travel expenses",
...

}

The goal MAY include an r or a tag linking to a URL or parameterized replaceable event.

109



The goal MAY include multiple beneficiary pubkeys by specifying zap tags.
Parameterized replaceable events can link to a goal by using a goal tag specifying the event id and an optional relay
hint.
{
...
"kind": 3xxxx,
"tags": [
...
["goal", "<event id>", "<Relay URL (optional)>"],

],
...

}

Client behavior
Clients MAY display funding goals on user profiles.
When zapping a goal event, clients MUST include the relays in the relays tag of the goal event in the zap request
relays tag.
When zapping a parameterized replaceable event with a goal tag, clients SHOULD tag the goal event id in the e tag
of the zap request.

Use cases

• Fundraising clients
• Adding funding goals to events such as long form posts, badges or live streams

110

57.md#appendix-g-zap-tag-on-other-events


Third Parties

111



NIP-26

Delegated Event Signing
draft optional

This NIP defines how events can be delegated so that they can be signed by other keypairs.
Another application of this proposal is to abstract away the use of the ‘root’ keypairs when interacting with clients.
For example, a user could generate new keypairs for each client they wish to use and authorize those keypairs to
generate events on behalf of their root pubkey, where the root keypair is stored in cold storage.

Introducing the ‘delegation’ tag This NIP introduces a new tag: delegation which is formatted as follows:
[
"delegation",
<pubkey of the delegator>,
<conditions query string>,
<delegation token: 64-byte Schnorr signature of the sha256 hash of the delegation string>

]

Delegation Token The delegation token should be a 64-byte Schnorr signature of the sha256 hash of the following
string:
nostr:delegation:<pubkey of publisher (delegatee)>:<conditions query string>

Conditions Query String The following fields and operators are supported in the above query string:
Fields: 1. kind -Operators: - =${KIND_NUMBER} - delegatee may only sign events of this kind 2. created_at -Operators:
- <${TIMESTAMP} - delegateemay only sign events created before the specified timestamp - >${TIMESTAMP} - delegatee
may only sign events created after the specified timestamp
In order to create a single condition, you must use a supported field and operator. Multiple conditions can be used
in a single query string, including on the same field. Conditions must be combined with &.
For example, the following condition strings are valid:

• kind=1&created_at<1675721813
• kind=0&kind=1&created_at>1675721813
• kind=1&created_at>1674777689&created_at<1675721813

For the vast majority of use-cases, it is advisable that: 1. Query strings should include a created_at after condition
reflecting the current time, to prevent the delegatee from publishing historic notes on the delegator’s behalf. 2.
Query strings should include a created_at before condition that is not empty and is not some extremely distant
time in the future. If delegations are not limited in time scope, they expose similar security risks to simply using the
root key for authentication.

# Delegator:
privkey: ee35e8bb71131c02c1d7e73231daa48e9953d329a4b701f7133c8f46dd21139c
pubkey: 8e0d3d3eb2881ec137a11debe736a9086715a8c8beeeda615780064d68bc25dd

# Delegatee:
privkey: 777e4f60b4aa87937e13acc84f7abcc3c93cc035cb4c1e9f7a9086dd78fffce1
pubkey: 477318cfb5427b9cfc66a9fa376150c1ddbc62115ae27cef72417eb959691396

Delegation string to grant note publishing authorization to the delegatee (477318cf) from now, for the next 30 days,
given the current timestamp is 1674834236.

112



nostr:delegation:477318cfb5427b9cfc66a9fa376150c1ddbc62115ae27cef72417eb959691396:kind=1&created_at>1674834236&created_at<1677426236

The delegator (8e0d3d3e) then signs a SHA256 hash of the above delegation string, the result of which is the delega-
tion token:
6f44d7fe4f1c09f3954640fb58bd12bae8bb8ff4120853c4693106c82e920e2b898f1f9ba9bd65449a987c39c0423426ab7b53910c0c6abfb41b30bc16e5f524

The delegatee (477318cf) can now construct an event on behalf of the delegator (8e0d3d3e). The delegatee then signs
the event with its own private key and publishes.
{
"id": "e93c6095c3db1c31d15ac771f8fc5fb672f6e52cd25505099f62cd055523224f",
"pubkey": "477318cfb5427b9cfc66a9fa376150c1ddbc62115ae27cef72417eb959691396",
"created_at": 1677426298,
"kind": 1,
"tags": [
[
"delegation",
"8e0d3d3eb2881ec137a11debe736a9086715a8c8beeeda615780064d68bc25dd",
"kind=1&created_at>1674834236&created_at<1677426236",
"6f44d7fe4f1c09f3954640fb58bd12bae8bb8ff4120853c4693106c82e920e2b898f1f9ba9bd65449a987c39c0423426ab7b53910c0c6abfb41b30bc16e5f524"

]
],
"content": "Hello, world!",
"sig":

"633db60e2e7082c13a47a6b19d663d45b2a2ebdeaf0b4c35ef83be2738030c54fc7fd56d139652937cdca875ee61b51904a1d0d0588a6acd6168d7be2909d693"
}

The event should be considered a valid delegation if the conditions are satisfied (kind=1, created_at>1674834236
and created_at<1677426236 in this example) and, upon validation of the delegation token, are found to be un-
changed from the conditions in the original delegation string.
Clients should display the delegated note as if it was published directly by the delegator (8e0d3d3e).

Relay & Client Support Relays should answer requests such as ["REQ", "", {"authors": ["A"]}] by querying
both the pubkey and delegation tags [1] value.
Relays SHOULD allow the delegator (8e0d3d3e) to delete the events published by the delegatee (477318cf).

113



NIP-59
Gift Wrap
optional

This NIP defines a protocol for encapsulating any nostr event. This makes it possible to obscure most metadata for
a given event, perform collaborative signing, and more.
This NIP does not define any messaging protocol. Applications of this NIP should be defined separately.
This NIP relies on NIP-44’s versioned encryption algorithms.

Overview
This protocol uses three main concepts to protect the transmission of a target event: rumors, seals, and gift wraps.

• A rumor is a regular nostr event, but is not signed. This means that if it is leaked, it cannot be verified.
• A rumor is serialized to JSON, encrypted, and placed in the content field of a seal. The seal is then signed by
the author of the note. The only information publicly available on a seal is who signed it, but not what was
said.

• A seal is serialized to JSON, encrypted, and placed in the content field of a gift wrap.
This allows the isolation of concerns across layers:

• A rumor carries the content but is unsigned, which means if leaked it will be rejected by relays and clients, and
can’t be authenticated. This provides a measure of deniability.

• A seal identifies the author without revealing the content or the recipient.
• A gift wrap can add metadata (recipient, tags, a different author) without revealing the true author.

Protocol Description
1. The Rumor Event Kind
A rumor is the same thing as an unsigned event. Any event kind can be made a rumor by removing the signature.

2. The Seal Event Kind
A seal is a kind:13 event that wraps a rumor with the sender’s regular key. The seal is always encrypted to a
receiver’s pubkey but there is no p tag pointing to the receiver. There is no way to know who the rumor is for
without the receiver’s or the sender’s private key. The only public information in this event is who is signing it.
{
"id": "<id>",
"pubkey": "<real author's pubkey>",
"content": "<encrypted rumor>",
"kind": 13,
"created_at": 1686840217,
"tags": [],
"sig": "<real author's pubkey signature>"

}

Tags MUST must always be empty in a kind:13. The inner event MUST always be unsigned.

3. Gift Wrap Event Kind
A gift wrap event is a kind:1059 event that wraps any other event. tags SHOULD include any information needed
to route the event to its intended recipient, including the recipient’s p tag or NIP-13 proof of work.

114

./44.md
13.md


{
"id": "<id>",
"pubkey": "<random, one-time-use pubkey>",
"content": "<encrypted kind 13>",
"kind": 1059,
"created_at": 1686840217,
"tags": [["p", "<recipient pubkey>"]],
"sig": "<random, one-time-use pubkey signature>"

}

Encrypting Payloads
Encryption is done following NIP-44 on the JSON-encoded event. Place the encryption payload in the .content of
the wrapper event (either a seal or a gift wrap).

Other Considerations
If a rumor is intended for more than one party, or if the author wants to retain an encrypted copy, a single rumormay
be wrapped and addressed for each recipient individually.
The canonical created_at time belongs to the rumor. All other timestamps SHOULD be tweaked to thwart time-
analysis attacks. Note that some relays don’t serve events dated in the future, so all timestamps SHOULD be in the
past.
Relays may choose not to store gift wrapped events due to them not being publicly useful. Clients MAY choose to
attach a certain amount of proof-of-work to the wrapper event per NIP-13 in a bid to demonstrate that the event is
not spam or a denial-of-service attack.
To protect recipient metadata, relays SHOULD guard access to kind 1059 events based on user AUTH. When pos-
sible, clients should only send wrapped events to relays that offer this protection.
To protect recipient metadata, relays SHOULD only serve kind 1059 events intended for the marked recipient.
When possible, clients should only send wrapped events to read relays for the recipient that implement AUTH,
and refuse to serve wrapped events to non-recipients.

An Example
Let’s send a wrapped kind 1message between two parties asking “Are you going to the party tonight?”

• Author private key: 0beebd062ec8735f4243466049d7747ef5d6594ee838de147f8aab842b15e273
• Recipient private key: e108399bd8424357a710b606ae0c13166d853d327e47a6e5e038197346bdbf45
• Ephemeral wrapper key: 4f02eac59266002db5801adc5270700ca69d5b8f761d8732fab2fbf233c90cbd

Note that this messaging protocol should not be used in practice, this is just an example. Refer to other NIPs for
concrete messaging protocols that depend on gift wraps.

1. Create an event
Create a kind 1 event with the message, the receivers, and any other tags you want, signed by the author. Do not
sign the event.
{
"created_at": 1691518405,
"content": "Are you going to the party tonight?",
"tags": [],
"kind": 1,
"pubkey": "611df01bfcf85c26ae65453b772d8f1dfd25c264621c0277e1fc1518686faef9",
"id": "9dd003c6d3b73b74a85a9ab099469ce251653a7af76f523671ab828acd2a0ef9"

115

44.md
13.md


}

2. Seal the rumor
Encrypt the JSON-encoded rumorwith a conversation key derived using the author’s private key and the recipient’s
public key. Place the result in the content field of a kind 13 seal event. Sign it with the author’s key.
{
"content":

"AqBCdwoS7/tPK+QGkPCadJTn8FxGkd24iApo3BR9/M0uw6n4RFAFSPAKKMgkzVMoRyR3ZS/aqATDFvoZJOkE9cPG/TAzmyZvr/WUIS8kLmuI1dCA+itFF6+ULZqbkWS0YcVU0j6UDvMBvVlGTzHz+UHzWYJLUq2LnlynJtFap5k8560+tBGtxi9Gx2NIycKgbOUv0gEqhfVzAwvg1IhTltfSwOeZXvDvd40rozONRxwq8hjKy+4DbfrO0iRtlT7G/eVEO9aJJnqagomFSkqCscttf/o6VeT2+A9JhcSxLmjcKFG3FEK3Try/WkarJa1jM3lMRQqVOZrzHAaLFW/5sXano6DqqC5ERD6CcVVsrny0tYN4iHHB8BHJ9zvjff0NjLGG/v5Wsy31+BwZA8cUlfAZ0f5EYRo9/vKSd8TV0wRb9DQ=",
"kind": 13,
"created_at": 1703015180,
"pubkey": "611df01bfcf85c26ae65453b772d8f1dfd25c264621c0277e1fc1518686faef9",
"tags": [],
"id": "28a87d7c074d94a58e9e89bb3e9e4e813e2189f285d797b1c56069d36f59eaa7",
"sig":

"02fc3facf6621196c32912b1ef53bac8f8bfe9db51c0e7102c073103586b0d29c3f39bdaa1e62856c20e90b6c7cc5dc34ca8bb6a528872cf6e65e6284519ad73"
}

3. Wrap the seal
Encrypt the JSON-encoded kind 13 event with your ephemeral, single-use random key. Place the result in the
content field of a kind 1059. Add a single p tag containing the recipient’s public key. Sign the gift wrap using the
random key generated in the previous step.
{
"content":

"AhC3Qj/QsKJFWuf6xroiYip+2yK95qPwJjVvFujhzSguJWb/6TlPpBW0CGFwfufCs2Zyb0JeuLmZhNlnqecAAalC4ZCugB+I9ViA5pxLyFfQjs1lcE6KdX3euCHBLAnE9GL/+IzdV9vZnfJH6atVjvBkNPNzxU+OLCHO/DAPmzmMVx0SR63frRTCz6Cuth40D+VzluKu1/Fg2Q1LSst65DE7o2efTtZ4Z9j15rQAOZfE9jwMCQZt27rBBK3yVwqVEriFpg2mHXc1DDwHhDADO8eiyOTWF1ghDds/DxhMcjkIi/o+FS3gG1dG7gJHu3KkGK5UXpmgyFKt+421m5o++RMD/BylS3iazS1S93IzTLeGfMCk+7IKxuSCO06k1+DaasJJe8RE4/rmismUvwrHu/HDutZWkvOAhd4z4khZo7bJLtiCzZCZ74lZcjOB4CYtuAX2ZGpc4I1iOKkvwTuQy9BWYpkzGg3ZoSWRD6ty7U+KN+fTTmIS4CelhBTT15QVqD02JxfLF7nA6sg3UlYgtiGw61oH68lSbx16P3vwSeQQpEB5JbhofW7t9TLZIbIW/ODnI4hpwj8didtk7IMBI3Ra3uUP7ya6vptkd9TwQkd/7cOFaSJmU+BIsLpOXbirJACMn+URoDXhuEtiO6xirNtrPN8jYqpwvMUm5lMMVzGT3kMMVNBqgbj8Ln8VmqouK0DR+gRyNb8fHT0BFPwsHxDskFk5yhe5c/2VUUoKCGe0kfCcX/EsHbJLUUtlHXmTqaOJpmQnW1tZ/siPwKRl6oEsIJWTUYxPQmrM2fUpYZCuAo/29lTLHiHMlTbarFOd6J/ybIbICy2gRRH/LFSryty3Cnf6aae+A9uizFBUdCwTwffc3vCBae802+R92OL78bbqHKPbSZOXNC+6ybqziezwG+OPWHx1Qk39RYaF0aFsM4uZWrFic97WwVrH5i+/Nsf/OtwWiuH0gV/SqvN1hnkxCTF/+XNn/laWKmS3e7wFzBsG8+qwqwmO9aVbDVMhOmeUXRMkxcj4QreQkHxLkCx97euZpC7xhvYnCHarHTDeD6nVK+xzbPNtzeGzNpYoiMqxZ9bBJwMaHnEoI944Vxoodf51cMIIwpTmmRvAzI1QgrfnOLOUS7uUjQ/IZ1Qa3lY08Nqm9MAGxZ2Ou6R0/Z5z30ha/Q71q6meAs3uHQcpSuRaQeV29IASmye2A2Nif+lmbhV7w8hjFYoaLCRsdchiVyNjOEM4VmxUhX4VEvw6KoCAZ/XvO2eBF/SyNU3Of4SO",
"kind": 1059,
"created_at": 1703021488,
"pubkey": "18b1a75918f1f2c90c23da616bce317d36e348bcf5f7ba55e75949319210c87c",
"id": "5c005f3ccf01950aa8d131203248544fb1e41a0d698e846bd419cec3890903ac",
"sig":

"35fabdae4634eb630880a1896a886e40fd6ea8a60958e30b89b33a93e6235df750097b04f9e13053764251b8bc5dd7e8e0794a3426a90b6bcc7e5ff660f54259",
"tags": [["p", "166bf3765ebd1fc55decfe395beff2ea3b2a4e0a8946e7eb578512b555737c99"]],

}

4. Broadcast Selectively
Broadcast the kind 1059 event to the recipient’s relays only. Delete all the other events.

Code Samples
JavaScript
import {bytesToHex} from "@noble/hashes/utils"
import type {EventTemplate, UnsignedEvent, Event} from "nostr-tools"
import {getPublicKey, getEventHash, nip19, nip44, finalizeEvent, generateSecretKey} from "nostr-tools"

type Rumor = UnsignedEvent & {id: string}

const TWO_DAYS = 2 * 24 * 60 * 60

const now = () => Math.round(Date.now() / 1000)
const randomNow = () => Math.round(now() - (Math.random() * TWO_DAYS))

116



const nip44ConversationKey = (privateKey: Uint8Array, publicKey: string) =>
nip44.v2.utils.getConversationKey(bytesToHex(privateKey), publicKey)

const nip44Encrypt = (data: EventTemplate, privateKey: Uint8Array, publicKey: string) =>
nip44.v2.encrypt(JSON.stringify(data), nip44ConversationKey(privateKey, publicKey))

const nip44Decrypt = (data: Event, privateKey: Uint8Array) =>
JSON.parse(nip44.v2.decrypt(data.content, nip44ConversationKey(privateKey, data.pubkey)))

const createRumor = (event: Partial<UnsignedEvent>, privateKey: Uint8Array) => {
const rumor = {
created_at: now(),
content: "",
tags: [],
...event,
pubkey: getPublicKey(privateKey),

} as any

rumor.id = getEventHash(rumor)

return rumor as Rumor
}

const createSeal = (rumor: Rumor, privateKey: Uint8Array, recipientPublicKey: string) => {
return finalizeEvent(
{
kind: 13,
content: nip44Encrypt(rumor, privateKey, recipientPublicKey),
created_at: randomNow(),
tags: [],

},
privateKey

) as Event
}

const createWrap = (event: Event, recipientPublicKey: string) => {
const randomKey = generateSecretKey()

return finalizeEvent(
{
kind: 1059,
content: nip44Encrypt(event, randomKey, recipientPublicKey),
created_at: randomNow(),
tags: [["p", recipientPublicKey]],

},
randomKey

) as Event
}

// Test case using the above example
const senderPrivateKey = nip19.decode(̀ nsec1p0ht6p3wepe47sjrgesyn4m50m6avk2waqudu9rl324cg2c4ufesyp6rdg̀ ).data
const recipientPrivateKey = nip19.decode(̀ nsec1uyyrnx7cgfp40fcskcr2urqnzekc20fj0er6de0q8qvhx34ahazsvs9p36̀ ).data
const recipientPublicKey = getPublicKey(recipientPrivateKey)

const rumor = createRumor(
{
kind: 1,

117



content: "Are you going to the party tonight?",
},
senderPrivateKey

)

const seal = createSeal(rumor, senderPrivateKey, recipientPublicKey)
const wrap = createWrap(seal, recipientPublicKey)

// Recipient unwraps with his/her private key.

const unwrappedSeal = nip44Decrypt(wrap, recipientPrivateKey)
const unsealedRumor = nip44Decrypt(unwrappedSeal, recipientPrivateKey)

118



NIP-46 - Nostr Remote Signing
Rationale
Private keys should be exposed to as few systems - apps, operating systems, devices - as possible as each system
adds to the attack surface.
This NIP describes a method for 2-way communication between a remote signer and a Nostr client. The remote
signer could be, for example, a hardware device dedicated to signing Nostr events, while the client is a normal
Nostr client.

Terminology
• Local keypair: A local public and private key-pair used to encrypt content and communicate with the remote
signer. Usually created by the client application.

• Remote user pubkey: The public key that the user wants to sign as. The remote signer has control of the
private key that matches this public key.

• Remote signer pubkey: This is the public key of the remote signer itself. This is needed in both
create_account command because you don’t yet have a remote user pubkey.

All pubkeys specified in this NIP are in hex format.

Initiating a connection
To initiate a connection between a client and a remote signer there are a few different options.

Direct connection initiated by remote signer
This is most common in a situation where you have your own nsecbunker or other type of remote signer and want
to connect through a client that supports remote signing.
The remote signer would provide a connection token in the form:
bunker://<remote-user-pubkey>?relay=<wss://relay-to-connect-on>&relay=<wss://another-relay-to-connect-on>&secret=<optional-secret-value>

This token is pasted into the client by the user and the client then uses the details to connect to the remote signer via
the specified relay(s). Optional secret can be used for single successfully established connection only, remote signer
SHOULD ignore new attempts to establish connection with old optional secret.

Direct connection initiated by the client
In this case, basically the opposite direction of the first case, the client provides a connection token (or encodes the
token in a QR code) and the signer initiates a connection to the client via the specified relay(s).
nostrconnect://<local-keypair-pubkey>?relay=<wss://relay-to-connect-on>&metadata=<json metadata in the form:

{"name":"...", "url": "...", "description": "..."}>

The flow
1. Client creates a local keypair. This keypair doesn’t need to be communicated to the user since it’s largely

disposable (i.e. the user doesn’t need to see this pubkey). Clients might choose to store it locally and they
should delete it when the user logs out.

2. Client gets the remote user pubkey (either via a bunker:// connection string or a NIP-05 login-flow; shown
below)

3. Clients use the local keypair to send requests to the remote signer by p-tagging and encrypting to the remote
user pubkey.

4. The remote signer responds to the client by p-tagging and encrypting to the local keypair pubkey.

119



Example flow for signing an event
• Remote user pubkey (e.g. signing as) fa984bd7dbb282f07e16e7ae87b26a2a7b9b90b7246a44771f0cf5ae58018f52
• Local pubkey is eff37350d839ce3707332348af4549a96051bd695d3223af4aabce4993531d86

{
"kind": 24133,
"pubkey": "eff37350d839ce3707332348af4549a96051bd695d3223af4aabce4993531d86",
"content": nip04({

"id": <random_string>,
"method": "sign_event",
"params": [json_stringified(<{

content: "Hello, I'm signing remotely",
kind: 1,
tags: [],
created_at: 1714078911

}>)]
}),
"tags": [["p", "fa984bd7dbb282f07e16e7ae87b26a2a7b9b90b7246a44771f0cf5ae58018f52"]], // p-tags the remote user

pubkey
}

{
"kind": 24133,
"pubkey": "fa984bd7dbb282f07e16e7ae87b26a2a7b9b90b7246a44771f0cf5ae58018f52",
"content": nip04({

"id": <random_string>,
"result": json_stringified(<signed-event>)

}),
"tags": [["p", "eff37350d839ce3707332348af4549a96051bd695d3223af4aabce4993531d86"]], // p-tags the local keypair

pubkey
}

Diagram

Request Events kind: 24133
{

"id": <id>,
"kind": 24133,
"pubkey": <local_keypair_pubkey>,
"content": <nip04(<request>)>,
"tags": [["p", <remote_user_pubkey>]], // NB: in the c̀reate_account̀ event, the remote signer pubkey should be

`p̀ tagged.
"created_at": <unix timestamp in seconds>

}

The content field is a JSON-RPC-like message that is NIP-04 encrypted and has the following structure:
{

"id": <random_string>,
"method": <method_name>,
"params": [array_of_strings]

}

120

04.md


Figure 1: signing-example

• id is a random string that is a request ID. This same ID will be sent back in the response payload.
• method is the name of the method/command (detailed below).
• params is a positional array of string parameters.

Methods/Commands
Each of the following are methods that the client sends to the remote signer.

Command Params Result
connect [<remote_user_pubkey>,

<optional_secret>,
<optional_requested_permissions>]

“ack”

sign_event [<{kind, content, tags,
created_at}>]

json_stringified(<signed_event>)

ping [] “pong”
get_relays [] json_stringified({<relay_url>: {read:

<boolean>, write: <boolean>}})
get_public_key [] <hex-pubkey>
nip04_encrypt [<third_party_pubkey>,

<plaintext_to_encrypt>]
<nip04_ciphertext>

nip04_decrypt [<third_party_pubkey>,
<nip04_ciphertext_to_decrypt>]

<plaintext>

nip44_encrypt [<third_party_pubkey>,
<plaintext_to_encrypt>]

<nip44_ciphertext>

nip44_decrypt [<third_party_pubkey>,
<nip44_ciphertext_to_decrypt>]

<plaintext>

Requested permissions
The connect method may be provided with optional_requested_permissions for user convenience. The permis-
sions are a comma-separated list of method[:params], i.e. nip04_encrypt,sign_event:4 meaning permissions to
call nip04_encrypt and to call sign_event with kind:4. Optional parameter for sign_event is the kind number,
parameters for other methods are to be defined later.

121



Response Events kind:24133
{

"id": <id>,
"kind": 24133,
"pubkey": <remote_signer_pubkey>,
"content": <nip04(<response>)>,
"tags": [["p", <local_keypair_pubkey>]],
"created_at": <unix timestamp in seconds>

}

The content field is a JSON-RPC-like message that is NIP-04 encrypted and has the following structure:
{

"id": <request_id>,
"result": <results_string>,
"error": <optional_error_string>

}

• id is the request ID that this response is for.
• results is a string of the result of the call (this can be either a string or a JSON stringified object)
• error, optionally, it is an error in string form, if any. Its presence indicates an error with the request.

Auth Challenges
An Auth Challenge is a response that a remote signer can send back when it needs the user to authenticate via other
means. This is currently used in the OAuth-like flow enabled by signers like Nsecbunker. The response content
object will take the following form:
{

"id": <request_id>,
"result": "auth_url",
"error": <URL_to_display_to_end_user>

}

Clients should display (in a popup or new tab) the URL from the error field and then subscribe/listen for another
response from the remote signer (reusing the same request ID). This event will be sent once the user authenticates in
the other window (or will never arrive if the user doesn’t authenticate). It’s also possible to add a redirect_uri url
parameter to the auth_url, which is helpful in situations when a client cannot open a new window or tab to display
the auth challenge.

Example event signing request with auth challenge

Remote Signer Commands
Remote signersmight support additional commandswhen communicating directlywith it. These commands follow
the same flow as noted above, the only difference is that when the client sends a request event, the p-tag is the pubkey
of the remote signer itself and the content payload is encrypted to the same remote signer pubkey.

Methods/Commands
Each of the following are methods that the client sends to the remote signer.

Command Params Result
create_account [<username>, <domain>, <optional_email>,

<optional_requested_permissions>]
<newly_created_remote_user_pubkey>

122

04.md
https://github.com/kind-0/nsecbunkerd/


Figure 2: signing-example-with-auth-challenge

Appendix
NIP-05 Login Flow
Clients might choose to present amore familiar login flow, so users can type aNIP-05 address instead of a bunker://
string.
When the user types a NIP-05 the client:

• Queries the /.well-known/nostr.json file from the domain for the NIP-05 address provided to get the user’s
pubkey (this is the remote user pubkey)

• In the same /.well-known/nostr.json file, queries for the nip46 key to get the relays that the remote signer
will be listening on.

• Now the client has enough information to send commands to the remote signer on behalf of the user.

OAuth-like Flow
Remote signer discovery via NIP-89 In this last case, most often used to facilitate an OAuth-like signin flow, the
client first looks for remote signers that have announced themselves via NIP-89 application handler events.
First the client will query for kind: 31990 events that have a k tag of 24133.
These are generally shown to a user, and once the user selects which remote signer to use and provides the remote
user pubkey they want to use (via npub, pubkey, or nip-05 value), the client can initiate a connection. Note that it’s
on the user to select the remote signer that is actually managing the remote key that they would like to use in this
case. If the remote user pubkey is managed on another remote signer, the connection will fail.
In addition, it’s important that clients validate that the pubkey of the announced remote signer matches the pubkey
of the _ entry in the /.well-known/nostr.json file of the remote signer’s announced domain.
Clients that allow users to create new accounts should also consider validating the availability of a given username
in the namespace of remote signer’s domain by checking the /.well-known/nostr.json file for existing usernames.
Clients can then show users feedback in the UI before sending a create_account event to the remote signer and

123



receiving an error in return. Ideally, remote signers would also respond with understandable error messages if a
client tries to create an account with an existing username.

Example Oauth-like flow to create a new user account with Nsecbunker Coming soon…

References
• NIP-04 - Encryption

124

04.md


NIP-90
Data Vending Machine
draft optional

This NIP defines the interaction between customers and Service Providers for performing on-demand computation.
Money in, data out.

Kinds
This NIP reserves the range 5000-7000 for data vending machine use.

Kind Description
5000-5999 Job request kinds
6000-6999 Job result
7000 Job feedback

Job results always use a kind number that is 1000 higher than the job request kind. (e.g. request: kind:5001 gets a
result: kind:6001).
Job request types are defined separately.

Rationale
Nostr can act as a marketplace for data processing, where users request jobs to be processed in certain ways (e.g.,
“speech-to-text”, “summarization”, etc.), but they don’t necessarily care about “who” processes the data.
This NIP is not to be confused with a 1:1 marketplace; instead, it describes a flow where a user announces a desired
output, willingness to pay, and service providers compete to fulfill the job requirement in the best way possible.

Actors
There are two actors in theworkflowdescribed in thisNIP: * Customers (npubswho request a job) * Service providers
(npubs who fulfill jobs)

Job request (kind:5000-5999)
A request to process data, published by a customer. This event signals that a customer is interested in receiving the
result of some kind of compute.
{

"kind": 5xxx, // kind in 5000-5999 range
"content": "",
"tags": [

[ "i", "<data>", "<input-type>", "<relay>", "<marker>" ],
[ "output", "<mime-type>" ],
[ "relays", "wss://..." ],
[ "bid", "<msat-amount>" ],
[ "t", "bitcoin" ]

]
}

All tags are optional.
• i tag: Input data for the job (zero or more inputs)

– <data>: The argument for the input
– <input-type>: The way this argument should be interpreted. MUST be one of:

125

https://github.com/nostr-protocol/data-vending-machines/tree/master/kinds


* url: A URL to be fetched of the data that should be processed.
* event: A Nostr event ID.
* job: The output of a previous job with the specified event ID. The dermination of which output to
build upon is up to the service provider to decide (e.g. waiting for a signaling from the customer,
waiting for a payment, etc.)

* text: <data> is the value of the input, no resolution is needed
– <relay>: If event or job input-type, the relay where the event/job was published, otherwise optional or
empty string

– <marker>: An optional field indicating how this input should be used within the context of the job
• output: Expected output format. Different job request kind defines this more precisely.
• param: Optional parameters for the job as key (first argument)/value (second argument). Different job request

kind defines this more precisely. (e.g. [ "param", "lang", "es" ])
• bid: Customer MAY specify a maximum amount (in millisats) they are willing to pay
• relays: List of relays where Service Providers SHOULD publish responses to
• p: Service Providers the customer is interested in. Other SPs MIGHT still choose to process the job

Encrypted Params
If the user wants to keep the input parameters a secret, they can encrypt the i and param tags with the service
provider’s ‘p’ tag and add it to the content field. Add a tag encrypted as tags. Encryption for private tags will use
NIP-04 - Encrypted Direct Message encryption, using the user’s private and service provider’s public key for the
shared secret
[
["i", "what is the capital of France? ", "text"],
["param", "model", "LLaMA-2"],
["param", "max_tokens", "512"],
["param", "temperature", "0.5"],
["param", "top-k", "50"],
["param", "top-p", "0.7"],
["param", "frequency_penalty", "1"]

]

This param data will be encrypted and added to the content field and p tag should be present
{
"content": "BE2Y4xvS6HIY7TozIgbEl3sAHkdZoXyLRRkZv4fLPh3R7LtviLKAJM5qpkC7D6VtMbgIt4iNcMpLtpo...",
"tags": [
["p", "04f74530a6ede6b24731b976b8e78fb449ea61f40ff10e3d869a3030c4edc91f"],
["encrypted"]

],
...

}

Job result (kind:6000-6999)
Service providers publish job results, providing the output of the job result. They should tag the original job request
event id as well as the customer’s pubkey.
{
"pubkey": "<service-provider pubkey>",
"content": "<payload>",
"kind": 6xxx,
"tags": [
["request", "<job-request>"],
["e", "<job-request-id>", "<relay-hint>"],
["i", "<input-data>"],
["p", "<customer's-pubkey>"],

126

https://github.com/nostr-protocol/nips/blob/master/04.md


["amount", "requested-payment-amount", "<optional-bolt11>"]
],
...

}

• request: The job request event stringified-JSON.
• amount: millisats that the Service Provider is requesting to be paid. An optional third value can be a bolt11
invoice.

• i: The original input(s) specified in the request.

Encrypted Output
If the request has encrypted params, then output should be encrypted and placed in content field. If the output is
encrypted, then avoid including i tag with input-data as clear text. Add a tag encrypted to mark the output content
as encrypted
{
"pubkey": "<service-provider pubkey>",
"content": "<encrypted payload>",
"kind": 6xxx,
"tags": [
["request", "<job-request>"],
["e", "<job-request-id>", "<relay-hint>"],
["p", "<customer's-pubkey>"],
["amount", "requested-payment-amount", "<optional-bolt11>"],
["encrypted"]

],
...

}

Job feedback
Service providers can give feedback about a job back to the customer.
{
"kind": 7000,
"content": "<empty-or-payload>",
"tags": [
["status", "<status>", "<extra-info>"],
["amount", "requested-payment-amount", "<bolt11>"],
["e", "<job-request-id>", "<relay-hint>"],
["p", "<customer's-pubkey>"],

],
...

}

• content: Either empty or a job-result (e.g. for partial-result samples)
• amount tag: as defined in the Job Result section.
• status tag: Service Providers SHOULD indicate what this feedback status refers to. Job Feedback Status
defines status. Extra human-readable information can be added as an extra argument.

• NOTE: If the input params requires input to be encrypted, then content field will have encrypted payload
with p tag as key.

Job feedback status

127



status description
payment-required Service Provider requires payment before continuing.
processing Service Provider is processing the job.
error Service Provider was unable to process the job.
success Service Provider successfully processed the job.
partial Service Provider partially processed the job. The .contentmight

include a sample of the partial results.

Any job feedback event MIGHT include results in the .content field, as described in the Job Result section. This is
useful for service providers to provide a sample of the results that have been processed so far.

Protocol Flow
• Customer publishes a job request (e.g. kind:5000 speech-to-text).
• Service Providers MAY submit kind:7000 job-feedback events (e.g. payment-required, processing, error,
etc.).

• Upon completion, the service provider publishes the result of the job with a kind:6000 job-result event.
• At any point, if there is an amount pending to be paid as instructed by the service provider, the user can pay
the included bolt11 or zap the job result event the service provider has sent to the user

Job feedback (kind:7000) and Job Results (kind:6000-6999) events MAY include an amount tag, this can be inter-
preted as a suggestion to pay. Service Providers MUST use the payment-required feedback event to signal that a
payment is required and no further actions will be performed until the payment is sent.
Customers can always either pay the included bolt11 invoice or zap the event requesting the payment and service
providers should monitor for both if they choose to include a bolt11 invoice.

Notes about the protocol flow
The flow is deliberately ambiguous, allowing vast flexibility for the interaction between customers and service
providers so that service providers can model their behavior based on their own decisions/perceptions of risk.
Some service providers might choose to submit a payment-required as the first reaction before sending a
processing or before delivering results, some might choose to serve partial results for the job (e.g. a sample), send
a payment-required to deliver the rest of the results, and some service providers might choose to assess likelihood
of payment based on an npub’s past behavior and thus serve the job results before requesting payment for the best
possible UX.
It’s not up to this NIP to define how individual vending machines should choose to run their business.

Cancellation
A job request might be canceled by publishing a kind:5 delete request event tagging the job request event.

Appendix 1: Job chaining
A Customer MAY request multiple jobs to be processed as a chain, where the output of a job is the input of another
job. (e.g. podcast transcription -> summarization of the transcription). This is done by specifying as input an event
id of a different job with the job type.
Service Providers MAY begin processing a subsequent job the moment they see the prior job’s result, but they will
likelywait for a zap to be published first. This introduces a risk that Service Provider of job #1might delay publishing
the zap event in order to have an advantage. This risk is up to Service Providers to mitigate or to decide whether
the service provider of job #1 tends to have good-enough results so as to not wait for an explicit zap to assume the
job was accepted.

128



This gives a higher level of flexibility to service providers (which sophisticated service providers would take any-
way).

Appendix 2: Service provider discoverability
Service Providers MAY use NIP-89 announcements to advertise their support for job kinds:
{
"kind": 31990,
"pubkey": "<pubkey>",
"content": "{
\"name\": \"Translating DVM\",
\"about\": \"I'm a DVM specialized in translating Bitcoin content.\"

}",
"tags": [
["k", "5005"], // e.g. translation
["t", "bitcoin"] // e.g. optionally advertises it specializes in bitcoin audio transcription that won't confuse

"Drivechains" with "Ridechains"
],
...

}

Customers can use NIP-89 to see what service providers their follows use.

129



Application Features

130



NIP-52
Calendar Events
draft optional

This specification defines calendar events representing an occurrence at a specific moment or between moments.
These calendar events are parameterized replaceable and deletable per NIP-09.
Unlike the term calendar event specific to this NIP, the term event is used broadly in all the NIPs to describe any
Nostr event. The distinction is being made here to discern between the two terms.

Calendar Events
There are two types of calendar events represented by different kinds: date-based and time-based calendar events.
Calendar events are not required to be part of a calendar.

Date-Based Calendar Event
This kind of calendar event starts on a date and ends before a different date in the future. Its use is appropriate
for all-day or multi-day events where time and time zone hold no significance. e.g., anniversary, public holidays,
vacation days.

Format The format uses a parameterized replaceable event kind 31922.
The .content of these events should be a detailed description of the calendar event. It is required but can be an
empty string.
The list of tags are as follows: * d (required) universally unique identifier (UUID). Generated by the client creating
the calendar event. * title (required) title of the calendar event * start (required) inclusive start date in ISO 8601
format (YYYY-MM-DD). Must be less than end, if it exists. * end (optional) exclusive end date in ISO 8601 format
(YYYY-MM-DD). If omitted, the calendar event ends on the same date as start. * location (optional, repeated)
location of the calendar event. e.g. address, GPS coordinates, meeting room name, link to video call * g (optional)
geohash to associate calendar event with a searchable physical location * p (optional, repeated) 32-bytes hex pubkey
of a participant, optional recommended relay URL, and participant’s role in the meeting * t (optional, repeated)
hashtag to categorize calendar event * r (optional, repeated) references / links to web pages, documents, video calls,
recorded videos, etc.
The following tags are deprecated: * name name of the calendar event. Use only if title is not available.
{
"id": <32-bytes lowercase hex-encoded SHA-256 of the the serialized event data>,
"pubkey": <32-bytes lowercase hex-encoded public key of the event creator>,
"created_at": <Unix timestamp in seconds>,
"kind": 31922,
"content": "<description of calendar event>",
"tags": [
["d", "<UUID>"],

["title", "<title of calendar event>"],

// Dates
["start", "<YYYY-MM-DD>"],
["end", "<YYYY-MM-DD>"],

// Location
["location", "<location>"],
["g", "<geohash>"],

// Participants

131

09.md
https://en.wikipedia.org/wiki/Geohash


["p", "<32-bytes hex of a pubkey>", "<optional recommended relay URL>", "<role>"],
["p", "<32-bytes hex of a pubkey>", "<optional recommended relay URL>", "<role>"],

// Hashtags
["t", "<tag>"],
["t", "<tag>"],

// Reference links
["r", "<url>"],
["r", "<url>"]

]
}

Time-Based Calendar Event
This kind of calendar event spans between a start time and end time.

Format The format uses a parameterized replaceable event kind 31923.
The .content of these events should be a detailed description of the calendar event. It is required but can be an
empty string.
The list of tags are as follows: * d (required) universally unique identifier (UUID). Generated by the client creating
the calendar event. * title (required) title of the calendar event * start (required) inclusive start Unix timestamp
in seconds. Must be less than end, if it exists. * end (optional) exclusive end Unix timestamp in seconds. If omitted,
the calendar event ends instantaneously. * start_tzid (optional) time zone of the start timestamp, as defined by
the IANA Time Zone Database. e.g., America/Costa_Rica * end_tzid (optional) time zone of the end timestamp,
as defined by the IANA Time Zone Database. e.g., America/Costa_Rica. If omitted and start_tzid is provided,
the time zone of the end timestamp is the same as the start timestamp. * location (optional, repeated) location
of the calendar event. e.g. address, GPS coordinates, meeting room name, link to video call * g (optional) geohash
to associate calendar event with a searchable physical location * p (optional, repeated) 32-bytes hex pubkey of a
participant, optional recommended relay URL, and participant’s role in the meeting * t (optional, repeated) hashtag
to categorize calendar event * r (optional, repeated) references / links toweb pages, documents, video calls, recorded
videos, etc.
The following tags are deprecated: * name name of the calendar event. Use only if title is not available.
{
"id": <32-bytes lowercase hex-encoded SHA-256 of the the serialized event data>,
"pubkey": <32-bytes lowercase hex-encoded public key of the event creator>,
"created_at": <Unix timestamp in seconds>,
"kind": 31923,
"content": "<description of calendar event>",
"tags": [
["d", "<UUID>"],

["title", "<title of calendar event>"],

// Timestamps
["start", "<Unix timestamp in seconds>"],
["end", "<Unix timestamp in seconds>"],

["start_tzid", "<IANA Time Zone Database identifier>"],
["end_tzid", "<IANA Time Zone Database identifier>"],

// Location
["location", "<location>"],
["g", "<geohash>"],

132

https://en.wikipedia.org/wiki/Geohash


// Participants
["p", "<32-bytes hex of a pubkey>", "<optional recommended relay URL>", "<role>"],
["p", "<32-bytes hex of a pubkey>", "<optional recommended relay URL>", "<role>"],

// Hashtags
["t", "<tag>"],
["t", "<tag>"],

// Reference links
["r", "<url>"],
["r", "<url>"]

]
}

Calendar
A calendar is a collection of calendar events, represented as a custom replaceable list event using kind 31924. A
user can have multiple calendars. One may create a calendar to segment calendar events for specific purposes. e.g.,
personal, work, travel, meetups, and conferences.

Format
The .content of these events should be a detailed description of the calendar. It is required but can be an empty
string.
The format uses a custom replaceable list of kind 31924 with a list of tags as described below: * d (required) univer-
sally unique identifier. Generated by the client creating the calendar. * title (required) calendar title * a (repeated)
reference tag to kind 31922 or 31923 calendar event being responded to
{
"id": <32-bytes lowercase hex-encoded SHA-256 of the the serialized event data>,
"pubkey": <32-bytes lowercase hex-encoded public key of the event creator>,
"created_at": <Unix timestamp in seconds>,
"kind": 31924,
"content": "<description of calendar>",
"tags": [
["d", "<UUID>"],
["title", "<calendar title>"],
["a", "<31922 or 31923>:<calendar event author pubkey>:<d-identifier of calendar event>", "<optional relay

url>"],
["a", "<31922 or 31923>:<calendar event author pubkey>:<d-identifier of calendar event>", "<optional relay url>"]

]
}

Calendar Event RSVP
A calendar event RSVP is a response to a calendar event to indicate a user’s attendance intention.
If a calendar event tags a pubkey, that can be interpreted as the calendar event creator inviting that user to attend.
Clients MAY choose to prompt the user to RSVP for the calendar event.
Any user may RSVP, even if they were not tagged on the calendar event. ClientsMAY choose to prompt the calendar
event creator to invite the user who RSVP’d. Clients also MAY choose to ignore these RSVPs.
This NIP is intentionally not defining who is authorized to attend a calendar event if the user who RSVP’d has not
been tagged. It is up to the calendar event creator to determine the semantics.
This NIP is also intentionally not defining what happens if a calendar event changes after an RSVP is submitted.

133



Format
The format uses a parameterized replaceable event kind 31925.
The .content of these events is optional and should be a free-form note that addsmore context to this calendar event
response.
The list of tags are as follows: * a (required) reference tag to kind 31922 or 31923 calendar event being responded
to. * d (required) universally unique identifier. Generated by the client creating the calendar event RSVP. * status
(required) accepted, declined, or tentative. Determines attendance status to the referenced calendar event. * fb
(optional) free or busy. Determines if the user would be free or busy for the duration of the calendar event. This
tag must be omitted or ignored if the status label is set to declined.
{
"id": <32-bytes lowercase hex-encoded SHA-256 of the the serialized event data>,
"pubkey": <32-bytes lowercase hex-encoded public key of the event creator>,
"created_at": <Unix timestamp in seconds>,
"kind": 31925,
"content": "<note>",
"tags": [
["a", "<31922 or 31923>:<calendar event author pubkey>:<d-identifier of calendar event>", "<optional relay

url>"],
["d", "<UUID>"],
["status", "<accepted/declined/tentative>"],
["fb", "<free/busy>"],

]
}

Unsolved Limitations
• No private events

Intentionally Unsupported Scenarios
Recurring Calendar Events
Recurring calendar events come with a lot of complexity, making it difficult for software and humans to deal with.
This complexity includes time zone differences between invitees, daylight savings, leap years, multiple calendar
systems, one-off changes in schedule or other metadata, etc.
This NIP intentionally omits support for recurring calendar events and pushes that complexity up to clients tomanu-
ally implement if they desire. i.e., individual calendar events with duplicatedmetadata represent recurring calendar
events.

134



NIP-53
Live Activities
draft optional

Service providers want to offer live activities to the Nostr network in such a way that participants can easily log
and query by clients. This NIP describes a general framework to advertise the involvement of pubkeys in such live
activities.

Concepts
Live Event
A special event with kind:30311 “Live Event” is defined as a parameterized replaceable event of public p tags. Each p
tag SHOULD have a displayablemarker name for the current role (e.g. Host, Speaker, Participant) of the user in
the event and the relay information MAY be empty. This event will be constantly updated as participants join and
leave the activity.
For example:
{
"kind": 30311,
"tags": [
["d", "<unique identifier>"],
["title", "<name of the event>"],
["summary", "<description>"],
["image", "<preview image url>"],
["t", "hashtag"]
["streaming", "<url>"],
["recording", "<url>"], // used to place the edited video once the activity is over
["starts", "<unix timestamp in seconds>"],
["ends", "<unix timestamp in seconds>"],
["status", "<planned, live, ended>"],
["current_participants", "<number>"],
["total_participants", "<number>"],
["p", "91cf9..4e5ca", "wss://provider1.com/", "Host", "<proof>"],
["p", "14aeb..8dad4", "wss://provider2.com/nostr", "Speaker"],
["p", "612ae..e610f", "ws://provider3.com/ws", "Participant"],
["relays", "wss://one.com", "wss://two.com", ...]

],
"content": "",
...

}

A distinct d tag should be used for each activity. All other tags are optional.
Providers SHOULD keep the participant list small (e.g. under 1000 users) and, when limits are reached, Providers
SHOULD select which participants get named in the event. Clients should not expect a comprehensive list. Once the
activity ends, the event can be deleted or updated to summarize the activity andprovide async content (e.g. recording
of the event).
Clients are expected to subscribe to kind:30311 events in general or for given follow lists and statuses. Clients MAY
display participants’ roles in activities as well as access points to join the activity.
Live Activity management clients are expected to constantly update kind:30311 during the event. Clients MAY
choose to consider status=live events after 1hr without any update as ended. The starts and ends timestamp
SHOULD be updated when the status changes to and from live

The activity MUST be linked to using the NIP-19 naddr code along with the a tag.

135

19.md


Proof of Agreement to Participate
Event owners can add proof as the 5th term in each p tag to clarify the participant’s agreement in joining the event.
The proof is a signed SHA256 of the complete a Tag of the event (kind:pubkey:dTag) by each p’s private key, encoded
in hex.
Clients MAY only display participants if the proof is available or MAY display participants as “invited” if the proof
is not available.
This feature is important to avoid malicious event owners adding large account holders to the event, without their
knowledge, to lure their followers into the malicious owner’s trap.

Live Chat Message
Event kind:1311 is live chat’s channel message. Clients MUST include the a tag of the activity with a root marker.
Other Kind-1 tags such as reply and mention can also be used.
{
"kind": 1311,
"tags": [
["a", "30311:<Community event author pubkey>:<d-identifier of the community>", "<Optional relay url>", "root"],

],
"content": "Zaps to live streams is beautiful.",
...

}

Use Cases
Common use cases include meeting rooms/workshops, watch-together activities, or event spaces, such as
zap.stream.

Example
Live Streaming
{
"id": "57f28dbc264990e2c61e80a883862f7c114019804208b14da0bff81371e484d2",
"pubkey": "1597246ac22f7d1375041054f2a4986bd971d8d196d7997e48973263ac9879ec",
"created_at": 1687182672,
"kind": 30311,
"tags": [
["d", "demo-cf-stream"],
["title", "Adult Swim Metalocalypse"],
["summary", "Live stream from IPTV-ORG collection"],
["streaming", "https://adultswim-vodlive.cdn.turner.com/live/metalocalypse/stream.m3u8"],
["starts", "1687182672"],
["status", "live"],
["t", "animation"],
["t", "iptv"],
["image", "https://i.imgur.com/CaKq6Mt.png"]

],
"content": "",
"sig":

"5bc7a60f5688effa5287244a24768cbe0dcd854436090abc3bef172f7f5db1410af4277508dbafc4f70a754a891c90ce3b966a7bc47e7c1eb71ff57640f3d389"
}

Live Streaming chat message

136

https://zap.stream


{
"id": "97aa81798ee6c5637f7b21a411f89e10244e195aa91cb341bf49f718e36c8188",
"pubkey": "3f770d65d3a764a9c5cb503ae123e62ec7598ad035d836e2a810f3877a745b24",
"created_at": 1687286726,
"kind": 1311,
"tags": [
["a", "30311:1597246ac22f7d1375041054f2a4986bd971d8d196d7997e48973263ac9879ec:demo-cf-stream", "", "root"]

],
"content": "Zaps to live streams is beautiful.",
"sig":

"997f62ddfc0827c121043074d50cfce7a528e978c575722748629a4137c45b75bdbc84170bedc723ef0a5a4c3daebf1fef2e93f5e2ddb98e5d685d022c30b622"
}

137



NIP-84
Highlights
draft optional

This NIP defines kind:9802, a “highlight” event, to signal content a user finds valuable.

Format
The .content of these events is the highlighted portion of the text.
.contentmight be empty for highlights of non-text based media (e.g. NIP-94 audio/video).

References
Events SHOULD tag the source of the highlight, whether nostr-native or not. a or e tags should be used for nostr
events and r tags for URLs.
When tagging a URL, clients generating these events SHOULD do a best effort of cleaning the URL from trackers or
obvious non-useful information from the query string.

Attribution
Clients MAY include one or more p tags, tagging the original authors of the material being highlighted; this is
particularly useful when highlighting non-nostr content for which the client might be able to get a nostr pubkey
somehow (e.g. prompting the user or reading a <meta name="nostr:nprofile1..." /> tag on the document). A
role MAY be included as the last value of the tag.
{
"tags": [
["p", "<pubkey-hex>", "<relay-url>", "author"],
["p", "<pubkey-hex>", "<relay-url>", "author"],
["p", "<pubkey-hex>", "<relay-url>", "editor"]

],
...

}

Context
Clients MAY include a context tag, useful when the highlight is a subset of a paragraph and displaying the sur-
rounding content might be beneficial to give context to the highlight.

138



NIP-15
Nostr Marketplace
draft optional

Based on Diagon-Alley.
Implemented in NostrMarket and Plebeian Market.

Terms
• merchant - seller of products with NOSTR key-pair
• customer - buyer of products with NOSTR key-pair
• product - item for sale by the merchant
• stall - list of products controlled by merchant (a merchant can have multiple stalls)
• marketplace - clientside software for searching stalls and purchasing products

Nostr Marketplace Clients
Merchant admin
Where the merchant creates, updates and deletes stalls and products, as well as where they manage sales, pay-
ments and communication with customers.
The merchant admin software can be purely clientside, but for convenience and uptime, implementations will likely
have a server client listening for NOSTR events.

Marketplace
Marketplace software should be entirely clientside, either as a stand-alone app, or as a purely frontend webpage.
A customer subscribes to different merchant NOSTR public keys, and those merchants stalls and products be-
come listed and searchable. The marketplace client is like any other ecommerce site, with basket and checkout.
Marketplacesmay also wish to include a customer support area for direct message communication with merchants.

Merchant publishing/updating products (event)
A merchant can publish these events: | Kind | | Description | | ——— | —————— | ——————————
——————————————————————————— | | 0 | set_meta | The merchant description (similar
with any nostr public key). | | 30017 | set_stall | Create or update a stall. | | 30018 | set_product | Create or
update a product. | | 4 | direct_message | Communicate with the customer. The messages can be plain-text or
JSON. | | 5 | delete | Delete a product or a stall. |

Event 30017: Create or update a stall.
Event Content
{
"id": <string, id generated by the merchant. Sequential IDs (̀ 0̀ , `1̀ , `2̀ ...) are discouraged>,
"name": <string, stall name>,
"description": <string (optional), stall description>,
"currency": <string, currency used>,
"shipping": [
{
"id": <string, id of the shipping zone, generated by the merchant>,
"name": <string (optional), zone name>,
"cost": <float, base cost for shipping. The currency is defined at the stall level>,
"regions": [<string, regions included in this zone>]

}
]

139

https://github.com/lnbits/Diagon-Alley
https://github.com/lnbits/nostrmarket
https://github.com/PlebeianTech/plebeian-market


}

Fields that are not self-explanatory: - shipping: - an array with possible shipping zones for this stall. - the customer
MUST choose exactly one of those shipping zones. - shipping to different zones can have different costs. For some
goods (digital for example) the cost can be zero. - the id is an internal value used by the merchant. This value must
be sent back as the customer selection. - each shipping zone contains the base cost for orders made to that shipping
zone, but a specific shipping cost per product can also be specified if the shipping cost for that product is higher
than what’s specified by the base cost.
Event Tags
{
"tags": [["d", <string, id of stall]],
...

}

• the d tag is required, its value MUST be the same as the stall id.

Event 30018: Create or update a product
Event Content
{
"id": <string, id generated by the merchant (sequential ids are discouraged)>,
"stall_id": <string, id of the stall to which this product belong to>,
"name": <string, product name>,
"description": <string (optional), product description>,
"images": <[string], array of image URLs, optional>,
"currency": <string, currency used>,
"price": <float, cost of product>,
"quantity": <int or null, available items>,
"specs": [
[<string, spec key>, <string, spec value>]

],
"shipping": [
{
"id": <string, id of the shipping zone (must match one of the zones defined for the stall)>,
"cost": <float, extra cost for shipping. The currency is defined at the stall level>

}
]

}

Fields that are not self-explanatory: - quantity can be null in the case of itemswith unlimited availability, like digital
items, or services - specs: - an optional array of key pair values. It allows for the Customer UI to present product
specifications in a structure mode. It also allows comparison between products - eg: [["operating_system",
"Android 12.0"], ["screen_size", "6.4 inches"], ["connector_type", "USB Type C"]]

_Open_: better to move s̀pec̀ in the t̀ags̀ section of the event?

• shipping:
– an optional array of extra costs to be used per shipping zone, only for products that require special shipping
costs to be added to the base shipping cost defined in the stall

– the id should match the id of the shipping zone, as defined in the shipping field of the stall
– to calculate the total cost of shipping for an order, the user will choose a shipping option during checkout,
and then the client must consider this costs:
* the base cost from the stall for the chosen shipping option
* the result of multiplying the product units by the shipping costs specified in the product, if
any.

Event Tags

140



"tags": [
["d", <string, id of product],
["t", <string (optional), product category],
["t", <string (optional), product category],
...

],
...

• the d tag is required, its value MUST be the same as the product id.
• the t tag is as searchable tag, it represents different categories that the product can be part of (food, fruits).
Multiple t tags can be present.

Checkout events
All checkout events are sent as JSON strings using NIP-04.
The merchant and the customer can exchange JSON messages that represent different actions. Each JSON message
MUST have a type field indicating the what the JSON represents. Possible types:

Message Type Sent By Description
0 Customer New Order
1 Merchant Payment Request
2 Merchant Order Status Update

Step 1: customer order (event)
The below JSON goes in content of NIP-04.
{
"id": <string, id generated by the customer>,
"type": 0,
"name": <string (optional), ???>,
"address": <string (optional), for physical goods an address should be provided>,
"message": "<string (optional), message for merchant>,
"contact": {
"nostr": <32-bytes hex of a pubkey>,
"phone": <string (optional), if the customer wants to be contacted by phone>,
"email": <string (optional), if the customer wants to be contacted by email>

},
"items": [
{
"product_id": <string, id of the product>,
"quantity": <int, how many products the customer is ordering>

}
],
"shipping_id": <string, id of the shipping zone>

}

Open: is contact.nostr required?

Step 2: merchant request payment (event)
Sent back from the merchant for payment. Any payment option is valid that the merchant can check.
The below JSON goes in content of NIP-04.
payment_options/type include:

• url URL to a payment page, stripe, paypal, btcpayserver, etc

141

04.md
04.md
04.md


• btc onchain bitcoin address
• ln bitcoin lightning invoice
• lnurl bitcoin lnurl-pay

{
"id": <string, id of the order>,
"type": 1,
"message": <string, message to customer, optional>,
"payment_options": [
{
"type": <string, option type>,
"link": <string, url, btc address, ln invoice, etc>

},
{
"type": <string, option type>,
"link": <string, url, btc address, ln invoice, etc>

},
{
"type": <string, option type>,
"link": <string, url, btc address, ln invoice, etc>

}
]

}

Step 3: merchant verify payment/shipped (event)
Once payment has been received and processed.
The below JSON goes in content of NIP-04.
{
"id": <string, id of the order>,
"type": 2,
"message": <string, message to customer>,
"paid": <bool: has received payment>,
"shipped": <bool: has been shipped>,

}

Customize Marketplace
Create a customized user experience using the naddr from NIP-19. The use of naddr enables easy sharing of mar-
ketplace events while incorporating a rich set of metadata. This metadata can include relays, merchant profiles, and
more. Subsequently, it allows merchants to be grouped into a market, empowering the market creator to configure
the marketplace’s user interface and user experience, and share that marketplace. This customization can encom-
pass elements such as market name, description, logo, banner, themes, and even color schemes, offering a tailored
and unique marketplace experience.

Event 30019: Create or update marketplace UI/UX
Event Content
{
"name": <string (optional), market name>,
"about": <string (optional), market description>,
"ui": {
"picture": <string (optional), market logo image URL>,
"banner": <string (optional), market logo banner URL>,
"theme": <string (optional), market theme>,

142

04.md
19.md#shareable-identifiers-with-extra-metadata


"darkMode": <bool, true/false>
},
"merchants": [array of pubkeys (optional)],
...

}

This event leverages naddr to enable comprehensive customization and sharing of marketplace configurations, fos-
tering a unique and engaging marketplace environment.

Auctions
Event 30020: Create or update a product sold as an auction
Event Content:
{

"id": <String, UUID generated by the merchant. Sequential IDs (̀ 0̀ , `1̀ , `2̀ ...) are discouraged>,
"stall_id": <String, UUID of the stall to which this product belong to>,
"name": <String, product name>,
"description": <String (optional), product description>,
"images": <[String], array of image URLs, optional>,
"starting_bid": <int>,
"start_date": <int (optional) UNIX timestamp, date the auction started / will start>,
"duration": <int, number of seconds the auction will run for, excluding eventual time extensions that might

happen>,
"specs": [

[<String, spec key>, <String, spec value>]
],
"shipping": [

{
"id": <String, UUID of the shipping zone. Must match one of the zones defined for the stall>,
"cost": <float, extra cost for shipping. The currency is defined at the stall level>

}
]

}

[!NOTE] Items sold as an auction are very similar in structure to fixed-price items, with some important
differences worth noting.

• The start_date can be set to a date in the future if the auction is scheduled to start on that date, or can be
omitted if the start date is unknown/hidden. If the start date is not specified, the auction will have to be
edited later to set an actual date.

• The auction runs for an initial number of seconds after the start_date, specified by duration.

Event 1021: Bid
{

"content": <int, amount of sats>,
"tags": [["e", <event ID of the auction to bid on>]],

}

Bids are simply events of kind 1021with a content field specifying the amount, in the currency of the auction. Bids
must reference an auction.

[!NOTE] Auctions can be edited as many times as desired (they are “parameterized replaceable events”)
by the author - even after the start_date, but they cannot be edited after they have received the first
bid! This is enforced by the fact that bids reference the event ID of the auction (rather than the product
UUID), which changes with every new version of the auctioned product. So a bid is always attached to
one “version”. Editing the auction after a bid would result in the new product losing the bid!

143



Event 1022: Bid confirmation
Event Content:
{

"status": <String, "accepted" | "rejected" | "pending" | "winner">,
"message": <String (optional)>,
"duration_extended": <int (optional), number of seconds>

}

Event Tags:
"tags": [["e" <event ID of the bid being confirmed>], ["e", <event ID of the auction>]],

Bids should be confirmed by the merchant before being considered as valid by other clients. So clients should
subscribe to bid confirmation events (kind 1022) for every auction that they follow, in addition to the actual bids and
should check that the pubkey of the bid confirmation matches the pubkey of the merchant (in addition to checking
the signature).
The content field is a JSON which includes at least a status. winner is how the winning bid is replied to after the
auction ends and the winning bid is picked by the merchant.
The reasons for which a bid can be marked as rejected or pending are up to the merchant’s implementation and
configuration - they could be anything from basic validation errors (amount too low) to the bidder being blacklisted
or to the bidder lacking sufficient trust, which could lead to the bid being marked as pending until sufficient verifi-
cation is performed. The difference between the two is that pending bids might get approved after additional steps
are taken by the bidder, whereas rejected bids can not be later approved.
An additional message field can appear in the content JSON to give further context as of why a bid is rejected or
pending.
Another thing that can happen is - if bids happen very close to the end date of the auction - for the merchant to
decide to extend the auction duration for a few more minutes. This is done by passing a duration_extended field
as part of a bid confirmation, which would contain a number of seconds by which the initial duration is extended.
So the actual end date of an auction is always start_date + duration + (SUM(c.duration_extended)FOR c in
all confirmations.

Customer support events
Customer support is handled over whatever communication method was specified. If communicating via nostr,
NIP-04 is used.

Additional
Standard data models can be found here

144

04.md


NIP-99
Classified Listings
draft optional

This NIP defines kind:30402: a parameterized replaceable event to describe classified listings that list any arbitrary
product, service, or other thing for sale or offer and includes enough structured metadata to make them useful.
The category of classifieds includes a very broad range of physical goods, services, work opportunities, rentals, free
giveaways, personals, etc. and is distinct from themore strictly structuredmarketplaces defined inNIP-15 that often
sell many units of specific products through very specific channels.
The structure of these events is very similar to NIP-23 long-form content events.

Draft / Inactive Listings
kind:30403 has the same structure as kind:30402 and is used to save draft or inactive classified listings.

Content
The .content field should be a description of what is being offered and by whom. These events should be a string
in Markdown syntax.

Author
The .pubkey field of these events are treated as the party creating the listing.

Metadata
• For “tags”/“hashtags” (i.e. categories or keywords of relevance for the listing) the "t" event tag should be
used, as per NIP-12.

• For images, whether included in the markdown content or not, clients SHOULD use image tags as described
in NIP-58. This allows clients to display images in carousel format more easily.

The following tags, used for structured metadata, are standardized and SHOULD be included. Other tags may be
added as necessary.

• "title", a title for the listing
• "summary", for short tagline or summary for the listing
• "published_at", for the timestamp (in unix seconds – converted to string) of the first time the listing was
published.

• "location", for the location.
• "price", for the price of the thing being listed. This is an array in the format [ "price", "<number>",

"<currency>", "<frequency>" ].
– "price" is the name of the tag
– "<number>" is the amount in numeric format (but included in the tag as a string)
– "<currency>" is the currency unit in 3-character ISO 4217 format or ISO 4217-like currency code
(e.g. "btc", "eth").

– "<frequency>" is optional and can be used to describe recurring payments. SHOULD be in noun format
(hour, day, week, month, year, etc.)

• – "status" (optional), the status of the listing. SHOULD be either “active” or “sold”.

price examples
• $50 one-time payment ["price", "50", "USD"]
• €15 per month ["price", "15", "EUR", "month"]
• £50,000 per year ["price", "50000", "GBP", "year"]

Other standard tags that might be useful.
• "g", a geohash for more precise location

145

15.md
23.md
12.md
58.md


Example Event
{
"kind": 30402,
"created_at": 1675642635,
// Markdown content
"content": "Lorem

[ipsum][nostr:nevent1qqst8cujky046negxgwwm5ynqwn53t8aqjr6afd8g59nfqwxpdhylpcpzamhxue69uhhyetvv9ujuetcv9khqmr99e3k7mg8arnc9]
dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.\n\nRead more at
nostr:naddr1qqzkjurnw4ksz9thwden5te0wfjkccte9ehx7um5wghx7un8qgs2d90kkcq3nk2jry62dyf50k0h36rhpdtd594my40w9pkal876jxgrqsqqqa28pccpzu.",

"tags": [
["d", "lorem-ipsum"],
["title", "Lorem Ipsum"],
["published_at", "1296962229"],
["t", "electronics"],
["image", "https://url.to.img", "256x256"],
["summary", "More lorem ipsum that is a little more than the title"],
["location", "NYC"],
["price", "100", "USD"],
[
"e",
"b3e392b11f5d4f28321cedd09303a748acfd0487aea5a7450b3481c60b6e4f87",
"wss://relay.example.com"

],
[
"a",
"30023:a695f6b60119d9521934a691347d9f78e8770b56da16bb255ee286ddf9fda919:ipsum",
"wss://relay.nostr.org"

]
],
"pubkey": "...",
"id": "..."

}

146



NIP-54
Wiki
draft optional

This NIP defines kind:30818 (a parameterized replaceable event) for long-form text content similar to NIP-23, but with
one important difference: articles are meant to be descriptions, or encyclopedia entries, of particular subjects, and
it’s expected that multiple people will write articles about the exact same subjects, with either small variations or
completely independent content.
Articles are identified by lowercase, normalized ascii d tags.

Articles
{
"content": "A wiki is a hypertext publication collaboratively edited and managed by its own audience.",
"tags": [
["d", "wiki"],
["title", "Wiki"],

]
}

d tag normalization rules
• Any non-letter character MUST be converted to a -.
• All letters MUST be converted to lowercase.

Content rules
The content should be Markdown, following the same rules as of NIP-23, although it takes some extra (optional)
metadata tags:

• title: for when the display title should be different from the d tag.
• summary: for display in lists.
• a and e: for referencing the original event a wiki article was forked from.

One extra functionality is added: wikilinks. Unlike normal Markdown links []() that link to webpages, wikilinks
[[]] link to other articles in the wiki. In this case, the wiki is the entirety of Nostr. Clicking on a wikilink should
cause the client to ask relays for events with d tags equal to the target of that wikilink.
Wikilinks can take these two forms:

1. [[Target Page]] – in this case it will link to the page target-page (according to d tag normalization rules
above) and be displayed as Target Page;

2. [[target page|see this]] – in this case it will link to the page target-page, but will be displayed as see
this.

Merge Requests
Event kind:818 represents a request to merge from a forked article into the source. It is directed to a pubkey and
references the original article and the modified event.
[INSERT EVENT EXAMPLE]

Redirects
Event kind:30819 is also defined to stand for “wiki redirects”, i.e. if one thinks Shell structure should redirect to
Thin-shell structure they can issue one of these events instead of replicating the content. These events can be used
for automatically redirecting between articles on a client, but also for generating crowdsourced “disambiguation”
pages (common in Wikipedia).

147

23.md
23.md
https://en.wikipedia.org/wiki/Help:Disambiguation


[INSERT EVENT EXAMPLE]

How to decide what article to display
As there could be many articles for each given name, some kind of prioritization must be done by clients. Criteria
for this should vary between users and clients, but some means that can be used are described below:

Reactions
NIP-25 reactions are very simple and can be used to create a simple web-of-trust between wiki article writers and
their content. While just counting a raw number of “likes” is unproductive, reacting to any wiki article event with a
+ can be interpreted as a recommendation for that article specifically and a partial recommendation of the author of
that article. When 2 or 3-level deep recommendations are followed, suddenly a big part of all the articles may have
some form of tagging.

Relays
NIP-51 lists of relays can be created with the kind 10102 and then used by wiki clients in order to determine where
to query articles first and to rank these differently in relation to other events fetched from other relays.

Contact lists
NIP-02 contact lists can form the basis of a recommendation system that is then expandedwith relay lists and reaction
lists through nested queries. These lists form a good starting point only because they are so widespread.

Wiki-related contact lists
NIP-51 lists can also be used to create a list of users that are trusted only in the context of wiki authorship or wiki
curationship.

Forks
Wiki-events can tag other wiki-events with a fork marker to specify that this event came from a different version.
Both a and e tags SHOULD be used and have the fork marker applied, to identify the exact version it was forked
from.

Deference
Wiki-events can tag other wiki-events with a defer marker to indicate that it considers someone else’s entry as a
“better” version of itself. If using a defermarker both a and e tags SHOULD be used.
This is a stronger signal of trust than a + reaction.
This marker is useful when a user edits someone else’s entry; if the original author includes the editor’s changes and
the editor doesn’t want to keep/maintain an independent version, the link tag could effectively be a considered a
“deletion” of the editor’s version and putting that pubkey’s WoT weight behind the original author’s version.

Why Markdown?
If the idea is to make a wiki then the most obvious text format to use is probably the mediawiki/wikitext format
used byWikipedia since it’s widely deployed in all mediawiki installations and used for decades with great success.
However, it turns out that format is very bloated and convoluted, has way too many features and probably because
of that it doesn’t have many alternative implementations out there, and the ones that exist are not complete and
don’t look very trustworthy. Also it is very much a centralized format that can probably be changed at the whims
of the Wikipedia owners.
On the other hand, Markdown has proven to work well for small scale wikis and one of the biggest wikis in the
planet (which is not very often thought of as a wiki), StackOverflow and its child sites, and also one of the biggest
“personal wiki” software, Obsidian. Markdown can probably deliver 95% of the functionality of wikitext. When

148

25.md
51.md
02.md
51.md
https://stackoverflow.com
https://obsidian.md/


augmented with tables, diagram generators and MathJax (which are common extensions that exist in the wild and
can be included in this NIP) that rate probably goes to 99%, and its simplicity is a huge benefit that can’t be over-
looked. Wikitext format can also be transpíled into Markdown using Pandoc. Given all that, I think it’s a reasonable
suspicion that mediawiki is not inherently better than Markdown, the success of Wikipedia probably cannot be
predicated on the syntax language choice.

Appendix 1: Merge requests
Users can request other users to get their entries merged into someone else’s entry by creating a kind:818 event.
{
"content": "I added information about how to make hot ice-creams",
"kind": 818,
"tags": [
[ "a", "30818:<destination-pubkey>:hot-ice-creams", "<relay-url>" ],
[ "e", "<version-against-which-the-modification-was-made>", "<relay-url>' ],
[ "p", "<destination-pubkey>" ],
[ "e", "<version-to-be-merged>", "<relay-url>", "source" ]

]
}

.content: an optional explanation detailingwhy this merge is being requested. a tag: tag of the article which should
be modified (i.e. the target of this merge request). e tag: optional version of the article in which this modifications is
based e tag with sourcemarker: the ID of the event that should be merged. This event id MUST be of a kind:30818
as defined in this NIP.
The destination-pubkey (the pubkey being requested to merge something into their article can create [NIP-25] reac-
tions that tag the kind:818 event with + or -

149



NIP-34
git stuff
draft optional

This NIP defines all the ways code collaboration using and adjacent to git can be done using Nostr.

Repository announcements
Git repositories are hosted in Git-enabled servers, but their existence can be announced using Nostr events, as well
as their willingness to receive patches, bug reports and comments in general.
{
"kind": 30617,
"content": "",
"tags": [
["d", "<repo-id>"], // usually kebab-case short name
["name", "<human-readable project name>"],
["description", "brief human-readable project description>"],
["web", "<url for browsing>", ...], // a webpage url, if the git server being used provides such a thing
["clone", "<url for git-cloning>", ...], // a url to be given to g̀it clonè so anyone can clone it
["relays", "<relay-url>", ...] // relays that this repository will monitor for patches and issues
["r", "<earliest-unique-commit-id>", "euc"]
["maintainers", "<other-recognized-maintainer>", ...]

]
}

The tags web, clone, relays, maintainers can have multiple values.
The r tag annotated with the "euc"marker should be the commit ID of the earliest unique commit of this repo, made
to identify it among forks and group it with other repositories hosted elsewhere that may represent essentially the
same project. In most cases it will be the root commit of a repository. In case of a permanent fork between two
projects, then the first commit after the fork should be used.
Except d, all tags are optional.

Patches
Patches can be sent by anyone to any repository. Patches to a specific repository SHOULD be sent to the relays
specified in that repository’s announcement event’s "relays" tag. Patch events SHOULD include an a tag pointing
to that repository’s announcement address.
Patches in a patch set SHOULD include a NIP-10 e reply tag pointing to the previous patch.
The first patch revision in a patch revision SHOULD include a NIP-10 e reply to the original root patch.
{
"kind": 1617,
"content": "<patch>", // contents of <git format-patch>
"tags": [
["a", "30617:<base-repo-owner-pubkey>:<base-repo-id>"],
["r", "<earliest-unique-commit-id-of-repo>"] // so clients can subscribe to all patches sent to a local git repo
["p", "<repository-owner>"],
["p", "<other-user>"], // optionally send the patch to another user to bring it to their attention

["t", "root"], // omitted for additional patches in a series
// for the first patch in a revision
["t", "root-revision"],

// optional tags for when it is desirable that the merged patch has a stable commit id

150

https://git-scm.com/


// these fields are necessary for ensuring that the commit resulting from applying a patch
// has the same id as it had in the proposer's machine -- all these tags can be omitted
// if the maintainer doesn't care about these things
["commit", "<current-commit-id>"],
["r", "<current-commit-id>"] // so clients can find existing patches for a specific commit
["parent-commit", "<parent-commit-id>"],
["commit-pgp-sig", "-----BEGIN PGP SIGNATURE-----..."], // empty string for unsigned commit
["committer", "<name>", "<email>", "<timestamp>", "<timezone offset in minutes>"],

]
}

The first patch in a series MAY be a cover letter in the format produced by git format-patch.

Issues
Issues are Markdown text that is just human-readable conversational threads related to the repository: bug reports,
feature requests, questions or comments of any kind. Like patches, these SHOULD be sent to the relays specified in
that repository’s announcement event’s "relays" tag.
{
"kind": 1621,
"content": "<markdown text>",
"tags": [
["a", "30617:<base-repo-owner-pubkey>:<base-repo-id>"],
["p", "<repository-owner>"]

]
}

Replies
Replies are also Markdown text. The difference is that they MUST be issued as replies to either a kind:1621 issue or
a kind:1617 patch event. The threading of replies and patches should follow NIP-10 rules.
{
"kind": 1622,
"content": "<markdown text>",
"tags": [
["a", "30617:<base-repo-owner-pubkey>:<base-repo-id>", "<relay-url>"],
["e", "<issue-or-patch-id-hex>", "", "root"],

// other "e" and "p" tags should be applied here when necessary, following the threading rules of NIP-10
["p", "<patch-author-pubkey-hex>", "", "mention"],
["e", "<previous-reply-id-hex>", "", "reply"],
// ...

]
}

Status
Root Patches and Issues have a Status that defaults to ‘Open’ and can be set by issuing Status events.
{
"kind": 1630, // Open
"kind": 1631, // Applied / Merged for Patches; Resolved for Issues
"kind": 1632, // Closed
"kind": 1633, // Draft
"content": "<markdown text>",
"tags": [

151



["e", "<issue-or-original-root-patch-id-hex>", "", "root"],
["e", "<accepted-revision-root-id-hex>", "", "reply"], // for when revisions applied
["p", "<repository-owner>"],
["p", "<root-event-author>"],
["p", "<revision-author>"],

// optional for improved subscription filter efficiency
["a", "30617:<base-repo-owner-pubkey>:<base-repo-id>", "<relay-url>"],
["r", "<earliest-unique-commit-id-of-repo>"]

// optional for `1631̀ status
["e", "<applied-or-merged-patch-event-id>", "", "mention"], // for each
// when merged
["merge-commit", "<merge-commit-id>"]
["r", "<merge-commit-id>"]
// when applied
["applied-as-commits", "<commit-id-in-master-branch>", ...]
["r", "<applied-commit-id>"] // for each

]
}

The Status event with the largest created_at date is valid.
The Status of a patch-revision defaults to either that of the root-patch, or 1632 (Closed) if the root-patch’s Status is
1631 and the patch-revision isn’t tagged in the 1631 event.

Possible things to be added later
• “branch merge” kind (specifying a URL from where to fetch the branch to be merged)
• inline file comments kind (we probably need one for patches and a different one for merged files)

152



NIP-94
File Metadata
draft optional

The purpose of this NIP is to allow an organization and classification of shared files. So that relays can filter and
organize in any way that is of interest. With that, multiple types of filesharing clients can be created. NIP-94 support
is not expected to be implemented by “social” clients that deal with kind:1 notes or by longform clients that deal
with kind:30023 articles.

Event format
This NIP specifies the use of the 1063 event type, having in content a description of the file content, and a list of
tags described below:

• url the url to download the file
• m a string indicating the data type of the file. The MIME types format must be used, and they should be
lowercase.

• x containing the SHA-256 hexencoded string of the file.
• ox containing the SHA-256 hexencoded string of the original file, before any transformations done by the
upload server

• size (optional) size of file in bytes
• dim (optional) size of file in pixels in the form <width>x<height>
• magnet (optional) URI to magnet file
• i (optional) torrent infohash
• blurhash(optional) the blurhash to show while the file is being loaded by the client
• thumb (optional) url of thumbnail with same aspect ratio
• image (optional) url of preview image with same dimensions
• summary (optional) text excerpt
• alt (optional) description for accessibility
• fallback (optional) zero or more fallback file sources in case url fails

{
"kind": 1063,
"tags": [
["url",<string with URI of file>],
["m", <MIME type>],
["x",<Hash SHA-256>],
["ox",<Hash SHA-256>],
["size", <size of file in bytes>],
["dim", <size of file in pixels>],
["magnet",<magnet URI> ],
["i",<torrent infohash>],
["blurhash", <value>],
["thumb", <string with thumbnail URI>],
["image", <string with preview URI>],
["summary", <excerpt>],
["alt", <description>]

],
"content": "<caption>",
...

}

Suggested use cases
• A relay for indexing shared files. For example, to promote torrents.
• A pinterest-like client where people can share their portfolio and inspire others.

153

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://github.com/woltapp/blurhash


• A simple way to distribute configurations and software updates.

154



NIP-96
HTTP File Storage Integration
draft optional

Introduction
This NIP defines a RESTAPI for HTTP file storage servers intended to be used in conjunctionwith the nostr network.
The API will enable nostr users to upload files and later reference them by url on nostr notes.
The specDOESNOTuse regular nostr events throughwebsockets for storing, requesting nor retrieving data because,
for simplicity, the server will not have to learn anything about nostr relays.

Server Adaptation
File storage servers wishing to be accessible by nostr users should opt-in by making available an https route at
/.well-known/nostr/nip96.json with api_url:
{
// Required
// File upload and deletion are served from this url
// Also downloads if "download_url" field is absent or empty string
"api_url": "https://your-file-server.example/custom-api-path",
// Optional
// If absent, downloads are served from the api_url
"download_url": "https://a-cdn.example/a-path",
// Optional
// Note: This field is not meant to be set by HTTP Servers.
// Use this if you are a nostr relay using your /.well-known/nostr/nip96.json
// just to redirect to someone else's http file storage server's /.well-known/nostr/nip96.json
// In this case, "api_url" field must be an empty string
"delegated_to_url": "https://your-file-server.example",
// Optional
"supported_nips": [60],
// Optional
"tos_url": "https://your-file-server.example/terms-of-service",
// Optional
"content_types": ["image/jpeg", "video/webm", "audio/*"],
// Optional
"plans": {
// "free" is the only standardized plan key and
// clients may use its presence to learn if server offers free storage
"free": {
"name": "Free Tier",
// Default is true
// All plans MUST support NIP-98 uploads
// but some plans may also allow uploads without it
"is_nip98_required": true,
"url": "https://...", // plan's landing page if there is one
"max_byte_size": 10485760,
// Range in days / 0 for no expiration
// [7, 0] means it may vary from 7 days to unlimited persistence,
// [0, 0] means it has no expiration
// early expiration may be due to low traffic or any other factor
"file_expiration": [14, 90],
"media_transformations": {
"image": [

155



'resizing'
]

}
}

}
}

Relay Hints
Note: This section is not meant to be used by HTTP Servers.
A nostr relayMAY redirect to someone else’s HTTP file storage server by adding a /.well-known/nostr/nip96.json
with “delegated_to_url” field pointing to the url where the server hosts its own /.well-known/nostr/nip96.json.
In this case, the “api_url” field must be an empty string and all other fields must be absent.
If the nostr relay is also an HTTP file storage server, it must use the “api_url” field instead.

List of Supporting File Storage Servers
See https://github.com/aljazceru/awesome-nostr#nip-96-file-storage-servers.

Auth
When indicated, clientsmust add an NIP-98 Authorization header (optionallywith the encoded payload tag set
to the base64-encoded 256-bit SHA-256 hash of the file - not the hash of the whole request body).

Upload
POST $api_url as multipart/form-data.
AUTH required
List of form fields:

• file: REQUIRED the file to upload
• caption: RECOMMENDED loose description;
• expiration: UNIX timestamp in seconds. Empty string if file should be stored forever. The server isn’t re-
quired to honor this.

• size: File byte size. This is just a value the server can use to reject early if the file size exceeds the server limits.
• alt: RECOMMENDED strict description text for visibility-impaired users.
• media_type: “avatar” or “banner”. Informs the server if the file will be used as an avatar or banner. If absent,
the server will interpret it as a normal upload, without special treatment.

• content_type: mime type such as “image/jpeg”. This is just a value the server can use to reject early if the
mime type isn’t supported.

• no_transform: “true” asks server not to transform the file and serve the uploaded file as is, may be rejected.
Others custom form data fields may be used depending on specific server support. The server isn’t required to
store any metadata sent by clients.
The filename embedded in the file may not be honored by the server, which could internally store just the SHA-256
hash value as the file name, ignoring extra metadata. The hash is enough to uniquely identify a file, that’s why it
will be used on the download and delete routes.
The serverMUST link the user’s pubkey string as the owner of the file so to later allow them to delete the file.
no_transform can be used to replicate a file to multiple servers for redundancy, clients can use the server list to find
alternative servers which might contain the same file. When uploading a file and requesting no_transform clients
should check that the hash matches in the response in order to detect if the file was modified.

156

98.md


Response codes
• 200 OK: File upload exists, but is successful (Existing hash)
• 201 Created: File upload successful (New hash)
• 202 Accepted: File upload is awaiting processing, see Delayed Processing section
• 413 Payload Too Large: File size exceeds limit
• 400 Bad Request: Form data is invalid or not supported.
• 403 Forbidden: User is not allowed to upload or the uploaded file hash didnt match the hash included in the

Authorization header payload tag.
• 402 Payment Required: Payment is required by the server, this flow is undefined.

The upload response is a json object as follows:
{
// "success" if successful or "error" if not
status: "success",
// Free text success, failure or info message
message: "Upload successful.",
// Optional. See "Delayed Processing" section
processing_url: "...",
// This uses the NIP-94 event format but DO NOT need
// to fill some fields like "id", "pubkey", "created_at" and "sig"
//
// This holds the download url ("url"),
// the ORIGINAL file hash before server transformations ("ox")
// and, optionally, all file metadata the server wants to make available
//
// nip94_event field is absent if unsuccessful upload
nip94_event: {
// Required tags: "url" and "ox"
tags: [
// Can be same from /.well-known/nostr/nip96.json's "download_url" field
// (or "api_url" field if "download_url" is absent or empty) with appended
// original file hash.
//
// Note we appended .png file extension to the `ox̀ value
// (it is optional but extremely recommended to add the extension as it will help nostr clients
// with detecting the file type by using regular expression)
//
// Could also be any url to download the file
// (using or not using the /.well-known/nostr/nip96.json's "download_url" prefix),
// for load balancing purposes for example.
["url",

"https://your-file-server.example/custom-api-path/719171db19525d9d08dd69cb716a18158a249b7b3b3ec4bbdec5698dca104b7b.png"],
// SHA-256 hash of the ORIGINAL file, before transformations.
// The server MUST store it even though it represents the ORIGINAL file because
// users may try to download/delete the transformed file using this value
["ox", "719171db19525d9d08dd69cb716a18158a249b7b3b3ec4bbdec5698dca104b7b"],
// Optional. SHA-256 hash of the saved file after any server transformations.
// The server can but does not need to store this value.
["x", "543244319525d9d08dd69cb716a18158a249b7b3b3ec4bbde5435543acb34443"],
// Optional. Recommended for helping clients to easily know file type before downloading it.
["m", "image/png"]
// Optional. Recommended for helping clients to reserve an adequate UI space to show the file before

downloading it.
["dim", "800x600"]
// ... other optional NIP-94 tags

],

157



content: ""
},
// ... other custom fields (please consider adding them to this NIP or to NIP-94 tags)

}

Note that if the server didn’t apply any transformation to the received file, both nip94_event.tags.*.ox and
nip94_event.tags.*.x fields will have the same value. The server MUST link the saved file to the SHA-256 hash
of the original file before any server transformations (the nip94_event.tags.*.ox tag value). The original file’s
SHA-256 hash will be used to identify the saved file when downloading or deleting it.
clients may upload the same file to one or many servers. After successful upload, the client may optionally
generate and send to any set of nostr relays a NIP-94 event by including the missing fields.
Alternatively, instead of using NIP-94, the client can share or embed on a nostr note just the above url.
clientsmay also use the tags from the nip94_event to construct an imeta tag

Delayed Processing
Sometimes the server may want to place the uploaded file in a processing queue for deferred file processing.
In that case, the serverMUST serve the original file while the processing isn’t done, then swap the original file for the
processed one when the processing is over. The upload response is the same as usual but some optional metadata
like nip94_event.tags.*.x and nip94_event.tags.*.size won’t be available.
The expected resultingmetadata that is known in advance should be returned on the response. For example, if the file
processing would change a file from “jpg” to “webp”, use “.webp” extension on the nip94_event.tags.*.url field
value and set “image/webp” to the nip94_event.tags.*.m field. If some metadata are unknown before processing
ends, omit them from the response.
The upload response MAY include a processing_url field informing a temporary url that may be used by clients
to check if the file processing is done.
If the processing isn’t done, the server should reply at the processing_url url with 200 OK and the following JSON:
{
// It should be "processing". If "error" it would mean the processing failed.
status: "processing",
message: "Processing. Please check again later for updated status.",
percentage: 15 // Processing percentage. An integer between 0 and 100.

}

When the processing is over, the server replies at the processing_url url with 201 Created status and a regular suc-
cessful JSON response alreadymentioned before (nowwithout a processing_url field), possibly including optional
metadata at nip94_event.tags.* fields that weren’t available before processing.

File compression
File compression and other transformations like metadata stripping can be applied by the server. However, for all
file actions, such as download and deletion, the original file SHA-256 hash is what identifies the file in the url string.

Download
GET $api_url/<sha256-hash>(.ext)

The primary file download url informed at the upload’s response field nip94_event.tags.*.url can be that or not
(it can be any non-standard url the server wants). If not, the server still MUST also respond to downloads at the
standard url mentioned on the previous paragraph, to make it possible for a client to try downloading a file on any
NIP-96 compatible server by knowing just the SHA-256 file hash.
Note that the “<sha256-hash>” part is from the original file, not from the transformed file if the uploaded file went
through any server transformation.

158

94.md


Supporting “.ext”, meaning “file extension”, is required for servers. It is optional, although recommended, for
clients to append it to the path. When present it may be used by servers to know which Content-Type header to
send (e.g.: “Content-Type”: “image/png” for “.png” extension). The file extension may be absent because the hash
is the only needed string to uniquely identify a file.
Example: $api_url/719171db19525d9d08dd69cb716a18158a249b7b3b3ec4bbdec5698dca104b7b.png

Media Transformations
servers may respond to some media transformation query parameters and ignore those they don’t support by
serving the original media file without transformations.

Image Transformations

Resizing Upon upload, servers may create resized image variants, such as thumbnails, respecting the original
aspect ratio. clients may use the w query parameter to request an image version with the desired pixel width.
servers can then serve the variant with the closest width to the parameter value or an image variant generated on
the fly.
Example: $api_url/<sha256-hash>.png?w=32

Deletion
DELETE $api_url/<sha256-hash>(.ext)

AUTH required
Note that the /<sha256-hash> part is from the original file, not from the transformed file if the uploaded file went
through any server transformation.
The extension is optional as the file hash is the only needed file identification.
The server should reject deletes from users other than the original uploader with the appropriate http response
code (403 Forbidden).
It should be noted that more than one user may have uploaded the same file (with the same hash). In this case,
a delete must not really delete the file but just remove the user’s pubkey from the file owners list (considering the
server keeps just one copy of the same file, because multiple uploads of the same file results in the same file hash).
The successful response is a 200 OK one with just basic JSON fields:
{
status: "success",
message: "File deleted."

}

Listing files
GET $api_url?page=x&count=y

AUTH required
Returns a list of files linked to the authenticated users pubkey.
Example Response:
{
"count": 1, // server page size, eg. max(1, min(server_max_page_size, arg_count))
"total": 1, // total number of files
"page": 0, // the current page number
"files": [
{
"tags": [

159



["ox": "719171db19525d9d08dd69cb716a18158a249b7b3b3ec4bbdec5698dca104b7b"],
["x": "5d2899290e0e69bcd809949ee516a4a1597205390878f780c098707a7f18e3df"],
["size", "123456"],
["alt", "a meme that makes you laugh"],
["expiration", "1715691139"],
// ...other metadata

]
"content": "haha funny meme", // caption
"created_at": 1715691130 // upload timestamp

},
...

]
}

files contains an array of NIP-94 events

Query args
• page page number (offset=page*count)
• count number of items per page

Selecting a Server
Note: HTTP File Storage Server developers may skip this section. This is meant for client developers.
A File Server Preference event is a kind 10096 replaceable event meant to select one or more servers the user wants
to upload files to. Servers are listed as server tags:
{
// ...
"kind": 10096,
"content": "",
"tags": [
["server", "https://file.server.one"],
["server", "https://file.server.two"]

]
}

160



NIP-78
Arbitrary custom app data
draft optional

The goal of this NIP is to enable remoteStorage-like capabilities for custom applications that do not care about inter-
operability.
Even though interoperability is great, some apps do not want or do not need interoperability, and it wouldn’t make
sense for them. Yet Nostr can still serve as a generalized data storage for these apps in a “bring your own database”
way, for example: a user would open an app and somehow input their preferred relay for storage, which would
then enable these apps to store application-specific data there.

Nostr event
This NIP specifies the use of event kind 30078 (parameterized replaceable event) with a d tag containing some
reference to the app name and context – or any other arbitrary string. content and other tags can be anything or in
any format.

Some use cases
• User personal settings on Nostr clients (and other apps unrelated to Nostr)
• A way for client developers to propagate dynamic parameters to users without these having to update
• Personal private data generated by apps that have nothing to dowithNostr, but allow users to useNostr relays
as their personal database

161

https://remotestorage.io/


Security

162



NIP-06
Basic key derivation from mnemonic seed phrase
draft optional

BIP39 is used to generate mnemonic seed words and derive a binary seed from them.
BIP32 is used to derive the path m/44'/1237'/<account>'/0/0 (according to the Nostr entry on SLIP44).
A basic client can simply use an account of 0 to derive a single key. For more advanced use-cases you can increment
account, allowing generation of practically infinite keys from the 5-level path with hardened derivation.
Other types of clients can still get fancy and use other derivation paths for their own other purposes.

Test vectors
mnemonic: leader monkey parrot ring guide accident before fence cannon height naive bean
private key (hex): 7f7ff03d123792d6ac594bfa67bf6d0c0ab55b6b1fdb6249303fe861f1ccba9a
nsec: nsec10allq0gjx7fddtzef0ax00mdps9t2kmtrldkyjfs8l5xruwvh2dq0lhhkp
public key (hex): 17162c921dc4d2518f9a101db33695df1afb56ab82f5ff3e5da6eec3ca5cd917
npub: npub1zutzeysacnf9rru6zqwmxd54mud0k44tst6l70ja5mhv8jjumytsd2x7nu

mnemonic: what bleak badge arrange retreat wolf trade produce cricket blur garlic valid proud rude strong choose
busy staff weather area salt hollow arm fade
private key (hex): c15d739894c81a2fcfd3a2df85a0d2c0dbc47a280d092799f144d73d7ae78add
nsec: nsec1c9wh8xy5eqdzln7n5t0ctgxjcrdug73gp5yj0x03gntn67h83twssdfhel
public key (hex): d41b22899549e1f3d335a31002cfd382174006e166d3e658e3a5eecdb6463573
npub: npub16sdj9zv4f8sl85e45vgq9n7nsgt5qphpvmf7vk8r5hhvmdjxx4es8rq74h

163

https://bips.xyz/39
https://bips.xyz/32
https://github.com/satoshilabs/slips/blob/master/slip-0044.md


NIP-49
Private Key Encryption
draft optional

This NIP defines a method by which clients can encrypt (and decrypt) a user’s private key with a password.

Symmetric Encryption Key derivation
PASSWORD = Read from the user. The password should be unicode normalized to NFKC format to ensure that the
password can be entered identically on other computers/clients.
LOG_N = Let the user or implementer choose one byte representing a power of 2 (e.g. 18 represents 262,144) which
is used as the number of rounds for scrypt. Larger numbers take more time and more memory, and offer better
protection:
| LOG_N | MEMORY REQUIRED | APPROX TIME ON FAST COMPUTER |
|-------|-----------------|----------------------------- |
| 16 | 64 MiB | 100 ms |
| 18 | 256 MiB | |
| 20 | 1 GiB | 2 seconds |
| 21 | 2 GiB | |
| 22 | 4 GiB | |

SALT = 16 random bytes
SYMMETRIC_KEY = scrypt(password=PASSWORD, salt=SALT, log_n=LOG_N, r=8, p=1)
The symmetric key should be 32 bytes long.
This symmetric encryption key is temporary and should be zeroed and discarded after use and not stored or reused
for any other purpose.

Encrypting a private key
The private key encryption process is as follows:
PRIVATE_KEY = User’s private (secret) secp256k1 key as 32 raw bytes (not hex or bech32 encoded!)
KEY_SECURITY_BYTE = one of:

• 0x00 - if the key has been known to have been handled insecurely (stored unencrypted, cut and paste unen-
crypted, etc)

• 0x01 - if the key has NOT been known to have been handled insecurely (stored unencrypted, cut and paste
unencrypted, etc)

• 0x02 - if the client does not track this data
ASSOCIATED_DATA = KEY_SECURITY_BYTE
NONCE = 24 byte random nonce
CIPHERTEXT = XChaCha20-Poly1305( plaintext=PRIVATE_KEY, associated_data=ASSOCIATED_DATA,
nonce=NONCE, key=SYMMETRIC_KEY )
VERSION_NUMBER = 0x02
CIPHERTEXT_CONCATENATION= concat( VERSION_NUMBER, LOG_N, SALT,NONCE,ASSOCIATED_DATA,
CIPHERTEXT )
ENCRYPTED_PRIVATE_KEY = bech32_encode(‘ncryptsec’, CIPHERTEXT_CONCATENATION)
The output prior to bech32 encoding should be 91 bytes long.
The decryption process operates in the reverse.

164



Test Data
Password Unicode Normalization
The following password input: “ÅΩẛ̣” - Unicode Codepoints: U+212BU+2126 U+1E9BU+0323 - UTF-8 bytes: [0xE2,
0x84, 0xAB, 0xE2, 0x84, 0xA6, 0xE1, 0xBA, 0x9B, 0xCC, 0xA3]
Should be converted into the unicode normalized NFKC format prior to use in scrypt: “ÅΩẛ̣” - Unicode Codepoints:
U+00C5 U+03A9 U+1E69 - UTF-8 bytes: [0xC3, 0x85, 0xCE, 0xA9, 0xE1, 0xB9, 0xA9]

Encryption
The encryption process is non-deterministic due to the random nonce.

Decryption
The following encrypted private key:
ncryptsec1qgg9947rlpvqu76pj5ecreduf9jxhselq2nae2kghhvd5g7dgjtcxfqtd67p9m0w57lspw8gsq6yphnm8623nsl8xn9j4jdzz84zm3frztj3z7s35vpzmqf6ksu8r89qk5z2zxfmu5gv8th8wclt0h4p

When decrypted with password=‘nostr’ and log_n=16 yields the following hex-encoded private key:
3501454135014541350145413501453fefb02227e449e57cf4d3a3ce05378683

Discussion
On Key Derivation
Passwords make poor cryptographic keys. Prior to use as a cryptographic key, two things need to happen:

1. An encryption key needs to be deterministically created from the password such that is has a uniform func-
tionally random distribution of bits, such that the symmetric encryption algorithm’s assumptions are valid,
and

2. A slow irreversible algorithm should be injected into the process, so that brute-force attempts to decrypt by
trying many passwords are severely hampered.

These are achieved using a password-based key derivation function. We use scrypt, which has been proven to be
maximally memory hard and which several cryptographers have indicated to the author is better than argon2 even
though argon2 won a competition in 2015.

On the symmetric encryption algorithm
XChaCha20-Poly1305 is typically favored by cryptographers over AES and is less associated with the U.S. govern-
ment. It (or it’s earlier variant without the ‘X’) is gaining wide usage, is used in TLS and OpenSSH, and is available
in most modern crypto libraries.

Recommendations
It is not recommended that users publish these encrypted private keys to nostr, as cracking a key may become easier
when an attacker can amass many encrypted private keys.
It is recommended that clients zero out the memory of passwords and private keys before freeing that memory.

165



NIP-98
HTTP Auth
draft optional

This NIP defines an ephemeral event used to authorize requests to HTTP servers using nostr events.
This is useful for HTTP services which are built for Nostr and deal with Nostr user accounts.

Nostr event
A kind 27235 (In reference to RFC 7235) event is used.
The content SHOULD be empty.
The following tags MUST be included.

• u - absolute URL
• method - HTTP Request Method

Example event:
{
"id": "fe964e758903360f28d8424d092da8494ed207cba823110be3a57dfe4b578734",
"pubkey": "63fe6318dc58583cfe16810f86dd09e18bfd76aabc24a0081ce2856f330504ed",
"content": "",
"kind": 27235,
"created_at": 1682327852,
"tags": [
["u", "https://api.snort.social/api/v1/n5sp/list"],
["method", "GET"]

],
"sig":

"5ed9d8ec958bc854f997bdc24ac337d005af372324747efe4a00e24f4c30437ff4dd8308684bed467d9d6be3e5a517bb43b1732cc7d33949a3aaf86705c22184"
}

Servers MUST perform the following checks in order to validate the event: 1. The kind MUST be 27235. 2. The
created_at timestamp MUST be within a reasonable time window (suggestion 60 seconds). 3. The u tag MUST be
exactly the same as the absolute request URL (including query parameters). 4. The method tag MUST be the same
HTTP method used for the requested resource.
When the request contains a body (as in POST/PUT/PATCH methods) clients SHOULD include a SHA256 hash of
the request body in a payload tag as hex (["payload", "<sha256-hex>"]), servers MAY check this to validate that
the requested payload is authorized.
If one of the checks was to fail the server SHOULD respond with a 401 Unauthorized response code.
Servers MAY perform additional implementation-specific validation checks.

Request Flow
Using the AuthorizationHTTP header, the kind 27235 event MUST be base64 encoded and use the Authorization
scheme Nostr
Example HTTP Authorization header:
Authorization: Nostr
eyJpZCI6ImZlOTY0ZTc1ODkwMzM2MGYyOGQ4NDI0ZDA5MmRhODQ5NGVkMjA3Y2JhODIzMTEwYmUzYTU3ZGZlNGI1Nzg3MzQiLCJwdWJrZXkiOiI2M2ZlNjMxOGRjNTg1ODNjZmUxNjgxMGY4NmRkMDllMThiZmQ3NmFhYmMyNGEwMDgxY2UyODU2ZjMzMDUwNGVkIiwiY29udGVudCI6IiIsImtpbmQiOjI3MjM1LCJjcmVhdGVkX2F0IjoxNjgyMzI3ODUyLCJ0YWdzIjpbWyJ1IiwiaHR0cHM6Ly9hcGkuc25vcnQuc29jaWFsL2FwaS92MS9uNXNwL2xpc3QiXSxbIm1ldGhvZCIsIkdFVCJdXSwic2lnIjoiNWVkOWQ4ZWM5NThiYzg1NGY5OTdiZGMyNGFjMzM3ZDAwNWFmMzcyMzI0NzQ3ZWZlNGEwMGUyNGY0YzMwNDM3ZmY0ZGQ4MzA4Njg0YmVkNDY3ZDlkNmJlM2U1YTUxN2JiNDNiMTczMmNjN2QzMzk0OWEzYWFmODY3MDVjMjIxODQifQ

Reference Implementations
• C# ASP.NET AuthenticationHandler NostrAuth.cs

166

https://www.rfc-editor.org/rfc/rfc7235
https://gist.github.com/v0l/74346ae530896115bfe2504c8cd018d3


Developers

167



NIP-07
window.nostr capability for web browsers
draft optional

The window.nostr object may be made available by web browsers or extensions and websites or web-apps may
make use of it after checking its availability.
That object must define the following methods:
async window.nostr.getPublicKey(): string // returns a public key as hex
async window.nostr.signEvent(event: { created_at: number, kind: number, tags: string[][], content: string }): Event

// takes an event object, adds `id̀ , p̀ubkeỳ and `sig̀ and returns it

Aside from these two basic above, the following functions can also be implemented optionally:
async window.nostr.getRelays(): { [url: string]: {read: boolean, write: boolean} } // returns a basic map of relay

urls to relay policies
async window.nostr.nip04.encrypt(pubkey, plaintext): string // returns ciphertext and iv as specified in nip-04

(deprecated)
async window.nostr.nip04.decrypt(pubkey, ciphertext): string // takes ciphertext and iv as specified in nip-04

(deprecated)
async window.nostr.nip44.encrypt(pubkey, plaintext): string // returns ciphertext as specified in nip-44
async window.nostr.nip44.decrypt(pubkey, ciphertext): string // takes ciphertext as specified in nip-44

Recommendation to Extension Authors
Tomake sure that the window.nostr is available to nostr clients on page load, the authors who create Chromium and
Firefox extensions should load their scripts by specifying "run_at": "document_end" in the extension’s manifest.

Implementation
See https://github.com/aljazceru/awesome-nostr#nip-07-browser-extensions.

168



NIP-31
Dealing with unknown event kinds
draft optional

When creating a new custom event kind that is part of a custom protocol and isn’t meant to be read as text (like
kind:1), clients should use an alt tag to write a short human-readable plaintext summary of what that event is
about.
The intent is that social clients, used to display only kind:1 notes, can still show something in case a custom event
pops up in their timelines. The content of the alt tag should provide enough context for a user that doesn’t know
anything about this event kind to understand what it is.
These clients that only know kind:1 are not expected to ask relays for events of different kinds, but users could still
reference these weird events on their notes, and without proper context these could be nonsensical notes. Having
the fallback text makes that situation much better – even if only for making the user aware that they should try to
view that custom event elsewhere.
kind:1-centric clients can make interacting with these event kinds more functional by supporting NIP-89.

169

https://github.com/nostr-protocol/nips/blob/master/89.md


NIP-89
Recommended Application Handlers
draft optional

This NIP describes kind:31989 and kind:31990: a way to discover applications that can handle unknown event-
kinds.

Rationale
Nostr’s discoverability and transparent event interaction is one of its most interesting/novel mechanics. This NIP
provides a simple way for clients to discover applications that handle events of a specific kind to ensure smooth
cross-client and cross-kind interactions.

Parties involved
There are three actors to this workflow:

• application that handles a specific event kind (note that an application doesn’t necessarily need to be a distinct
entity and it could just be the same pubkey as user A)

– Publishes kind:31990, detailing how apps should redirect to it
• user A, who recommends an app that handles a specific event kind

– Publishes kind:31989
• user B, who seeks a recommendation for an app that handles a specific event kind

– Queries for kind:31989 and, based on results, queries for kind:31990

Events
Recommendation event
{
"kind": 31989,
"pubkey": <recommender-user-pubkey>,
"tags": [
["d", <supported-event-kind>],
["a", "31990:app1-pubkey:<d-identifier>", "wss://relay1", "ios"],
["a", "31990:app2-pubkey:<d-identifier>", "wss://relay2", "web"]

]
}

The d tag in kind:31989 is the supported event kind this event is recommending.
Multiple a tags can appear on the same kind:31989.
The second value of the tag SHOULD be a relay hint. The third value of the tag SHOULD be the platform where
this recommendation might apply.

Handler information
{
"kind": 31990,
"pubkey": "<application-pubkey>",
"content": "<optional-kind:0-style-metadata>",
"tags": [
["d", <random-id>],
["k", <supported-event-kind>],
["web", "https://..../a/<bech32>", "nevent"],
["web", "https://..../p/<bech32>", "nprofile"],
["web", "https://..../e/<bech32>"],

170



["ios", ".../<bech32>"]
]

}

• content is an optional metadata-like stringified JSON object, as described in NIP-01. This content is useful
when the pubkey creating the kind:31990 is not an application. If content is empty, the kind:0 of the pubkey
should be used to display application information (e.g. name, picture, web, LUD16, etc.)

• k tags’ value is the event kind that is supported by this kind:31990. Using a k tag(s) (instead of having the
kind of the d tag) provides:

– Multiple k tags can exist in the same event if the application supports more than one event kind and their
handler URLs are the same.

– The same pubkey can have multiple events with different apps that handle the same event kind.
• bech32 in a URL MUST be replaced by clients with the NIP-19-encoded entity that should be loaded by the
application.

Multiple tags might be registered by the app, following NIP-19 nomenclature as the second value of the array.
A tag without a second value in the array SHOULD be considered a generic handler for any NIP-19 entity that is
not handled by a different tag.

Client tag
When publishing events, clients MAY include a client tag. Identifying the client that published the note. This tag is
a tuple of name, address identifying a handler event and, a relay hint for finding the handler event. This has privacy
implications for users, so clients SHOULD allow users to opt-out of using this tag.
{
"kind": 1,
"tags": [
["client", "My Client", "31990:app1-pubkey:<d-identifier>", "wss://relay1"]

]
...

}

User flow
A user A who uses a non-kind:1-centric nostr app could choose to announce/recommend a certain kind-handler
application.
When user B sees an unknown event kind, e.g. in a social-media centric nostr client, the client would allow user B
to interact with the unknown-kind event (e.g. tapping on it).
The client MIGHT query for the user’s and the user’s follows handler.

Example
User A recommends a kind:31337-handler
User A might be a user of Zapstr, a kind:31337-centric client (tracks). Using Zapstr, user A publishes an event
recommending Zapstr as a kind:31337-handler.
{
"kind": 31989,
"tags": [
["d", "31337"],
["a", "31990:1743058db7078661b94aaf4286429d97ee5257d14a86d6bfa54cb0482b876fb0:abcd", <relay-url>, "web"]

],
...

}

171



User B interacts with a kind:31337-handler
User B might see in their timeline an event referring to a kind:31337 event (e.g. a kind:1 tagging a kind:31337).
User B’s client, not knowing how to handle a kind:31337might display the event using its alt tag (as described in
NIP-31). When the user clicks on the event, the application queries for a handler for this kind:
["REQ", <id>, { "kinds": [31989], "#d": ["31337"], "authors": [<user>, <users-contact-list>] }]

User B, who follows User A, sees that kind:31989 event and fetches the a-tagged event for the app and handler
information.
User B’s client sees the application’s kind:31990 which includes the information to redirect the user to the relevant
URL with the desired entity replaced in the URL.

Alternative query bypassing kind:31989

Alternatively, users might choose to query directly for kind:31990 for an event kind. Clients SHOULD be careful
doing this and use spam-prevention mechanisms or querying high-quality restricted relays to avoid directing users
to malicious handlers.
["REQ", <id>, { "kinds": [31990], "#k": [<desired-event-kind>], "authors": [...] }]

172



Conclusion
Thank you for exploring the nostr-book. My hope is that this reorganized collection of Nostr Notes in Progress
(NIPs) has provided you with a clearer and more structured understanding of the Nostr protocol. By grouping
similar NIPs together, the aim was to create a logical flow that enhances comprehension and makes the information
more accessible to everyone.
As we wrap up this book, remember that the journey with Nostr doesn’t end here. The protocol is continuously
evolving, and your engagement and contributions are crucial for its growth and refinement. I encourage you to
participate in the discussions, contribute your ideas, and help in developing this open and decentralized platform.
Once again, all the credit for the content in this book goes to the original authors of the NIPs. This compilation is
merely a tool to assist in navigating their innovative work. Whether you’re a developer, researcher, or enthusiast,
your insights and enthusiasm are what will propel Nostr forward.
Let’s keep the spirit of innovation and collaboration alive. Here’s to building a more connected and decentralized
future together!

173


	Introduction
	Git Commit
	Nostr Overview
	NIP-01
	Basic protocol flow description
	Events and signatures
	Communication between clients and relays

	Communication
	NIP-10
	On “e” and “p” tags in Text Events (kind 1).
	Abstract
	Positional “e” tags (DEPRECATED)
	Marked “e” tags (PREFERRED)
	The “p” tag

	NIP-14
	Subject tag in Text events

	NIP-23
	Long-form Content
	Example Event

	NIP-24
	Extra metadata fields and tags

	kind 0
	kind 3
	tags
	NIP-17
	Private Direct Messages
	Direct Message Kind
	Chat Rooms
	Encrypting
	Publishing
	Relays
	Benefits & Limitations
	Implementation
	Examples

	NIP-04
	Encrypted Direct Message
	Security Warning
	Client Implementation Warning

	NIP-40
	Expiration Timestamp
	Client Behavior
	Relay Behavior
	Suggested Use Cases

	NIP-09
	Event Deletion
	Client Usage
	Relay Usage
	Deleting a Deletion

	NIP-92
	Media Attachments
	Example
	Recommended client behavior

	Social
	NIP-02
	Follow List
	Uses

	NIP-05
	Mapping Nostr keys to DNS-based internet identifiers
	Finding users from their NIP-05 identifier
	Notes

	NIP-25
	Reactions
	Tags
	Custom Emoji Reaction

	NIP-30
	Custom Emoji

	NIP-18
	Reposts
	Quote Reposts
	Generic Reposts

	NIP-27
	Text Note References
	Example of a profile mention process
	Verbose and probably unnecessary considerations

	NIP-08
	Handling Mentions

	NIP-38
	User Statuses
	Abstract
	Live Statuses

	Client behavior
	Use Cases
	NIP-58
	Badges

	NIP-39
	External Identities in Profiles
	Abstract
	i tag on a metadata event
	Claim types

	Groups
	NIP-28
	Public Chat
	Kind 40: Create channel
	Kind 41: Set channel metadata
	Kind 42: Create channel message
	Kind 43: Hide message
	Kind 44: Mute user
	Relay recommendations
	Motivation
	Additional info

	NIP-29
	Relay-based Groups
	Relay-generated events
	Group identifier
	The h tag
	Timeline references
	Late publication
	Event definitions
	Storing the list of groups a user belongs to

	Moderation
	NIP-32
	Labeling
	Label Namespace Tag
	Label Tag
	Label Target
	Content
	Self-Reporting
	Example events
	Other Notes
	Appendix: Known Ontologies

	NIP-51
	Lists
	Types of lists
	Standard lists
	Sets
	Deprecated standard lists
	Examples
	Encryption process pseudocode

	NIP-56
	Reporting
	Tags
	Example events
	Client behavior
	Relay behavior

	NIP-36
	Sensitive Content / Content Warning

	NIP-72
	Moderated Communities (Reddit Style)

	Community Definition
	New Post Request
	Post Approval by moderators
	Displaying
	NIP-13
	Proof of Work
	Mining
	Example mined note
	Validating
	Querying relays for PoW notes
	Delegated Proof of Work

	Relays
	NIP-11
	Relay Information Document
	Field Descriptions
	Extra Fields
	Protocol flow
	Signed Event Verification

	NIP-50
	Search Capability
	Abstract
	search filter field
	Extensions

	NIP-45
	Event Counts
	Motivation
	Filters and return values
	Examples

	NIP-65
	Relay List Metadata
	When to Use Read and Write Relays
	Motivation
	Final Considerations

	NIP-48
	Proxy Tags

	Clients
	NIP-21
	nostr: URI scheme
	Examples

	NIP-19
	bech32-encoded entities
	Bare keys and ids
	Shareable identifiers with extra metadata
	Examples
	Notes

	NIP-03
	OpenTimestamps Attestations for Events

	Payments
	NIP-57
	Lightning Zaps
	Protocol flow
	Reference and examples
	Future Work

	NIP-47
	Nostr Wallet Connect
	Rationale
	Terms
	Theory of Operation
	Events
	Nostr Wallet Connect URI
	Commands
	Example pay invoice flow
	Using a dedicated relay

	NIP-75
	Zap Goals
	Nostr Event
	Client behavior
	Use cases

	Third Parties
	NIP-26
	Delegated Event Signing

	NIP-59
	Gift Wrap

	Overview
	Protocol Description
	1. The Rumor Event Kind
	2. The Seal Event Kind
	3. Gift Wrap Event Kind

	Encrypting Payloads
	Other Considerations
	An Example
	1. Create an event
	2. Seal the rumor
	3. Wrap the seal
	4. Broadcast Selectively

	Code Samples
	JavaScript

	NIP-46 - Nostr Remote Signing
	Rationale
	Terminology
	Initiating a connection
	The flow
	Request Events kind: 24133
	Response Events kind:24133
	Remote Signer Commands
	Appendix
	References

	NIP-90
	Data Vending Machine
	Kinds
	Rationale
	Job request (kind:5000-5999)
	Encrypted Params
	Job result (kind:6000-6999)
	Encrypted Output
	Job feedback

	Protocol Flow
	Notes about the protocol flow

	Cancellation
	Appendix 1: Job chaining
	Appendix 2: Service provider discoverability
	Application Features
	NIP-52
	Calendar Events
	Calendar Events
	Calendar
	Calendar Event RSVP
	Unsolved Limitations
	Intentionally Unsupported Scenarios

	NIP-53
	Live Activities
	Concepts
	Use Cases
	Example

	NIP-84
	Highlights
	Format

	NIP-15
	Nostr Marketplace
	Terms
	Nostr Marketplace Clients
	Merchant publishing/updating products (event)
	Checkout events
	Customize Marketplace
	Auctions
	Customer support events
	Additional

	NIP-99
	Classified Listings
	Example Event

	NIP-54
	Wiki
	How to decide what article to display
	Forks
	Deference
	Why Markdown?

	Appendix 1: Merge requests
	NIP-34
	git stuff
	Repository announcements
	Patches
	Issues
	Replies
	Status
	Possible things to be added later

	NIP-94
	File Metadata
	Event format
	Suggested use cases

	NIP-96
	HTTP File Storage Integration
	Introduction
	Server Adaptation
	Auth
	Upload
	Download
	Deletion
	Listing files
	Selecting a Server

	NIP-78
	Arbitrary custom app data
	Nostr event
	Some use cases

	Security
	NIP-06
	Basic key derivation from mnemonic seed phrase

	NIP-49
	Private Key Encryption
	Symmetric Encryption Key derivation
	Encrypting a private key
	Test Data
	Password Unicode Normalization
	Encryption
	Decryption
	Discussion
	Recommendations

	NIP-98
	HTTP Auth
	Nostr event
	Request Flow
	Reference Implementations

	Developers
	NIP-07
	window.nostr capability for web browsers

	NIP-31
	Dealing with unknown event kinds

	NIP-89
	Recommended Application Handlers
	Rationale
	Events
	Handler information

	Client tag
	User flow
	Example
	Conclusion


