
Distributed
 Computing

NoKey - A Distributed Password
Manager

Master Thesis

Florian Zinggeler

zifloria@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Simon Tanner, Gino Brunner

Prof. Dr. Roger Wattenhofer

June 7, 2018

Abstract

Choosing strong and unique passwords for every online account is difficult with-
out using a password manager. However, most password managers require users
to remember a strong master password to securely store their credentials.

In this project, we present NoKey, a password manager that does not make
use of a master password. Instead, when users want to access their stored pass-
words, all they have to do is to allow the access on another of their paired devices.
How many devices are needed to unlock a password can be configured. This is
achieved by making use of Shamir’s Secret Sharing. This algorithm allows stor-
ing a secret in a distributed way, such that the secret can only be recovered if
enough parts of the secret are brought together.

NoKey is available for Android, as a browser extension for Firefox and
Chrome and as a web application that runs on most modern browsers. The
application is completely open source and freely available at nokey.xyz.

Keywords: password manager, CRDT, Shamir’s Secret Sharing, elm

i

nokey.xyz

Contents

Abstract i

1 Introduction 1

1.1 Goals . 1

1.2 Related Work . 2

2 Concept 3

2.1 Communication . 3

2.2 Pairing . 4

2.2.1 Visual Hash Icon . 5

2.3 Synchronizing State . 7

2.3.1 Shared State CRDT . 7

2.4 Password Generation . 7

2.5 Storing Passwords . 9

2.6 Key Boxes . 9

2.7 Security . 10

2.7.1 Read Only Attack . 10

2.7.2 Man in The Middle . 11

2.7.3 Read-Write Attack . 11

2.8 Design . 12

3 Implementation 14

3.1 Overview . 14

3.2 The Server . 15

3.3 The Clients . 15

3.3.1 Shared Code . 15

3.3.2 Web Application . 17

3.3.3 Web Extension . 17

ii

Contents iii

3.3.4 Android . 17

4 Outlook 19

4.1 Improved Privacy . 19

4.2 Keep Deleted Passwords . 19

4.3 Add Trusted Friends . 20

4.4 QR Codes . 20

4.5 Online Storage Providers . 20

4.6 More Communication Channels 21

5 Conclusion 22

Chapter 1

Introduction

Millions of online accounts get breached every month. As of 2018, the website
haveibeenpwned.com by security expert Troy Hunt lists over 5 billion stolen
accounts [25]. As a user, not much can be done to protect oneself against such a
data breach. However, by only using strong and unique passwords everywhere,
the impact of such a breach can be greatly reduced. Unfortunately, efforts to
educate users about the perils of weak passwords seem to be fruitless, as the
majority of used passwords are terrible1.

Strong passwords consist of a long sequence of random letters and symbols
that have never been used before. However, since remembering these passwords
would be practically impossible, many use a password manager to help with that
task. Popular password managers include LastPass [33], Enpass [20], 1Password
[1], Dashlane [14], KeePass [30].

Most password managers work by storing passwords in a database, encrypted
with a user chosen master password. The security that a password manager offers
is therefore proportional to the strength of the chosen master password. Users
then have to enter that master password every time they want to retrieve their
saved passwords or if they want to save a password.

In this work we present a distributed password manager called NoKey that
does not use a master password. Instead, passwords are stored on multiple
devices of the user in such a way that they can only be read if enough devices
come together. With this application, using a saved password only requires that
the user gives permission on another device. For instance, to access the stored
passwords on the users laptop, the user has to allow that access on her phone.

1.1 Goals

The goal of this project is to create a password manager that can work without
any master password, while still offering comparable or possibly even better

186% of Passwords are Terrible, Troy Hunt, https://www.troyhunt.com/

86-of-passwords-are-terrible-and-other-statistics/, Accessed: June 7, 2018

1

haveibeenpwned.com
https://www.troyhunt.com/86-of-passwords-are-terrible-and-other-statistics/
https://www.troyhunt.com/86-of-passwords-are-terrible-and-other-statistics/

1. Introduction 2

security than traditional password managers. One of the design goals for this
application is that it should be as convenient as possible to use. Ideally, we
hope that people who are currently not using a password manager, possibly
because they find it too cumbersome to remember and type in their strong master
password every time they need their passwords, might find our application to
their liking. From the start, we knew that we wanted to make use of a secret
sharing scheme to offer security. This also makes the application more flexible,
as it allows users to adjust the trade-off between convenience and security when
storing passwords.

1.2 Related Work

A project that started out with a similar goal to this one has already been
developed as an internal project at the same institute in “Convenient Password
Manager” [16], but they took a very different path. Conceptually, there is quite
a bit of overlap between the two projects, however, they differ in the targeted
platforms and in the implementation details. For this work we started from
scratch except for the experiences learned from the previous project.

Traditional password managers like LastPass [33] or Enpass [20] have laid
the groundwork of how a user-friendly password manger should work. Many of
them are able to detect sign up and login pages and thus are able to conveniently
offer to fill password forms automatically. Many also allow users to synchronize
all their saved passwords across all their devices.
These password managers all use a similar approach to security. They require
users to choose a strong master password from which they derive a key using a
key stretching functions such as PBKDF2 [29] or Argon2 [8]. Then, the derived
key is used to encrypt passwords with a symmetric encryption scheme such as
AES [13].

A different approach to password management is that of a stateless password
manager. This approach also requires a master password, but no passwords
are actually stored. Instead, the password is derived from the website URL,
the user name and the master password. This is usually done by feeding the
above information to a strong hash function from which the password is derived.
This approach has the advantage that users cannot lose their passwords, as they
can always be derived again. However, using this approach makes it difficult to
change passwords or to deal with complex password policies. Some examples of
applications that make use of this approach are LessPass [34] and novault [36].

Chapter 2

Concept

NoKey was designed to work in a peer to peer fashion. Clients communicate
directly with each other with a message passing protocol. However, for practical
reasons this direct communication is not actually a direct peer to peer commu-
nication, but happens over a simple relay server.
The server has another function, which is to facilitate the pairing process as de-
scribed in Section 2.2. Apart from that, its only function is to forward messages.

There are different variations of the client application: A web application, a
browser extension [9] and an Android app. All of them offer the full functionality
of NoKey, except for the few extra functionalities offered by the corresponding
platforms.

This chapter will provide an overview of the technical aspects of NoKey.

2.1 Communication

There are two ways for the clients to communicate with the server: one via HTTP
requests, the other via WebSockets [48]. A WebSocket is a protocol implemented
on top of TCP which provides an interface to a two way communication channel
for web browsers. In contrast to an HTTP request which consist of a single
query-response, a WebSocket is a bidirectional, stateful connection to the server.
This way, the server can push messages to the client, which would not be possible
using HTTP.

WebSockets are used to implement the direct communication between clients.
When the application starts, every client opens a WebSocket connection to the
server. This connection is kept open at all times. In case a client loses the
connection, it will try to reconnect with an exponential backoff strategy.

To send a message from one client to another, a client sends an HTTP POST
request to /sendMsgTo/:otherId with the message data in the request body.
The server then pushes this message in the corresponding WebSocket of the re-
ceiving client. If the client is listening at that time, the message will be delivered

3

2. Concept 4

and the receiver can take appropriate actions.

2.2 Pairing

Since NoKey is a distributed password manager, we need some way to establish
trust between different devices of a user. To do that, a user can pair her devices.
After two devices have been paired, they will be able to communicate with each
other and thus are able to synchronize their state. This section describes how
this trust is established.

When starting NoKey for the first time, a random ID and two RSA [41]
public-private key pairs are generated. After the pairing process, both devices
have added the ID and the public keys of the other device to their list of trusted
devices. One of the RSA keys is used to verify the authenticity and integrity of
messages, the other to encrypt confidential data.

The pairing process is initiated by sending a StartPairing DeviceId re-
quest to the server. The server then stores the ID along with a randomly gener-
ated token, which is also sent back as a reply. The device that started the request
then displays that token encoded as an easy to type list of words or alternatively,
as a QR code.

The user can then either scan the QR code or enter the token on the other
device. The other device will then send the token back to the server, which
will reply with a PairedWith DeviceId message if the token is valid and has
not expired yet. The device that got the PairedWith message will then directly
contact the other device with a FinishPairing Token SyncData message. The
SyncData contains all the replicated state and is further described in Section 2.3.
At this point, both devices know that the pairing was successful, but they do not
commit to it yet. The device that got the FinishPairing message will send an
acknowledgment back and then wait on receiving an acknowledgment in return.
After that, both devices will be paired and will have their state synchronized
with each other.

If not done carefully, it is very easy for this process to go wrong. For example,
without the last round of acknowledgments, if one device can communicate with
the server via HTTP but not via the WebSocket, it is possible to get into an
inconsistent state. One device will think that the pairing process was successful,
while from the perspective of the other device, it will look as though it failed.
By adding an additional round of acknowledgments, we can guarantee that this
scenario would result in the desired outcome with both devices knowing that the
pairing was not successful.

Note that we cannot completely eliminate the possibility of an inconsistent
state. It is always possible that the last acknowledgment gets lost (for instance if
the device gets turned off), and never reaches the other device. If that happens,

2. Concept 5

the two devices will disagree on whether the pairing succeeded or failed. This
is because the problem of pairing is essentially equivalent to the Two Generals’
Problem [4], which is unsolvable. However, the time window for something to go
wrong is very small here, i.e., only about two round trips.

Figure 2.1: The pairing screen

2.2.1 Visual Hash Icon

After pairing a device, we want to make sure a user immediately recognizes if
something went wrong.

To this end, every device has a unique icon that gets derived from its ID,
essentially forming a visual hash of the ID. This icon is prominently displayed
and should automatically be remembered by the user.

If a user now wants to pair a new device, but is observed by an attacker, the
attacker could enter the token faster than the user, which would result in getting
paired with the attacker’s device. Thanks to the hash icon, such an attack could
be quickly recognized, as the device ID of the attacker is unlikely to hash to the
same icon as the one from the device the user wanted to pair. The user will

2. Concept 6

then recognize that something went wrong and should then remove the attackers
device from the list of trusted devices.

Designing a Visual Hash Icon

An ideal hash icon for our application should have the following properties:

1. Large number of possible icons

2. Look pretty

3. No two icons should look alike

4. Easy to memorize

Most of these design goals are conflicting: If we want to increase the number
of possible icons, e.g., by increasing the complexity, icons will become harder to
remember and distinguish.

Given these goals, our hash icon is composed of the following elements: An
icon taken from the large icon pack Font Awesome [22] and three colors taken
from a small set of nice colors. Not all color combinations work well, especially
when considering people with color-blindness, so combinations with a bad con-
trast ratio are discarded.
How these elements are combined is determined by hashing the device ID and by
using the resulting bits as a starting seed for a random number generator. Using
that random number generator, a valid combination of three colors and an icon
is picked. These are then combined into the final hash icon. This combination
of elements results in a good trade-off of the above listed goals. Most combina-
tions look decent, no two icons can be confused and for an acceptable minimum
contrast ratio there are approximately one million possible icons.

The idea for such a visual hash function was inspired by GitHub’s Identicons
[27] for users that did not yet set their own avatar. An overview of other visual
hash functions can be found in [6].

The implementation of this visual hash function has been published on the
official Elm package channel as a separate library [19]. Figure 2.2 shows a few
visual hashes generated with the method described above.

Figure 2.2: A few examples of our visual hashes

2. Concept 7

2.3 Synchronizing State

An important part of NoKey is the synchronization of its state. If users add a
password or otherwise perform any other modification to the state, they expect
that this information will be synchronized to their paired devices.

Since we want to allow modifications even when users are offline, we can not
always have a consistent state on all clients. Instead, the replicated state used
by NoKey eventually becomes consistent, meaning that as soon as devices are
able to exchange state information, their state will be consistent again. This is
achieved by expressing the whole shared state as a conflict-free replicated data
type (CRDT).

2.3.1 Shared State CRDT

A CRDT is a data structure where copies can be modified independently and
concurrently. The newly modified structures can then be merged which will result
in a new copy that contains all modifications. Merging a CRDT is guaranteed
to not result in a merge conflict. CRDTs have been formalized in “Conflict-free
replicated data types” [43], which also provides many building blocks for creating
more complex structures.

The useful properties of CRDTs are achieved by making the data structure
less powerful. An example of a very simple CRDT is the Grow Only Set: This is
a set where elements can only be added, never removed. It is obvious that this
simple data structure has the desired properties, as the order in which elements
are added to a set does not matter, but its uses are very limited. However, by
combining these simple structures and ideas, more useful CRDTs can be derived.

NoKey uses these CRDT building blocks to express all of its replicated state.
One of the most commonly used data structure is a CRDT version of a dictionary
(also called hash map, associative array or key value store) which is not men-
tioned in the original paper. This dictionary like data type (here called OR-Dict)
is built with an OR-Set (Observed Remove Set [44]) to maintain the keys and
a store for the corresponding values. Similar structures have been used in vari-
ous libraries for distributed systems like Akka [3] or in Riak [40], a distributed
database.

2.4 Password Generation

Since people are very bad at coming up with random passwords, NoKey includes
a password generator. When signing up for a new account for a website, the
browser extension of NoKey will automatically show its password generator to

2. Concept 8

encourage users to choose a strong password. By default, a password with 16
random characters will be offered.

If a website has restrictive password policies, a user can customize the gen-
erated passwords. A user can adjust the password length and which characters
are allowed. Additionally, it is possible to indicate that one wishes to always
include a character from a specific character set, such as a number or a special
character.

This should make it possible to handle most password policies. However,
some websites have very complex password policies that also forbid certain se-
quences of characters. For instance, some websites do not allow passwords that
contain the sequence “123”. The generator cannot deal with such complex re-
quirements, but if such a sequence would show up, a user can just generate
another password or manually edit the suggested password.

Figure 2.3: The password generator, as seen when signing up on a website

2. Concept 9

2.5 Storing Passwords

In a traditional password manager, passwords are usually securely stored by
using a symmetric encryption scheme such as AES [13] to encrypt passwords
with the user defined master password. In contrast, NoKey stores passwords by
combining AES with Shamir’s Secret Sharing [42]. Shamir’s Secret Sharing is an
algorithm for sharing a secret with a set of peers. Once the secret shares have
been distributed, the secret can be recovered by bringing the shares of a subset
of peers back together. How many peers are required to reconstruct the secret
can be configured.

Shamir’s Secret Sharing works by constructing a random polynomial P (x)
of order k where P (0) = Secret. A secret share is then an (x, P (x)) tuple.
The secret can be reconstructed from k + 1 secret shares by solving a system of
equations for P (0). For this scheme to be information theoretically secure, all
calculations need to be done using finite field arithmetic. Otherwise, an attacker
is able to gain information about the secret even if not enough shares are known.

When adding the first password to NoKey, a new password group is created.
A password group is a collection of passwords that are encrypted with the same
symmetric key. The group key is a randomly generated, 256 bit long string.
Passwords are then encrypted with the group key using AES. The complete
group key is never stored anywhere. Instead, Shamir’s Secret Sharing is used
to generate secret shares of the group key. These shares are then distributed to
all trusted devices, such that eventually every device receives a share for each
password group.

Each group has a security level associated with it. The security level indi-
cates how many clients we need to unlock a password group. It corresponds to
the degree of the polynomial used in Shamir’s Secret Sharing algorithm.
Then, when users want to access the passwords in a password group, their de-
vice will ask all trusted devices for their share for that group. The user then
has to allow this on the other devices until enough shares have been collected.
Now the device that requested the shares can reconstruct the group password
using Shamir’s Secret Sharing. Passwords can then be read out with the group
password using AES to decrypt the saved passwords.

2.6 Key Boxes

It seems like with this approach it is not possible for users to use their saved
passwords if they do not carry enough devices with them. With only one device,
there simply would not be enough secret shares present to unlock any group. To
still make NoKey useful in a scenario where a user does not carry enough devices
with them, key boxes are introduced. A key box is a password protected vault

2. Concept 10

that contains an additional share per group. This way, a user can for instance
open a group with security level two by opening a key box while only carrying a
single device.

A key box keeps track of the following values: The AES encrypted secret
shares, a salt used to derive the key and a password hash plus the salt used for
hashing the password. These value are part of the synchronized state and are
replicated to all devices.
The symmetric key used to encrypt the secret shares is derived from the user
defined password. To derive this key, the password is first fed to the key deriva-
tion function PBKDF2 [29] along with a random salt that was generated when
creating the box.
Since the encrypted secret share is just a number and there is no way to check
if our decryption used the correct key, we need another way of telling the user
whether the entered password was correct. For this, we store the PBKDF2 hash
of the password with a different salt to the one used to derive the key. To check
whether the entered password is correct, we just hash the entered password to-
gether with the stored salt and compare the hash with the saved hash. This is
very similar to how the login process works on a UNIX system.

Key boxes are an optional feature and meant to be used less frequently than
the more convenient way of just confirming on another device. But even if used
infrequently, it is still a good idea to add a key box anyway, as this also makes
losing a device less severe. Without a key box, if a user has only two devices and
loses one device, she would be unable to unlock a group secured with security
level two and consequently lose all passwords in it.

2.7 Security

In this section, we will have a look at the security offered by NoKey. To make this
section easier to read, we assume that a user only made use of security level two.
In a scenario where the user used a higher security level, the attacker would need
to steal more devices to have the same possibilities as in the scenarios below.

2.7.1 Read Only Attack

In this scenario, we assume an attacker was able to steal one device and can
now access all internal state of the application. The attacker will find all the
encrypted passwords and a secret share for each password group. Since one
secret share does not give away any information about the secret, the available
information is useless and the attacker cannot read any passwords. The single
secret share also does not give the attacker an easier way of brute forcing the
secret. It would be easier to directly brute force the group key, however this

2. Concept 11

is computationally infeasible. At 256 bits, the used key size is well above the
currently NIST recommended minimum length of 112 bits [7].

Sometimes the application state contains more secret shares, e.g., while shares
are still in the process of being distributed. However, these shares are encrypted
with the RSA public key of the receiving device, so these shares cannot be read
either.

The bad news is that privacy wise, the attacker can learn a bit about the
user. NoKey stores websites and corresponding user names in plain text. This
is needed by the browser extension to provide a good user experience. If this
information was stored in an encrypted form, the browser extension would not
be able to provide form auto-completion without the user having to unlock a
certain password group first. In the last chapter (4.1), we look at how this could
be improved, at the cost of usability.

2.7.2 Man in The Middle

Since the communication between clients and server is secured with TLS, a man
in the middle attack seems very unlikely. However, the server that forwards
messages can basically be seen as a man in the middle. So if a user does not
trust the official server, they are probably wondering what attacks a malicious
server would be able to do.

A malicious forwarding server could basically perform the same attack as the
read only attack described in the previous section. The only big difference to
the previous section is that the server will not have access to any secret shares
at all.
The server is also not able to alter messages, as all messages are authenticated
and integrity protected using an HMAC [32].

The only active attack that a man in the middle could perform is during the
pairing phase, where the initial trust between devices is established. However,
this type of attack can be quickly detected by the user, as described in Section 2.2
on pairing.

2.7.3 Read-Write Attack

In this scenario, the attacker managed to steal a device and can now communicate
with the other devices to achieve his goals. Similar to the previous scenario,
passwords are still not accessible for the attacker. However, if the user is not
careful, the attacker might be able to trick the user into pressing “allow” to gain
more secret shares.

Since the attacker is not able to read any passwords, she might try to cause
harm in other ways. By using the underlying communication protocol directly,

2. Concept 12

the attacker could alter the replicated state in all sorts of ways, as long as the
structure follows the CRDT implementation. This way, it would be possible to
delete all stored passwords. In Section 4.2, we look at how this could be limited.

The attack described above only works if the users devices are online at the
same time as the stolen device and only if the stolen device was not removed
from the list of trusted devices yet.
In practice, doing such an attack is made more difficult by the fact that an
attacker has to write a custom client that allows such operations and has to be
able to access the internal storage where the state is kept. Especially on Android,
the latter point might be more difficult, as the device would have to be rooted
first.

2.8 Design

In this section we look at what goals drove the design choices and how this
manifests in the final implementation.
One of the design principles when creating NoKey was that a user should be able
to discover all of its features gradually. That is, when starting NoKey for the
first time, some UI elements are hidden.
Which UI elements to show is mostly influenced by the number of paired devices.
For instance, if a user only paired two devices, the password UI will not show an
option to move passwords into another group.

To further help users along, the home screen displays context dependent
hints. For instance, if a user makes use of security level three, but only has three
devices, a hint is displayed. The hint states that if the user would lose a device
now, the passwords stored with level three would be lost. It further contains a
shortcut to the pairing screen, to encourage users to pair yet another device.

2. Concept 13

(a) Home screen hint on first usage (b) Hint if there are exactly as many devices
as the highest security level

Chapter 3

Implementation

When developing an application like NoKey, there are many technologies and
programming languages to choose from. Some of the choices taken here have
been purely made on personal preferences, others on technical merits and some
were automatically made by the corresponding target platform. This chapter
will provide an architectural overview and will explain which choices were made
and why.

3.1 Overview

Since NoKey was from the start envisioned to be used on multiple devices, it
made sense to choose a technology that would allow us to reuse as much code as
possible. We chose the web platform as our target, since almost all devices can
display a website and since the browser extension had to be written in JavaScript
anyway. This way, the majority of the application code, including the UI, could
be shared on all platforms. This worked out well, as can be seen in Figure 3.1.
All the Elm code and some of the JavaScript code gets used on all platforms,
while the rest is platform specific. This also means that adding a new platform
is not much work, as long as the platform can display a website and supports
the used APIs.

Figure 3.1: Lines of code broken down by language

14

3. Implementation 15

3.2 The Server

The server is written in Elixir [17] and implemented using the Phoenix framework
[37]. It implements a simple REST [46] API that provides functionality for
pairing and client to client communication.

The server does not store any usage data, it does not even have a database.
The only state that is maintained on the server is short lived and is only kept
in RAM. This makes it very easy to deploy the server, as there is no need to set
up a database.

Elixir is a dynamically typed functional programming language that runs on
the Erlang VM [5]. It is very well suited for writing concurrent applications and
lends itself well for server side code.
The Phoenix framework is a library for Elixir that makes it easy to create web
applications. It provides a high level abstraction for WebSockets, called channels,
which make it easy to create real time applications such as chat applications. In
NoKey, channels are used to implement the forwarding of messages between
clients.
The framework performs very well under high load: it has reportedly been able to
sustain two million simultaneously connected clients via WebSockets on a single
machine [45].

3.3 The Clients

There are currently three different versions of the client: a web application, a
browser extension and an Android client.
Most of the client application is written in Elm [12, 18], a purely functional
programming language that compiles to JavaScript. Parts that are specialized
for a certain platform are written in the respective platform’s language. E.g., the
additional functionality needed by the web extension is written in JavaScript.

3.3.1 Shared Code

The part of the code that handles everything from state management to commu-
nication between devices to displaying the user interface is written in Elm and
is used across all clients.
Since Elm and functional programming in general are not very mainstream, this
section will provide a short overview of what this means in practice.

3. Implementation 16

Functional Programming and Elm

Elm is part of the ML (Meta Language) family of languages and heavily inspired
by Haskell [26], Standard ML [35], F# [21] or similar. However, compared to
the above mentioned languages, it is carefully designed to be much simpler. It
is a statically typed, purely functional programming language that targets the
web platform.

For a language to be purely functional means that there are no mutable
variables to hold state and that every function always returns the same value
given the same input. Also, compared to an imperative programming language,
a purely functional one does not have statements, only expressions. Meaning
there are no constructs for “while” or “for” loops as found in most imperative
programming languages. Additionally, functions cannot perform any side effects,
such as performing an HTTP request or reading from a file. To still be useful in
practice, a purely functional language therefore has to offer another way to deal
with these cases.
In Elm, there exists a runtime that keeps track of the application state and
performs effects when needed. This ensures that every application is written in
a similar style and allows the language to remain purely functional.

At first sight, these restrictions might seem limiting, but in practice they are
not and offer many benefits. One of the most compelling selling points of Elm is
that programs written in Elm are almost guaranteed to not produce any runtime
errors. This is achieved with its static type system that forces programmers to
handle all possible cases that can happen in an application. The only way to
really crash an Elm application is to write an infinitely recursive function, as
the compiler obviously has not solved the halting problem [47]. In practice, this
rarely happens.
Another benefit of writing code in a purely functional style is that it is very
easy to reuse code. Since every function is pure, all functions are completely
independent from each other as they can not depend on some internal state.

Having to follow this strict architecture made a few things that can be difficult
in other languages extremely simple.
For instance, the browser extension has a few specialized user interfaces not used
anywhere else. Since how the UI is displayed is just a pure function that takes in
the current state and returns a description of the HTML to display, these views
are just an alternative view of the same internal state. There are no possibilities
for bugs that would cause this specialized views to become out of sync with the
main view, as they both are derived from the same state.
Another thing that can be difficult in other languages is serializing the application
state and restoring it later. This is almost trivial to do in Elm, since the whole
application state can only live at a single place. Implementing persistent state
in other programming languages has to be carefully considered whereas in Elm
it can be an afterthought.

3. Implementation 17

By not having access to mutable variables, a large class of programming errors
can be completely eliminated. In practice, this theoretical argument seems to be
supported by a large scale study on code quality conducted on GitHub [23]. The
study concluded that “[t]he data indicates functional languages are better than
procedural languages; it suggests that strong typing is better than weak typing;
that static typing is better than dynamic; and that managed memory usage is
better than unmanaged” [39].

3.3.2 Web Application

The web application is implemented as a Progressive Web App (PWA) [38]. It
offers all the functionality of the other clients, and can be run in any modern
web browser. The only modern browser where NoKey does not run is Safari, as
it does not implement the full Web Crypto API as needed by NoKey.

The term PWA is not very precise, but it generally means that a website
makes use of some of the more modern web APIs to provide an app like expe-
rience. In the case of NoKey this means the ability to use the website when
offline, as well as being able to add the website to the home screen on supported
platforms, such as Android.

3.3.3 Web Extension

The web extension is basically just a small wrapper around the web application.
It lets the web application run in the background and displays its UI in the
extension popup. On top of that, it can detect and classify sign up and sign in
pages and offer to remember and fill out passwords. Figure 3.2 illustrates how
this looks like.
The extension is available on Chrome and Firefox. It should also run on Microsoft
Edge and Opera, but this has not been tested. Safari seems to be the only modern
browser that uses a different API for extensions, all other browsers have adopted
the WebExtension API [11].

3.3.4 Android

Just like the browser extension, the android application is also just a simple
wrapper around the web application. The application runs completely inside a
WebView [10].
The Android application injects a few additional functionalities into the web
application. For instance, on Android we can make use of the camera to scan QR
codes for pairing. Android also deals differently with uploading and downloading
files, which the wrapper also has to properly handle to provide the password
import/export feature.

3. Implementation 18

(a) Popup after signing up (b) Auto fill on login

Figure 3.2: Some exclusive features of the browser extension

This wrapper is written in Kotlin [31], a Java alternative that runs on the
JVM. One reason for choosing Kotlin over Java is that it has null safety, meaning
that most null pointer exceptions are caught at compile time. Another reason for
choosing Kotlin over Java is that Google seems to be focusing their development
efforts mostly on Kotlin, which can for instance be seen in their latest developer
conference1.

1 Google I/O 2018: What’s new in Android , https://android-developers.googleblog.
com/2018/05/google-io-2018-whats-new-in-android.html, Accessed: June 7, 2018

https://android-developers.googleblog.com/2018/05/google-io-2018-whats-new-in-android.html
https://android-developers.googleblog.com/2018/05/google-io-2018-whats-new-in-android.html

Chapter 4

Outlook

There are many ways to expand NoKey to be more secure and feature rich. In
this chapter we present some of the ideas we had that were out of scope for this
project, but would make for a good addition.

4.1 Improved Privacy

As written in Section 2.7.1, NoKey stores saved user names and site URLs in
plain text. It would be useful to have an option to also encrypt that information
when saving a password, to better protect the privacy of users. However, this
privacy feature would have a high usability trade-off: As long as the group stays
locked, the browser extension would not be able to offer to fill out a password
form, as it cannot know if the user has an account on the current site.

4.2 Keep Deleted Passwords

In Section 2.7.3, we wrote that it would be possible for an attacker who managed
to steal and unlock a device to delete all the saved passwords of the user. An
easy way to prevent such an attack would be to move a password to a bin before
it gets deleted.

The bin would than be local to a single device. With such a bin in place,
to fully delete a password, a user would have to remove it from the bin of each
paired device after having pressed delete.

It is not clear whether the added safety is worth the usability trade-off. Hav-
ing to go to each device separately to truly delete something is neither convenient
nor intuitive. On top of that, a bin would add additional complexity to the UI,
which makes it harder to keep a clean design.

19

4. Outlook 20

4.3 Add Trusted Friends

With key boxes (Section 2.6), it is possible to unlock a password group even if a
user does not have enough devices at hand. However, this comes at the cost of
having to remember an additional password.
One idea to completely get rid of passwords would be to add trusted friends. In
addition to creating a secret share for each device, NoKey could then also create
a secret share for each trusted friend. Friends would not be able to access the
users passwords, since they possess only one secret share and also do not have
access to the encrypted passwords. To unlock a device, users could then ask
their friends to send their secret shares.

To make sure this feature would not compromise the security of NoKey, users
would have to agree upon some way to make sure that it is truly them that are
asking for the key, and not a thief. As an example, they might send a selfie in
an agreed upon silly pose, such that a thief would not be able to impersonate
them.

4.4 QR Codes

Another way to get more secret shares without pairing another device would be
to print them out as QR codes. A QR code would then contain one share for a
password group. When unlocking a password group, a user could then scan the
QR code to access an additional share.

However, a QR code is less safe than a device. With a device, the shares are
usually also protected by another factor such as a fingerprint, as the device has
to be unlocked first. A QR code has no such protection. Additionally, a QR
code can easily be stolen undetected by simply taking a picture of it. This is a
problem, since a user has no way of knowing if a QR code was stolen. A stolen
device on the other hand is detected quickly and can be removed from the list
of trusted devices as soon as possible.

4.5 Online Storage Providers

With key boxes (Section 2.6), it is possible to use NoKey with only one device.
But would it be possible to also use it with no devices at all? By integrating
an online storage service such as Google Drive [24] or Dropbox [15] this would
become possible. When connecting with such a service, all the replicated data
could be stored in the cloud.

Users making use of this feature would now be able to access their passwords
without carrying any of their devices as follows: First, navigate to NoKey’s

4. Outlook 21

website and start the web application. Then, connect to an online service by
entering their password for that service. After that, all their encrypted passwords
and key boxes would be available. To then unlock their passwords, they would
have to open as many key boxes as the security level they were stored with.

This process requires that a user can remember at least three passwords. One
for the online service and two for the key boxes to unlock a password group with
security level two. This seems very inconvenient, but since using NoKey without
any devices should not be a very common situation, it seems acceptable.

4.6 More Communication Channels

Right now, the only way two clients can communicate with each other is via
the message forwarding server. To make NoKey less dependent on any server, it
would be useful to add other means of communication.
One idea would be to integrate communication over bluetooth. This way, devices
could directly communicate with each other without any middle man. However,
since not many PCs support bluetooth, this channel would not be useful for
many users.

Another interesting communication channel would be using WebRTC [2]
(Web Real-Time Communications). This is a set of protocols that allow di-
rect peer to peer communication between browsers.
Note that a server would still be necessary, but its job would be simplified even
further. The only function that would still need a server would be the pairing
process (Section 2.2). In addition to that, it could also act as a STUN (Ses-
sion Traversal Utilities for NAT) [49] server that helps to establish peer to peer
connections.

Chapter 5

Conclusion

With NoKey, we explored how a distributed password manager without a master
password may look like in practice. With the convenience of not having to
remember any passwords, we believe that this approach offers a great alternative
to traditional password managers.

With traditional password managers, the security largely depends on the
chosen master password. However, many people find it difficult to come up with
strong passwords that are memorable at the same time. Our presented approach
offers good security to all users, even for those that are unable to come up with
good passwords.

NoKey is free and fully open source under the MIT license [28]. The source
code is available at: https://github.com/Zinggi/NoKey.

Whether the approach taken by NoKey will become a popular alternative
to traditional password managers will have to be seen, but we hope that more
password managers will follow the presented approach in the future.

22

https://github.com/Zinggi/NoKey

References

[2] Bernard Aboba et al. WebRTC 1.0: Real-time Communication Between
Browsers. Candidate Recommendation. https://www.w3.org/TR/2017/CR-
webrtc-20171102/. W3C, Nov. 2017.

[4] Eralp A Akkoyunlu, Kattamuri Ekanadham, and Richard V Huber. “Some
constraints and tradeoffs in the design of network communications”. In:
ACM SIGOPS Operating Systems Review. Vol. 9. 5. ACM. 1975, p. 73.

[5] Joe Armstrong. Programming Erlang: software for a concurrent world.
Pragmatic bookshelf, 2013.

[7] Elaine Barker. “NIST Special Publication 800-57 Part 1 Revision 4, Rec-
ommendation for Key Management Part 1: General”. In: NIST (2016).

[8] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. “Argon2: new gen-
eration of memory-hard functions for password hashing and other applica-
tions”. In: Security and Privacy (EuroS&P), 2016 IEEE European Sympo-
sium on. IEEE. 2016, pp. 292–302.

[11] Mike Pietraszak (Microsoft Corporation). Browser Extensions. Draft Com-
munity Group Report. https://browserext.github.io/browserext/. W3C,
2017.

[12] Evan Czaplicki. “Elm: Concurrent frp for functional guis”. In: Senior the-
sis, Harvard University (2012).

[13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the ad-
vanced encryption standard. Springer Science & Business Media, 2013.

[16] Manuel Eggimann and Christelle Gloor. “Convenient Password Manager,
Group Project”. In: (2017).

[26] Paul Hudak et al. “Report on the Programming Language Haskell: A Non-
strict, Purely Functional Language Version 1.2”. In: SIGPLAN Not. 27.5
(May 1992), pp. 1–164. issn: 0362-1340. doi: 10.1145/130697.130699.
url: http://doi.acm.org/10.1145/130697.130699.

[29] Burt Kaliski. “PKCS# 5: Password-based cryptography specification ver-
sion 2.0”. In: (2000).

[32] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. “HMAC: Keyed-hashing
for message authentication”. In: (1997).

[35] Robin Milner. The definition of standard ML: revised. MIT press, 1997.

23

https://doi.org/10.1145/130697.130699
http://doi.acm.org/10.1145/130697.130699

REFERENCES 24

[39] Baishakhi Ray et al. “A large scale study of programming languages and
code quality in github”. In: Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ACM. 2014,
pp. 155–165.

[41] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for ob-
taining digital signatures and public-key cryptosystems”. In: Communica-
tions of the ACM 21.2 (1978), pp. 120–126.

[42] Adi Shamir. “How to share a secret”. In: Communications of the ACM
22.11 (1979), pp. 612–613.

[43] Marc Shapiro et al. “Conflict-free replicated data types”. In: Symposium
on Self-Stabilizing Systems. Springer. 2011, pp. 386–400.

[44] Marc Shapiro et al. “Convergent and commutative replicated data types”.
In: Bulletin-European Association for Theoretical Computer Science 104
(2011), pp. 67–88.

[46] Roy Thomas. “Fielding. Chapter 5: Representational state transfer (rest)”.
In: Architectural Styles and the Design of Network-based Software Archi-
tectures (Ph. D.) (2000).

[47] Alan Mathison Turing. “On computable numbers, with an application to
the Entscheidungsproblem”. In: Proceedings of the London mathematical
society 2.1 (1937), pp. 230–265.

[48] Web Hypertext Application Technology Working Group (WHATWG). Web
sockets HTML Living Standard. Tech. rep. https://html.spec.whatwg.org/multipage/web-
sockets.html. WHATWG, May 2018.

[49] Dan Wing et al. “Session traversal utilities for NAT (STUN)”. In: (2008).

Web Links

[1] 1Password, homepage. https://1password.com/. Accessed: June 7, 2018.

[3] Akka Documentation, Distributed Data, Lightbend, Inc. https://doc.

akka.io/docs/akka/snapshot/distributed- data.html. Accessed:
June 7, 2018.

[6] Avatars, identicons, and hash visualization, Jussi Judin. https://barro.
github.io/2018/02/avatars-identicons-and-hash-visualization/.
Accessed: June 7, 2018.

[9] Browser Extension, Mozilla Developer Network, Mozilla. https://developer.
mozilla.org/en-US/Add-ons/WebExtensions. Accessed: June 7, 2018.

[10] Building Web Apps in WebView, Android Developer Guide, Google. https:
//developer.android.com/guide/webapps/webview. Accessed: June 7,
2018.

[14] Dashlane, homepage. https://www.dashlane.com/. Accessed: June 7,
2018.

[15] Dropbox, cloud storage provider, Dropbox, Inc. https://www.dropbox.
com/. Accessed: June 7, 2018.

[17] Elixir, a dynamic, functional language. https: //elixir - lang. org/.
Accessed: June 7, 2018.

[18] Elm, a purely functional language for the web. http://elm-lang.org/.
Accessed: June 7, 2018.

[19] Elm package for hash icons, Florian Zinggeler. http://package.elm-
lang.org/packages/Zinggi/elm-hash-icon/latest. Accessed: June 7,
2018.

[20] Enpass, homepage. https://www.enpass.io/. Accessed: June 7, 2018.

[21] F#, a functional-first programming language. https://fsharp.org/. Ac-
cessed: June 7, 2018.

[22] Font Awesome - the iconic SVG, font, and CSS toolkit, Fonticons, Inc.
https://fontawesome.com/. Accessed: June 7, 2018.

[23] GitHub, homepage. https://github.com/. Accessed: June 7, 2018.

[24] Google Drive, cloud storage provider, Google. https://www.google.com/
drive/. Accessed: June 7, 2018.

[25] Have I Been Pwned, Troy Hunt. https://haveibeenpwned.com/. Ac-
cessed: June 7, 2018.

25

https://1password.com/
https://doc.akka.io/docs/akka/snapshot/distributed-data.html
https://doc.akka.io/docs/akka/snapshot/distributed-data.html
https://barro.github.io/2018/02/avatars-identicons-and-hash-visualization/
https://barro.github.io/2018/02/avatars-identicons-and-hash-visualization/
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.android.com/guide/webapps/webview
https://developer.android.com/guide/webapps/webview
https://www.dashlane.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://elixir-lang.org/
http://elm-lang.org/
http://package.elm-lang.org/packages/Zinggi/elm-hash-icon/latest
http://package.elm-lang.org/packages/Zinggi/elm-hash-icon/latest
https://www.enpass.io/
https://fsharp.org/
https://fontawesome.com/
https://github.com/
https://www.google.com/drive/
https://www.google.com/drive/
https://haveibeenpwned.com/

WEB LINKS 26

[27] Identicons, GitHub. https://blog.github.com/2013-08-14-identicons/.
Accessed: June 7, 2018.

[28] Open Source Initiative et al. The MIT license. https://opensource.org/
licenses/MIT. 2006.

[30] KeePass, homepage. https://keepass.info/. Accessed: June 7, 2018.

[31] Kotlin, a statically typed language for the JVM, JetBrains. https : / /

kotlinlang.org/. Accessed: June 7, 2018.

[33] LastPass, homepage. https://www.lastpass.com/. Accessed: June 7,
2018.

[34] LessPass, Stateless Password Manager. https://lesspass.com/. Ac-
cessed: June 7, 2018.

[36] novault, Stateless Password Manager and Brain Wallet. https://github.
com/novault/novault. Accessed: June 7, 2018.

[37] Phoenix Framework, a web framework for Elixir. http://phoenixframework.
org/. Accessed: June 7, 2018.

[38] Progressive Web Apps, Google. https://developers.google.com/web/
progressive-web-apps/. Accessed: June 7, 2018.

[40] Riak, a distributed NoSQL database, Basho Technologies, Inc. https://
docs.basho.com/riak/kv/2.2.3/learn/concepts/crdts/. Accessed:
June 7, 2018.

[45] The Road to 2 Million Websocket Connections in Phoenix. http://phoenixframework.
org/blog/the-road-to-2-million-websocket-connections. Accessed:
June 7, 2018.

https://blog.github.com/2013-08-14-identicons/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://keepass.info/
https://kotlinlang.org/
https://kotlinlang.org/
https://www.lastpass.com/
https://lesspass.com/
https://github.com/novault/novault
https://github.com/novault/novault
http://phoenixframework.org/
http://phoenixframework.org/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://docs.basho.com/riak/kv/2.2.3/learn/concepts/crdts/
https://docs.basho.com/riak/kv/2.2.3/learn/concepts/crdts/
http://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
http://phoenixframework.org/blog/the-road-to-2-million-websocket-connections

	Abstract
	1 Introduction
	1.1 Goals
	1.2 Related Work

	2 Concept
	2.1 Communication
	2.2 Pairing
	2.2.1 Visual Hash Icon

	2.3 Synchronizing State
	2.3.1 Shared State CRDT

	2.4 Password Generation
	2.5 Storing Passwords
	2.6 Key Boxes
	2.7 Security
	2.7.1 Read Only Attack
	2.7.2 Man in The Middle
	2.7.3 Read-Write Attack

	2.8 Design

	3 Implementation
	3.1 Overview
	3.2 The Server
	3.3 The Clients
	3.3.1 Shared Code
	3.3.2 Web Application
	3.3.3 Web Extension
	3.3.4 Android

	4 Outlook
	4.1 Improved Privacy
	4.2 Keep Deleted Passwords
	4.3 Add Trusted Friends
	4.4 QR Codes
	4.5 Online Storage Providers
	4.6 More Communication Channels

	5 Conclusion

