o Bmael |

Data visualization course D\

Laboratory work 1 N
Drawing tensor fields via Matplotlib A L A

Scalar fields visualisation

A scalar field (scalar function) on a finite space V is a function that
corresponds to each point in some region of this space (the domain of definition)
with a scalar, i.e. a real or complex number. With a fixed basis of space, a scalar
field can be defined as a function of several variables on the coordinates of a point.

The difference between a numerical function of several variables and a
scalar field is that in a different basis, the scalar field as a function of coordinates
changes so that if a new set of arguments represents the same point in space in the
new basis, the value of the scalar function does not change.

For example, if in some orthonormalized basis of a two-dimensional vector

space a scalar function has the form f (v) = x* + 2y?, then in another basis rotated
45 degrees to this one, the same function in the new coordinates will have the form
f(v) =3x? +3y"* - 2xy'.

Most often, we consider scalar functions that are continuous or differentiable
(smooth) a sufficient number of times. In practice, they are found to be widely
used:

— A function of three variables: u=u(r)=u(x,y,z) (a scalar field in three-

dimensional space).

— A function of two variables: u=u(r)=u(x,y) (a scalar field in two-

dimensional space).
Examples of scalar fields in three dimensions are:
— temperature (if it is different in different points of space);
— electrostatic potential,
— potential in the Newtonian theory of gravitation;
— pressure field in a liquid medium.
Examples of flat (two-dimensional) scalar fields:
— sea depth marked in any way on a flat map;
— charge density on a flat surface of a conductor.
One of the important characteristics of a scalar field is its gradient. The gradient of

a scalar field is a vector field with components:

grad (u(x’y)):(au(g)((, Y)’ﬁug;, Y)J (1)

Example. Plot the visualization of a scalar field u(x,y) = sin(x?+y?),
X € [-3;3]; y € [-3;3]. The implementation is presented in Listing 3.1.

import numpy as np
from matplotlib import pyplot as plt

256

np.linspace(-3., 3., n) # X range
np.linspace(-3., 3., n) # Y range
, Y = np.meshgrid(x, V)

X X B

Z = np.sin(X**2+Y**2) # scalar field equation

plt.pcolormesh (X, Y, Z)
plt.show()

Listing 3.1 - Example code for visualizing a scalar field

Figure 3.1 - Visualization of a scalar field
Vector field visualization
A vector field is a vector-valued function - a mapping that corresponds to
each point of a given space with a vector. In the case of a Euclidean (finite-
dimensional vector space with a scalar product) space, the concept of a vector field

becomes clear, and the vector field is interpreted as a way to specify the

movements of a certain dynamic system: the vector at a given point describes the

direction and speed of the point along the phase curve. For the Cartesian

coordinate system, the field can be
F(r)={u(x, y,2), v(x, y,), w(x, y, 2)}.

Example. Create a visualization of a flat vector field

_y
F(r)=[3]= //“X” X,y € [-5; 5];
X
X+ y?

import numpy as np
import matplotlib.pyplot as plt

def u(x, y):
return -y / np.sqgrt(x ** 2 + y ** 2)

def v(x, y):
return x / np.sqrt(x ** 2 4+ y **x 2)

Xx, yy = np.meshgrid(np.linspace(-5, 5, 10),
np.linspace (-5, 5, 10))

u val = u(xx, yy)

v val = v(xx, yy)

plt.quiver(xx, yy, u val, v val)

plt.show()

plt.streamplot(xx, yy, u val, v val)
plt.show()

represented as

(2)

Listing 3.2 - Example code for visualizing a vector field

<X XX
~ XXX\
AL L O
2111 1]
2 1Y
Yy

///,4_..._‘..\\\
VF AP
AR
A BR TR TR T
IR TR T W
NN
N \\\\“‘*'~"'j'}f/1
\\\‘..._.-rl///

Vit

-IL_///I“.-‘--‘-\\\ 4

b
(=]
[N .
EN
[=4]

o
(@) |

Figure 3.2 - Visualization of a vector field: a - vectors; b - flow lines

It is also quite easy to construct current lines by finding the trajectory of a massless

point by performing integration according to the following principle (see Listing

3.3):
[KA}ZEK]+(UGJJAt 3)
Yia Yi v(t)

The result of building the stream lines can be seen in Fig. 3.3.

import numpy as np
import matplotlib.pyplot as plt

def u(x, y):
return -y / np.sqgrt(x ** 2 + y ** 2)

def v(x, y):
return x / np.sqrt(x ** 2 4+ y **x 2)

def create stream line(x0, y0, u, v, t0=0, t1=10, dt=0.001):
t = np.arange(t0, tl, dt)

XX new = np.zeros_ like(t)
yy new = np.zeros_ like(t)
xx new[0] = x0

yy new[0] = yO0

for i in range(l, t.size):
xx new[i] = x0 + u(x0, y0) * dt
yy new[i] = y0 + v(x0, y0) * dt

x0, y0 = xx new[i], yy new[i]
return xx new, yy new
for i in range (1, 10):
xl, yl = create stream line(i, 0, u, v)

plt.plot(x1l, vyl)

plt.show()

Listing 3.3 - Example code for calculating and visualizing stream lines

o)

-2 0 2

I
[=3]
L2]

Figure 3.3 - Visualization of current lines
Example. Build a visualization of a vector field
u sin(zx)cos(zy)cos(zz)
F(r)=| v |=| —cos(xzx)sin(zy)cos(zz) |,X,Y,z € [-0.8;0.8];
w) (Y24 cos(zx)cos(ry)sin(zz)

from mpl toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np

ax = plt.figure() .add subplot(projection='3d")

X, y, z = np.meshgrid(np.arange(-0.8, 1, 0.2),
np.arange(-0.8, 1, 0.2),
np.arange(-0.8, 1, 0.8

u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)

(4)

v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
w = (np.sqgrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * vy)
* np.sin(np.pi * z))

ax.quiver(x, v, z, u, v, w, length=0.2, color = 'black'")

plt.show()
Listing 3.4 - Visualization of a three-dimensional vector field

Figure 3.4 - Visualization of a three-dimensional vector field

Visualization of tensor fields

A tensor field, by analogy with a vector field, is a mapping that corresponds
to a tensor at each point in space. The simplest tensor is a tensor of rank 2 and it is
a "combination™ of two vectors into one object. Since a vector in 3-dimensional
space has 3 components, a tensor of rank 2 contains 3%3 elements and is

represented by a corresponding matrix. If the tensor is symmetric, then only 6 of its

9 components are independent. One of the most common tensors is the mechanical

stress tensor (Fig. 3.5):

Q

O O-xy Xz

oc=|o, o, O, ()

Q
Q

Xz yz bad

033

T(Eﬂ

Figure 3.5 - Stress tensor components ¢
(Original image from https://uk.wikipedia.org/wiki/Ten30p)

To build images (glyphs), it is assumed that the tensor can be represented in the

form:

o =RAR™?, (6)

where R — is the matrix of rotation of coordinates to the basis that coincides with
the main directions; A = (A1, A2, A3)— tensor’s eigenvalues. More details about the

construction of glyphs can be found in the article by G. Kindelmann (Kindimann G.

Superquadric tensor glyphs // Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference on
Visualization. — 2004. — C. 147-154. https://people.cs.uchicago.edu/~glk/pubs/pdf/Kindlmann-

Superquad1-VisSym-2004.pdf).

https://uk.wikipedia.org/wiki/Тензор
https://people.cs.uchicago.edu/~glk/pubs/pdf/Kindlmann-Superquad1-VisSym-2004.pdf
https://people.cs.uchicago.edu/~glk/pubs/pdf/Kindlmann-Superquad1-VisSym-2004.pdf

(7)

The sum of three metrics ¢, c,, Cs equals one and determines the barycentric
parameterization of a triangular region with extreme values of linear, planar, and

spherical shapes in the three corners.

cs=1

QQQ Q QQO

NN e Y
NN NN VIVYQ O \WNRVOO
NSRSCOUU NP O NRQOO

\T\%%QQ NSO \\\\\ LU @

cp=1

a b C
Figure 3.6 - Visualization of the stress tensor at different values cj, c,, Cs:

a - cubes, b - cylinders, c - ellipsoids

To implement this idea, the Department of Dynamics and Strength of Machines of
NTU "KhPI" developed the glyph_visualization_lib library (authors Ruslan
Babudzhan, Oleksiy Vodka). This library supports two options for visualization:

— Using matplotlib (slower, but does not require additional dependencies);

— Using mayavi (faster option).
To install mayavi, you need to install the mayavi and pyqt5 packages.
pip install mayavi pyqt5

Example. Create a visualization of the tensor field:

—sinx 5sin(x+y) 10sin(xz)

o= —siny 3sin(y + z) (8)

symm cos(z)

The code that performs the visualization is shown in Listing 3.5. For the code to

work, you need to download the glyph_visualization_lib.py file and add it to the

project directory. The result of visualization is shown in Fig. 3.7.

import numpy as np
import matplotlib.pyplot as plt

from mayavi import mlab
import glyph visualization lib as gvl

def main() :

X = np.linspace(0, np.pi, 8, dtype=float, endpoint=True)
y = np.linspace(-np.pi, -1, 8, dtype=float, endpoint=True)

z = np.linspace(0, 2 * np.pi, 8, dtype=

X, Y, Z = np.meshgrid(x, y, z)

stress_tensor = np.array(l[
[-np.sin(X), 5 * np.sin(X + Y), 10

float, endpoint=True)

* np.sin(X * Z)1]1,

[5 * np.sin(X + Y), -np.sin(Y), 3 * np.sin(Y + Z)],

[10 * np.sin(X * Z), 3 * np.sin(Y +

1)

print(stress tensor.shape)

Z), np.cos(z)]

vm_stress = gvl.get von Mises stress(stress tensor)

glyph radius = 0.25

limits = [np.min(vm stress), np.max(vm_

colormap = plt.get cmap('rainbow', 120)
fig = mlab.figure (bgcolor=(1, 1, 1))

fig2 = plt.figure()
ax = fig2.add subplot(1l1ll, projection='

for i in range(x.size):
for j in range(y.size):
for k in range(z.size):
center = [x[1], y[J], z[k]]
data = stress tensor[:, :,

stress)]

3d')

i, 3, Kkl

Listing 3.5 - Visualization of a tensor field

d. superquadrature e. Kindelman f. modified Kindelman
superquadrature superquadrature

Figure 3.7 - Visualization of a tensor field

Task. Build according to your number in group list:

1. Visualize the scalar field. Find its gradient and visualize it as a flat vector
field;

2. Visualize a plane vector field both with the help of vectors and current lines
from the matplotlib library and with the code from the listing;

3. Construct a three-dimensional visualization of the vector field; For an
additional point (optional), modernize the algorithm for constructing current
lines in the case of a 3-dimensional field.

4. Construct a visualization of a tensor field using ellipsoids, cuboids,

cylinders, and any superquadrant.

Student 1.
1. u(x,y) =4In(x*+y*)=8xy; x, y €[-5;3]

2. F=(x*=2y;y*=2x);x,y €[-5;3]

3. F :(X+ZX;§;X—ZJ;X, y,z2€[-5;3]
z 7'z

X In(xy) —In(xz)
4. 7= -y In(yz) |,x,Y,ze[1..10]
z

Student 2.
1. u(x,y)= x\/§+ yv/X; X,y €[0;5]

2. F=(X*+2y;y* +2x); X,y €[-4;4]

yz) XZ) Xy))
3 I::(x2+y2+zz’x2+y‘°‘+22’x2+y2+22j’x’y’ze[_3’4:I

sin(x) X+y X+2z
4.7 = cos(y) y+z |,X,y,ze[-2x.2x]
cos(z)

Student 3.
1. u(x,y) =-2In(x* +5)—4xy; X,y €[-3;6]

2. F=(x+2y%y+2x°);x,y €[-3;6]

w
M

I

7\

<

|

|

>

+

|

|

|

|<

VA
Xz; ; 22);x,y,ZG[—3;6]

exp(—x?) sin(x+vy) sin(x+z)

exp(-z%)

Student 4.

1. u(x,y) = x> —{Xy;x, y € [0;8]
2. F=(x%-y®);x,ye[-8;8]

exp(=y?) sin(y+1z)|,xy,ze[-2..2]

3 XZ y2 2
. F= ;) X, Y, ze[=1;7
[x3+y3+z3 XC+yi+7° x3+y3+23] yzel=riil
sin(x+y)
iyl g
cos(y +z
4. T = ﬁ z X, Y,z e[-2..2]
cos(X+)
X2 +y%+2°
Student 5.
1. u(x,y) =%y —yx%;x,y €[0;9]
2. F=(x+y;x=Yy);x,ye[-9;9]
1 z 1 x.1
3 FZ[y—F,E—F,;—Z—yZJ,X,y,ZE[_g,g]
In(x)
X>+y?+17° Vx \/y
In
4.7 = x2+3§2yzr - Jz X, Y,z e[L.5]
In(2)
X2 +y?+2°
Student 6.

1. u(x,y) =7In(x* + %) —4sin(xy); x, y €[-10;10]

2. F=(x*y;-y);x,y €[-10;10]

2

3. F =(X+Z 'l;lj;x, Y,z €[-10;10]

X2 y'z
In(x)
sin(x) iy ﬁ/z
4. T = I.n(y) JzIx |, %y, ze[1.3]
sin(y)
In(z)
sin(z)
Student 7.

1. u(x, y):arcsin(X 2y j;x,ye[—zz/Z;;z/Z]

2+y2

2. F=(2xy-y; x> +X); X,y e[-11;,11]

2
3. F =(§+1;X—2;—622j;x, y,z e[-1111]
y Yy
1 sin(x)/x sin(y)/y
4. 7= 1 sin(z)/z |,x,y,z2e[-3..3]
1
Student 8.

1. u(x,y) =arcsin(z(x—+y2)];x, yel-712;712]
X2 +y

2

2. F =(sin(x);sin(y);sin(z)); x, y, z e[-27;27]

X+Z Y+X Z+X), _
3. F:(— T],X,y,ZG[—ll,ll]
X y> 'z
X X+Y X+2
X2 +y?+7° z y
4, T = y y+?
X*+y?+17° X
.
x> +y°+17°

X, Y,2€[l1..5]

Student 9.
1. u(x,y):%xzy— X* +5y%:x,ye[-2,7]
2. F=(x+Vy;2x);x,y e[-2;7]

X . y : z : :
3. F= 3 3 3 1X!y’ze[_217]

(x2+y2+22) (x2+y2+22) (x2+y2+22)

X
X2 +y? +17° X y
4. T= WyZ_FZZ Z , X, y,Z G[—22]
.
X2 +y° +7°

