
An Overview of Technologies for Peer-to-peer
Widget Environments

Alain M. van den Berg

An Overview of Technologies for Peer-to-peer
Widget Environments

Research Assignment Computer Science

Parallel and Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Alain M. van den Berg

3rd December 2008

Abstract

This report considers techniques that can be used to create a peer-to-peer widget
environment. It considers the deployment of such a widget system in a peer-to-
peer environment and the distribution of the widgets using the same peer-to-peer
environment. First, several deployed centralized widget engines are examined and
requirements for a decentralized widget engine are gathered. Then, existing tech-
niques to decentralize the distribution are described and possible runtime environ-
ments are layed out. Lastly, various security vulnerabilities which may occur in
peer-to-peer environments with portable code are discussed.

Preface

This document is the report of my literature study, the preparation for the Master of
Science project in the Parallel and Distributed Systems Group of the Delft Univer-
sity of Technology. The report reviews several widget systems which use a central
distribution site and discusses techniques on how to create such a widget system in
a peer-to-peer environment, where the distribution is also done in a decentralized
way using the same peer-to-peer environment.

I would like to thank my supervisors dr. ir. D.H.J. Epema and dr. ir. J.A. Pouwelse
for their advice and guidance.

Alain M. van den Berg

Delft, The Netherlands
3rd December 2008

v

Contents

Preface v

1 Introduction 1

2 Currently deployed widget systems 5
2.1 Eclipse Plugin System . 5
2.2 Google Gadgets . 8
2.3 Facebook Apps . 11
2.4 Firefox Extensions . 14

3 Zero-server widget repository 19
3.1 Directory service for widgets . 19

3.1.1 Review of peer-to-peer directory service systems 20
3.1.2 Comparison of DHT and gossip based systems 23

3.2 Moderation in a distributed environment 24
3.2.1 Distributed rating systems 25
3.2.2 Moderation without a rating system 28

3.3 Package management . 28
3.3.1 Storing and finding multiple versions 29

4 Widget runtime environment 31
4.1 Runtime environment comparison 31

4.1.1 Running code with an interpreter 31
4.1.2 Compiling the code . 32
4.1.3 Other execution environments 32

4.2 Code restriction . 33
4.2.1 Methods of restriction 33
4.2.2 Controlling resource usage 34

4.3 Creating a peer-to-peer API for widgets 35

5 Security issues in a peer-to-peer widget environment 37
5.1 Pollution . 37

5.1.1 Problem description . 37
5.1.2 Solutions . 38

vii

5.2 DDoS attacks . 39
5.2.1 Problem description . 39
5.2.2 Solutions . 40

5.3 Malicious code . 42
5.3.1 Problem description . 42
5.3.2 Solutions . 43

6 Conclusions 47
6.1 Summary and conclusions . 47
6.2 Further research . 48

Chapter 1

Introduction

Currently, peer-to-peer applications are quite popular and a vast amount of internet
traffic is resulting from peer-to-peer applications. Instead of the common client-
server architecture, every user is essentially a client and a server. They connect
to each other, managing large amounts of data while maintaining reliability and
scalability. Apart from their popularity, they are also very interesting to research
because of their properties. Widgets also emerge on the internet, where they can be
found on the majority of the social networks (e.g., Facebook and MySpace), blogs
or any other website. They are also found on mobile phones and on desktops (e.g.,
Google Gadgets, Yahoo Widgets or Vista Widgets). This literature study is about
peer-to-peer widgets and we would like to start with discussing the definition of a
peer-to-peer widget. Before we can do this, we have to find the correct definition
of widget, since this term is rather ambiguous in the computer environment.

Looking up the term for meanings in the computer world1, one finds two defini-
tions:

1. an element of a graphical user interface such as a button or a scroll bar.

2. a module of software for a personalized Web page.

The first definition, however, is not the kind of widget we are looking for and
the second definition is rather narrow. Wikipedia2 distinguishes, apart from the
Graphical User Interface (GUI) Widget in the above definition, three different types
of widgets:

1. Desktop Widgets are interactive virtual tools that provide single-purpose ser-
vices such as showing the user the latest news, the current weather, the time,
a calendar, a dictionary, etc.

2. Mobile Widgets are like desktop widgets, but for a mobile phone.

1http://dictionary.reference.com/browse/widget
2http://en.wikipedia.org/wiki/Widget engine

1

3. Web Widgets are portable chunks of code that can be installed and executed
within any separate HTML-based web page by an end user without requiring
additional compilation.

All these definitions have in common that they are a portable chunk of code to be
installed and executed in a specialized environment. The difference between them
is in which environment they are used. Desktop Widgets and Mobile Widgets use
a widget engine to run the various widgets. The widgets can be downloaded and
plugged into the widget engine. The widget engine provides an API (Application
Programming Interface) to facilitate the widget accessing the application data and
functionality. The widgets can be created by third parties by using the API and
plugging it into the widget engine. Examples are Google Desktop Gadgets and
Yahoo Widgets. Web Widgets do not have to be downloaded, but can instead just
be added to your page, blog or social profile by embedding a bit of HTML code.
An example of some Desktop Widgets can be seen in Figure 1.1.

To distribute created widgets to other users, central widget portals are used.
Mostly these are websites where users can easily find and download widgets, find
documentation, rate or comment on widgets and a lot more. For example, Google
Desktop Gadgets actually provides a portal where you can not only browse through
the widget directory, but also view the top contributors of widgets, giving an in-
centive to create widgets. In short, these portals are becoming a social community
around the application.

Peer-to-peer widgets, derived from the definition of a widget, are portable pieces
of code that can be added to a peer-to-peer client to extend the functionality, pro-
vide information or give a bit of fun. While some peer-to-peer clients already
provide a way to extend the application (e.g., Azureus3), they still use a central
distribution site. Distributing widgets in a decentralized way creates two additional
issues. First there is the issue of security: everybody is able to distribute his own
(possibly malicous) widget. Second, the distribution and storage of the widgets is
a problem in its own. Creating a distributed portal with the same functionality as
current centralized widget portals (such as a list of most popular widgets) requires
state of the art techniques.

Porting widgets to a peer-to-peer environment also provides the possibility to
let widgets interact with other widgets by using an overlay on the peer-to-peer
network. While this is an exciting new possibility, it also provides a new way to
exploit the application.

Lastly we would like to point out that extending an application with new func-
tionality or services is not new. Most applications nowadays have the possibility to
extend their features by installing components called extensions, plugins or com-
ponents. There are many commonalities with widgets, but also a few differences.
Plugins are mostly used for applications that were created with a certain objective
in mind. For example, browsers to browse the web, chat clients to chat, music

3http://azureus.sourceforge.net

Figure 1.1: Google Desktop Sidebar, including widgets displaying a clock, the
weather, a notepad and an RSS reader.

players to play music, etc. Plugins extend the functionality or provide a service
that would help reaching the objective of the host application, e.g., a Winamp plu-
gin would typically extend the player to play a different kind of music format or a
browser plugin that lets users view PDF file formats from their browser. Widgets,
on the other hand, provide a more general service: showing the time, a notebook, a
calendar, a small game, etc. Also, widgets generally have a small area on the user
interface to display their information, while plugins might be hidden from the user
interface or completely integrated. However, the difference is more in meaning
than technology: both plugins and widgets extend an application and thus require
a container engine to contain the components, both run portable chunks of code.
Some plugin systems, like the Eclipse Plugin System, are just a container engine

with some plugins delivered with it, closing the gap between widgets and plugins.
In the peer-to-peer context, differences between widgets and plugins become

even smaller, as both are extensions to the functionality of the client. The peer-to-
peer environment creates possibilities for other features, which might use the social
aspect of peer-to-peer, e.g., one could create an extension to support peer-to-peer
radio stations (adding to the functionality of the peer-to-peer client) or one could
make a social game which uses an overlay to communicate with friends (social,
general). As we see it, peer-to-peer widgets are as different from other types of
widgets as from plugins.

The report is continued as follows. In Chapter 2, some widget systems including
their central distribution sites are reviewed. In Chapter 3, we will discuss the issues
of distributing the widgets in a peer-to-peer manner and in Chapter 4 the widget
runtime environment is discussed. Further, we will discuss various security aspects
in Chapter 5. Finally, we conclude the report with conclusions in Chapter 6.

Chapter 2

Currently deployed widget
systems

Currently, there are many widget systems for various kinds of applications. These
widget systems differ in several aspects, such as the environment the widgets run
on (the web, a social network or within an application), what functionality is pos-
sible and how they are created. However, they all use a central distribution site to
distribute widgets. In this chapter some of the currently deployed widget systems
will be evaluated. For every widget system we will cover the technical aspects
(their runtime environment), their distribution method and security.

In Section 2.1, the Eclipse Plugin System is reviewed. Section 2.2 considers
the Google Gadgets and in Sections 2.3 and 2.4 the Facebook apps and Firefox
extensions will be discussed, respectively.

2.1 Eclipse Plugin System

Eclipse1 is an open source community focusing on building an extensible devel-
opment platform for building, deploying and managing software and is entirely
coded in Java. Eclipse has a unique setup that makes its extensibility possibilities
enormous. The whole program is based on a Platform Runtime which is basically
a plugin engine, while the rest of the program functionality is coded into plugins.
A plugin is the smallest unit of the Eclipse Platform which can be coded and deliv-
ered separately. A feature that makes Eclipse so unique is that plugins can provide
extension points, which other plugins may extend such that there is a hierarchy in
the plugin system.

We will first treat the plugins in more detail, then discuss the distribution of
Eclipse plugins using the Eclipse Plugin Central and finally we will discuss security
issues.

1http://www.eclipse.org

5

Technical Details

An Eclipse plugin is a jar file (which is the Java archive file) with the Java classes
in it, its resources and metadata (a manifest file and a plugin.xml). The general
information about the plugin (name, author, version, required version of java, etc)
is located in the manifest file. There may also be hashes for every executable
to be able to verify the integrity of the code, but a separate signature file might
also be included. In the plugin.xml, the interconnections with other plugins are
defined. It defines extension points and declares which extension points of other
plugins it extends. The extension points may declare new XML element types
to be able to communicate arbitrary information from the extension plugin to the
plugin that defines the extension point. The extension points may come with an
API (Application Programming Interface), which the extension plugins have to
implement [8].

On startup, Eclipse discovers the plugins (they are located in a special plugin
directory) and loads their metadata, thus creating a register of all the plugins and
their interconnections. The plugins are not yet loaded until they are activated, but
missing interconnections or wrong interconnections can be detected beforehand.
The resulting information is then available to every plugin.

The major components of Eclipse are shown in Figure 2.1. The workbench,
workspace, help and team are all plugins that define extension points to let other
plugins extend them. In this way, there may be extensions that modify Eclipse
to be a Java IDE (Integrated Development Environment) or a C IDE or whatever
language you want. But it is not required to extend one of the major components:
the plugin author can create a plugin that does not extend anything.

Eclipse Plugin Central

The Eclipse Plugin Central (EPIC)2 is the official community portal to distribute
Eclipse plugins. It provides two services: a plugin directory and training and
consulting. The training and consulting part of the portal consists of a list of en-
tities that provide training and consulting services. The plugin directory will be
explained below.

In the plugin directory, about 1100 plugins can be found at the time of writing.
They can be found by searching or browsing through the directory. Browsing can
be done by first selecting a category and then browsing a list of plugins in that
category. The list can be ordered by alphabet or by rating. EPIC also provides
their visitors with a list of New and Updated Plugins, Top Rated Plugins and Most
Active Plugins. Each list shows 15 plugin names with some additional information.
For example, the New and Updated Plugins are shown with their version and when
the new plugin was added and the Top Rated Plugins are shown with their ratings.

Every plugin has its own page with general information such as author, name,
description, version, license. Users can rate the plugin on a scale from 1 to 10 and

2http://www.eclipseplugincentral.com

comment on the plugin. The site also makes it possible to let users vote from out-
side this website (e.g., from the authors own website). The user feedback (ratings

Figure 2.1: The architecture of Eclipse with its major components.

Figure 2.2: Eclipse Plugin Central.

and comments) is a very valuable resource for other users and thus EPIC has mea-
sures against spamming and other attacks. Among those measures are attempts to
block votes from automated proxies and making sure every IP address may only
vote for each plugin once.

To submit your own plugin to the directory, it is required to sign up for an ac-
count. When registered, it is necessary to fill in a form with the general information
of the plugin. The submissions require approval before they are published. The ap-
proval is probably done manually and is an important check to make sure only
benevolent plugins are published.

Security

The Eclipse Equinox Security project3 is a project that is seeking to integrate Java
security mechanisms into Eclipse. Java has a very powerful architecture for fine-
grained code authorization. A Security Manager checks whether certain code is
authorized to execute various code segments or access resources such as network
sockets or files. Security Policy files present the access rules for the code. For
example, a policy may say that a certain code package is allowed to access a cer-
tain file on disk. Using this security architecture, a sandbox can be created, see
Section 5.3.2. At the time of writing, policies are not yet used for Eclipse plugins.

Eclipse, however, does provide facilities to digitally sign the plugin package for
authentication using standard Java jar signing mechanisms. In this way, the identity
of the author of the plugin can be proven. For more information on code signing,
see Section 5.3.2. When a plugin is installed, Eclipse checks the digital signatures
and will prompt the user when an author is not trusted by the system. The user may
decide to trust the author anyway and further install the plugin.

2.2 Google Gadgets

Google Gadgets are, according to Google, miniature objects that can be placed
on an iGoogle startpage4 or on Google Desktop. iGoogle is a start page service of
Google where you can add any Google Gadget to personalize it. Google Desktop is
a special program (a gadget engine) which runs the gadgets on your desktop instead
of on the web. Google Gadgets can be anything, from a countdown gadget to an
RSS reader, from a translator to games. They typically take some small amount
of space on the user interface (web page or the Google Desktop Canvas). A new
development is that of Google Gadgets for social networks using the OpenSocial
API5. OpenSocial defines a common interface for social networks, being able to
retrieve and store information about friends and activities. The OpenSocial API is

3http://www.eclipse.org/equinox/incubator/security
4Actually, it is also possible to include iGoogle Gadgets on another website than the iGoogle

startpage.
5http://code.google.com/apis/opensocial

currently already supported by many social networks such as MySpace, Friendster
and Hyves. A gadget that is created using the OpenSocial API can run on all the
social networks supporting the API.

First we will dive into some technical details, then we will discuss the distribu-
tion of Google Gadgets and finally security of the gadgets is discussed.

Technical Details

There is a difference between Google Gadgets and Google Desktop Gadgets. Al-
though they both are coded using XML and Javascript, the XML specification and
Javascript API are different. Despite that they are different, some Desktop Gad-
gets can run on iGoogle and most iGoogle Gadgets can run on Google Desktop.
iGoogle Gadgets XML specifies some general information, the content, and the
user preferences that are supported in the gadget. The content can either be HTML
and Javascript or from another website. To make the gadget dynamic, the Javascript
language can be used. The iGoogle Gadget Javascript API adds objects and func-
tions to the Javascript language to make it easier to create gadgets. For example,
the API supports registering a callback function to be called when the gadget is
loaded or functions to pop up a message. The gadgets XML should be hosted on
the web, such that the Gadget server can process it.

The Desktop Gadgets are more extensive: they are typically packed within a .gg
package, which is a zip archive with another extension. The archive typically con-
tains a gadget.manifest with metadata about the gadget, a main.xml which specifies
how the gadget will appear, string files to support localization and optionally some
Javascript files and other resources. It is even possible to provide more function-
ality to Javascript by creating dynamic link libraries in C, C++ or VB.NET. The
main.xml has a specification that supports different GUI widgets, such as a list box
or a button. The Javascript API for Desktop Gadgets is more extensive than the
iGoogle Gadget API and provides access to information of the host machine and
provides event notifications when a the users opens a web browser or visits a cer-
tain page, among a lot of other features. An exciting feature is that of GoogleTalk,
which provides some functionality to Desktop Gadgets that let them use Google
Talk as a medium to communicate with other gadgets of the same sort. Desktop
Gadgets are identified by a unique identifier called the Universally Unique Identi-
fier (UUID)6. A UUID generator generates a 16-byte identifier which has a great
chance of being universally unique.

Distribution of gadgets

Both iGoogle Gadgets and Desktop Gadgets has its own central distribution site.
iGoogle can sort the gadgets by popularity, most users and newest. The directory
can be further narrowed down by selecting a category or it can be searched by a
simple search form. The gadgets are summarized by showing a thumbnail, name,

6http://en.wikipedia.org/wiki/UUID

description, author and rating. Every gadget has its own page where users can
comment and rate (on a scale from 1 to 5). A nice other feature is the sidebar
which tells you which other gadgets you might like. A screenshot of the iGoogle
Gadget directory is shown in 2.3. The Desktop Gadgets directory has about the
same features but has a tiny difference in layout. It also has a New Gadgets RSS
Feed, which is nice way to stay up to date on new gadgets.

To submit your gadget to the iGoogle directory, you have to specify an URL to
the XML of your gadget. In this XML, the general information about the gadget
should be correct and complete. Google automatically detects updates in the gad-
get. The Desktop Gadget submission procedure works about the same: the gadget
archive should be located somewhere on the web and Google automatically de-
tects updates (whenever the version is increased in the archive). Google says they
are approving the gadgets to their directories, thus filtering out malicious gadgets.
However, malicious gadgets can still be used whenever the URL to the gadget is
found.

Gadget Security

In the beginning, iGoogle Gadgets could run either in an iframe or inlined on the
page. When a gadget was inlined, it had full access to the Document Object Model
(DOM) of the web page it was placed on. Wrapped in an iframe, the gadget does
not know it has a parent page and does not have access to it, which is more secure
but limits the functionality. This helps the user protect against malicious gadgets

Figure 2.3: iGoogle Gadget directory.

that might want to steal or modify cookies.
Some Cross Site Scripting (XSS) and Cross Site Request Forgery (CSRF) se-

curity holes in Google Gadgets have been reported in the past, but Google has
fixed them. Cross Site Scripting is a type of security vulnerability where attack-
ers may inject malicious code to websites that are viewed by other users, possibly
gathering information about those users, e.g., by bypassing the same origin pol-
icy. The same origin policy is a security measure where scripts from one origin
may not access data from other origins. Cross Site Request Forgery exploits the
trust a website has in a user. The user is abused by the attacker to perform an
action without the user knowing. Websites usually have task URLs, for example
http://www.foo.com/buy?articleid=9. When a user is logged in, an attacker may be
able to trick the user to go to such a task URL, performing an action the user did
not intent.

Desktop Gadgets even pose a more serious security risk, since it allows users to
complement the Javascript code with C, C++ or VB.NET, unrestricting the possi-
bilities an attacker has. The API also makes it possible to send XMLHttpRequests
(asynchronous HTTP data requests) from your desktop, possibly sending confi-
dential information from the users to a site. Since there are currently no restraints
on Desktop Gadgets, users should be very cautious when installing them. Google
Desktop gives a warning when installing, but that is about the only security mea-
sure it has.

2.3 Facebook Apps

Facebook is a growing social network where people get connected, stay in touch
with friends or create new friends and share photos, links, videos. It provides a
framework for developers to create their own small applications (Facebook Apps)
that integrate into Facebook and have access to the social features of Facebook.
Facebook Apps are stored and executed on a third party server. The output of the
Facebook App is then post-processed by the Facebook server, creating the output
for the client. The intermediate output of the Facebook App is typically in Face-
book Markup Language (FBML), which is a subset of HTML and extended with
Facebook specific features, and in a modified Javascript language called FBJS. Af-
ter processing by the Facebook server, it is turned into HTML and Javascript. An
illustration is provided in Figure 2.4.

Technical Details

The Facebook API consists of HTTP request calls and thus Facebook Apps can be
created in any language that supports HTTP requests. The applications are hosted
on a third party server (everyone has to host their own application) supporting a
server-side language. An API wrapper for the specified language is used to wrap
the HTTP requests in functions. Instead of creating a HTTP request and parsing the

Figure 2.4: The path of a Facebook App request.

response yourself, the wrapper does this for you when you call one of its functions.
The function then makes the request and returns the output in an appropriate format
for the language used. The application ultimately outputs FBML and FBJS code,
which is post-processed by Facebook to generate output that the browser under-
stands (HTML and Javascript). The Facebook API also supports a query language
called FQL, which is similar to SQL. An FQL call can be made from the applica-
tion by issueing a HTTP request with the FQL query and the Facebook server will
respond with the result, typically in XML or JSON (Javascript Object Notation),
which is a lightweight data-interchange format mostly used in Javascript.

A developer creating a Facebook App should first create the application in Face-
book, notifying you are going to create an application and specify some general
information. An API key and secret key and application ID are generated by Face-

book for your application. The API key and secret key are used in the application
to authenticate the application to Facebook when making API calls. The applica-
tion can be created in a language you prefer and you should make sure it is hosted
on the web. When the developing is done, you can submit the application to the
Facebook directory, so that others can find and use your application.

Distribution of Facebook Apps

Facebook has its directory of Facebook Apps, which is the only place to get the
Facebook Apps because Facebook is the only platform they run on. The directory
shows the applications initially ordered by popularity, but it is also possible to sort
them on ”Most Active Users” or to show the newest applications. As is possible in
other widget directories, the applications can be browsed by category and there are
about 22 categories. The applications are shown with a thumbnail, title, author and
a small description as well as the monthly active user base for that application and a
link to the reviews of that application. Currently, there are about 40,000 Facebook
Apps in the directory listing. Each application also has its own page with general
information, reviews (which are basically a comment and a rating), a discussion
board and a button to add this application to your profile. Only Facebook users can
submit reviews (they are the only ones being able to use the applications) thus there
are no anonymous reviews, but the question is whether the comments are better as
a result. It is also interesting to see that the applications do not have to be useful
but can be simple applications, like being able to rate other users for their hotness
by looking at their pictures or just digitally hug someone.

When submitting an application (which is simply a submit button), the applica-
tion is first approved by Facebook, before it is added to the directory.

Security

In a social network like Facebook, privacy is an important aspect of security. For
example, when Facebook added the News Feed feature, which informs all your
friends about the actions you take, many Facebook users were quite upset7. Face-
book replied that all this information was already publicly accessible, but the crowd
still did not want the feature. People like to have control over their privacy and thus
eventually Facebook made the News Feed optional. Now, with Facebook Apps,
anyone can develop applications that use this privacy sensitive data so it is neces-
sary to have additional security measures.

There are two security issues involved with Facebook Apps: benevolent applica-
tions that have vulnerabilities, and malicious applications. The former issue might
be because applications are not developed with security in mind, or because Face-
book itself has security glitches. There already have been reports with proof-of-
concepts of security holes in Facebook8http://www.theregister.co.uk/2008/05/23/facebook xss flaw/
and http://www.theregister.co.uk/2008/05/23/facebook xss flaw/, and Facebook has

7http://www.danah.org/papers/FacebookAndPrivacy.html

fixed them eventually. More serious are the security flaws in the third party applica-
tions. For example, in an article in the 2600 Hackers Quarterly magazine [30] some
flaws in running applications are shown. Most of the flaws involve modifying the
user id or owner id in a task URL, assuming someone else’s id to perform malicious
actions. It shows that most Facebook applications developed by third parties do not
have proper authentication, which can be exploited easily for phishing attacks or
spam.

An example of the latter issue, malicious applications, is the Secret Crush9,
where you have to invite twenty friends to use the application before it shows your
secret crush. However, instead of showing your secret crush it points the user to
a site which tries to install adware on your computer. While Facebook deleted the
application from the directory, it could not prevent users from installing it.

Malicious Facebook applications are also researched in [1], where the authors
developed a malicious Facebook application called FaceBot to experiment with so-
cial networks. Their application, Photo of the Day, displays a photo from National
Geographic and also adds a few hidden iframes pointed to the victims host with the
goal of a Distributed Denial of Service (DDoS) attack. With a least effort attack
they made it to a peak of 300 requests per hour, showing that malicious applica-
tions are easily created and deployed in a social network such as Facebook. When
they would have made more efforts to advertise their application or amplify the
attacks, it could do serious damage. Considering that peer-to-peer networks have
the same social aspect, this security issue is as important in peer-to-peer networks
which allow third party code to run.

Facebook users seem to be ignorant about the possible security issues when in-
stalling third party applications. Although you have to grant the application explicit
access to your information, still malicious applications are able to spread virally.
Also, we find it weird that Facebook, while having a central directory where sub-
mitted applications have to be approved before they are added to the directory, still
can not manage to reject malicious applications or applications that are not secure.
Finally, we could not really find a lot of information about securing your applica-
tion on the Facebook developer pages. It would be really useful to make developers
aware of the security issues and how to develop secure Facebook applications.

2.4 Firefox Extensions

Mozilla Firefox is currently the second most used browser in the world according
to Net Applications10. A core feature is the one of extensions, which lets the user
customize the browser to their likings by adding extensions you want. They can
add more security, toolbars or even add complete applications inside the browser,
e.g., an instant messenger. While Google Desktop Gadgets use similar technol-
ogy, also defining the user interface in XML and interaction in Javascript, Firefox

9http://www.sophos.com/pressoffice/news/articles/2008/01/facebook-adware.html
10http://marketshare.hitslink.com/report.aspx?qprid=0

extensions can be more integrated in the browser. Google Gadgets have a small
amount of space reserved for their user interface, while Firefox extensions can add
menu items, toolbars, new buttons, etc.

Technical Details

Mozilla has an extensive amount of documentation on the extension framework
which can be found at http://developer.mozilla.org. We will first ex-
plain the structure of an extension. A Firefox extension consists primarily of locale
information, skins and content. Locale information are strings used in the exten-
tion in specific languages to support internationalization, skins are Cascading Style
Sheets (CSS) and images which make up the appearance of the extension and the
content consists of XUL (XML User Interface Language) and Javascript files. In
Firefox, the user interface is defined in XUL, and you use XUL to create new win-
dows or dialogs, add GUI widgets to them (buttons, toolbars, textfields) or create
overlays to add or modify existing user interface elements. For example, using an
overlay, you are able to add content to the existing Firefox statusbar or toolbar. It
is also possible to extend windows that are defined by other Firefox extensions.
Javascript is used to handle the actions when someone interacts with a user in-
terface element. It is also possible (just like Google Desktop Gadgets) to write
components in other languages such as C++ or Python. Using XPCOM, which
is a Cross Platform Component Object Model used by Mozilla applications, it is
possible to create such components which can be interfaced from Javascript. How-
ever, the existing XPCOM API already includes numerous objects and functions
to be used by the extension and thus only if you need more performance or more
functionality you could create an XPCOM object in another language.

Along with the files discussed above, a Firefox extension includes an install
manifest file written in RDF, which describes the application (name, author, ver-
sion, compatibility with which Firefox version, etc) and a Chrome manifest file.
Chrome is the set of user interface elements that are outside of the content area (in
Firefox the content area is the area that shows the webpages). The Chrome man-
ifest file explains to Firefox what the content directory is, which skins are added,
which locales are supported and which browser overlays it uses, including where
the files are found.

Distribution

Mozillas distribution site has about the same features as the other sites discussed
previously, including browse by category, search, comment and rate extensions.
More prevalent are the ”We Recommend” sections throughout the site, which high-
light certain extensions. Unlike the other distribution sites, Firefox requires users
to log in before you can comment and rate an extension. The extension reviews
seem pretty decent and popular extensions are reviewed extensively.

When you select a category to browse, first some highly popular extensions are

shown, but from there you can view all extensions in a list ordered by name, date,
number of downloads (popularity) or rating. An interesting option is to show ex-
perimental extensions, which are still in a production or testing phase. Advanced
users may download them for testing purposes when they log in. It actually takes
some effort from the visitor to be able to view low quality and unpopular exten-
sions, because the pages always start with highlights of popular extensions. The
links to the list of widgets are easily sorted on popularity or on rating. This is
illustrated by a screenshot of the distribution site in Figure 2.5.

When submitting an extension, you should first create an account or log in, be-
fore you can use the submit wizard. The wizard consists of a few steps. First,
the extension should be packed and uploaded. Then some general information
about the extension and version information is entered. Lastly, it is also possible
to include translations for localizations. After submission, you can manage the ex-
tension from the site. The extensions are also approved before added and Mozilla
seems to do quite a good job there, as most extensions are rated pretty high.

Figure 2.5: The distribution site for Firefox extensions. It is difficult to find low
quality extensions.

Security

A number of warnings and reports about malicious Firefox extensions can be found
on the web, for example FFsniFF11 and FormSpy12 are both malicious extensions
that try to retrieve passwords, credit card numbers and other private information.
These malicious extensions are possible because the API is very powerful, giving
full access to the file system and network, but also the possibility to write native
code giving an extension limitless possibilities [3]. The same paper shows some
stealth possibilities, allowing extensions to hide its presence by various techniques.
For example, there is a hidden option, which prevents the Add-On Manager from
displaying the extension. An extension could also create an overlay for the Add-
On Manager to modify it to hide the malicious extension. Because there are no
restrictions (there are no security policies for extensions), extensions can basically
do whatever they want. Below we will discuss the security measures Firefox does
have to fight malicious extensions. First, Firefox supports the signing of exten-
sions. Whenever you want to install an extension, it will pop up a warning win-
dow with the question if you really want to install the extension. Second, Firefox
blocks requests to install extensions from other sites than the official site, but you
can choose to install the extension anyway. Other malware can also install exten-
sions without asking permission, but that means the computer has already been
infiltrated. When other software has installed an extension, Firefox 2 does not even
alert the user, but Firefox 3 does. From these measures, it is clear that Mozilla
greatly relies on their central distribution site and the moderation of submitted ex-
tensions. They seem to do a pretty good job at it, also because of the structure of
the distribution site; very popular and highly rated extensions are highlighted and
less popular extensions are harder to get.

11http://blog.trendmicro.com/malicious-firefox-extensions/
12http://us.mcafee.com/virusInfo/default.asp?id=description&virus k=140256

Chapter 3

Zero-server widget repository

In the previous chapter we have seen examples of centralized widget repositories
and their features. In this chapter we will discuss how to port such a central-
ized repository to a peer-to-peer architecture. In a peer-to-peer architecture, all
peers help to store the widgets. This has advantages like scalability and reliability
as there is no central point of failure. Key requirements of a repository include
to find widgets, package management and moderation of widgets. In centralized
repositories, these requirements are not that hard to implement, but in a distributed
environment they are more difficult to accomplish.

First, a directory service to be able to find the widgets is discussed in Section 3.1,
where a small overview is given and a comparison between two promising candi-
dates is made. Second, moderation of widgets is discussed in Section 3.2. Third,
we will discuss the package management in Section 3.3.

3.1 Directory service for widgets

A directory service is used to find widgets in a distributed environment. All peers
work together to deliver content to other peers, creating an environment which
is scalable and has high availability. A directory service for widgets is different
than other peer-to-peer systems currently in use. Peer-to-peer systems are com-
monly used for file sharing, where peers share gigabytes of movies, music and
applications. Another, but less common use for peer-to-peer systems is to share
computation, where peers receive data to analyse.

A directory service for widgets is different than file sharing peer-to-peer be-
cause widgets are mostly small packages consisting of source files or binaries,
some metadata files and possibly small resources such as thumbnails, pictures, etc.
Also, there is a limited amount of widgets in a repository. Every year, thousands of
new songs and movies are released, but widgets are created by volunteers that first
have to get comfortable with developing in a new runtime environment. To sup-
port our statement, we summarized the size of some popular widget repositories

19

in Table 3.1. Note that we cannot estimate the total size of Facebook Application
repository because the applications are executed server-side. We however wanted
to add the Facebook apps size, because it shows that widgets can be a huge success
in social networks, increasing the size of the repository dramatically.

Now we consider the metadata, which consists of general information on the
widget (name, author, description, version information, etc.) and locations where
to find it (IP addresses). We estimate the size of this metadata about 2 KB per
widget. Current metadata files for Google Gadgets or Firefox Extensions are less
than 2 KB, but they are in XML which is readable but creates large files. Consider a
more compact format and/or compression and the size will drop considerably. Now
we can estimate the metadata size. With sizes ranging from 1200 to 5800 widgets,
the total amount of metadata will range from 2 to 12 MB. Facebook, however, has
a much larger sized repository of 40,000 widgets, which would create a total of 80
MB metadata. Still, the metadata is quite small.

Widget platform estimated
number of
widgets

estimated
average size
per widget (KB)

estimated
total size (MB)

Eclipse Plugins 1,200 900 1,054
Facebook Apps 40,000 – –
Firefox extensions 3,100 500 1,500
Google Desktop Gadgets 1,250 80 100
Windows Vista Gadgets 5,800 140 780
Yahoo Widgets 5,000 600 2,930

Table 3.1: Estimated repository size of various widget platforms.

We obtained the results of Table 3.1 as follows. The repository sizes are esti-
mated by multiplying the number of pages with the number of widgets per page.
The estimates for average size per widget are obtained by a random sampling of
about 20 widgets per repository. The estimated total size is deduced from the pre-
vious measurements.

We will continue this section with a review of some peer-to-peer object loca-
tion systems in Section 3.1.1. After this review, we will make a comparison in
Section 3.1.2.

3.1.1 Review of peer-to-peer directory service systems

In the literature, a rough classification has been made of current peer-to-peer ar-
chitectures. The first classification is whether it is partially decentralized or fully
decentralized. In a partially decentralized architecture, there still is a central index
which stores the location of the objects. An example of such a system is Napster.

We will only consider fully decentralized peer-to-peer systems here, i.e., the index
is maintained by the peers without a central index or there is no index at all.

Another way to classify peer-to-peer systems is by network structure. In unstruc-
tured networks, the placement of content is completely unrelated to the topology.
These networks need to locate objects by querying the network (e.g., by flooding
or random walks). An example is Gnutella. We will not consider unstructured net-
works, because first, flooding is not scalable and second, both flooding and random
walks may fail to find objects because they are curtailed.

Structured networks control object placement in such way that the nodes can
find the appropriate objects easily. They use a mapping of object and nodes to the
same address space such that objects that are close to nodes in the address space
typically reside on those nodes. The nodes further maintain a distributed routing
table to efficiently forward the query to the right node.

The structured networks are more scalable than the unstructured ones, but they
also have drawbacks: only exact-match queries are supported and it is hard to
maintain the structure in networks with high churn (high rate of leaving and joining
nodes). Structured networks are mostly called Distributed Hash Tables (DHT),
as they are a mapping of object IDs (keys) to the object, just like hash tables.
Examples include Chord, Pastry and CAN.

There are a number of problems with these DHTs. First, only exact matches
are possible. Research on keyword searching is still ongoing. Second, latencies in
these DHTs can still be quite large. These problems are discussed below.

Keyword searching. The classic approach to the keyword searching challenge,
used in centralized search engines, is to use inverted indexes. Per keyword a list
is maintained of the documents related to that keyword. Using this technique in a
peer-to-peer environment, the keyword lists are stored in a distributed manner, for
example using the same DHT as was used to store and locate the documents. To
process a keyword query, the lists of documents per keyword is retrieved. Opera-
tions can then be applied to the lists of documents using intersection for the boolean
”AND” and union for the boolean operator ”OR” [29]. PeerSearch [31] is build on
top of CAN and creates a semantic overlay, where documents that are semantically
close to eachother are also close in CAN address space. Normally, CAN generates
random document IDs which have no meaning at all. Using the semantic vector (a
vector which indicates which keywords describe the document best) to create the
IDs in the address space, the semantic overlay is built. The semantic overlay can
be exploited to support keyword search in an efficient way.

Latency. Because of the structure of DHTs, the search is deterministic (i.e., if
it can be found it will be found) and is asymptotically of order O(log n). However,
since there is no relation between the location of the object and the requester, the
request can still take a lot of time. Tapestry [16] tries to decrease the latency
by replication. Documents and peers have a global unique identifier (GUID) and
queries have a destination GUID which ultimately resolves to a peer. Peers can
publish any document with a GUID by sending a publish message to the root set of
the GUID, leaving a pointer to itself at every hop and at every root node. A query

for a particular GUID is also directed towards the root set of the GUID, but when
a pointer is found, it is followed. Leaving the pointers will direct a query to the
nearest replica (fewest hops) when one exists, and when no pointer is found it will
ultimately go all the way to the root set.

The DHTs described above manage a distributed index: no one has a whole view
of the index. Because of the structure, the objects can still be located. Another way
to locate objects is to let everyone maintain a local copy of the global index, instead
of partitioning it as in structured networks. Using epidemic protocols (gossiping),
the index can be maintained. Because such an index could grow very fast, the index
should be summarized in a compact way.

PlanetP [7] is an example of the infrastructure described, which uses bloom
filters to summarize the indices. A Bloom filter is an array of bits which represents
a set of strings. Strings are hashed using multiple hashing functions, which hash
the string to a bit position and the bits in those positions are set. By checking
the bit positions of a string, it can be tested whether the string is part of the set.
While providing a very compact summary of a set, the Bloom filter can give false
positives when bit positions of a string are set because of other strings. PlanetP
uses gossiping to replicate a list of peers, their IP-addresses and their Bloom filter.

Newscast [17] is a general news dissemination framework which uses gossip-
ing. They use the term news to emphasize the concept that fresher contributions
are more important than older contributions. A Newscast application consists of a
collective of agents and a news agency. The news agency consists of multiple news
correspondents which constantly retrieve fresh newsitems from the agents and dis-
seminate the news to other news correspondents. They also update the agents with
other news they retrieved from other correspondents. The algorithm is similar to
other gossiping algorithms, however the correspondents do not know the complete
member list but only a fraction of it. In fact, the member list is disseminated also.
Further, peers do not now the complete list of newsitems but only a small random
fraction of it. This is different than in PlanetP, as they try to create a local copy
on each peer and summarize it to keep it small. Using the Newscast framework,
an application can be made where every peer disseminates the files they serve as
newsitems. Other peers ultimately retrieve this information and can contact the
peer. This is called the push model and is also used in PlanetP. Newscast can how-
ever also be used to query the network, by disseminating newsitems which include
requests. The peers that have items that conform to the request may contact the
requester. This is the pull model and is not often used in gossiping frameworks. It
is also possible to combine these two models to create the push-pull model.

Using a gossiping protocol to manage the resource index has a number of ad-
vantages and disadvantages compared to DHTs. In a gossiping system the index
structure will be maintained when a few nodes disconnect, because every node has
a local copy of the index. In DHTs this index is partitioned and thus when some
important nodes disconnect (which had data that other nodes did not have), part of
the index could get lost. This advantage is also a disadvantage for gossiping sys-

tems, because this data is diffuse everywhere, while it might only be necessary for
a subset of the users. Another advantage is the possibility to browse the directory.
Other disadvantages are scalability and the time it takes for new data to spread.
Scalability is a greater issue when using gossiping, because maintaining the index
takes a lot of bandwidth when there are a lot of nodes. This can be alleviated by
having only to gossip the changes instead of the whole index. Cuenca-Acuna et al.
[7] studied the scalability of PlanetP and reports that is scales very well, maintain-
ing a contant recall and precision for communities of up to a thousand peers. They
however did not study the scalability beyond that point. Thousand peers is in our
opinion not an extremely scalable solution such as the DHTs discussed previously.

3.1.2 Comparison of DHT and gossip based systems

Which directory service would be the best for a widget repository? We will com-
pare DHTs and gossip based systems based on a number of topics , because we
think those are the most promising.

To support keyword searching in a DHT, extra distributed datastructures need to
be implemented and maintained by the peers. This costs thus more effort from the
developers and the users bandwidth and space. In gossip based systems, one can
easily do a local search because all the metadata is already available. Browsing in
DHTs is not researched yet, but this would require a peer to receive metadata for
every object and thus would require a lot of bandwidth in a short moment, while
gossip based systems disseminate the data over long time intervals. Browsing is
inherently possible in gossip-based systems, because one could do local browsing.
High churn also effects the DHT, but it does not effect gossip based systems. The
reason is that DHTs distribute their data and in gossip based systems, data is diffuse
everywhere except for when something is just published and it still has to travel to
other peers. On the other hand, DHTs are very scalable, supporting thousands
of peers collaborating to maintain the structure, while gossip based systems are
less scalable, as is studied by Cuenca-Acuna et al. [7]. Another disadvantage in
gossip based systems is the time it takes for just published data to be available. In
Table 3.2, the comparison is summarized.

Based on the estimated size of the repository, we think gossip based systems
might be quite a good solution for a widget directory service, as it provides search
and browsing features. All centralized repositories include browsing per category
as a core feature and we think decentralized repositories should support this as
well. Further, in widget environments, some widgets are very popular but most of
them are not, which kind of resembles the gossip paradigm. Popular widgets are
gossiped more about than less popular widgets thus amplifying the popularity. On
the other hand, while most widgets are not popular, their metadata are still diffuse
on all peers.

All in all, we think that gossip based systems are quite a good solution for a
widget repository in relatively small peer-to-peer environments. Large peer-to-
peer environments might suffer the consequences of the scalability limitations of

Topic DHT Gossip
Keyword searching hard easy
Browsing hard easy
High churn affects data availability? yes no
Scalability very scalable quite scalable
Published data is available right away? yes no

Table 3.2: Comparison between DHT and gossip based systems

gossiping: data takes too long to spread or every peer has to store too much data.
Of course, a hybrid between something similar to a DHT and to a gossip based
system is also possible. This option is supported by PlanetP and could create a
possible environment which supports the advantages of gossiping and of DHTs.
For example, using a DHT for support might make the system a lot more scalable
and it also increases the availability of just published widgets.

3.2 Moderation in a distributed environment

Due to the ubiquity of spam and low quality content, most online sites where users
are allowed to provide input (e.g., social networks, message boards, torrent sites)
are moderated. Most prevalent are the moderators that manually check whether
some input is spam or not, possibly allowing users to report input as spam to help
the moderators. But there are also examples of self-regulating moderation schemes.
For example, Nabble1 is an online message board system that uses a scheme where
users may rate comments as spam. When the rating drops below some value, the
comment is no longer displayed. In the centralized distribution sites of widgets
discussed in Chapter 2, the injection of new widgets or comments is moderated
by a few pre-trusted moderators. They are mostly the founders or creators of the
system. A second layer of moderation comes from the users of the widgets. They
can comment on the widgets and rate them. This information can be very useful to
other users who have not tried the widget yet. A lot of research has been done on
peer-to-peer rating or reputation systems where peers vote for each others services,
because this supports the peer-to-peer environment to be self-regulated without a
central authority. The first line of defense of manual moderation is now gone,
which was very effective but not very scalable because all the moderation tasks fell
to a small group of trusted moderators.

We will now first discuss distributed rating systems and then show a peer-to-peer
moderation technique without a rating system.

1http://www.nabble.com/help/Answer.jtp?id=28

3.2.1 Distributed rating systems

Rating systems are currently deployed all over the web, for example every widget
repository discussed in Chapter 2 has one. Most of these rating systems consist
of everyone being able to rate a widget and the site then aggregates the ratings to
come up with an average. Such rating systems have been deployed in peer-to-peer
file sharing systems also. For example, KaZaa uses a rating system, where users
can rate the files they download either as excellent, average, poor or delete file.
Due to low participation and a high amount of false ratings (i.e. ratings which rate
the file excellent when in fact it is poor, or the other way around), the rating system
does not work as well as we would like [22].

We will first explain possible rating system designs and discuss some rating
system proposals. Most of the rating systems described below use ratings to rate
peers instead of the objects they provide. The goals of these systems are to weed
out malicious peers, while rating objects provides a means to weed out bad or
malicious objects. The architecture of the systems is however still appropriate
for rating objects. Which rating system to use for widgets is hard to say. Rating
creators of widgets is more effective against malicious authors, but rating widgets
can be useful to show the differences in quality and usefulness.

Rating design

There are several possible rating strategies possible. Dutta et al. [10] discusses
several options, which we will explain below.

First it is possible to use positive or negative voting, or both. Positive voting
means users may either give credit for the service or not. The accumulated value
of credits describes the services a user has provided the community. With only
positive voting, users are discouraged to do whitewashing attacks, because they
would start at zero again. Negative votes can be used to punish users who provide
bad services. It can be used to isolate misbehaving users, but negative voting alone
is vulnerable for whitewashing attacks. Second, it is possible to use a raw value for
rating or a rating with multiple levels. Third, it is possible to consider the whole
history of the user to build its rating, or to use only the more recent ratings. When
considering the whole history, a user which has built a solid reputation has less
incentives to keep providing quality services. But when only the recent history is
used, the user has continuing incentives [34]. It is also necessary to consider the
context of ratings [33]. For example, consider a peer-to-peer file sharing system
which also supports widgets and where each peer can build a reputation by provid-
ing high-quality files and by creating benevolent and useful widgets. A peer could
now build up a reputation by providing quality files, but abuse this reputation to
create and distribute malicious widgets. Now, because his reputation is good, users
might also have more trust in the widgets he created.

Managing and distributing ratings

Tian et al. [32] explains two different rating systems in a peer-to-peer system: the
unstructured self-managing rating system (UMR) and the structured supervising
rating system (SSR). In a UMR, each peer keeps its ratings of other peers locally.
When a peer wants to know the rating for a particular peer A, it sends a request
to the network, either flooding or using a random walk. Peers who have a rating
on peer A can then reply. The SSR design needs a structured overlay, such as dis-
cussed in Section 3.1.1. When a peer issues a rating on another peer, it is stored on
another peer which is called its supervising peer. To retrieve ratings for a particular
peer, it is enough to query the supervising peer. Examples of SSRs are Eigentrust
[18] and PeerTrust [34]. Both propose two security measures for peers providing
false ratings. First, encryption can be used to store and distribute the ratings. Sec-
ond, multiple supervising peers can store the same rating. Majority voting is then
used to come up with the most likely value. Another way to manage and distributed
ratings without using an overlay, is by using gossiping. GossipTrust [35] is such
a system, which uses several aggregation cycles consisting of exchanging rating
information with random peers to eventually come to consensus on the global trust
value.

Aggregation of ratings

We will now discuss the aggregation algorithm basics of Eigentrust [18] and Gos-
sipTrust [35]. For more details we refer to the corresponding papers. In Eigen-
trust, the global reputation for a peer i is given by the local ratings for i by other
peers, weighted by the global reputation of the other peers. A rating value is given
by the number of satisfying transactions minus the number of unsatisfying transac-
tions. First, a peer normalizes its issued ratings.The symbol cij is the normalized
local rating peer i gave j. Then, peer i asks its acquaintances for their trust in peer
j, weighting it with the trust it has for them:

tik =
∑

j

cijcjk,

where tik is the trust peer i has in peer k, when asking its friends. This can be
written in matrix notation with C the matrix of [cij] and ~ti the vector of all the
values tij as ~ti = CT ~ci. Asking his friend’s friends and their friends and so forth,
eventually the peer can have a whole view of the network. In matrix notation, this
is ~ti =

(
CT

)n
~ci for sufficiently large n.

In the distributed version, each peer approximates its own global trust value ti
and this approximation is done iteratively. Each peer first queries all peers which
have used its services to retrieve their global trust value at iteration 0. Then it
calculates its own global trust value for the next iteration using their global trust
value and the trust they have in him. This is displayed in the following simplified
formula. The original formula also contains measures to resist collusions which
are left out here.

t
(k+1)
i =

∑

j

c
(k)
ji t

(k)
j

GossipTrust tries to approximate the outcome of the above formula, but gos-
siping is used to reach consensus about the global scores. We will now discuss
how gossiping is used to reach consensus about the global score of one node. This
process can be extended to reach consensus about all global scores.

Associated with a node i is a gossip pair {xi (k) , wi (k)}. In this pair, the symbol
xi(k) is the gossiped global score of node i at step k and wi(k) is the gossip weight
applied by node i at step k. At each gossip step, the node sends half of its gossip
pair {0.5xi(k), 0.5wi(k)} to itself and to another random node. It also receives the
halved gossip pairs of other peers and sums them up to calculate the gossip pair at
step k + 1, so we get

xi(k + 1) =
∑

j

xj(k),

wi(k + 1) =
∑

j

wj(k).

At the final step g, when consensus is reached, the global score of the particular
node can be calculated for node i by xi(g)/wi(g).

Attacks on rating systems

Tien et al. [32] distinguishes several attacks which a rating system should be able
to resist. First, there is the whitewashing attack where a peer, that has a bad rep-
utation takes a new identity to start over with a neutral reputation. Whitewashing
attacks can however not be used to obtain a good reputation. Second, there are the
false rating attacks, where peers issue false ratings to subvert the rating system,
rendering it useless. They can either try to give themselves or their colluding part-
ners a good reputation, or give honest users bad ratings. The former is called ballot
stuffing and the latter bad mouthing. False rating attacks can either be performed
by a Sybil [9] peer or by colluding peers. A Sybil peer is a peer that generates
multiple identities to issue false ratings to one of the identities, while using that
identity to act maliciously. Douceur et al. [9] states that it is practically impossible
in a distributed environment to enforce a unique distinct identity for each entity,
without a central authority.

To discourage whitewashing and creating multiple identities, some cost should
be introduced to newly starting peers. For example, VoteCast [28] lets newly intro-
duced peers only vote when they become experienced.

False rating attacks can be alleviated by using a personalized trust system, where
the ratings which are issued by others are weighted by the trust the peer has in them.
It is also possible to filter out some ratings, based on the rating given to them.

3.2.2 Moderation without a rating system

It is possible to create a system with moderators, just like in centralized reposito-
ries. The moderators have the power to filter out low quality or malicious widgets
from the repository. It can easily be seen, that this approach is not scalable. Moder-
ationCast [14] takes another approach, which creates a self-regulating environment,
where everyone can become a moderator but popular moderators get more power
than unpopular moderators. We will now describe ModerationCast.

ModerationCast is a metadata dissemination service for peer-to-peer video files.
Peers may add metadata to video files, and they become moderators. They gossip
their metadata to other peers. Other peers may either decide that the metadata is
wrong or bad or decide that they like the metadata. When they like the metadata,
the moderator is added to a local list and all moderations that the moderator sends
will also be forwarded by this peer. In this way, moderators which add good meta-
data spread their metadata faster than malicious peers (when the forwarders are
honest users). It also uses digital signatures to prove the identity of the moderator,
when forwarding the metadata.

When wrong metadata is found, the peer may either block the moderator or
update the wrong metadata. In their simulation, it is shown that with the help
of forwarders, the metadata of good moderators is disseminated a lot faster than
polluted metadata. There is also research going on to aggregate the local ratings
of moderators and use this to build up reputations. In this way, it would closely
resemble a rating system.

Of course, the principle in ModerationCast is not limited to metadata and could
be used for dissemination of other objects. When it is used for widgets, malicious
widgets would have more trouble propagating through the network because of less
forwarders. The problem however is that metadata can be shown easily to the
user without doing any harm, but widgets have to be tried out or closely examined
before a user might have an opinion. This makes it a less attractive solution for
dissemination of widgets.

3.3 Package management

Widgets are basically small software packages, just like the packages in Linux.
Thus they also need to be installed, upgraded, configured and removed. Package
management systems help to automate this process. Package managers typically
verify the packages using checksums, verify the signatures to authenticate the au-
thor of the package, upgrade packages to the latest version and manage dependen-
cies between packages. The first two functionalities are out of the scope of this
chapter. Also, when using widgets which can neither extend each other nor use
each others functionality, there are no dependencies to manage. Otherwise, these
dependencies should be stored in the register and checked whenever widgets are
updated, installed or removed. Typically, a dependency like widget x depends on
version 1.x of widget y is formulated in the metadata of widget x and stored in the

register after installing widget x (if all dependencies were correct). The package
manager could automatically find the appropriate version of widget y when it is
not already installed.

Because the widget repository is now distributed, we have to provide storage
for multiple versions. The package management system should be able to find the
latest version, so that it can upgrade the widgets. We will now discuss several
techniques for storage of multiple versions of a widget.

3.3.1 Storing and finding multiple versions

A version management system for widgets will need a way to group different ver-
sions of the same widget. In distributed systems, this is usually done by a unique
identifier for a widget, such as the UUID used in various widget systems discussed
in Chapter 2. Using a unique identifier, it is possible to find different versions
of the same widget in the system. In a gossip based system, this can be done
easily. A DHT however, would need a different mapping from a key to multiple
values. The key would then be the unique identifier and the values the different
versions. Project Cassandra2, an open source peer-to-peer storage system for man-
aging structured data, has an expanded data model which can be used for version
management. The Cassandra data model is derived from Google Bigtable [6], with
some additional features. Bigtable is a sparse multidimensional sorted map, where
rows are identified by an arbitrary string. Each row may have multiple columns.
The columns are grouped by Column Families. A column key is named using the
syntax: family:columname. Each row may have different column families, making
the rows dynamic. Further, each cell (a data entry under family:columname for a
particular row) may have different versions, indexed by timestamps. In Cassan-
dra, a column family can contain either columns or supercolumns, but the number
of columns a family can contain is very large and are created dynamically. Su-
percolumns are constructs that have a name and can contain an infinite amount
of columns. Further, each column may be indexed by either name or timestamp.
How Cassandra provides high availability, consistency and persistence is out of the
scope of this report. Using a data model like the one of Project Cassandra, it is pos-
sible to include versioning for widget files, however a simpler data model which
supports multiple values for a key would suffice too.

Another question is how to find updates for the widgets that are installed. For
systems which are similar to a DHT, the pull model would obviously be appropri-
ate. Peers would probe the system with regular intervals to check whether a new
version is available. Gossip based systems would not need to probe the system as
the information is ultimately pushed to the peer. When such a message arrives at
the peer, the system can simply alert the user. Newscast would be highly appropri-
ate for the job and it could even use push and pull as described in Section 3.1.1.

2http://code.google.com/p/the-cassandra-project/

Chapter 4

Widget runtime environment

The runtime environment for widgets is of great importance because it defines
what widgets are able to do or what widgets can not do and how they can do it. We
have seen several runtime environments in Chapter 2, using different languages.
In this chapter we will discuss the different possible runtime environments, their
advantages and disadvantages. In particular, we will discuss how every runtime
environment is able to restrict widgets such that they run in a sandbox. For more
information on the sandbox model, see Section 5.3.2. Further, we will discuss
what the difference is between a peer-to-peer widget runtime environment and
other widget runtime environments.

First, we will compare several different runtime environments in Section 4.1.
Second, we will talk about restricting the code in Section 4.2. Third, and finally,
creating a peer-to-peer API is discussed in Section 4.3.

4.1 Runtime environment comparison

In this section, different runtime environments are evaluated. First we will discuss
interpreting, then compiling and finally other possibilities are layed out.

4.1.1 Running code with an interpreter

When using an interpreter to run code, instead of compiling the source to binary
files and then running, the source is taken as the input for the interpreter. The in-
terpreter then parses the source, creates an internal representation, performs some
checks and starts running it, instead of generating machine code (which is the next
step in compiling). Scripting languages such as Javascript, Lua or Python are com-
monly interpreted. Interpreting has some disadvantages which we will explain
now. First, because the source must be parsed, type checked and run, interpreting
is usually quite slow in comparison with compilation. Second, interpreting uses

31

more memory because apart from the code that is interpreted, the interpreter is
also in memory including the necessary data structures for the program.

There are also advantages when interpreting, namely interpreted programs are
typically smaller, tend to be more portable (assuming machine-independent repre-
sentation) and they have access to runtime information [2].

When interpreting widget code, there should be an interpreter delivered as part
of the widget runtime environment. While this makes the widget engine larger, it
is considerably easier to write an interpreter than a compiler [13].

4.1.2 Compiling the code

When compiling the code to run, the code will run faster than when using an inter-
preter. However, distributing binaries might not be a very smart in a peer-to-peer
environment, because it will decrease collaboration, transparency and portability.
When distributing source files, all peers can modify other widgets, which creates
a collaboration environment, as seen by other open source projects. With trans-
parency, we mean that distribution of source files generates the possibility that the
code is checked by other developers, which can be seen as some kind of extra se-
curity measure which is lost when distributing binaries. Portability is decreased
because in machine code is usually machine specific. This can however be solved
by using intermediate bytecode, as Java does.

It is also possible to distribute the source files, and let the runtime environment
first compile the code to machine code (or an intermediate bytecode, which would
then have to be interpreted) and then run it. This creates a larger startup time,
but execution is still fast. Also, the next time the widget is loaded it does not
have to be compiled anymore. Now, the runtime environment should be supplied
with a compiler to do the just-in-time compilation. Just-in-time compilation can
combine advantages of both interpreting and static compilation [2]. The Javascript
engine of Google, called V81 uses just-in-time compilation and is known to be a
fast Javascript engine.

The two disadvantages of compilation, being the decreased collaboration and
transparency are both targeted by just-in-time compilation, at the expense of exe-
cution speed.

4.1.3 Other execution environments

Other execution environments are also possible. For example, Yahoo Pipes2 is
an online service which can be used to aggregate data from different sources and
create data mashups. This can be done in a visual editor, predefined modules can
be dragged and coupled to perform. Modules include data source modules, which
fetch data from other website feeds, and modules which manipulate the fetched
data. Most of the time, a pipe requires some user input. For example lets a People

1http://code.google.com/p/v8/
2http://pipes.yahoo.com/pipes/

Finder pipe requires a name. The name is used to search multiple search engines,
parse the data and aggregate them and finally the pipe outputs the results in a format
which you specified when the pipe was created. See Figure 4.1 for the Yahoo Pipes
visual editor.

Such runtime environments can be more secure and more people might want to
create widgets, because a visual editor is more appealing to learn than a complete
scripting language. It also has some disadvantages, for example the number of
modules and configurability limits the possibilities of creating interesting widgets.

Figure 4.1: Yahoo Pipes visual editor

4.2 Code restriction

In this section, we will discuss the methods to restrict the code. Both functionality
and resources need to be controlled, to create an effective sandbox as discussed
in Section 5.3.2. We will first discuss how to restrict the functionality and then
discuss how we can control the resource usage.

4.2.1 Methods of restriction

There are a multitude of ways to create a sandbox by restricting the code. Some
depend on which kind of runtime environment is used. First, it is possible to in-
strument the source code with policy functions before it is executed. The policy
functions require policies which tells whether the real function may be executed or
not and prevents the function from running. Instrumenting source files is ofcourse
not limited to be used by interpreters. An example of this technique is Restrict-
edPython3, which can restrict Python programs. How well the sandbox works is

3http://pypi.python.org/pypi/RestrictedPython/3.4.2

defined by the policies.
Second, the source code (or intermediate data structure) may be verified before

execution. When dangerous code is found, it the runtime may throw an error.
Using an interpreter, another way to create a sandbox is to modify the inter-

preter to disallow potential dangerous built-in functions by using run-time tests.
For Python this is proven to be hard to do, as was proven by the original restricted
and bastion mode, which is now deprecated because of too many vulnerabilities.
Javascript however, might be easier because it does not have any system functions
in its specification. All these potential dangerous functions will have to be added
by extending Javascript. The reason why Google Gadgets and Firefox extensions
are still dangerous is because they extend Javascript with potential dangerous func-
tions and they let third parties extend Javascript by adding components written in
other languages, such as C++.

When binaries are distributed, it is possible to use bytecode instrumentation.
This technique is similar to source code instrumentation, but is less transparent. It
adds additional bytes to the bytecode, which perform the necessary runtime tests.
In this way, both restriction and resource usage controlling can be handled [5].

4.2.2 Controlling resource usage

Resources on a computer are typically shared by a multitude of programs. The
operating system distributes the resources between the different programs. It makes
sure that the programs are runned concurrently by using a scheduler and allocates
some memory to the programs. The UNIX operating system also supports chroots,
which change the current root directory of a program to a subdirectory. This way,
the program can not read privacy sensitive data and can not overwrite or delete
important files. However, it does not control the amount of disk space which can
be written.

Using a widget system, the program should make sure that the resources are not
consumed only by one widget. Using functionality restriction discussed above,
we can either give widgets full access to a resource or no access. For example,
all widgets may access the harddisk, but no restrictions on how much they may
write or where they may write or read are deployed. Typical resources that widgets
may have access to are CPU resources, memory, harddisk, network and other I/O
devices. Herzog et al. [15] extends the current Java security mechanisms with
resource control. It does so by creating policies which state to what extend the
program may use the resources. For example, in the policy it is states how many
bytes a program may write in a certain directory or how many network sockets
may be opened. Because of the limitations of the Java virtual machine, policies for
CPU or memory can not be created: It is impossible to ask the virtual machine for
a certain amount of CPU or memory. After the policies are created, they should
be enforced. Herzog et al. [15] extends the Java access controller for this purpose.
The resources are monitored and when a policy is broken, the access to the resource
fails. Binder et al. [4] uses Java bytecode rewriting to limit memory and CPU

access. With every memory allocation, resource limitation checks are inserted. To
ensure normal CPU consumption, the number of executed bytecode instructions
are counted per thread. Every once in a while, the number executed bytecode
instructions are checked. When a thread exceeds its maximum number of executed
bytecode instructions, the priority of the thread is lowered.

4.3 Creating a peer-to-peer API for widgets

Usually, widgets have access to the built-in library functions of the language they
are coded in. These access rights may be restricted, as we saw in the previous
section. The host program or widget engine may also extend the features that are
available for their widgets. The widget engine then exposes an API to the widgets,
such that widgets can perform various tasks.

These tasks may involve general tasks such as retrieving information about the
system memory or processor usage, or more specific features for the widget en-
gine. For example, Firefox extensions have an API which lets them access the
Document Object Model (DOM) of the webpages the browser displays. If only
general features are available, the platform would be just another widget platform.

To create widgets that run in a peer-to-peer environment, the widget engine
should also have some specific peer-to-peer functions. Azureus4, a BitTorrent
client written in Java that supports plugins, exposes certain functionality which
is very interesting:

1. Use the DDB (Distributed Database, actually a DHT) to make data available
to other peers

2. Add additional messages to the peer-to-peer protocol to communicate with
other users using the same plugin

These features can really make the difference between peer-to-peer and normal
widgets. Imagine a peer-to-peer chat widget, a peer-to-peer RSS feed mechanisms
or a peer-to-peer wiki. When the API is quite extensive, it is also possible to create
the whole peer-to-peer functionality in widgets, just like the Eclipse Platform. This
way, the program is easily extended with other features and new features are easily
prototyped.

4http://azureus.sourceforge.net/

Chapter 5

Security issues in a peer-to-peer
widget environment

Peer-to-peer widgets are a dangerous tool as both threats of portable code and
threats to peer-to-peer systems are involved. Portable code security is a great issue
because everyone can create and distribute their code using the internet. Gen-
eral peer-to-peer security is also a serious issue for peer-to-peer widget systems,
because these threats could become worse since everyone can inject code in the
community. Peer-to-peer systems present some serious security vulnerabilities.
For example, when a vulnerability in the software is found, it is easily propagated
since most client software cache IP addresses of recently discovered or accessed
peers. These peers are likely to have the same vulnerability [23]. In this chap-
ter, we will discuss several attacks on peer-to-peer systems currently known and
further discuss the issue of portable code threats.

The outline of this chapter is as follows. First, peer-to-peer security threats are
explained, including their current solutions. In Section 5.1, the threat of pollution is
discussed and in Section 5.2 the problem of Distributed Denial of Service (DDoS)
attacks is evaluated. Lastly, the problem of portable code security (malicious code)
is discussed in Section 5.3.

5.1 Pollution

In this section, the problem of pollution in peer-to-peer systems is discussed. We
begin by describing the problem and then discuss several solutions to the problem.

5.1.1 Problem description

Pollution is a sabotage technique where someone deposits content in the network
which is useless or tampered with. Currently this technique is used very much
in file sharing peer-to-peer systems, where a lot of copyrighted material can be

37

downloaded. The publishers of the copyrighted content (e.g., games, songs) might
pay a pollution company to spread useless copies.

Pollution can be classified as Content Pollution and Metadata Pollution. Con-
tent Pollution means that the content is modified, e.g., replacing part of the song
with white noise. The latter pollution strategy is not to tamper with the content,
but inserting a different file with the metadata of this target file. Now, users who
search for the targeted file will instead download something else [22].

Pollution might also be a problem in a widget repository, but then it would prob-
ably be polluted with malicious widgets. When widgets are open source, there
will not be any copyrighted material which was a great incentive for publishers of
copyrighted material to pollute. Nevertheless, malicious widgets can be seen as
pollution and the solutions discussed below might work to prevent their spreading.

5.1.2 Solutions

Liang et al. [22] provide several anti-pollution mechanisms and classify them as ei-
ther detection with downloading or detection without downloading. Matching and
user filtering are methods classified under the former, while the latter comprises
methods which depend on experience of other users: rigid trust, web of trust and
reputation systems. In the following paragraphs, the methods are explained and
their relevance to a widget repository is discussed.

Matching

This method uses a trusted database of signatures of authentic material. When the
file is downloaded, it is checked whether a signature exists in the database. If no
match is found, it is concluded that the file is polluted. For file sharing peer-to-peer
systems, this method might not work as well as one wants it to, because in those
systems there are a multitude of versions file most of the time, resulting in deletion
of proper files. Especially songs might have radio versions, album versions, other
bitrates and polluted files. For widgets, this system might be feasible since, as we
have seen in Chapter 2, the magnitude of widget repositories is of another order.
Note that it is also possible to let the database consist of signatures of polluted files
instead of authentic files, which resembles the method of signatures used to combat
malicious code, see Section 5.3.2.

The signature database can either be managed by a central authority or by the
users itself. A central authority however kills the peer-to-peer paradigm, and on
the other hand users can not always be trusted. But Kamvar et al. [18] notes that
there are always a few pre-trusted peers within a community, e.g., the creators of
the peer-to-peer community. These pre-trusted peers could create the signatures,
while others only manage them.

User filtering

Most peer-to-peer file sharing systems copy downloaded files directory to the shared
folder, distributing them further. Liang et al. [22] reckons that when users filter out
the polluted versions from their shared folder, pollution would greatly reduce. The
challenge is how to encourage users to filter out the polluted files.

We think this solution might not be appropriate for a widget repository because
widgets would probably be distributed differently: there would not be any shared
folder. Also, widgets would have to be executed before knowing whether they are
bogus or malicious and by that time, it might already be too late.

Trust and reputation

In the Rigid Trust scheme, users only download from friends who the user trusts.
Friends watch eachothers back and try to keep pollution out. This scheme might
work fine for file sharing peer-to-peer applications, but for a widget repository it
is more important who created the widget, as the widget creator is the one a user
should trust or not.

Web of Trust is a trust scheme where a user retrieves updated lists of friends
of friends and only downloads from this subset of peers. When he finds a polluted
file, he notifies his direct friend and stops downloading from this user. This solution
might not work for a widget repository for the exact same reasons as explained for
the rigid trust scheme.

Reputation systems‘ are a good way to prevent pollution, when users engage ac-
tively in issuing honest ratings. Reputation systems are described in Section 3.2.1.

5.2 DDoS attacks

5.2.1 Problem description

Distributed Denial of Service (DDoS) attacks are attacks where a multitude of
infected hosts attack a certain victim host. The infected hosts can either overwhelm
the victim’s connection resources by creating a lot of connections (Connection
attack), or try to generate a lot of bandwidth such that the up- or downstream links
of the victim congest (Bandwidth attack).

Current peer-to-peer systems can easily serve as a DDoS engine. Naoumov et al.
[26] specifies two ways to exploit a peer-to-peer system for DDoS attacks, which
will be discussed next. The first is Index Poisoning and the second is Routing
Poisoning. Peer-to-peer systems with a widget engine could also get infected by
malicious widgets which perform DDoS attacks, when the widgets are granted
enough access. Malicious widgets are discussed in Section 5.3.

Index Poisoning

An attacker doing an index poisoning attack tries let the system believe there is
a popular file located at the victims node. Note that the victim does not have to
be part of the peer-to-peer system. The attacker sends publish messages into the
system for this particular file to every node it finds. The nodes will add the file hash
along with the victims location in their index. When someone queries for this file,
the victims location is returned and a connection will be made to the victim. The
victim will not understand the protocol specific message and may either ignore it,
send an error message or terminate the connection. The hosts looking for the file
may however retry to download the file from the victim. This attack, when the file
is popular, ultimately results in a connection attack, where there victims connection
resources are depleted. Moreover, because the index entry may exist for a while,
the attack continues long after the attacker has stopped poisoning the index.

Routing Table Poisoning

A routing table poisoning attack is started by sending bogus node announcement
messages to nodes. In these node anouncement messages, the victims IP address
is included. Using knowledge of how the system manages its routing table, the
attacker can make it more likely that nodes add the victim as a neighbour. After
the routing tables of nodes are infected, they may route messages to the victim
and thus receive a flood of messages. Since the victim will probably reply with
an error message, both the up- and downlink will be flooded. However since most
peer-to-peer systems will remove the entry from their routing table when the host
is unreachable, the attack may fade away when the attacker stopped poisoning the
routing table, unlike the index poisoning attack.

5.2.2 Solutions

In the following subsections, two solutions are discussed, namely Identity Based
Cryptography as a solution for Index Poisoning in Section 5.2.2 and a solution for
Routing Table Poisoning in Section 5.2.2.

Reliable Index Exchange Protocol

This solution to Index Poisoning in peer-to-peer systems was proposed by Lou et al.
[23] and uses the concept of peer accountability. Normally, when a peer receives a
publishing message from peer Y which says that a file with file identifier D can be
found on peer Pu, it can not verify that the source of that message was also the one
that published the file (the publisher of the file is denoted by Pb). For all it knows,
peer Y might have forged the message and made D an identifier of a popular file
and Pu an endpoint (IP address) of the victim. The possibility of such an Index
Poisoning attack lies in the fact that X can not verify that Pu is in fact Pb. To
eliminate this vulnerability, a peer should be able to verify this property. A peer is

accountable when there exists a function with parameter D such that it returns true
when Pb = Pu.

The protocol, the Reliable Index Exchange Protocol (RIEP), by Lou et al. [23] is
based on digital signatures to enforce peer accountability. When a peer Pb wishes
to publish a file F, it must first request a private and public key. A public/private
key pair is generated by a Private Key Generator (PKG), which is similar to a
Certification Authority (see Section 5.3.2) in a Public Key Infrastructure (PKI) but
only needs to generate the public/private key pairs. Then, Pb should publish the
index using a secure file index format:

D(F, Pb), Sb(D), G, Sg(Pb)

where Sb(D) is the original file index, digitally signed by Pb, G the identity of a
PKG, and Sg(Pb) the signature of G. The publisher signature is there to enfore
peer accountability and G and Sg are to accomodate multiple PKGs and to provide
security for the identity of the PKG. When a peer sends a query to another peer,
it includes a signature. The peer replying with the file index (in the secure format
specified above) also signs its message. To verify a file index, one needs to check
whether Sp(D) was signed with the key of Pb, which is equivalent to verifying
Pb = Pu.

While this solution greatly reduces the number of targets an attacker can use (it
can only use itself or previously authorized IP addresses), it also comes with ex-
tra computational overhead and the need for certification authorities to issue pub-
lic/private key pairs [19]. It is however an elegant solution without compromising
the anonimity requirements in peer-to-peer systems.

A solution for Routing Table Poisoning

The above solution for Index Poisoning using peer accountability (RIEP) could be
used to avoid Routing Table Poisoning also, in the following way. When a peer
Pu sends a peer announcement message (which consists of a peer identifier and an
endpoint (usually IP address and port), it signes the message and it again includes
the Private Key Generator identifier G and its signature Sg(Pu). A receiver of this
message can verify the authenticity of this message and add it to their routing table
when it is verified or discard the message when it is not. Drawbacks of this method
are again the computational burden on the peers and the need for certification au-
thorities [19].

Another, more elegant solution to Routing Table Poisoning is proposed by Kohli
et al. [19]. First, it is assumed that every peer has a secret value S. A peer A sends
a node announcement message (NAM) to peer B, presenting the existence of peer
V. Peer B then sends a message to V, consisting of a timestamp T and a hash of T,
the NAM and its secret value Sb, but does not yet add V to its routing table until
V’s reply is valid. V either replies with NAM, T, and a hash of T, NAM and Sb.
Peer B can now validate the reply by hashing NAM and T received from V and
Sb and verifying it is the same as the hash returned by V. Since it is computational

infeasible to create the hash without knowing Sb, B can be sure that V is indeed on
that location.

When an attacker tries to perform a routing poisoning attack, the peers it is trying
to use will send one message to the victim and not add the victims address to their
routing table. Thus the network now acts as a reflector instead of an amplifier:
the attacker will have to send as much fake node announcement messages to other
peers as the victim will receive, flooding its own link.

This solution is does not use a PKI and has lays less computational burden on
the peers than the solution derived from RIEP.

5.3 Malicious code

The problem of malicious code is discussed in this section. First malicious code
is described extensively and then several solutions are discussed, ranging from
prevention mechanisms, accountability and detection.

5.3.1 Problem description

Malicious code (also known as malware, which comes from malicious software) is
software that fulfills the deliberately harmful intent of an attacker when run. Mal-
ware thus includes viruses, worms, trojan horses, spyware, rootkits and adware,
among others [20]. A computer virus is a program that attach itself to a host pro-
gram and when run, infects other executables and propagates that way. A worm is a
program that propagates itself through networks to jump from machine to machine.
Trojan horses hide malicious intent inside a host program that seem to be useful
and spyware is computer software used to send data about the infected user to third
parties. Adware automatically plays, displays or downloads advertisements to a
computer and lastly rootkits are collections of tools used by attackers after gaining
administrative privileges. Rootkits are mostly used to hide the attackers presence,
gather information about the system or to ensure that the attacker can regain access
at a later time.

In the past decades, malware has become a fast growing problem for a number
of reasons. McGraw et al. [25] argues that the following trends have a large in-
fluence on the recent wide spread propagation of malicious code. First, there is
the growing connectivity of computers through the Internet, which makes it a lot
easier to make an attack. Second, systems are becoming so large and complex that
bugs are inevitable. These bugs can be exploited by attackers to install malicious
code, but also improper configuration opens the door for attackers. It becomes
easy to hide malicious code within a complex system such as an operating system.
Third, most applications support some form of extensibility, which introduces mo-
bile code that can be installed and runned on the fly. Extensibility makes it hard to
prevent unwanted extensions.

5.3.2 Solutions

We now present several defenses against malicious code and discuss their merits
and drawbacks. First, in Section 5.3.2, syntactic signatures and semantic signa-
tures are discussed, which are used to detect malicious code. Then Section 5.3.2
discusses code signing, which is a technique to authenticate the code producer and
to verify code integrity. Proof Carrying Code (PCC) is discussed in Section 5.3.2
and restricting the execution environment (the Sandbox model or using more fine-
grained security policies) is treated in Section 5.3.2.

Detection using syntactic or semantic signatures

Most of todays malware detection systems (e.g., virus scanners) detect malicious
code by scanning the code looking for syntactic signatures. Syntactic signatures
specify byte sequences that are particular for a specific malicious program. De-
tection using syntactic signatures does have several drawbacks however. The first
drawback is that every time a new malware program is found, analysts first have
to find a signature, then add it to the database and then distribute it to everyone
using their malware detector. Thus, there is a timewindow where unknown mal-
ware can act freely. Attacks exploiting this knowledge are called zero-day attacks.
The second drawback, which is a reaction to the detection software, is that current
malware is trying to avoid detection by obfuscation and stealth. Metamorphic mal-
ware, which is malware that mutates, renders the detection software using syntactic
signatures useless.

For the reasons enunciated above, a new malware detection trend has come
along, namely detection using semantic or behavioral properties. Because the be-
havior of the program is analyzed, this method can detect mutating software and
identify unknown malware, which detection based on syntax could not. To cre-
ate behavioral signatures, the malicious programs have to be examined to extract
behavior that is specific for their class. For example, Kreugel et al. [20] notes
that regular kernel modules have different goals than rootkit kernel modules, and
thus completely different functionality. They use symbolic execution to statically
analyze an executable. Symbolic execution is a technique in which programs are
simulated using symbols instead of actual input data, and thus expresses the output
and program state as mathematical or logical expressions. Symbolic execution ba-
sically runs the program for every input value simultaneously, which makes it ideal
to analyze behavior.

Ellis [11] defines several behavioral signatures for detection of worms, which
could identify classes of worms even previously unknown. Worms are especially
good at zero-day attacks, spreading to millions of computers when it is still un-
known, and thus behavioral signatures might work much better at battling them.
One of the signatures is that a server changes into a client. A worm has to prop-
agate itself and when a server is infected, will try to make connections to other
computers to propagate, thus changing into a client. Another signature is the one

of alpha-in and alpha-out, which states that a worm typically sends similar data
across nodes. These signatures might define behavior of a worm very well, but
they are rather useless in a peer-to-peer environment.

Code Signing

Code signing is a means of authenticating the code producer and verifying the
integrity of the code. The code producer should have generated a private and a
public key pair, where everyone may know the public key, but noone except the
code producer should know its private key. The code is digitally signed using the
private key of the code producer, which outputs a signature. Using the public key
of the code producer, the code and the signature, the host that is about to execute
the code can now verify that the code is from the code producer and that it has not
been tampered with.

However, while this accomplishes authentication and integrity, it does not make
the code safe to execute because the code producer might not be trustworthy. One
might use a public key infrastructure (PKI) to bind respective code producers to
public keys. This requires a Certificate Authority or a Trusted Third Party to verify
that the code producer is trustworthy. Since a PKI is based on central authori-
ties, it can not be used in a peer-to-peer system without compromising a bit of the
paradigm. Reputation systems (see Chapter 3, Section 3.2.1) can however be used
to build a reputation in a peer-to-peer system, which could be used to trust peers.

Another drawback of code signing is that either the code is trusted and is given
full permission or the code is rejected and not executed at all, based on a signature
[24]. Code signing could however be combined with other defenses, such as taking
policing action which is discussed in Section 5.3.2.

Proof Carrying Code

Proof Carrying Code (PCC) is a technique that enables the host system to test
whether the supplied program is safe. For this to work, the code supplier has to
supply a safety proof. The host can then validate the proof without using cryptog-
raphy or consulting external agents [27]. An important property of this mechanism
is that whenever the code or proof is tampered with, the validation will either fail
or, when it does not fail, the program still is safe. It is said to be intrinsically safe.

The original paper uses this mechanism to proof type safety of a program, and
the proofs are relatively simple. For mobile code however, there are a lot of prop-
erties of the code which would have to be proven, e.g., that the code will not do
harm to the host, or that the code does not use too many resources [21]. The same
paper reports a list of advantages when using PCC:

1. Effort for the proof is at the code producer

2. The code consumer does not care how the proof is constructed

3. PCC programs are “tamperproof”

4. No cryptography or third party has to be used

While PCC seems very promising, it is however questionable if it will ever be
used in a broad sense. Generating proofs for complex programs and complex prop-
erties might be too hazardous. For now, PCC is still in its embryonic stages of
development and is not yet a practical solution for complex programs [12].

Sandbox Model and security policies

The idea behind the Sandbox model is to let possibly untrusted code execute in a
restricted environment so it can not do any harm to the host running the code. A
sandbox can be characterized by two different mechanisms [24]:

• it confines code, either through type checking, language properties, or the
use of protection domains to prevent the subversion of trusted code and,

• it enforces a fixed policy for the execution of code.

Of course, the sandbox is only safe when the policy is not flawed or inconsistent,
something which is not so trivial. Python used to have a restricted execution and
bastion mode, which the code deployer could customize. The execution mode was
however easy to circumvent and is now deprecated [15]. A better example might be
Java, where the early implementations used the sandbox security model and have
come a long way since, refining their model and making it more secure. While the
Java Security Manager is one of the more advanced security models, Herzog et al.
[15] indicates two shortcomings of the Java Security Manager, namely the limited
possibilities for resource control and the difficulty of creating policies. Also, new
vulnerabilities might be found and exploited, which requires the developers to keep
the security system up to date.

All in all, using policies to restrict the execution environment is quite a neat
solution to malicious code, but it also introduces a new dilemma because it also
restricts the usefulness of code. When the execution environment is restricted too
much, no one will be interested in coding because there is nothing interesting to
create. However, when the restrictions are lowered, it creates possibilities for ma-
licious code.

Chapter 6

Conclusions

In this chapter, we will give a summary of the material treated, and conclusions.
Also, we will lay out the further research that we will be conducting on peer-to-peer
widget environments.

6.1 Summary and conclusions

In this report, we have reviewed several centralized widget systems and discussed
a number techniques for the creation of a decentralized widget system. Decentral-
izing the distribution of widgets is a challenge, which uses state of the art peer-to-
peer techniques to store, manage and moderate the widgets. A central authority is
no longer needed, but decentralization also amplifies the possibility of injection of
malicious and low quality widgets. We have also discussed the possibilities for run-
time environments, where there is a tension between speed and ease of distribution,
choosing between either compiling or interpreting, respectively. We discussed sev-
eral techniques to restrict mobile code for these runtime environments to alleviate
security threats and showed some new possible features when using a peer-to-peer
environment for widgets. Finally, we discussed several existing security threats to
peer-to-peer systems and to mobile code environments.

Although several systems are already very close to a peer-to-peer widget sys-
tem, they lack either the decentralized distribution of the widgets (Azureus) or a
peer-to-peer environment to run the widgets. A number of techniques are avail-
able to create a peer-to-peer widget environment, but the widget system should
be carefully designed to make sure the system will not collapse (e.g., because of
scalability problems) or be subverted by malevolent users.

Theoretically, the techniques described here could be put together to create a
peer-to-peer widget environment that has the same functionality as the widget sys-
tems described in Chapter 2. However, whether the peer-to-peer widget environ-
ment will be robust, scalable, reliable and secure is not obvious.

The techniques discussed to decentralize the widget repository (DHTs and gossip-

47

based systems) have been researched extensibly using simulations, but whether
they work as good in practice should still be pointed out. This is because there
have not been many large-scale deployments of these techniques yet. In particu-
lar, the effects of high churn and unconnectability in DHTs and the scalability in
gossip-based systems could be possible problems.

To resist against pollution and malicious widgets, both security and moderation
techniques could be used, but they are almost always one step behind. Whenever
there is one infection, the peer-to-peer widget environment supports a very fast dis-
semination, because other peers are likely to have the same vulnerability. Current
widget systems do not use a lot of security measures, but we think that a peer-
to-peer widget environment gives need for more security techniques as infections
could be more disastrous.

6.2 Further research

In the subsequent Master of Science project, we will make the first step to a ro-
bust and secure widget environment for the social peer-to-peer program Tribler1.
First, we will create a few built-in widgets, which the user can activate to use.
Second, we will design and implement WidgetCast, a protocol to exchange infor-
mation on widgets (e.g., who has which widgets installed and general information
on the widgets). Using WidgetCast, widget swarms can be created, which are sim-
ilar to BitTorrent swarms. Users of a specific widget are grouped together in a
widget swarm, creating the possibility to distribute the widget code and to let the
widget exchange information between different widget instances. After these first
two milestones, widgets could be made available for everyone, which means that
security measures should be taken and a distributed widget repository should be
made. While we have discussed several techniques for both security and a dis-
tributed repository, they should be investigated further to make sure they will work
in practice.

1http://www.tribler.org

Bibliography

[1] Elias Athanasopoulos, Andreas Makridakis, Spyros Antonatos, Demetres Antoni-
ades, Sotiris Ioannidis, Kostas G. Anagnostakis, and Evangelos P. Markatos. Anti-
social networks: Turning a social network into a botnet. In Proceedings of the 11th
Information Security Conference (ISC 2008), 2008.

[2] John Aycock. A brief history of just-in-time. ACM Computing Surveys, 35:97–113,
2003.

[3] Philippe Beaucamps and Daniel Reynaud. Malicious firefox extensions, June 2008.
[4] Walter Binder, Jane G. Hulaas, and Alex Villazón. Portable resource control in java.

SIGPLAN Not., 36(11):139–155, 2001.
[5] Ajay Chander, John C. Mitchell, and Insik Shin. Mobile code security by java byte-

code instrumentation. In 2001 DARPA Information Survivability Conference & Ex-
position (DISCEX, pages 1027–1040, 2001.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Ch, Andrew Fikes, and Robert E. Gruber. Bigtable: A dis-
tributed storage system for structured data. In Proc. of the Conference on Operating
System Design and Implementation (OSDI), pages 205–218, 2006.

[7] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. Planetp: using
gossiping to build content addressable peer-to-peer information sharing communi-
ties. In Proc. 12th IEEE International Symposium on High Performance Distributed
Computing, pages 236–246, 22–24 June 2003.

[8] Jim des Rivieres (IBM). Eclipse platform: Technical overview. Technical report,
Object Technology International, Inc., 2003.

[9] John R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First In-
ternational Workshop on Peer-to-Peer Systems, pages 251–260, London, UK, 2002.
Springer-Verlag.

[10] Debojyoti Dutta, Ashish Goel, Ramesh Govindan, and Hui Zhang. The design of
a distributed rating scheme for peer-to-peer systems. In Workshop on Economics of
Peer-to-Peer Systems, 2003.

[11] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A behavioral
approach to worm detection. In WORM ’04: Proceedings of the 2004 ACM workshop
on Rapid malcode, pages 43–53, New York, NY, USA, 2004. ACM.

[12] Joan Feigenbaum and Peter Lee. Trust management and proofcarrying code in secure
mobile-code applications. In DARPA Workshop on Foundations for Secure Mobile
Code Workshop. DARPA, 1997.

[13] Dick Grune, C. Jacobs, Koen Langendoen, and Henri Bal. Modern Compiler Design.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

[14] Vincent Heinink. Metadata infrastructure for peer-to-peer video. Master’s thesis,
Delft University of Technology, June 2008.

49

[15] Almut Herzog. Usable Security Policies for Runtime Environments. PhD thesis,
Electronic Press, Linköping, 2007.

[16] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed
object location in a dynamic network. In SPAA ’02: Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms and architectures, pages 41–52, New
York, NY, USA, 2002. ACM.

[17] M. Jelasity and M. van Steen. Large-scale newscast computing on the Internet. Tech-
nical Report IR-503, VU, 2002.

[18] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for
reputation management in p2p networks. In 12th WWW conference, New York, 2003.

[19] Pankaj Kohli and Umadevi Ganugula. Ddos attacks using p2p networks. 2007.
[20] Christopher Kreugel. Malware detection, chapter Characterizing the Behavior and

Structure of Malicious Executables, pages 63–83. Advances in Information Security.
Springer US, 2005.

[21] Peter Lee and George Necula. Research on proof-carrying code on mobile-code
security. In Proceedings of the Workshop on Foundations of Mobile Code Security,
1997.

[22] J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in p2p file sharing systems. In
IEEE Infocom, Miami, FL, USA, March 2005.

[23] Xiaosong Lou, Student Member Ieee, Kai Hwang, and Fellow Ieee. Prevention of
index-poisoning ddos attacks in peer-to-peer file-sharing networks. In Multimedia,
Special Issue on Content Storage and Delivery in P2P Networks, 2006.

[24] Sergio Loureiro, Refik Molva, and Yves Roudier. Mobile code security. In Proceed-
ings of ISYPAR 2000 (4me Ecole d’Informatique des Systmes Parallles et Rpartis),
Code, 2000.

[25] G. McGraw and G. Morrisett. Attacking malicious code: a report to the infosec
research council. IEEE Software, 17(5):33–41, Sept.–Oct. 2000.

[26] Naoum Naoumov and Keith Ross. Exploiting p2p systems for ddos attacks. In In-
foScale ’06: Proceedings of the 1st international conference on Scalable information
systems, page 47, New York, NY, USA, 2006. ACM.

[27] George C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 106–
119, New York, NY, USA, 1997. ACM.

[28] R. Rahman, D. Hales, M. Meulpolder, M. Clements, V. Heinink, J. Pouwelse, and
H. Sips. Robust vote sampling in a p2p media distribution system. Technical Report
PDS-2008-004, Technical University of Delft, 2008.

[29] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. In
Proceedings of International Middleware Conference, pages 21–40, 2003.

[30] stderr. Facebook applications revealed. 2600 Hackers Quarterly, 24:32–33, 2007-
2008.

[31] Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam. Peersearch: Efficient infor-
mation retrieval in peer-to-peer networks. Technical Report HPL-2002-198, Hewlett-
Packard Labs, 2002.

[32] Ye Tian, Di Wu, and Kam-Wing Ng. On distributed rating systems for peer-to-peer
networks. Computer Journal 2008, vol 51; number 2, pages 162-180, 2008.

[33] Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks. In
Proc. Third International Conference on Peer-to-Peer Computing (P2P 2003), pages
150–157, 1–3 Sept. 2003.

[34] Li Xiong and Ling Liu. Peertrust: supporting reputation-based trust for peer-to-peer
electronic communities. IEEE Transactions on Knowledge and Data Engineering,
16(7):843–857, July 2004.

[35] Runfang Zhou, Kai Hwang, and Min Cai. Gossiptrust for fast reputation aggregation
in peer-to-peer networks. IEEE Transactions on Knowledge and Data Engineering,
20(9):1282–1295, Sept. 2008.

