
Data Visualization
Laboratory work №8

Nonlinear Dimension Reduction

Dimensionality reduction techniques are employed in data science to

transform high-dimensional data into a lower-dimensional space while preserving

the underlying relationships between data points. This is beneficial for

visualization, data analysis, and machine learning algorithms that struggle with

high-dimensional data.

8.1. Multidimensional Scaling (MDS)

MDS aims to minimize a stress function, typically squared error, that

measures the difference between the original pairwise distances (dij) and the

distances (d'ij) in the lower-dimensional embedding. Here's a basic formula for the

stress function:

2() min

ij ij
ij

Stress d d = − → (1)

where i and j iterate over all data points. MDS uses optimization algorithms

to iteratively adjust the low-dimensional coordinates to minimize this stress

function.

8.2. Isomap

Isomap leverages geodesic distances, which are the shortest path distances

between points along the underlying manifold. It first constructs a nearest

neighbors graph to capture the local structure. Here's the formula for a typical k-

nearest neighbors graph:

Connect points pi and pj if pj is among the k nearest neighbors of pi (and vice

versa).

Then, Isomap computes geodesic distances using Floyd-Warshall algorithm

or other shortest path algorithms. Finally, classical MDS is applied to the geodesic

distance matrix to obtain the low-dimensional representation.

8.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE defines a probability distribution (pij) in the high-dimensional space

that represents the likelihood of data point pi being a neighbor of pj. A common

choice is the Gaussian distribution:

2 2exp(|| || /(2))

ij i j
p p p = − − (2)

where σ is a hyperparameter controlling the neighborhood size. t-SNE then

defines a similar probability distribution (qij) in the low-dimensional embedding

and uses Kullback-Leibler divergence to measure the difference between these

distributions:

(||) (/)
ij ij ij

ij

KL P Q p log p q= (3)

t-SNE optimizes this divergence to ensure the low-dimensional embedding

retains the local structure of the high-dimensional data.

8.4 Python implementation

One of the implementations of manifold learning algorithm is implemented by

scikit-learn library https://scikit-learn.org/stable/modules/manifold.html/

There are two basic examples of using such methods:

1. For S-like dataset https://scikit-

learn.org/stable/auto_examples/manifold/plot_compare_methods.html

2. For MNIST-dataset https://scikit-

learn.org/stable/auto_examples/manifold/plot_lle_digits.html

Variants of tasks

1. Download dataset according your variant

https://github.com/a-vodka/dv/tree/master/lab/dataset

2. Perform dimension reduction using Isomap, Locally Linear Embedding,

Multi-dimensional Scaling (MDS), t-distributed Stochastic Neighbor

Embedding (t-SNE) onto 2D and 3D space.

3. Analyze results. Find, which methods gives best results for your dataset.

https://scikit-learn.org/stable/modules/manifold.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://github.com/a-vodka/dv/tree/master/lab/dataset

