
PyWD2015-Qt5
User Manual

Ozan GÜZEL, Orkun ÖZDARCAN

August 16, 2022

Contents

1 Introduction 1

2 Installing and running PyWD2015 1

2.1 Single executable file option . 1

2.2 Running from the archive . 2

3 Overview of the GUI 3

4 Additional features 9

4.1 Eclipse times . 9

4.2 Spectral line profiles . 11

4.3 Star dimensions . 11

4.4 Conjunctions . 13

5 Observational data structure 13

6 Example usage 15

7 Caveats and notes 25

I

1 Introduction

Most researchers, who are interested in modelling of observational data of eclipsing bi-
naries, would precisely know the Wilson – Devinney (WD) eclipsing binary modelling
code (Wilson & Devinney, 1971), which becomes a standard model for detailed analysis
of various types of eclipsing binaries. PyWD2015 is, at its core, a “GUI wrapper” for
WD code, which aims to provide a convenient interface for inputting parameters to the
user and running DC and LC programs (Güzel & Özdarcan, 2020).

Along with use of PyWD2015, users should properly cite relevant Wilson – Devinney
papers (Wilson, 1979, 1990; Van Hamme & Wilson, 2007; Wilson, 2008; Wilson & Van
Hamme, 2014).

The first version of PyWD2015 was written in Python2.7 and Qt4 framework was
used with PyQt4 bindings for the interface. Shortly after, serious bug fixes were made
and GUI part was rewritten in Qt5 environment with PyQt5 bindings for the interface.
Since support for Python2.x ended, code parts were also rewritten and now PyWD2015
is Python3.x compatible. PyWD2015 uses NUMPY and SCIPY libraries for numerical
calculations and MATPLOTLIB to display plots and graphs and save publication quality
figures.

2 Installing and running PyWD2015

After a seamless installation of PyWD2015, users are advised to take a look at Section 7
occasionally, where some hints about proper running of PyWD2015 and solutions against
possible issues are provided.

2.1 Single executable file option

PyWD2015 was successfully run in Linux (64 bit) and Windows (Win 7, 8.x, 10; all
64 bit) operating systems. Users, who work on Windows systems have a very prac-
tical option for using PyWD2015. These users can download single executable file
“pywd2015.exe” and run it directly by double clicking on it. Note that Windows exe-
cutable file is only available for 64 bit systems. However, PyWD2015 cannot operate
without LC and DC programs, which are main programs of the Wilson – Devinney code.
Users must put these programs and their auxiliary files1 to a proper working directory.
This directory is used by PyWD2015 during runs of DC and LC programs (see later
paragraphs for more information). Single executable binary file option is not available
for Linux systems since created binary files usually complain from various reasons and
may likely fail to run in different Linux distributions.

When users successfully run PyWD2015 executable file, it may take a while until
the welcome screen (Figure 1) appears, because the executable file extracts all required
libraries to a temporary folder and run PyWD2015 from that folder. When the welcome
screen appears, it asks user to choose LC and DC programs from desired working direc-
tory. After users choose these files, main window (Figure 2) of PyWD2015 opens and
users can start to work with PyWD2015.

1These are “atmcof.dat”, “atmcofplanck.dat”, “effwvl.dat” and “limcof bp*” files.

1

When users close PyWD2015, all files, which are extracted to the temporary folder
are removed. It means that if users re-run PyWD2015 again, welcome screen will appear
again and users will have to choose LC and DC programs from desired working direc-
tory again. The same is valid when unexpected crash and/or termination of PyWD2015
occurs. For that reason, frequent save of currently studied PyWD2015 project is strongly
recommended.

2.2 Running from the archive

Users, who desire to run PyWD2015 from the source code, should consider that the in-
stallation of PyWD2015 mainly consists of two steps: Downloading PyWD2015 archive
file and installation of required libraries. The total size of the archive is ∼ 2 MB. Main
requirements of PyWD2015 are NUMPY, SCIPY, MATPLOTLIB and PyQt5 libraries.

Windows users must previously install PYTHON2. Here, it is strongly recommended
to install the very latest version of PYTHON available for used operating system since
older versions may lead to unexpected dll errors when importing PYTHON libraries.

NUMPY, SCIPY and MATPLOTLIB libraries can be installed relatively straightfor-
ward using Python’s “pip” command line utility. Issuing:

>sudo pip install numpy scipy matplotlib

or, on Windows with an elevated command prompt:

>pip install numpy scipy matplotlib

should install these libraries.

On Windows, “pip” should be automatically installed alongside Python2.7.9 or greater.
On Linux, one should refer to his or her distribution package manager for installing “pip”.

The recent version of PyWD2015 also requires PyQt5 library. This library does
not exist in “pip” for Linux systems, so it must be installed externally. Most Linux
distributions have it on their package managers. Below are some examples:

Ubuntu/Debian:

(For Python 2.7) >sudo apt install python-pyqt5

(For Python 3.x) >sudo apt install python3-pyqt5

For Windows 7 and 8.x, use of “pip” is possible within an elevated command prompt:

>python -m pip install python-qt5

However, for the latest versions of PYTHON, users may have to modify the command
as shown below:

>python -m pip install PyQT5

If Windows users encounters dll import error, it is likely that an older PYTHON ver-
sion is in use. In this case, it is recommended to uninstall older version and install a
newer (the latest version available is strongly recommended) version of PYTHON. After
that step, please do not forget to install NUMPY, SCIPY and MATPLOTLIB libraries as
described above.

Note that PyWD2015 has not been tested on Windows 11 yet.

2https://www.python.org/

2

On Debian, users may encounter a “backports.functools lru cache” and/or “tkinter”
error on a fresh matplotlib installation under Python2.x. To fix this, user can issue:

>sudo apt install python-backports.functools-lru-cache python-tk

In addition, files required by WD code (atmcof.dat, atmcofplanck.dat, effwvl.dat,
limb darkening coefficient files, LC and DC executable files) must be placed in a di-
rectory, which is desired to be used for LC and DC computations. There should be no
limitation for path and name of this directory. However, since WD code was written in
FORTRAN, users must be careful about that FORTRAN codes sometimes may not work
due to long path names (e.g. /home/user/directory1/directory2/.../.../.../.../PyWD2015).
Therefore, “/home/user/” directory for linux systems (e.g. /home/user/PyWD2015) and a
directory directly under “C” drive (e.g. C:\PyWD2015) for Windows systems might be
recommended to copy PyWD2015 directory. PyWD2015 can also be copied to different
drives (e.g. “D” drives, instead of “C”). Another important point is that the user must
compile LC and DC programs with an appropriate FORTRAN compiler for correspond-
ing platform and set execution permissions correctly. However, pre-compiled LC and DC
binaries are provided for users who do not want to spend time on code compilation.

After all WD files are in place and required libraries and software are installed, enter
PyWD2015 directory and run the program from a terminal by typing

> python3 pywd2015.py

Figure 1: Welcome screen.

When everything works fine, a welcome screen appears (Figure 1). In this screen,
path of LC and DC executable files must be defined by clicking “Pick File” buttons.
Then, the screen is closed by pressing “save” button. After the welcome screen is closed,
main window of PyWD2015 opens (Figure 2).

3 Overview of the GUI

Inspecting Figure 2, one finds five vertically arranged tabs. These tabs are “Input”,
“LC2015”, “DC2015”, “Tools” and “About”. Under “Input” tab, there are four hori-
zontally arranged tabs, “Main”, “System”, “Surface”, “3rd body”.

3

Figure 2: Main window.

The first horizontally arranged tab is “Main”, and is seen in Figure 2. In this tab,
system name is entered to the corresponding box (next to “System” label in Figure 2)
and operation mode, independent variable (time or phase) and dependent variable (flux
or magnitude) can be chosen. If flux data is in cgs unit system, “Use CGS” box must be
checked. Checking “RV Correction” boxes enables proximity and eclipse corrections for
radial velocity of corresponding component. This tab also includes three buttons under
“Data Input” label (Light/Velocity Curves, Spots, Eclipse Timings). These buttons enable
user to define observational input data and cool/hot spots on component stars. Details on
these buttons are given in next sections.

The whole window has a small but useful tips for labels. If one holds mouse pointer
on, say “Use CGS” label, for a second, a small text box appears, which includes expla-
nation for that label. At the same time, abbreviation of that label (“IFCGS” in this case)
in WD convention appears at the lower left bottom of the whole window. This property
is also found in other tabs.

Figure 3: System tab.

The next tab is “System”, where orbital and physical parameters of the eclipsing bi-
nary can be entered (Figure 3). PyWD2015 follows WD convention in terms of parameter
units, except temperatures (T1 and T2), where user must supply temperatures in absolute
values3. Angular units must be entered in radian, except inclination angle, which must

3If temperature of the primary component is 5 000 K, the T1 must be entered as 5 000. PyWD2015
divides this number to 10 000 and converts it to 0.5 when writing input file.

4

Figure 4: Conjunction information window.

be entered in degree. Pressing “Conjunctions” button located lower right corner in Fig-
ure 3 opens a small window (Figure 4), which gives information on the phase positions
of the eclipses, apastron and periastron. The information provided by this window is
particularly useful for eclipsing binaries with eccentric orbits.

The third horizontally arranged tab is “Surface”, where radiative properties of the
components are defined (Figure 5). This tab is quite self explanatory. Under “Limb
Darkening” header, one must check boxes under “Set Fixed” label in order to use fixed
(user defined) limb darkening coefficients. If these boxes are unchecked, PyWD2015
sets numbers, which represent limb darkening laws in LC/DC input files, to negative
values in LC/DC input files4. Hence, LC/DC programs ignore user-defined limb dark-
ening coefficients (if any) and compute them internally during DC or LC run. In this
case, PyWD2015 removes limb darkening coefficients (x1, x2) from adjustable param-
eter list and prevents user to choose them as adjustable parameter. Please note that,
internal computation of limb darkening coefficients is not valid for bolometric limb dark-
ening coefficients. If bolometric limb darkening coefficients are strictly required (e.g.
for computations with detailed reflection assumption), user must enter or update these
coefficients by hand for each LC and DC run.

Figure 5: Surface tab.

The last horizontally tab is “3rd Body” and includes orbital parameters of the third
body (Figure 6). Before entering third body parameters, “Enable third body parameters”
box must be CHECKED! Otherwise, PyWD2015 locks all these boxes and does not allow
users to edit. In this case, LC or DC will run by adopting third body parameters as zero.

4−1, −2, −3 in WD convention; linear, logarithmic and square-root laws, respectively

5

Figure 6: Third body tab.

Figure 7: LC2015 tab.

The second uppermost vertically arranged tab is “LC2015” (Figure 7). In this tab,
common LC parameters for constructing theoretical light and velocity curves, projected
surface element of the components, spectral line profiles and conjunction times are found.
Boxes and labels are self explanatory. “Random” and “Default” buttons are related to
“Seed” parameter, which determines noise excursion in theoretically constructed model.
Pressing “Default” button will adopt default seed number coming in original LC in-
put files, while pressing “Random” button will change this number randomly. Press-
ing “Fill...” button enables user to adopt start and end point of observational data in
time/phase axis automatically. However, user needs to define an input observational data
previously in order to use this feature. “lcin.active” and “lcout.active” buttons open lcin
and lcout files for the very last LC run. Files are opened by default text editor defined in
operating system. These buttons are practical for quick view of lcin and lcout files. For
each LC function, separate buttons were designed. Depending on the purpose, clicking
on a proper button will open a new window.

The next vertically arranged tab is “DC2015” (Figure 8). Type of derivatives, desig-
nated extinction and its band are defined in this tab. There are two buttons on this tab.
Pressing “Differential Correction” button opens a new window, which enables user to run
iterations and trace outputs as lists and plots. “Solution History” button opens another
plot window. In this window, user can trace the previous values of any adjusted parameter
during iterations. This is particularly useful in terms of tracing the model convergence
during successive DC iterations.

6

Figure 8: DC2015 tab.

The fourth vertically arranged tab is “Tools” and includes three horizontally arranged
tabs (Figure 9).

Figure 9: Dimensionless Ω potential calculation tool under “Tools” tab.

Among these tabs, the first one, “Radius to Potential”, is used for calculation of di-
mensionless Ω potential based on mass ratio of the system, instantaneous distance be-
tween components, fractional radius and rotation parameter of the component (Figure 9).
This tool is useful when estimating a reasonable Ω potential value at the beginning of a
solution.

The second horizontally arranged tab is for estimating effective temperatures from
color index (from B − V and JHK colors; Figure 10). Numerous color – temperature
calibrations were adopted from various references (Gray, 2005; Drilling & Landolt, 2000;
Flower, 1996; Popper, 1980; Tokunaga, 2000). These are implemented by using 7th order
polynomials (except for Gray, 2005), whom adopts 4th order polynomial for cool stars
and 5th order polynomial for hot stars). User only needs to enter color index and its
observational uncertainty in unit of magnitude. Then, pressing “calculate” button will
give estimated effective temperature and its uncertainty.

The last horizontally arranged tab under “Tools” tab is for time conversion between
UT and Julian Date (Figure 11). Both JD to UT and UT to JD conversions are possible.

The lowermost vertically arranged tab is “About”, which includes some information
on PyWD2015, and some theme options depending on the used operating system and
desktop settings.

7

Figure 10: Effective temperature estimation tool under “Tools” tab.

Figure 11: Time conversion tool under “Tools” tab.

8

4 Additional features

4.1 Eclipse times

If eclipse times are available for a system, “O–C” button under LC2015 tab can be clicked
to see an O − C diagram5. However, eclipse time data must be loaded to PyWD2015
previously in order to construct an O − C diagram. For data loading, one may press
“Eclipse Timings” button under “Main” tab and a new window opens (Figure 12).

Figure 12: Eclipse timings data loading win-
dow.

Clicking “Load” button opens a file
picking dialog. From this dialog, user can
choose data file and load it to PyWD2015.
Then all data columns are shown in
“Eclipse Timings” window. If desired,
“IFTIME” box can be checked. Note that,
if “IFTIME” box is not checked, DC out-
put file will not contain statistical curve in-
formation and user will not be able to see
this information in DC widget (see later
section). Therefore, it is strongly recom-
mended to check “IFTIME” box in the ex-
istence of eclipse time data. “KSD” and
“SIGMA” values are set to proper num-
bers depending on desired standard devia-
tion apply method and data quality6. Par-
ticularly, user must be careful about not
to leave “SIGMA” value as zero because
DC program may return weird values (e.g.
“NaN”) or crash. When data loading fin-
ishes, user can close the window.

Figure 13: O − C window.

The next step is to go LC2015 tab and press “O–C” button. This opens the window
shown in Figure 13.

5Since O−C concept refers to residuals from a best fitting model, it is also used in other research areas
outside of astronomy. More proper concept is suggested as eclipse time variation. However, traditional
O − C concept is followed in this manual.

6Please refer to Section 7 for caveat on input KSD and SIGMA values

9

Pressing “Compute” button in Figure 13 lists input eclipse times, linear residuals
from these times and residuals with dP/dt considered. If desired, listed data can be saved
as plain text file by pressing “Export” button.

After that, user may check “Linear Residuals” box and see plotted O − C data as
filled circles in blue color (Figure 14, left panel). In case of dP/dt is different from zero,
“Residuals with dP/dt” box can be checked. This time, residuals with dP/dt are plotted
as filled circles but in red color (Figure 14, right panel). Both boxes can be checked and
both residuals can be plotted at the same time, however, if dP/dt is zero, then both data
sets will be identical and appear as overlapped. Please note that, after plotting residuals,
if dP/dt value is updated from main window (system tab), user must press “Compute”
button again in order to see actual (correct) residuals in the plot window.

Figure 14: Linear residuals are shown in the left panel. In the right panel, residuals with
dP/dt are plotted, with an assumed value of dP/dt = 2× 10−8.

Figure 15: Computed corrections to the
epoch (∆T) and the period (∆P) and over-
plotted linear fit to the “Linear Residuals”,
with dP/dt = 0.

It is possible to compute linear correc-
tions to the epoch and the period by fit-
ting a line to the O − C diagram shown
in the left panel of Figure 14. In order
to compute corrections, user must check
only “Linear Residuals” box and “Resid-
uals with dP/dt” box must be unchecked.
Then, pressing “Calculate” button in lower
left corner of the window, user can see lin-
ear fit as a red continuous line as overplot-
ted in the plot window, and corrections in
the epoch (∆T) and the period (∆P) in
the boxes located lower left of the window
(Figure 15).

It is also possible to apply ∆T and ∆P
corrections to the epoch and the period by
pressing “Update” button. In this case,
the epoch and the period values entered to
boxes under “System” tab will be updated.
After updating values, there is no “undo”
action for this, thus user must proceed carefully.

10

4.2 Spectral line profiles

PyWD2015 can also be used to visualize spectral line profiles computed by LC code.
Pressing “Spectral Line Profiles” button on the “LC2015” tab brings up the line profile
widget. This window can be seen on Figure 16. Here, one can add spectral lines to each
of the components to generate. Each list label contains tooltips and these can be viewed
by simply hovering the mouse over the labels and waiting for a second. Pressing “Add”
button adds a spectral line to the corresponding component’s list and each parameter can
be modified by single clicking. Any amount of lines can be added to either component.
Specifying the phase and hitting the “Plot” button runs the LC and visualizes the results.
Blue lines are used for the first component, while red is used for the second.

Figure 16: Spectral Line Profile widget.

4.3 Star dimensions

If interested, one can also use the “Star Dimensions” widget found on the “LC” tab
to generate the fractional radius changes of the system for a whole orbital cycle. This
is highly useful for eccentric binaries that are also passing closer to each other during
periastron passage. Simply pressing the “Calculate Component Radii” button runs LC
and the radii changes are computed. Then, one can use the tickers found on the lower
part of the widget as shown in Figure 17 to show or hide each fractional radius. Each line
is color coded with its own ticker.

Looking at Figure 17 upper panel, one can easily notice that for a binary on a circular
orbit, no radius variation happens during an orbital cycle and pole, point, side and back
radii differ only due to slightly distorted shapes of the components. Those differences
arise from proximity effect. However, for binaries on eccentric orbits, radius variation
over an orbital cycle might be noticeable, especially in the case of close eclipsing binaries
with massive and large components. In the lower panel of Figure 17, radii difference of
the components of a hypothetical eclipsing binary are shown. This hypothetical binary
is composed of components with 2.3 M� and 1.7 M� masses, 1.9 R� and 1.6 R� mean

11

Figure 17: Star Dimensions widget with all radii shown. In the upper panel, radii of the
components of a binary on a circular orbit are shown. In the lower panel, stellar radii are
shown for a binary on an eccentric orbit.

radii on an eccentric orbit (e = 0.2) with 1.9 day period. It must be stressed that it is
difficult to obtain similar graph in the case of a low mass eclipsing binary, even with
the same eccentricity and orbital period. For such a low mass binary, since components
would have considerably small sizes, radius variation over an orbital cycle due to the
eccentricity becomes extremely small. In case of such low mass systems, user may get
plots either similar to upper panel of Figure 17, or weird plots where abrupt changes
in radii occurred in random orbital phases. Such weird plots possibly arise from low
grid values (see grid values shown in Figure 5). Low grid values makes numerical noise
dominant over extremely small radius variation.

12

4.4 Conjunctions

Figure 18: Conjunction widget.

“Conjunction” widget can be used to gen-
erate conjunction times. These times then
can be used as theoretical mid-eclipse
times, if desired. Widget also has the abil-
ity to calculate UTC from HJD and con-
vert HJD to JD. For that, widget requires
the system’s equatorial coordinates. This
can be useful for observation planning.
Cycle step parameter is used to skip over
fixed amount of conjunctions. If it is 2, ev-
ery second conjunction is computed. If it
is 3, every third conjunction is computed
and so on. Before computing conjunc-
tion times, user must enter desired start
and stop values of in JD unit in LC2015
tab (Figure 7). The widget will compute
conjunction times between start and stop
JD values entered in LC2015 tab. After
inputting relevant parameters, “Compute”
button can be used to calculate the con-
junction times. After that, computed con-
junction times will be listed in the widget
as shown in Figure 18. User may notice
that computed conjunction times in Figure 18 are between start and stop JD value seen
in Figure 7. Changing these start and stop values, user can compute expected times of
conjunctions for a wider or narrower time range.

5 Observational data structure

Users only need to prepare simple three column data files without any formatting re-
striction. PyWD2015 automatically reads these files, arranges them with respect to the
format required by DC program. In the case of a light curve data, the columns are time
(or phase), flux (or magnitude) and weights. If radial velocity data is considered then the
columns are time (or phase), radial velocity (in km s−1) and weights. Please note that, if
user provides radial velocities in absolute values (in km s−1), then “V Unit” box under
“System” tab (see Figure 3) must be set to unity (1.0). If provided velocities are divided
by 100, then “V Unit” value must be set to 100. Although this is WD related property, it
would be appropriate to stress this tiny but important detail here in order to avoid weird
results in simultaneous light curve and radial velocity curve solutions. Please also note
that, even if input radial velocities are scaled by dividing, say 100 (“V Unit” must be set
to 100 in this case!), defined plot functions for DC and LC widgets always multiply input
velocities by “V Unit” and radial velocities are plotted in absolute km s−1unit in plot win-
dows7. If eclipse times are available, then the columns are eclipse time (JD/HJD/BJD),

7In this case, scaled radial velocities are still used as scaled (divided by 100 in this example) for LC and
DC computations, but they are only converted to absolute km s−1unit for plotting purpose, which is done
by PyWD2015.

13

type of eclipse (1 for primary minimum, 2 for secondary minimum) and weight. After
data files are prepared, they can be loaded into PyWD2015.

Although there is no strict formatting restrictions for data files, there are limitations
for number of decimal digits for each defined quantity (time/phase, flux/magnitude and
weight) in data files. These have already been defined in the source code of DC program.
According to these limitations, DC program only considers 5 (five) digits after decimal
point for time/phase quantity. If loaded data file includes time/phase quantity with, say 8
decimal digits, DC program only considers first 5 decimal digits and ignores remaining
decimals. Similar limitation is valid for flux/magnitude and weights. In the case of
flux/magnitude quantity, DC accepts 6 decimal digits, while for weights it only accepts 3
decimal digits.

Particularly, modelling attempts with absolute fluxes in CGS unit, (where very small
numbers are involved, like 10−8 or 10−4), loss of numerical precision is a potential issue.
However, this issue can be overcome by using “XUNIT” multiplier (see Figure 21 in
the next section). “XUNIT” multiplier8 allows user to load “scaled” input data to DC
program. For instance, let CGS flux of a component in an arbitrary bandpass is measured
as 0.000326287. If user loads this number to DC program “as it is”, DC reads this number
as “0.000326” (remember limitation; 6 digits decimal for fluxes/magnitudes) thus ignores
last three decimals, which causes loss of precision. If user multiplies this number by, say
1000, and load this number to DC program, DC reads this number as 0.326287 so there
is no loss of precision. However, user must set “XUNIT” to 0.001 in order to tell DC that
input fluxes are multiplied by 1000. After defining proper “XUNIT” value, DC program
multiplies input fluxes by the value of “XUNIT”, puts scaled input fluxes back to their
original scale and carries out computations with true fluxes.

Please also note that, absolute flux solution can be done with light curve data in
standardized magnitude unit provided that “Use CGS” box must be checked in the main
window (see Section 7 for further notes).

8Note that “XUNIT” is not a PyWD2015 feature but it is already defined in DC code.

14

6 Example usage

In this section, an example on basic usage of PyWD2015 is provided. The example is
based on modelling light curve and radial velocity data of a semi–detached eclipsing
binary system possessing a hot spot on the surface of the primary component. In this
system, secondary component filled its Roche lobe. The light curve data are phase–folded
normalized fluxes, while radial velocity data are phase–folded absolute radial velocities.
Assuming all observational data are ready, one can start with main window by filling
“System Name” and choosing proper options (Figure 19).

Figure 19: The filled “Main” tab.

Now, by pressing “Light/Velocity Curves” button, data files can be loaded. Pressing
that button opens a new window (Figure 20). Pressing “Add” button in this window
shows two options. One option is for loading radial velocity data and the other option is
for loading light curve data. Choosing “Light Curve” option opens a file chooser dialog.
From this dialog, one can choose light curve data file. Same process is repeated for
radial velocity data but this time “Velocity Curve” option must be chosen. When mouse
pointer is kept on “Velocity Curve” option, two more options appear. These options are
for loading radial velocity data for the primary or the secondary component.

Figure 20: “Load Observation” window.

Choosing light curve option in Figure 20, a new dialog appears (Figure 21). In this
dialog, each field is filled with proper numbers depending on bandpass properties of the
components. If bandpass number of a filter can not be remembered, one can press “List”
button and choose proper band for the corresponding filter of observed data. Then the
number in the text box will be updated automatically. In case of loading a wrong file, or
if user wants to load another data file instead of the current one, user only needs to press

15

Figure 21: Light curve data loading window.

“Pick Again” button to open a file chooser dialog. In some cases, user may forget to
add third column (weight column) to the data file and may load it to PyWD2015. In this
kind of cases, if all data points have the same weight, then user can set third column to
1.0 automatically by pressing button under “Weight” label and choosing “Constant (1.0)”
option. Actually, the buttons in this part allow user to choose different columns from a
multi-column data file, which provides flexibility during input data definition step. The
main aim of this feature is to choose proper columns from a multi-column file, which
includes observational data only for a given bandpass.

In principle, this feature allows user to save multiple light curve (say Johnson-Bessell
UBV) into a single (multi-column) file, and use that file to load observational data for
each bandpass. However, this case can easily cause confusion during printing of DC out-
puts in DC widget (see Figure 28 below) because PyWD2015 prints bandpass dependent
DC outputs (e.g. L1, `3) under separate labels. PyWD2015 determines these labels from
the name of loaded data file for corresponding bandpass. Using single file for loading
data of multiple light curves in different bandpasses can easily cause confusion during
evaluation of results printed by DC widget. Therefore, it is strongly recommended to
use separate file for each data in separate bandpass and load these files separately to
PyWD2015.

User can also plot defined data immediately by pressing “Plot” button.

If L2 is not decoupled from T2 (IPB=0 case; note that, this can be set from “Surface”
tab, see Figure 5), the text box under “L2” label becomes inactive, its value appears as
1.0 and can not be edited. This is not a problem since L2 is a non-adjustable parameter in
this (IPB=0) case and PyWD2015 automatically sets it to unity. If L2 is decoupled from
T2, then L2 can be edited in this window. After filling all fields properly, the window can
be closed by pressing “Accept” button. Same process is applied for loading light curve
data in various bandpasses or radial velocity data.

After all observational data is loaded, it is possible to select any data file with left
mouse click on it and plot it by pressing “Plot” button in “Load Observation” window
(Figure 20). When data loading is finished, “Load Observation” window can be closed
from upper right corner.

16

Then, the “System” tab is opened and each box is filled with proper numbers (Fig-
ure 22). In this tab, one can notice that the dimensionless (Ω) potential of the secondary
component (POT2) can not be edited. This is because the operation mode is set to 5 (see
Figure 19). The number seen in POT2 box is directly calculated inside PyWD2015 and
corresponds to the inner critical potential value of the system. It also means that one can
not adjust POT2 during DC iterations. Value of POT2 is kept fixed by PyWD2015, as
long as the mass ratio is kept fixed.

Figure 22: The filled “System” tab.

Figure 23: The filled “Surface” tab.

Next, the “Surface” tab (Figure 23) is opened and filled with proper numbers and
selections, depending on estimated radiative properties of components. In this example,
boxes under “Set Fixed” label are checked, which means limb darkening coefficients are
not allowed to be computed internally by DC or LC. It also means that limb darkening
coefficients can be adopted as adjustable parameters. If these boxes were not checked,
then DC or LC would compute limb darkening coefficients internally in each iteration and
it would not be possible to adjust these coefficients during DC iterations since PyWD2015
would remove them from adjustable parameter list.

In this example, there is no 3rd body parameters for the system, hence the last tab is
skipped.

17

Since example system has a hot spot on the primary component, a hot spot should
be defined on this component. For this purpose, one must press “Spots” button in the
“Main” tab and open “Configure Spot” window (Figure 24).

Figure 24: “Configure Spot” window.

One needs to press “Add Spot” button in order to add a spot to the surface of the
desired component. In this window, a hot spot is defined on the primary component (Star
1). Since there is only one spot, “A” label was chosen for the defined spot. If there were
two spots, then the second spot would have label “B”. DC code can adjust the parameters
of at most two star spots in a single iteration. The labels “A” and “B” represent these
two adjustable spots in this single iteration. In case of more than two spots, user can
use “A” and “B” labels only for two spots at a time. Spots “A” and “B” can be on
the same component or spot “A” and spot “B” can be placed on the primary and the
secondary component, respectively. In case of two spots on each component (four spots
in total), again, labels “A” and “B” can be used for two spots. Remaining unlabelled
spots still appear in input file (dcin.active) as a separate row, contributes to synthetic
model computation, but can not be adjusted in DC iterations. PyWD2015 prevents user
to label more than two spots. One can notice that “Use VFA” box is checked, which
means more recent and precise “Vector Fractional Area (VFA) algorithm” of DC code
will be used.

The next step is to plot observational data and model curve together in order to evalu-
ate the agreement between them. For this purpose, LC2015 tab is used. In this tab, press-
ing “Synthetic Light/Velocity Curves” button opens a new window (titled “Plot Synthetic
Curves”, Figure 25). This window is useful when producing trial models by LC program
and evaluate the agreement to the observational data. This window has “Light Curve”
and “Velocity Curve” tabs.

18

Figure 25: Light curve plotting window.

In order to plot light curve, the first step is to choose “Light Curve” tab and click the
file name of desired data (under “File Name” column, see upper panel in the window).
Then, desired boxes, which are located at upper right, should be checked. Here, if “Alias
Observation with Model” box is checked, then PyWD2015 reads start, stop and increment
values from LC2015 tab (Figure 7) and plots both observed and computed data between
start and stop ranges. User must be careful about which independent variable is chosen
(JD or Phase) in LC2015 tab. Choosing “JD” for phase folded input data would give
weird results in plots. Depending on user needs, only observed data or only synthetic
data can be plotted, too. It is also possible to put grids in plot window by checking
“Enable Grid” box under the plot window. Finally, pressing “Plot” button plots desired
data in this window.

“Light Curve” tab in “Plot Synthetic Curves” window includes a list, which shows
absolute parameters of the components computed by the LC code, except log(L/L�)
values of the components. log(L/L�) values are internally computed by PyWD2015 via
Stefan-Boltzmann law, by adopting effective temperature of the Sun as 5780 K. These
values are for giving an idea to users about the components. Furthermore, listed numbers
will not be reliable in non-simultaneous solutions because semi-major axis value can be
determined precisely only with simultaneous light and radial velocity solutions. It is
recommended to evaluate these values separately for more precise study.

In Figure 26, radial velocity data and computed synthetic curve for each component
are shown together.

One can notice that, for both light curve and radial velocity curve plots, residuals from
the model are also plotted in the bottom panels. These plotted residuals in plot window
are calculated by interpolating the model linearly in time (or phase) axis. These residuals
are only for eye inspection purposes. For correctly calculated residuals, one must run DC
(see later steps), or alternatively, time (or phase) increment value in LC2015 tab must be
set to a very small value (say 0.0001) for more precise residual computation via LC code
output9.

9It is also recommended to set coarse/fine grid values (see Figure 5) to higher numbers in order to
suppress numerical noise.

19

Figure 26: Radial velocity curve plotting window.

Users can easily change bandpass parameters from the upper panel. Single clicking
on L1 or L2 or other values enables user to edit these numbers and change them to another
value. Changing these numbers also changes the values entered in the light curve data
loading window (Figure 21). Similarly, other parameters of the binary can be changed
from tabs under “Input” tab. After changing values, pressing “Plot” button will update
the plot. Same steps can be followed for plotting radial velocity data and model.

“Pop” button opens a separate plot window, which only shows currently plotted data
and residuals. Thanks to the Matplotlib library, this window enables user to save publi-
cation quality figures in desired size and various formats. “Export” button can be used to
save plotted data and residuals to a text file.

Figure 27: Differential corrections window.

Trial and error method can be applied in light/velocity curve plotting window in order
to find a reasonable initial parameter set for the eclipsing binary. Then DC iterations
can be started. To open differential corrections window, one must go to the DC2015

20

tab and press “Differential Corrections” button. This opens a relatively larger window
(Figure 27).

In this window, adjustable parameters can be chosen by checking the related boxes in
“KEEP’s” tab. The Marquardt multiplier (λ) and vector reduction parameter values are
also defined in this tab. Under “DEL’s” tab, user can find parameter increment values,
DEL’s, and change them to more proper values10. From the upper left part of the window,
external and internal iteration numbers can be set. Here, internal iteration number is
the same as NITER parameter in DC program. On the other hand, external iteration
number tells the number of times the GUI needs to iterate the DC solution externally. By
setting external iteration to a number larger than 1, it is possible to track solution progress
visually from graphs plotted in “Solution Explorer” window.

Figure 28: “Results” tab in differential corrections window.

If user sets both internal and external iterations numbers to 1 and press “Run DC”
button, PyWD2015 saves all input parameters and observational data into a “dcin.active”
file, runs DC with this file, gets iteration results back from resulting “dcout.active” file
and shows them in the panel below KEEP’s/DEL’s tabs. Note that, during the iteration,
“Run DC” label changes to “Abort (Iteration # of #)”. If this is the first DC run after
opening PyWD2015, the plot window will show nothing. Here, user can choose a data
file name from the combo box (just above the plot window). Then, DC widget will plot
observational data from the selected file, together with the computed theoretical model
(Figure 28). One can notice green colors under “output” label in “Results” tab. The green
color means that the correction is smaller than the standard deviation. If the correction is
larger than the standard deviation, numbers are shown in black/white. It is also possible
to see fractional radii and their standard errors in this panel. The lowermost part of the
panel shows mean residual for input values and predicted mean residual, together with
run time of the last iteration in “second” if the iteration takes less than two minutes. If the
last iteration took more than two minutes, run time value would be shown in “minute”.

10Common practice is to set DEL incements to 1% of the parameter value. This approach could be
adopted in PyWD2015 automatically, however, automatically determined DEL increments prevents user
from conscious control over adjustable parameters. Therefore, PyWD2015 does not set DEL increments
automatically. As mentioned by Dr. Robert E. Wilson, users should think on each number (including DEL
increments!) and set them to proper values.

21

Figure 29: “Statistical Curve Information” tab in differential corrections window.

Switching to the second tab, (“Statistical Curve Information”, Figure 29), user can
see auxiliary data properties, which are produced by DC program. PyWD2015 reads
these numbers directly from dcout file.

The third tab, “System Information” shows detailed information on the system and
the components (Figure 30). Note that this tab shows information from output file of
LC code, thus it is functional only if “Use LC” box is checked. If “Use LC” box is not
checked then all values in this tab appear as “None” in black color on red background.
Checking “Use LC” box and pressing plot button (or, alternatively running DC), user can
see these values again.

Figure 30: “System Information” tab in differential corrections window.

When plotting data and model, users can put grids on the plot window by checking
“Enable Grid” box below the plot window. User can also decide to use LC program to
produce model, or just using model data points computed by DC program. Checking

22

“Auto Update” box is useful when external iteration is set to a number larger than 1. In
this case, plot window is automatically updated after each external iteration and user can
trace successive iteration results instantly from plot window. Assume that the user sets
external iteration to 10 and starts DC run. If the model diverge after the 4th iteration,
the user can easily notice that and stop the whole process by clicking “Abort (Iteration #
of #)” button. “Pop” and “Export” buttons have the same functionalities as described in
light/velocity curve plotting window, but here serve for DC related data.

After a single iteration (external and internal iteration numbers are 1), if the user
desires to use output values as new input for the next iteration, “Update Inputs” button
can be clicked and output values of previous iteration are set as new input values for the
next iteration. In this case, values of all related parameters are updated in corresponding
windows (“System” tab, curve properties window, etc.)11. Pressing buttons “dcin.active”
and “dcout.active” opens corresponding files of the very latest DC run. After reaching
global solution “Export Results” button can be clicked to save iteration results as plain
text or as LATEXtable. Subset buttons are inactive since they have not been adopted yet.

After reaching a global solution, users can see star positions in yz–plane and draw
the Roche geometry of the system. For this purpose “Star Positions / Roche Lobes”
button under LC2015 tab is clicked. This opens a new window, which includes two tabs.
“Single Plot” tab is used to plot star positions and Roche geometry for a given phase. If
“Critical Roche Potentials” box is not checked and “Plot” button is pressed, PyWD2015
only draws star positions, which is the output of the LC program with MPAGE=5 option
(left panel of Figure 31). If “Critical Roche Potentials” box is checked and “Plot” button
is pressed, then PyWD2015 fixes the phase to 0.25 automatically, internally computes
inner and outer critical Roche potentials and draws them together with the components.
Here, components are drawn as shaded (right panel of Figure 31).

Figure 31: Left panel shows star positions for selected phase (0.25 in this case). Right
panel shows Roche geometry of the system, together with inner and outer critical (di-
mensionless) potential values.

“Animation” tab is used to create nice animation of the system, which show positions
of components through an orbital cycle. In this tab, it is also possible to draw components
for a given phase, instead of creating an animation (Figure 32).

In case of successive iterations (i.e. external iteration is greater than 1) it is possible to
trace variation of an adjustable parameter and its standard error through these iterations.

11Note that function of “Update Inputs” button has no undo action.

23

Figure 32: Animation tab.

Clicking “Solution History” in DC2015 tab opens a new window (Figure 33). When user
prepares initial parameters, sets external iterations to, say 20, and runs DC, PyWD2015
keeps all successive iteration output values in memory. At the end of iterations, user can
open “Solution History” window, choose an adjustable parameter by a left mouse click
and press “Plot” button to observe how parameter value and its standard error change
through 20 iterations. Checking “Auto” box enables plot window to be updated automat-
ically after each iteration, so, after 20 iterations, if user wants to do 10 more iterations,
output values of these additional iterations will be added to plot window automatically,
after each individual iteration is completed. Although not listed in “Solution History”
window, mean residual for input values and predicted mean residual values are also plot-
ted inside plot window (lower panel). These plots help user to trace convergence of the
model and if model converges to a local or global minimum in solution space. User can
use “Export” button to save all data and standard errors into a plain text file.

Figure 33: Solution history window with a plotted parameter.

If user wants to clear all results, “Clear” button can be clicked. Note that, after suc-
cessive iterations, if user decides to keep any adjustable parameter fixed or if user adds
a new parameter to the adjustable parameter list and then continues iterations, “Solution
History” window will be removed from memory, hence users should take care of this
property.

24

7 Caveats and notes

In this section, some notes and important caveats are given. These may partly be useful
for avoiding unwanted mistakes. Some of them can be useful for saving time during
analysis.

1. If PyWD2015 crashes and terminates unexpectedly, users may suspect a few pos-
sible reasons. One reason might be long path names (or empty space character in
file/folder names), which prevents FORTRAN codes (LC/DC) from running prop-
erly. Another reason might be unphysical input values (e.g. unphysical dimen-
sionless Ω potential value), which crashes LC/DC codes. Corrupted LC or DC
executables may also cause problem. All these possibilities may cause unexpected
crash and termination of PyWD2015.

2. It is strongly recommended that users should not use empty space and/or non-ascii
characters when naming files and folders. For instance,

“C:\Users\user one\Desktop\PyWD2015”

path would very likely cause a problem when running “LC” or “DC” during a
“PyWD2015” session. The problem is very likely the empty space between “user”
and “one”. Instead of this naming, use of “user one” will solve the issue. Or,
alternatively, users may prefer to copy PyWD2015 folder directly under “C:\”,
which will very likely work flawlessly. This recommendation is also valid for
Linux/Unix users. However, Linux/Unix users are probably more familiar with
this issue and they very likely do not use empty space and/or non-ascii characters
in file/folder naming.

3. Although explained in the text above, it is appropriate to stress again that plotted
radial velocities in DC and LC widgets are always shown in absolute unit (km s−1)
even if they are provided as “scaled” (say divided by 100) in the input files. This
is done by multiplying input velocities and computed velocities by “V Unit” num-
ber entered under “System” tab in the main window. User must keep in mind
that conversion to absolute unit is done on-the-fly by PyWD2015, thus there is no
modification in original data files or LC/DC input/output files. However, user can
extract plotted data (which are in absolute km s−1unit) into a text file, as defined in
previous sections.

4. In absolute flux solution procedure, input light curve data can be in standardized
magnitude or in absolute cgs flux unit. If user desires to do absolute flux solution,
“Use CGS” box in the main window must be checked. Note that absolute flux
solution attempt with normalized flux data will result in unphysical results.

In absolute flux solution, user must also keep in mind that the logarithm of the
distance (log(d)) can be adjusted and bandpass luminosities cannot be adjusted.
Instead of bandpass luminosities, temperatures of the components can be adjusted,
depending on the number of light curve defined in different bandpasses. In non-
absolute flux solutions (i.e. “Use CGS” box is unchecked, thus IFCGS=0), band-
pass luminosities are adjustable while log(d) parameter is not adjustable. Current
version of PyWD2015 applies these restrictions in DC widget. Therefore, depend-
ing on the status of “Use CGS” box, PyWD2015 locks check box of corresponding
parameter in DC widget and removes it from adjustable parameter list. For further

25

details on absolute flux solution strategy, please see Wilson (2008) and documen-
tation of the 2015 version of the WD code.

5. If provided light curve data are in actual standard magnitudes, then user should
provide input bandpass luminosity of the primary component (L1) as multiplied
by 4π. For example, if user somehow estimates standardized magnitude of the
primary component as 8.m172 (perhaps from total eclipse phases in light curves, if
any), then input bandpass luminosity is computed as

L1 = 10−0.4×8.172 × 4× π = 0.006767

This number can be used as an initial value for corresponding bandpass luminosity.

6. It is strongly recommended to use separate data files for separate data sets when
loading data into PyWD2015. In principle, user can prepare a single data file with
multiple columns (e.g. time, U mag, weight, time, B mag, weight, etc..) and
load the same file to PyWD2015 for each separate light curve by choosing proper
columns. Curve properties window (Figure 21) allows this strategy.

Although this is technically possible, this way leads to a side effect when printing
dcout results in DC widget. Since DC widget relies on file names to print output
(adjusted) bandpass luminosities under separate (correct) labels, single-file method
leads to put a single label for chosen bandpass in DC widget and prints all bandpass
luminosities under the same label. If user has data in UBV bandpasses defined in a
single file, output three (UBV) bandpass luminosities are printed by DC widget un-
der U label, instead of separate U, B and V labels. In order to avoid this confusion
in modelling of multiple light curves, usage of separate data files with different
names is advised for each light curve data.

However, “column choose” option in curve properties window is particularly useful
to choose proper data columns from a multi-column file for data in single bandpass
(see long cadence or short cadence data files atKepler eclipsing binary catalogue.)

7. If user sets “Designated Extinction” parameter (“Des. Ex.” label in Figure 28) as
adjustable (say for V bandpass) in magnitude or CGS based modelling, then DC
widget ignores input “AEXTINC” values (entered by user from curve properties
window, Figure 21). Instead, DC adopts entered “Designated Extinction” value
for defined “Band#” number (i.e. bandpass) in “DC2015” tab (see Figure 8) and
prints this number to dcout file. If there are other light curves defined in different
bandpasses, extinction values for these light curves are automatically computed by
DC program via relations given in Cardelli et al. (1989), and these numbers are
printed in dcout file. If user desires to use entered extinction values in curve prop-
erties window, then both “Designated Extinction” and “Band#” values must be set
to zero in “DC2015” tab12. In addition, user must re-enter original extinction val-
ues of each light curve from curve properties window13. In this case, DC program
does not automatically compute extinction values and it only considers user defined
extinction values entered in curve properties window.

8. Maximum value of “Band#” number (“LINKEXT” parameter) is 9 in DC2015 tab.
It means that only Stömgren uvby and Johnson UBV RI bandpasses are accepted.

12At the same time, “Des. Ex.” box in Figure 8 must be unchecked so that DC does not include “Desig-
nated Extinction” as adjustable parameter.

13This can be done from synthetic curve window in Figure 25, too.

26

ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2015/
http://keplerebs.villanova.edu/

This property comes from formatting rule defined in source code of DC program14.
Furthermore, if user works normalized fluxes (thus, IFCGS=0; “Use CGS” box is
unchecked), PyWD2015 disables “Designated Extinction” and “Band#” boxes and
sets their value to zero. If user switches to absolute cgs fluxes or magnitudes, then
PyWD2015 enables these boxes to edit.

9. During modelling of eclipsing binaries which show apsidal motion, user must be
careful during plotting of synthetic and observed data in LC widget. Common
practice for plotting observed and synthetic data with respect to the orbital phase
is to set start and end phases to 0.0 and 1.0, respectively. This approach ignores
integer cycle number and only considers orbital phase, which may lead to shifted
synthetic curves in phase axis with respect to the observed one. However, user
can get correctly computed model for each observation point in dcout file (under
“Unweighted Observational Equations” label), which can be plotted in DC widget
by unchecking “Use LC” box. DC computes “right phases” by considering integer
cycle numbers as well. In such cases, user should either work with time based
data and make all plots with respect to time (then, time based synthetic curve can
be transformed to phase domain by user), or provide proper start and end phase
values, including correct integer numbers.

10. During DC runs, if user encounters error message shown in Figure 34, it is very
likely that something is wrong with dcout file and for that reason PyWD2015 fails
to read dcout file properly. In this case, it is recommended to check dcout file
carefully. Sometimes, numbers printed in different columns under “Unweighted
Observational Equations” label in dcout file might be printed as contiguous (with-
out any space between them) or a number in a column might be followed by “*”
signs. In such cases, current version of PyWD2015 cannot read required num-
bers and columns correctly and prints the error message given in Figure 34. This
error also causes to remove all light and radial velocity curves from DC widget (al-
though they are still defined inside PyWD2015; this is Qt5 related issue) thus user
can not choose observed data files from DC widget any more. Re-loading current
project file again can restore light and velocity curve list in DC widget but user
must be careful about that project re-loading resets all widgets and plot windows,
i.e. everything printed or plotted in widgets disappear. Then, user should investi-
gate input values and adjustable parameters in order to find the reason which leads
to malformed dcout file.

Figure 34: Error message, which indicates malformed dcout file.

11. DC program prints numbers under “Unweighted Observational Equations” label in
dcout file as separate columns as long as column number does not exceed 23 under
this label. This is because of the format defined in DC source code for writing

14Actually, DC only relies on these bandpasses in terms of interstellar extinction since extinction rela-
tions are more precisely defined for these bandpasses.

27

output values (see “ 147 format(f13.5,22e14.5)” line in dc source code). If column
number does not exceed 23, then DC program prints all computed numbers for a
given observation as separate columns in a single row. However, if column number
exceeds 23, then DC program does not print 24th column in the same row but it
writes new value to a new line. In this case, computed values for a single observa-
tion are printed in two rows, hence PyWD2015 can not understand that this number
belongs to the previous observation but it interprets that this number belongs to the
next observation data point (which actually does not!). Eventually, PyWD2015
may produce weird plots in DC widget, although dcout file prints results success-
fully.

Column number in question increases as the number of adjustable parameter in-
creases, thus large number of adjustable parameters may lead to this situation. In
time based solutions, columns start with “time, phased, observed, computed” quan-
tities and ends with “residual” data. Ignoring these columns, 18 columns can be
printed in a single row, which means 18 adjustable parameters in principle. How-
ever, user must consider that if there are light curve data defined in two different
bandpasses, then an adjustable radiative property (e.g. L1 or `3 or a limb darkening
coefficient) occupies two columns (one for each bandpass) instead of one.

Since this is related to the writing format mentioned above, a tiny change was made
in source code of DC program in order to overcome this issue. The format line was
replaced to “ 147 format(f13.5,40f20.10)”. Readers may notice that the number
of columns was increase from 22 to 40, while decimal numbers were increased
from 5 to 10. With this change, DC program can print 41 columns in total in a
single row. Increase in decimal number is required to obtain more precise residuals,
especially in the case of modelling light curves obtained from spacecrafts (e.g.
Kepler, TESS etc.). Such light curves have unprecedented precision and enables
one to investigate sub-milimag variations in light curves.

Similar case is valid for printing numbers under “Weighted Observational Equa-
tions”, “Normal Equations” and “Correlation Coefficients” labels in dcout file.
Corresponding format lines in the source code were changed as shown below:

37 FORMAT(1X,11F12.7)→ 37 FORMAT(1X,33F12.7) (For “Normal Equa-
tions” and “Correlation Coefficients”)

149 format(20e14.5) → 149 format(38f20.10) (For “Weighted Observational
Equations”)

Provided DC executable file at PyWD2015 website is compiled from the source
code which includes tiny modifications mentioned above. However, users may
compile their own binary file from the original source code given in original ftp
site of 2015 version of the Wilson – Devinney code. However, they must keep in
mind that reading/plotting functions defined in PyWD2015 source code files were
designed with respect to the mentioned changes above.

12. In modelling attempts with absolute CGS flux data (where “Use CGS” box checked
in the main window), synthetic and observed data plotted in LC widget are rescaled,
thus appear different from input numbers provided in data files. This is not an
issue since LC widget multiplies both observation and model data by “XUNIT”
and “CALIB” values defined in curve properties window. This multiplication is
automatically done by DC program internally (independently from PyWD2015),
thus plotting in DC widget by unchecking “Use LC” box shows correctly scaled

28

https://github.com/Varnani/pywd2015-qt5
ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2015/

data by “XUNIT” and “CALIB” values. In LC widget, this multiplication is done
by PyWD2015 on-the-fly.

13. In the existence of eclipse time data, it is recommended to set KSD value to 0 for
eclipse data. Setting KSD to 1 or 2 may cause to print a warning message inside
dcout file, which changes usual format of statistical information printed just above
“Unweighted Observational Equations” label. As a result of this format change,
PyWD2015 cannot read statistical information of eclipse time data properly and
fails to print it in DC widget. However, please note that setting KSD to 1 or 2
prevents PyWD2015 only from proper printing of statistical information of eclipse
time data in DC widget, but does not cause incorrect output values. When setting
KSD to 0, user must not forget to enter proper “SIGMA” value for eclipse time
data, otherwise DC run may end with “NaN” values.

14. If “Enable third body parameters” box (Figure 6) is unchecked, then PyWD2015
locks check boxes of third body parameters in DC widget and removes them from
adjustable parameter list. In order unlock these boxes, “Enable third body parame-
ters” box must be checked and proper initial values of third body parameters must
be entered. Then, PyWD2015 allows to adjust these parameters.

References
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245

Drilling J. S., Landolt A. U., 2000, Normal Stars. p. 381

Flower P. J., 1996, ApJ, 469, 355

Gray D. F., 2005, The Observation and Analysis of Stellar Photospheres

Güzel O., Özdarcan O., 2020, Contributions of the Astronomical Observatory Skalnate
Pleso, 50, 535

Popper D. M., 1980, ARA&A, 18, 115

Tokunaga A. T., 2000, Infrared Astronomy. p. 143

Van Hamme W., Wilson R. E., 2007, ApJ, 661, 1129

Wilson R. E., 1979, ApJ, 234, 1054

Wilson R. E., 1990, ApJ, 356, 613

Wilson R. E., 2008, ApJ, 672, 575

Wilson R. E., Devinney E. J., 1971, ApJ, 166, 605

Wilson R. E., Van Hamme W., 2014, ApJ, 780, 151

29

http://dx.doi.org/10.1086/167900
https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C
http://dx.doi.org/10.1086/177785
https://ui.adsabs.harvard.edu/abs/1996ApJ...469..355F
http://dx.doi.org/10.31577/caosp.2020.50.2.535
http://dx.doi.org/10.31577/caosp.2020.50.2.535
https://ui.adsabs.harvard.edu/abs/2020CoSka..50..535G
http://dx.doi.org/10.1146/annurev.aa.18.090180.000555
https://ui.adsabs.harvard.edu/abs/1980ARA&A..18..115P
http://dx.doi.org/10.1086/517870
https://ui.adsabs.harvard.edu/abs/2007ApJ...661.1129V
http://dx.doi.org/10.1086/157588
https://ui.adsabs.harvard.edu/abs/1979ApJ...234.1054W
http://dx.doi.org/10.1086/168867
https://ui.adsabs.harvard.edu/abs/1990ApJ...356..613W
http://dx.doi.org/10.1086/523634
https://ui.adsabs.harvard.edu/abs/2008ApJ...672..575W
http://dx.doi.org/10.1086/150986
http://adsabs.harvard.edu/abs/1971ApJ...166..605W
http://dx.doi.org/10.1088/0004-637X/780/2/151
http://adsabs.harvard.edu/abs/2014ApJ...780..151W

	Introduction
	Installing and running PyWD2015
	Single executable file option
	Running from the archive

	Overview of the GUI
	Additional features
	Eclipse times
	Spectral line profiles
	Star dimensions
	Conjunctions

	Observational data structure
	Example usage
	Caveats and notes

