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Nonlinear Dimension Reduction 

 

Dimensionality reduction techniques are employed in data science to 

transform high-dimensional data into a lower-dimensional space while preserving 

the underlying relationships between data points. This is beneficial for 

visualization, data analysis, and machine learning algorithms that struggle with 

high-dimensional data. 

 

8.1. Multidimensional Scaling (MDS) 

 

MDS aims to minimize a stress function, typically squared error, that 

measures the difference between the original pairwise distances (dij) and the 

distances (d'ij) in the lower-dimensional embedding. Here's a basic formula for the 

stress function: 
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where i and j iterate over all data points. MDS uses optimization algorithms 

to iteratively adjust the low-dimensional coordinates to minimize this stress 

function. 

 

8.2. Isomap 

 

Isomap leverages geodesic distances, which are the shortest path distances 

between points along the underlying manifold. It first constructs a nearest 

neighbors graph to capture the local structure. Here's the formula for a typical k-

nearest neighbors graph: 

 

Connect points pi and pj if pj is among the k nearest neighbors of pi (and vice 

versa). 

Then, Isomap computes geodesic distances using Floyd-Warshall algorithm 

or other shortest path algorithms. Finally, classical MDS is applied to the geodesic 

distance matrix to obtain the low-dimensional representation. 

 

8.3. t-Distributed Stochastic Neighbor Embedding (t-SNE) 

 



t-SNE defines a probability distribution (pij) in the high-dimensional space 

that represents the likelihood of data point pi being a neighbor of pj. A common 

choice is the Gaussian distribution: 
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where σ is a hyperparameter controlling the neighborhood size. t-SNE then 

defines a similar probability distribution (qij) in the low-dimensional embedding 

and uses Kullback-Leibler divergence to measure the difference between these 

distributions: 
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t-SNE optimizes this divergence to ensure the low-dimensional embedding 

retains the local structure of the high-dimensional data. 

 

8.4 Python implementation 

 

One of the implementations of manifold learning algorithm is implemented by 

scikit-learn library https://scikit-learn.org/stable/modules/manifold.html/ 

 

There are two basic examples of using such methods: 

1. For S-like dataset https://scikit-

learn.org/stable/auto_examples/manifold/plot_compare_methods.html  

2. For MNIST-dataset https://scikit-

learn.org/stable/auto_examples/manifold/plot_lle_digits.html  

 

Variants of tasks 

1. Download dataset according your variant  

https://github.com/a-vodka/dv/tree/master/lab/dataset  

2. Perform dimension reduction using Isomap, Locally Linear Embedding, 

Multi-dimensional Scaling (MDS), t-distributed Stochastic Neighbor 

Embedding (t-SNE) onto 2D and 3D space. 

3. Analyze results. Find, which methods gives best results for your dataset. 
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