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Abstract—In this paper we present Seattle, a practical and
publicly accessible fog computing platform with a deployment
history going back to 2009. Seattle’s cross-platform portable
sandbox implementation tackles the widely-recognized issue of
node heterogeneity. Its componentized architecture supports a
number of approaches to operating a Seattle-based fog system,
from isolated, standalone and peer-to-peer operations, to full-
fledged provisioning by a dedicated operator, or federations of
many operators. Seattle’s components and interfaces are designed
for compatibility and reuse, and may be aligned with existing
trust boundaries between different stakeholders.

Seattle comprises implementations of all components discussed
in this paper. Its free, open-source software stack has been used
for teaching and research; outside groups have used existing
Seattle components, and constructed new components with com-
patible interfaces in order to adapt the platform to their needs.

I. INTRODUCTION AND RELATED WORK

In recent years, fog computing has established itself as an
approach to cloud computing at the edge of the network. Fog
systems are typically characterized by the large number of
geographically distributed nodes, ranging from embedded sys-
tems, like network connected sensors, to smartphones and end-
user laptops [6], [19], [41]. While leveraging the ubiquitous
availability and specific capabilities of such devices brings
many opportunities, it also carries new challenges unknown
to traditional cloud services. Such challenges include the
heterogeneity of fog nodes [6], [28], [34], [41], their accessi-
bility, e.g. behind private networks, and extended security and
privacy requirements [7].

Another issue is that existing proposed fog computing
architectures have been described as “siloed” [4], referring to
the lack of open interfaces that characterize today’s fog devices
and infrastructures. Furthermore, opportunities and challenges
have been widely addressed in the respective literature from a
theoretical point of view, but actual fog computing implemen-
tations — let alone actively deployed and publicly available
platforms that can be used in fog contexts — are rare.

In this paper, we present our Seattle platform and make the
case for why its unique design is well suited for fog computing
applications. But, to provide context, we first review relevant
aspects of the existing literature.

A. Related Work

Emerging technologies have opened potentially promising
new areas for research in fog computing. Bellavista et al. [3]
investigate the applicability of Docker containers for fog
computing. The work uses and extends the open-source Kura
framework to create Internet of Things (IoT) gateways that

control information flow between fog nodes and the cloud,
while also reviewing and benchmarking different container-
related technologies used in these nodes. The focus of this
work is on IoT computing, where tailored services run on fog
nodes to gather data that is forwarded to the cloud for further
processing. A similar evaluation of Docker containers for edge
computing can be found in [26].

Others have contributed fog platforms for very specific
use cases, e.g. an emergency alert system using smartphones
that propagate alerts to nearby emergency departments [1],
an idea also proposed by Masip-Bruin et al. [29]. Gazis et
al. introduce an “Adaptive Operations Platform” to effectively
apply equipment failure models within the context of Industrial
IoT [23]. Amrutur et al. [2] discuss the use of a testbed
for “smart city” apps that could be mounted on light poles.
Vehicular use cases, including ones that are based on ad-hoc
networks, are presented by Bitam et al. [5] and Truong et al.
[37].

Apart from individual use cases, some implementations ad-
dress specific individual fog computing issues, like Dsouza et
al. who propose a policy management framework to authenti-
cate the various actors in applications like smart transportation
systems [20]. Yi et al. [40] point out vendor lock-in as a
possible problem for fog computing, and attempt to exploit
locality in a real-world experiment with face recognition
software.

In addition to academic work, commercial business solu-
tions using fog computing have also evolved. Cisco IOx [17]
promotes a system that allows traditional Linux application de-
velopment on Cisco IOS powered networking devices. Google
recently released “Google IoT cloud,” a system for cloud based
device management and a protocol bridge to connect edge
nodes to cloud analytic systems [24] and other infrastructure.

Finally, there are different stances on operational aspects of
fog computing platforms. Some authors assume a centrally-
managed and operated approach, perhaps including moneta-
rization [28], [34], whereas others [4] call for open interfaces
and interoperability so that many fog environments can coexist
and provide federated services.

As will be discussed shortly, our platform Seattle offers
a practical, useable sandbox implementation that tackles the
widely-acknowledged node heterogeneity issue in fog com-
puting. Furthermore, Seattle’s components are designed for
loose coupling and precise trust boundaries, so as to enable
multi-stakeholder operations. This enables out-of-the-box de-
ployments with minimal mutual trust requirements. All the



Seattle components described in this paper are active, live,
and publicly accessible. All software is Free, Open-Source
Software, and available from public repositories1.

B. Contributions

The contributions of this paper are as follows:

• We present Seattle, a platform uniquely adaptable for fog
computing research and applications. Seattle is capable of
real-world deployment on heterogeneous nodes, including
desktop and laptop machines, Android devices, Raspberry
Pis, and routers and embedded devices running OpenWrt.

• We explain how Seattle’s system architecture can cater
to a variety of use cases, ranging from peer-to-peer
deployments to full-fledged provisioning by a dedicated
operator, to cooperative setups, where different stakehold-
ers federate and unite multiple parallel running instances
of services.

• We validate Seattle’s ability to facilitate fog computing
systems by presenting our live deployment. Already in-
stalled on tens of thousands of devices, it has been used
by over 4,000 researchers and students during its 8 years
of operational history.

Our past deployments of Seattle have served multiple contexts
including research [12], [18], [21], [27], [32], [33], [38], [42],
[44] and education [10], [11], [13], [25], [39]. In addition,
other groups have successfully reused and augmented Seattle
components for their own specific purposes [14]–[16], [22],
[30], [35], [36], [43], [45].

II. SYSTEM ARCHITECTURE

An important insight behind the design of Seattle as a
platform is how the classical dichotomy of service platform
operators and users gives way to multi-faceted trust relation-
ships between a large number of mutually-unrelated stake-
holders. In Seattle, the actual edge-based software installation,
core infrastructure services, clearinghouse operations, platform
software builds, and remote application deployments might
be carried out and managed by different groups of people.
Such people are potentially untrusted (or even unknown), to
members of the same group.

This gives rise to a set of components [8] — any of
which is useful by itself — that can be freely combined to
implement various deployment models, from pure peer-to-
peer operation up to a provisioned deployment by a dedicated
operator. Furthermore, new components may be introduced
freely to replace or augment existing ones, as long as all
adhere to the component interfaces. We briefly introduce
the default component implementations below. As detailed
in Section IV, we have actively used and developed these
components over the last eight years as a part of Seattle’s
public, live deployment.

1https://github.com/SeattleTestbed
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Fig. 1. Components and interconnections of Seattle’s architecture.

A. Components

The core components of Seattle and their interconnections
are shown in Figure 1. We first introduce the components
running on all devices that run Seattle. For computation, the
primary component is a restricted, performance- and security-
isolated Python-based sandbox [9], [27]. The sandbox Appli-
cation Programming Interface (API) provides networking, file,
threading, and other functions to the code it executes. Note
that due to Seattle’s research and educational background,
we call code that is executed in sandboxes an “experiment,”
regardless of its actual nature. In the context of fog computing,
the sandbox performs distributed computing and runs code to
trigger actuators and read sensors.

The resource manager combines the functionality of a
hypervisor with a remote-control server. It isolates sandboxes
that run in parallel, and interfaces with them on behalf of
authorized remote parties to start, stop, or reset them, upload
and download data, or transfer ownership. The sandboxes on
one device can all have different authorized users if so desired,
so that one Seattle node can serve multiple experimenters.
Due to the heterogeneity encountered in today’s networks, the
resource manager also includes techniques to traverse Network
Address Translation (NAT) gateways and firewalls as often
found in end-user gateway routers.

The device manager is the device owner’s interface to
enable or disable a Seattle install, and choose the amount of
resources that it may consume on the respective device.

The software updater keeps all components of the device
software up to date.

An experiment manager controls the fundamental functions
of sandboxes, such as starting the execution of code, or down-
loading collected data. The experiment manager program-
matically contacts sandboxes through the resource manager
interface, and provides a human-oriented interface to the ex-
perimenter. The experimenter authenticates against sandboxes
by using cryptographic keys.



All experimenters run an experiment manager, and possess
their own set of cryptographic keys. This enables interest-
ing deployment options (and thus applications). Two exper-
imenters could choose to mutually authenticate each other on
the sandboxes they control, or swap resources, and so on. Thus,
it makes more sandboxes available to an experiment than a
single experimenter could ever reach. Section II-C explains in
greater detail how Seattle manages trust relationships.

Seattle’s device software and an initial set of cryptographic
keys controlling the sandboxes are shipped in the form of a
bundled installer for the specific platform Operating System
(OS). The installer builder component is responsible for
packaging and hosting the code and public keys. The installer
builder allows experimenters to create their own custom in-
stallers, where they get to choose what public key or keys
are to be included. Every custom installer can be referenced
through its specific, static Uniform Resource Locator (URL).
Thus, by selecting and installing a specific packaged installer,
device owners can choose which experimenters to initially
grant access to sandboxes on their devices.

The default Seattle architecture also includes a lookup
service. This is a generic network-accessible key/value store
that the resource manager and experiment manager can use
to announce and retrieve information about sandboxes. For
instance, a resource manager announces its contact informa-
tion, such as its own or a NAT forwarder’s IP address and
port number, under the public keys of all currently authorized
experimenters. The experiment manager retrieves this contact
information by looking up the experimenter’s public key at the
lookup service, and then proceeds to contact every resource
manager that hosts sandboxes the experimenter can use.

We use NAT Relays on some Seattle nodes that are acces-
sible from the public Internet. In this manner, firewalled or
NATted nodes have a common, public meeting point to which
they can direct experiment managers.

Lastly, Seattle provides a clearinghouse, which is a central-
ized sandbox-sharing site. As mentioned earlier, sandboxes can
be swapped. A clearinghouse can act as a trusted intermedi-
ary on behalf of all registered experimenters, thus creating
a large pool of available sandboxes without requiring all
experimenters to set up individual mutual trust relationships.
The clearinghouse uses the same resource manager interfaces
as the experiment manager, and provides a human-oriented
interface through which experimenters can request and release
sandboxes. The clearinghouse implements internal policies
that govern the exact rules for swapping sandboxes between
registered experimenters.

Our live deployment of Seattle includes implementations of
all components. This also includes a clearinghouse that offers
free access to an initial set of sandboxes for all registered
experimenters.

B. Roles And Operational Flexibility

The preceding section implicitly introduced different roles
relevant in the Seattle architecture: device owners control
whether and how they participate in Seattle, so as to provide

sandboxes to the platform; experimenters use these sandboxes
to run their code on remote devices; and, lastly, operators
manage various components of the infrastructure. These roles
match what most existing fog computing architectures an-
ticipate. However, the limited and clearly-defined boundaries
of Seattle components result in few requirements for mutual
trust or, indeed, interaction between the actual persons acting
in these roles. This enables operational scenarios including,
but also exceeding, the often-assumed centrally managed and
operated fog computing setups.

For instance, in a local experimental deployment, the owner
of all devices might also serve as an experimenter at the
same time. If the experiment managers and installer builders
can be reused from existing deployments, no additional ef-
fort is involved in setting up the infrastructure. A setup on
exclusively-controlled, all-local devices can serve as a testbed
for research, or enable device owners to run an “OwnCloud”-
like fog computing setup on their equipment.

The same approach also scales to groups of device owners
and experimenters who federate to share resources on (parts
of) their setups. No trusted intermediary in the form of
a clearinghouse is required. Trust relationships among the
researchers and device owners can be set up out-of-band as
well.

Another implementation could utilize all of the components
described in Section II-A above. Such a deployment would
start with a sponsored set of sandbox resources, a clearing-
house to mediate access between sponsored and contributed
sandboxes and registered researchers, and all of the auxiliary
services discussed. One such example is the current deploy-
ment of Seattle. We operate instances of all components, while
further instances (particularly of sandboxes on remote nodes)
are contributed and operated by volunteers. Section IV details
our current deployment.

Sensibility Testbed [42] and Social Compute Cloud [14]
provide a similar breadth in capabilities as Seattle. However,
they only operate a partial infrastructure, and reuse much
of Seattle’s. Their particular clearinghouse implementations
differ from Seattle’s in terms of user interfaces and policy
implementations. Sensibility also provides a new sandbox type
that allows privacy-preserving access to sensors on Android
smartphones and tablets. Other components, including the
experiment manager, are reused without changes.

Finally, we envision that multiple central operators could set
up their own instances of all components, and then federate
using Seattle’s open interfaces to barter or trade resources.
Operator-specific clearinghouses serve as centralized trust an-
chors, and “experiments” would instead be “apps” for end
users, with the former experimenters as over-the-top service
or software providers.

C. Trust Management

As detailed in the previous subsection, interpersonal or insti-
tutional trust plays an important role in a Seattle-based system.
For instance, the device owner will only run an installer
package obtained from an installer builder that is operated



by a party they trust. Similarly, multiple clearinghouses will
only cooperate if mutual trust relationships can be established.

Additionally, Seattle uses asymmetrical cryptography as
a technical means to map out trust. Its core computational
component, the sandbox, incorporates the roles of an admin
and users, all identified by public keys added to the installer
package by the installer builder. The admin of a sandbox can
add or remove users, split the resources of a sandbox, or give
up privileges in favor of another admin (i.e., another public
key). An authorized user runs programs in the sandbox, trans-
fers data, and so on. If more than one user is authorized for the
same sandbox, they all share the same sandbox environment.

Depending on the deployment scenario realized, interper-
sonal or institutional and technical trust relationships align at
different places through interactions with multiple components
in the system. The first point is the installer builder, as the
person configuring the installer package chooses the initial
set of admin and user public keys going into it. Then, the
two types of trust relationships align again in the experiment
manager, for example when an admin adds new user public
keys to sandboxes he controls. Finally, if the deployment uses
a clearinghouse to administer sandbox access, this becomes
the third point of alignment. The clearinghouse must trust an
experimenter (i.e. sandbox user) before placing the public key
in sandboxes it controls.

As a final remark, the software updater component of the
Seattle installer also contains a public key. It is used to verify
the integrity of updates. This key is likely managed by the
operator of the installer builder who controls the software that
is packaged. However, there is no intrinsic requirement for
this to be the case. A trust relationship may extend to this
component as well.

III. IMPLEMENTATION

In this section we will look at actual implementations
of selected components, with a focus on those aspects that
help Seattle solve the node and operational heterogeneity
challenges encountered in fog computing.

A. Sandbox Implementation

Seattle’s Python-based default sandbox [9] offers a cross-
platform portable, resource-isolated, safe execution environ-
ment for untrusted experimenter code.

The choice of a high-level programming language environ-
ment trades off some reduction in performance against large
gains in portability across OSs and devices. Seattle’s platform
abstractions not only provide a unified API to sandboxes on
desktops and laptops, but also smartphones and even WiFi
routers. Seattle sandboxes run on Windows, Mac OS X and
later, Linux, and the Berkeley Software Distributions (BSDs),
as well as Android and OpenWrt.

Seattle’s resource isolation scheme [27] ensures that each
sandbox is confined to strict usage quotas for all resources
of the hosting system, including its Central Processing Unit
(CPU) time and memory, used disk space, and even Internet

Protocol (IP) addresses and port numbers on network inter-
faces.

In terms of code safety, Seattle keeps buggy or deliberately
destructive experimenter code from harming the host machine.
This is guaranteed by first checking the static code safety and
forbidding potentially problematic statements (like importing
arbitrary modules). At runtime, all of the API functions strictly
check their call parameters, so that, for example, file names
can be sanitized and restricted to the sandbox directory.

Other sandbox implementations have augmented Seattle’s
basic functionality. Sensibility Testbed adds sensor functions
to Seattle’s Python-based sandbox. Another internal research
prototype of ours interfaces the Seattle resource manager with
Docker, so that its sandboxes are Linux containers.

B. Component Interface Implementation

A core solution to flexibly addressing operational hetero-
geneity (see Section II-B) lies in clearly-defined interfaces
that use simple, text-based, mostly stateless protocols. Such an
approach has a few benefits. Code handling communications
between components can be much simpler, as parsing is
easy to verify, even if done manually. As such, it is much
easier to reimplement these protocols to interface with Seattle
from other systems. Lastly, keeping and tracking state in a
distributed fashion is a notoriously difficult problem that we
attempt to avoid wherever possible.

For communication that requires a token of privilege to
trigger an action on the remote side, control messages contain
signatures constructed with the private key of the experi-
menter. A sandbox controlled by that experimenter knows
the corresponding public key (as it previously downloaded a
Seattle installer customized to contain this key). Only after
checking the message signature are privileged operations, such
as starting or stopping the sandbox or transferring data to/from
its local storage, permitted.

Scripted (i.e. non-interactive) communications with the
clearinghouse, installer builder, and software updater all
use HyperText Transfer Protocol (HTTP) or HTTP Secure
(HTTPS) in the form of an XML-RPC interface, which further
simplifies integration. Also, these interfaces follow what is
known as Postel’s Robustness Principle [31, §2.10], and are
quite liberal in the data they accept from the remote side of
the communication. This has practical relevance for some of
the calls, as call parameters are treated as opaque and are
not interpreted by the receiving instance. Thus, additional
information not previously foreseen and designed into the
protocol can still pass.

IV. PRACTICAL DEPLOYMENT

As mentioned previously, we have running implementations
of all Seattle components on nodes on the public Internet,
including many instances we neither control nor operate.
These latter implementations have been contributed to our
clearinghouse’s resource pool by volunteers. Apart from the
numbers we report below, we do not have any insight on
offspring projects that reuse our open-source software base,



but set up their own independent deployments. Seattle has no
tracking code besides what an operating clearinghouse needs
to support the sandboxes it controls.

To assess the current scale and size of Seattle, we report
statistics from the IP addresses contacting our software updater
service. This service is contacted by all installations that
Seattle’s main installer builder shipped to end-user devices,
and has reported downloads from over 40,000 different IP
addresses over our eight years of deployment history. This
metric is not perfect: it undercounts multiple devices behind
a NAT gateway, and overcounts devices that change their IP
address frequently (such as mobile nodes). However, it gives
an impression of the scale of our deployment.

Attempting to reverse-resolve these IP addresses to Domain
Name Service (DNS) names yields no result for about 50%
of addresses; resolves to names that belong to home Internet
providers for another 30%; and to university machines for
about 15%. The latter likely includes students, since they often
use on-campus computers in classrooms or labs. Note also that
the number of online nodes (and thus sandboxes) varies over
time, as device owners turn off or suspend their devices as
they move, or as their daily routines start and end. Figure 2
plots a world map of Seattle nodes, with the colors encoding
the approximate node density in an area. Node locations were
generated from GeoIP data. It shows that Seattle has notable
user bases outside of the United States (where it was originally
developed), particularly in Central Europe and China.

Since its inception, more than 4,000 experimenters have
used Seattle’s clearinghouse to request access to resources
on remote devices. We attribute this to the fact that our
clearinghouse offers ten free sandboxes for every registered
user, and contributing one’s own resources counts as a “credit”
to use more remote sandboxes in turn. Resource credits have
proven a valuable incentivization strategy to push the adoption
of Seattle.

While offering generous resources to bootstrap experiments,
Seattle has also benefited greatly from generous contributions
of code, documentation, tutorials, and libraries from more than
100 contributors at 32 institutions all over the world. Seattle
strives to make contributing easy. All of its components are
open-source software, and thus easy to inspect, adapt, and
reuse in other contexts.

Sensibility Testbed [42] has been particularly successful in
adapting and reusing Seattle components. It extends Seattle’s
sandbox type so as to allow access to sensors on Android
smartphones and tablets. Furthermore, its device manager
includes an additional Graphical User Interface (GUI) in the
form of a native Android app. Sensibility Testbed’s clearing-
house implements special policies not found in Seattle. An ex-
perimenter requesting sandboxes on Sensibility Testbed must
first complete an Institutional Review Board (IRB) approval
process, which ensures that the experiment conducted does not
impact the privacy of device owners involved.

Fig. 2. World map of Seattle node locations. Color shows approximate density
from low (grey) to high (magenta).

V. CONCLUSION AND OUTLOOK

This paper presents Seattle, a practical and publicly acces-
sible platform for fog computing. Seattle is deployed and op-
erational in the real world on heterogeneous nodes, including
desktop and laptop machines, Android devices, Raspberry Pis,
and routers and embedded devices running OpenWrt. Seattle’s
installer packages and sandbox implementation thus address
a widely-recognized and central issue for the success of fog
computing, which is node heterogeneity.

The system architecture of Seattle consists of loosely-
coupled components. This makes the components useful as
stand-alone entities, and stimulates reuse and adaptation of
existing component implementations for unforeseen purposes.
Furthermore, since components are separated along trust
boundaries, Seattle does not require a single centralized oper-
ator for all components. Instead, a large range of operational
scenarios with varying scopes can be implemented, from fully
local setups to peer-to-peer resource swapping and federated
multi-operator deployments with mutually-trusted intermedi-
aries. Seattle’s support of heterogeneous operations includes
and exceeds the capabilities of often-assumed centrally man-
aged and operated fog computing setups.

Currently, we can report an active, live, and publicly ac-
cessible deployment of all the Seattle components described
in this paper. More than 4,000 experimenters have used our
existing deployment to run distributed experiments, and more
than 100 developers from 32 institutions have contributed to
Seattle’s free, open-source software stack since its inception
in 2009. Seattle has been installed on 40,000 devices all
over the world, and has been used for teaching and re-
search. Furthermore, outside groups have used existing Seattle
components to construct new components with compatible
interfaces, and to adapt the platform to their needs. All of
Seattle’s software is Free, Open-Source Software and available
at https://github.com/SeattleTestbed.
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