
  

Python



  

Python is a high-level programming language which is:

Interpreted: Python is processed at run time by the 
interpreter.

Interactive: You can use a Python prompt and interact with the 
interpreter directly to write your programs.

Object-Oriented: Python supports Object-Oriented technique of 
programming.

Beginner’s Language: Python is a great language for the 
beginner-level programmers and supports the development of a 
wide range of applications.



  

History



  

Python was conceptualized by Guido Van Rossum in the late 1980s.

Rossum published the first version of Python code (0.9.0) in 
February 1991 at the CWI (Centrum Wiskunde & Informatica) in the 
Netherlands , Amsterdam.

Python is derived from ABC programming language, which is a 
general-purpose programming language that had been developed at 
the CWI.

Rossum chose the name "Python", since he was a big fan of Monty 
Python's Flying Circus.

Python is now maintained by a core development team at the 
institute, although Rossum still holds a vital role in directing 
its progress.



  

Features



  

● Python is Easy to learn, easy to read and easy to maintain.

● Python is Portable, It can run on various hardware platforms 
and has the same interface on all platforms.

● Python is Extendable, You can add low-level modules to the 
Python interpreter.

● Python is Scalable, Python provides a good structure and 
support for large programs.

● Python has a broad standard library cross-platform.

● Everything in Python is an object, variables, functions, even 
code. Every Object has an ID, a type, and a value.

>>> x=36
>>> id(x)
4297539008
>>> type(x)
<class 'int'>



  

● Python provides interfaces to all major commercial databases.

● Python supports functional and structured programming methods 
as well as Object Oriented Programming.

● Python provides very high-level dynamic data types and 
supports dynamic type checking.

● Python supports GUI applications

● Python supports automatic garbage collection.

● Python can be easily integrated with C, C++, and Java.



  

Versions



  

Python 1.0 (January 1994)
latest minor version is 1.6

this version is discontinued.

Python 2.0 (October 2000)
latest minor version is 2.7

this version will be discontinued in 2020.

Python 3.0 (December 2008)
latest minor version is 3.7

this is the current version of python.



  

Python 2 vs Python 3



  

print statement has been replaced with print() function.

There is only one integer type left, int.

Some methods such as map() and filter() return iterator objects 
in Python 3 instead of lists in Python 2.

In Python 3, a TypeError is raised as warning if we try to 
compare unorderable types. e.g. 0 > None is no longer valid.

Python 3 provides Unicode (utf-8) strings while Python 2 has 
ASCII str() types and separate unicode().

A new built-in string formatting method format() replaces the % 
string formatting operator.

# python 2
print "Hello World!"
# python 3
print("Hello World!")



  

In Python 3, we should enclose the exception argument in 
parentheses.

In Python 3, we have to use the as keyword now in the handling 
of exceptions.

The division of two integers returns a float instead of an 
integer. // can be used to have the old behavior.

# python 2
raise IOError, "file error"
# python 3
raise IOError("file error")

# python 2
Try:

... 
except NameError, err:

... 

# python 3
Try:

... 
except NameError as err:

... 



  

Installation



  

Windows: download installer from following address

  (remember to select ‘Add Python too PATH’ while installation)

Ubuntu/Debian:

Fedora:

Arch/Manjaro:

MacOS:

for source files and packages for almost any operating systems 
check following address:

~ sudo apt install python3

~ sudo yum install python3

~ sudo pacman -S python

~ brew install python

https://www.python.org/downloads/windows/

https://www.python.org/downloads/

https://www.python.org/downloads/windows/
https://www.python.org/downloads/


  

Python must be added to OS PATH variable to be callable.

In Ubuntu python command used for Python 2 version and python3 
is used for Python 3 version. it could be different in each OS 

Checking installed Python version

Running Python 3 shell:

Running Python 3 script:
~ python3 /path/to/script_file.py

~ Python3 --version

~ python3



  

PIP Package Manager



  

Windows: Python installer will install pip too.

Ubuntu/Debian:

Fedora:

Arch/Manjaro:

MacOS: Installing Python with brew will install pip too.

Using pip too install a package: (pip3 command could be pip in 
some OSes like Windows, in Ubuntu it is pip3)

uninstalling a package:

~ sudo apt install python3-pip

~ sudo yum install python3

~ sudo pacman -S python-pip

~ brew install python

https://www.python.org/downloads/windows/

~ pip3 install package-name

~ pip3 uninstall package-name

https://www.python.org/downloads/windows/


  

Basic Syntax



  

Python files have .py extension.

Indentation is used in Python to delimit blocks. The number of 
spaces is variable, but all statements within the same block 
must be indented the same amount.

The header line for compound statements, such as if, while, 
def, and class should be terminated with a colon ( : ).

The semicolon ( ; ) is optional at the end of statement, but it 
is preferred to not using it.

if True:
print("Answer")
print("True")

else:
print("Answer")

 print("False") # Error! Not using same indention.



  

Printing to the Screen

Reading Keyboard Input

Comments

print("Hello World!")

name = input("Enter your name: ")

# one line comment in python!

"""
Multi line comments in in python,
Is like this!
"""



  

Python is dynamically typed. You do not need to declare 
variables!

The declaration happens automatically when you assign a value to 
a variable.

Variables can change type, simply by assigning them a new value 
of a different type.

Python allows you to assign a single value to several variables 
simultaneously, and also allows to assign multiple values to 
multiple variables too.

counter = 1000 
miles = 1000.0
name = "Abolfazl"
x = None
x = 2
x = "string"

a = b = c = 3
x, y, z = 1, 2, "string"



  

Numbers



  

Numbers are Immutable objects in Python that cannot change their 
values.

There are three built-in data types for numbers in Python3:
● Integer (int)
● Floating-point numbers (float)
● Complex numbers: <real part> + <imaginary part>j

Common Number Functions

Function Description

int(x) to convert x to an integer

float(x) to convert x to a floating-point number

abs(x) The absolute value of x

cmp(x, y) -1 if x < y, 0 if x == y, or 1 if x > y

exp(x) The exponential of x: e x

log(x) The natural logarithm of x, for x > 0

pow(x, y) The value of x**y

sqrt(x) The square root of x for x > 0



  

Strings



  

Python Strings are Immutable objects that cannot change their 
values.

You can update an existing string by (re)assigning a variable to 
another string.
Python does not support a character type; these are treated as 
strings of length one.
Python accepts single ('), double (") and triple (''' or """) 
quotes to denote string literals.

String indexes starting at 0 in the beginning of the string and 
working their way from -1 at the end.

>>> str1 = "strings are immutable!"
>>> str1[0] = "S"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

str1 = 'str1'
str2 = '''str2'''
str3 = "str3"
str4 = """str4"""

positive indexes    >>   | 0 | 1 | 2 | 3 | 4 |
string is 'HELLO'   >>   | H | E | L | L | O |
negative indexes    >>   |-5 |-4 |-3 |-2 |-1 |



  

String Formatting:

Common String Operators, Assume: a='Hello' and b='Python'

>>> num = 6
>>> string = "I have {} books!".format(num)
>>> print(string)
I have 6 books!

Operator Description Example

+ Concatenation - Adds values on either 
side of the operator

a+b >>> HelloPython

* Repetition - Creates new strings, 
concatenating multiple copies of
the same string

a*2 >>> HelloHello

[] Slice - Gives the character from the 
given index

a[1]   >>> e
a[-1]  >>> o

[:] Range Slice - Gives the characters from 
the given range

a[1:4] >>> ell

in Membership - Returns true if a character 
exists in the given string

'H' in a >>> True



  

Common String Methods

Common String Functions

Function Description

str.count(sub, beg=0, 
end=len(str))

Counts how many times sub occurs in string or in a 
substring of string if starting index beg and ending 
index end are given.

str.isalpha() Returns True if string has at least 1 character and 
all characters are alphanumeric and False otherwise.

str.isdigit() Returns True if string contains only digits and False 
otherwise.

str.lower() Converts letters in string to lowercase.

str.upper() Converts letters in string to uppercase.

str.replace(old, new) Replaces all occurrences of old in string with new.

str.split(str=‘ ’) Splits string according to delimiter str (space if not 
provided) and returns list of substrings.

str.strip() Removes all leading and trailing white spaces of 
string.

str.title() Returns "titlecased" version of string.

Function Description

str(x) to convert x to an String

len(x) gives the total length of the string



  

Lists



  

A list in Python is an ordered group of items or elements, and 
these list elements don't have to be of the same type. Lists are 
mutable objects that can change their values.

List indexes like strings starting at 0 in the beginning of the 
list and working their way from -1 at the end.

Similar to strings, Lists operations include slicing ([] and 
[:]), concatenation (+), repetition (*), and membership (in).

access, update and delete list elements is like:
>>> list1 = ['programming', 'python', 1996, 2019, 0.5]
>>> print(list1[0])
programming
>>> print(list1[1:4])
['python', 1996, 2019]
>>> list1[2] = 2000
>>> print(list1[2])
2000
>>> del(list1[4])
>>> print(list1)
['programming', 'python', 2000, 2019]



  

Lists can have sub-lists as elements and these sub-lists may 
contain other sub-lists as well.

Common List Functions

>>> persons = [["Abolfazl", 1996], ["Sarah", 1997]]
>>> name = persons[0][0]
>>> birth = persons[0][1]
>>> print("{} was born on {}".format(name, birth))
Abolfazl was born on 1996

Function Description

cmp(list1, list2) Compares elements of both lists.

len(list) Gives the total length of the list.

max(list) Returns item from the list with max value.

min(list) Returns item from the list with min value.

list(tuple) Converts a tuple into list.



  

List Comprehensions consists of an expression followed by a for 
clause.

Common List Methods

>>> a = [1, 2, 3]
>>> [x**2 for x in a]
[1, 4, 9]
>>> [x+1 for x in [x**2 for x in a]]
[2, 5, 10]

Method Description

list.append(obj) Appends object obj to list

list.insert(index, obj) Inserts object obj into list at offset index

list.count(obj) Returns count of how many times obj occurs in list

list.index(obj) Returns the lowest index in list that obj appears

list.remove(obj) Removes object obj from list

list.reverse() Reverses objects of list in place

list.sort() Sorts objects of list in place



  

Tuples



  

Python Tuples are Immutable objects that cannot be changed once 
they have been created.

You can update an existing tuple by (re)assigning a variable to 
another tuple.

Tuples are faster than lists and protect your data against 
accidental changes to these data.

The rules for tuple indices are the same as for lists and they 
have the same operations, functions as well.

To write a tuple containing a single value, you have to include a 
comma, even though there is only one value. e.g. t = (3, )

>>> t = ("tuples", "are", "immutable", 1996)
>>> t[0]
'tuples'
>>> t[0] = "New Value"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment



  

Dictionaries



  

Python dictionaries are kind of hash table type which consist of 
key-value pairs of unordered elements.

● Keys: must be immutable data types ,usually numbers or 
strings.

● Values: can be any arbitrary Python object.

Python Dictionaries are mutable objects that can change their 
values.

A dictionary is enclosed by curly braces ({}), the items are 
separated by commas, and each key is separated from its value by 
a colon (:).

Dictionary’s values can be assigned and accessed using square 
braces ([]) with a key to obtain its value.



  

Simple script to show dictionary usage:
dict1 = {'Name': 'Abolfazl', 'Age':23, 'Major': 'CSE'}

# Access dictionary data
print('name: ', dict1['Name'])
print('age: ', dict1['Age'])
print(dict1.keys())
print(dict1.values())
print(dict1.items())

# Update dictionary data
dict1['Age'] = 24
dict1['University'] = 'SBUK'
print('new age: ', dict1['Age'])
print('university: ', dict1['University'])

# Delete dictionary data
del dict1['Name']
print(dict1)
dict1.clear()
print(dict1)



  

Output:
name:  Abolfazl
age:  23
dict_keys(['Name', 'Age', 'Major'])
dict_values(['Abolfazl', 23, 'CSE'])
dict_items([('Name', 'Abolfazl'), ('Age', 23), ('Major', 'CSE')])
new age:  24
university:  SBUK
{'Age': 24, 'Major': 'CSE', 'University': 'SBUK'}
{}



  

Common Dictionary Methods

Common Dictionary Functions

Function Description

dict.keys() Returns list of dict's keys

dict.values() Returns list of dict's values

dict.items() Returns a list of dict's (key, value) tuple pairs

dict.get(key, 
default=None)

For key, returns value or default if key not in dict

dict.has_key(key) Returns True if key in dict, False otherwise

dict.update(dict2) Adds dict2's key-values pairs to dict

dict.clear() Removes all elements of dict

Function Description

cmp(dict1, dict2) compares elements of both dict.

len(dict) gives the total number of (key, value) pairs in the 
dictionary.



  

Conditionals



  

In Python, True and False are Boolean objects of class 'bool' and 
they are immutable.

Python assumes any non-zero and non-null values as True, 
otherwise it is False value.

Python does not provide switch/case statements as in other 
languages.

Example of Python if statement

Inline conditional expression

x = int(input("Please enter positive integer: "))
if x < 0:
    x = 0
    print("negative integer changed to zero")
elif x == 0:
    print("zero")
elif x == 1:
    print("single")
else:
    print("multiple")

x = "Smaller" if a < b else "Bigger"



  

Loops



  

for and while loops

Output

for letter in 'Python':
    print(letter, end='-')
print() # end of 1st example
list_data = ['P','y','t','h','o','n']
for d in list_data:
    print(d, end='*')
print() # end of 2nd example
for index in range(len(list_data)):
    print(list_data[index], end='_')
print() # end of 3rd example
count, string = 0, 'Python'
while count <= 5:
    print(string[count], end=' ')
    count+=1
print() # end of 4th example
dict_data = {0:'P', 1:'y', 2:'t', 3:'h', 4:'o', 5:'n'}
for key, value in dict_data.items():
    print(key, value, end=' | ')

P-y-t-h-o-n-
P*y*t*h*o*n*
P_y_t_h_o_n_
P y t h o n
0 P | 1 y | 2 t | 3 h | 4 o | 5 n |



  

Loops control statements in Python are:

break: Terminates the loop statement and transfers execution to   
       the statement immediately following the loop.
continue: Causes the loop to skip the remainder of its body and   
       immediately retest it’s condition prior to reiterating.
pass: Used when a statement is required syntactically but you do  
      not want any command or code to execute.

Example

Output

for letter in 'Python':
    if letter == 'o':
        break
    if letter == 't':
        continue
    if letter == 'P':
        pass
    else:
        print(letter)

y
h



  

Functions



  

Python functions syntax is like:

In this function name and age are Required-Arguments and 
current_year is Optional-Argument with default value.
this function can be called like:

Also arguments can be sent like tuples or dictionaries too:

The output would be:

def person_data(name, age, current_year=2019):
"""function doc string, this function return year of birth"""
born_on = current_year - age
return "{} born on {}".format(name, born_on)

person_data("Abolfazl", 24, 2020) # name, age and current_year are given
person_data("Abolfazl", 23) # current_year keep it’s default value 2019
person_data(age=23, name="Abolfazl") # name and age are given as keywords

def print_arguments(arg, *args, **kwargs):
print("arg = ", arg)
print("args = ", args)
print("kwargs = ", kwargs)

print_arguments(1, 2, 3, 4, name="Abolfazl", family="Amiri")

arg =  1
args =  (2, 3, 4)
kwargs =  {'name': 'Abolfazl', 'family': 'Amiri'}



  

Working With Files



  

# use 'w' for write mode and 'a' for append mode.
# these modes will create file if not exist
file_object = open(file='example.txt', mode='a')
file_object = open(file='example.txt', mode='w')

# writing to file
file_object.write('write this lines!\nto the file.\n')
file_object.writelines(['line 3\n', 'line 4\n', 'line 6'])

# files most be closed to save changes
file_object.close()

# use 'r' for read mode.
# this mode will raise FileNotFoundError Exception if file not exist
file_object = open(file='example.txt', mode='r')

# reading file content 
print("readline  output >>", file_object.readline(), end='') 
print("readlines output >>", file_object.readlines())
print("read      output >>", file_object.read(), end='')
file_object.close()

Opening a file, writing some data and then printing it’s content:

Output:
readline  output >> write this lines!
readlines output >> ['to the file.\n', 'line 3\n', 'line 4\n', 'line 6']
read      output >>



  

Exception Handling



  

try:
    file = open('example2.txt', 'r')
    print('file content >>', file.read())
    file.close()
except NameError:
    print('NameError raised!')
except Exception as e:
    print(e)
finally:
    print('this will be printed anyway!')

In Python all exceptions are sub-classes of Exception class.

Trying to open a file that does not exist:

Output:
[Errno 2] No such file or directory: 'example2.txt'
this will be printed anyway!



  

Modules



  

A module is a file consisting of Python code that can define 
functions, classes and variables.

You can use any Python source file as a module by executing an 
import statement.

Python's from statement lets you import specific attributes from 
a module into the current namespace.

import * statement can be used to import all names from a module 
into the current namespace.

import datetime

from datetime import datetime, timezone
from json.encoder import JSONEncoder

from datetime import *



  

Object Oriented Programming



  

class Employee:
"""common base class for all employees"""

    __count, __all = 0, []

    def __init__(self, name, born_year, salary):
        self.__name, self.__born_year, self.__salary = name, born_year, salary
        Employee.__all.append(self)
        Employee.__count += 1

    def age(self, current_year):
        return current_year - self.__born_year

    @classmethod
    def all_str(cls):
        result = "{} {}:".format(

cls.__count, 'employees' if cls.__count > 1 else 'employee')
        for employee in cls.__all:
            result += '\n' + str(employee)
        return result

    def __str__(self):
        return "{} born on {}, salary={}".format(

self.__name, self.__born_year, self.__salary)

emp1 = Employee("Abolfazl", 1996, 12345)
emp2 = Employee("Sarah", 1997, 54321)
print(emp1.age(2019))
print(Employee.all_str())



  

Output:

Built-in class functions:

method/attribute started with double-underscore (__) is private 
to the class and will not be inherited from subclass and is 
accessible with _class__attribute inside subclass.

method/attribute started with underscore (_) is protected, but is 
accessible from subclass and directly.

23
2 employees:
Abolfazl born on 1996, salary=12345
Sarah born on 1997, salary=54321

# return 'True' if emp1 has 'age' attribute otherwise 'False'
hasattr(emp1, 'age')
# return 'age' attribute value
getattr(emp1, 'age')
# set 'age' attribute value to 24
setattr(emp1, 'age', 24)
# delete 'age' attribute from emp1 object
delattr(emp1, 'age')



  

class Person:
    def __init__(self, name, age):
        self.name, self.__age = name, age

    def get_details(self):
        return "name={} age={}".format(self.name, self.__age)

class Student(Person):
    def __init__(self, name, age, branch, year):
        self.branch, self.year = branch, year
        # also 'Person.__inti__(name, age)' can be used
        super().__init__(name, age)

    def get_details(self):
        return "name={} age={} branch={} year={}".format(
            self.name, self._Person__age, self.branch, self.year)

person = Person('Sarah', 23)
student = Student('Abolfazl', 24, 'CSE', 2014)
print(person.get_details())
print(student.get_details())

name=Sarah age=23
name=Abolfazl age=24 branch=CSE year=2014

Inheritance:

Output:



  

Tips & Tools



  

Python scripts can be written with any text-editors such vim or 
notepad, also a Python Development Plugin is almost available for 
any IDE, such PyDev for Eclipse.
PyCharm is a Python IDE with Community and Professional editions.

Some useful Python standard libraries:
● os >> operating system interfaces
● datetime >> basic date and time types
● math >> mathematical functions
● random >> generate pseudo-random numbers
● sqlite3 >> interface for SQLite databases
● hashlib >> secure hashes and message digests
● threading >> thread-based parallelism
● subprocess >> subprocess management
● tkinter >> python interface to Tcl/Tk
● unittest >> unit testing framework

find more here:

https://www.jetbrains.com/pycharm/

https://docs.python.org/3/library/

https://www.jetbrains.com/pycharm/
https://docs.python.org/3/library/


  

References



  

You can find this file and example script files in:

Python official documents:

https://abolfazlamiri.ir/python3tutorials/
https://github.com/aasmpro/python3tutorials/

https://docs.python.org/3/

https://abolfazlamiri.ir/python3tutorials/
https://github.com/aasmpro/python3tutorials/
https://docs.python.org/3/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

