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Laboratory works №9 

Dimension reduction with SVD 

 

9.1 Singular Value Decomposition (SVD)  

Singular value decomposition (SVD) is a fundamental technique in linear algebra 

with various applications, including dimensionality reduction.  

SVD decomposes a real or complex matrix (A) of dimension (m x n) into three 

matrices: 

• U (m x m): An orthogonal matrix containing the left singular vectors of A. 

• Σ (m x n): A diagonal matrix containing the singular values of A on its 

diagonal, arranged in non-increasing order. 

• VT (n x n): The transpose of another orthogonal matrix V (n x n) containing 

the right singular vectors of A. 

The decomposition is expressed as: 

 

A = U Σ VT.     (1) 

 

The singular values on the diagonal of Σ represent the importance or magnitude of 

the corresponding singular vectors in U and V. 

Larger singular values indicate directions of greater variance in the data captured 

by A. 

Dimensionality reduction with SVD involves selecting a subset of the top k 

singular values (where k < min(m, n)) and truncating Σ and the corresponding 

rows/columns of U and VT. This retains the most significant information from the 

original data in a lower-dimensional space. 

 

By keeping only the top k singular values and their corresponding vectors, we 

obtain a lower-dimensional approximation of A: 

 

Ak ≈ Uk Σk Vk
T     (2) 

where: 

 

Ak is the reduced-dimensional representation of A. 

Uk consists of the first k columns of U. 

Σk is a diagonal matrix containing the top k singular values. 

Vk
T consists of the first k rows of VT. 

 



Geometric Interpretation of SVD: 

 

In geometric terms, SVD can be viewed as rotating the data (represented by A) 

such that the principal axes (directions of greatest variance) align with the columns 

of U. The singular values then determine the scaling along these axes. By keeping 

only the top k singular values, we project the data onto the subspace spanned by 

the corresponding principal axes, effectively reducing dimensionality. 

 

The SVD method is implemented by numpy library 

 https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html  

 

Variants of tasks 

For the corresponding dataset, according to the option, reduce the dimensionality 

of the data using PCA and SVD. Datasets are placed in the datasets folder 

(https://github.com/a-vodka/dv/tree/master/lab/dataset). 

1. Using PCA to visualize data in two- and three-dimensional (2D and 3D) spaces. 

Use PCA class for sklearn library https://scikit-

learn.org/stable/modules/generated/sklearn.decomposition.PCA.html  

2. Calculate SVD of your dataset, plot the dependence of the eigenvalues of the 

matrix on their number. Before plotting, arrange the eigenvalues in descending 

order. 

3. Determine the smallest value of the space size i for which relation (3) is 

satisfied. Where λi are the eigenvalues of the matrix, n is the total number of 

eigenvalues, 0.8 – is level of data significance. 
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4. Set λi to zero for which d ≤ i ≤ n. Perform the reverse transformation and 

compare the obtained data with the original.  

5. Set d = 2 (for 2D) and d = 3 (3D) and perform and plot first d columns of 

reconstructed data. Compare graph with obtained on step 1. 
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