
Leveraging blockchains to enforce cooperation

Pim Veldhuisen

Leveraging blockchains to enforce cooperation in
distributed networks

Master’s Thesis in Computer Science

Distributed Systems group – Blockchain Lab
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Pim Veldhuisen

6th March 2017

Author
Pim Veldhuisen

Title
Leveraging blockchains to enforce cooperation

MSc presentation
TODO GRADUATION DATE

Graduation Committee
TODO GRADUATION COMMITTEE Delft University of Technology

Abstract

TODO ABSTRACT

iv

Preface

TODO MOTIVATION FOR RESEARCH TOPIC

TODO ACKNOWLEDGEMENTS

TODO AUTHOR

Delft, The Netherlands
6th March 2017

v

vi

Contents

Preface v

1 Introduction 1

2 Problem Description 5

3 Design of the Record Creation functionality 11
3.1 Blockchains . 11
3.2 Concurrency . 12
3.3 Block protocol . 14

3.3.1 Signing initiation . 15
3.4 Attacks and defenses . 16

4 Evaluation of the Record Creation functionality 21
4.1 Implementation . 21
4.2 Experiments . 22

4.2.1 Signing policy . 22
4.2.2 Performance . 25

4.3 Deployment . 26
4.3.1 Internal testing . 27
4.3.2 Alpha Release . 28

5 Record Discovery Algorithms 31
5.1 Design . 31

5.1.1 Continuous exploration 31
5.1.2 Random walks . 32
5.1.3 Focused walking . 33

5.2 Results . 35
5.2.1 Convergence . 35
5.2.2 Efficiency . 35
5.2.3 Load balancing . 37
5.2.4 Parameter variation . 39
5.2.5 Method Limitations . 39

vii

6 Trust Edges 41

7 Conclusions and Future Work 43
7.1 Conclusions . 43
7.2 Future Work . 43

viii

Chapter 1

Introduction

The introduction of the Internet to the world in the nineties brought unprecedented
opportunities for interaction and cooperation between people. However, without a
powerful organizational structure, interacting people often act selfish and attempt
to greedily pursue their own goals. This often means that cooperation grinds to a
halt and the benefits of synergy are lost to all. A famous example is the prisoners
dilemma, where game theory shows that fully rational individuals would not co-
operate, even if it is in their best interest to do so. Another situation where each
individual’s pursuit of his own goals leads to the devaluation of the community as
a whole is the sharing of a common good. In a 1986 Science article Garrett Hardin
showed that unregulated use of a limited common good leads to a situation where
everybody is worse off [1]. This is known as the tragedy of the commons.

Early Internet applications that attempted to stimulate cooperation between Inter-
net users were also affected by such problems. This is strongly apparent in peer-
to-peer file sharing networks. A study from 2000 showed that almost 70% of users
of the Gnutella network were free riders; meaning that they used the network to
access files from other users, but did not contribute files themselves [2]. A similar
experiment performed on the eDonkey network in 2004 identified 68% of the users
as free riders [3]. These large percentages of peers that do not contribute to the net-
work reduce the availability of scarce files, and the bandwidth with which popular
files can be downloaded, thus reducing the utility of the network. The performance
of the network could potentially be much higher when all peers would contribute
to the full extent of their capability.

One way to solve the problems with uncooperative users is to introduce a central
party that regulates the users, enforcing certain behaviors. While this is an effective
manner to create a more optimal mode of cooperation, it has its downsides. The
main drawback of this concept is that it centralizes power. While a benevolent dic-
tator can often achieve great results, dictators can also create great injustice. There

1

is always the question of who can be trusted with the power to regulate the users,
and whether this entity will not abuse this power. Other disadvantages of central-
isation are more practical; the central party can be a performance bottleneck and it
forms a single point of failure. Considering all this, it is desirable to realize fruit-
ful behavior not through binding rules imposed by a centralized master node, but
through a communal sense of duties and obligations towards peers. Unfortunately
anyone who has used the Internet will know that one cannot simply rely on the gal-
lant nature of all Internet users. Many users need the proper motivation to behave
in a way that is beneficial for the system as a whole. This motivation can be created
by setting up a system of rules that provides benefits for users that contribute to the
operation of the network, and disadvantages to those who do not contribute. Such
a set of rules is called an incentive scheme.

BitTorrent is one of the most used systems with a successful decentralized incent-
ive scheme [4]. It is based on a memory-less tit for tat principle, meaning peers
allocate upload bandwidth to the peers it currently receives the most download
bandwidth from. This protocol has shown to result in a functional network where
many peers choose to cooperate. The system is however not watertight, and free
riders are still able to realise significant download speeds [5]. Distributed global
networks could still perform much better when all peers cooperate. The key to real-
izing this behavior is a better distributed incentive scheme. A critical innovation
that is needed is the incorporation of the history of peers within the decision mak-
ing process. The Maze project attempted to use a persistent score for each user [6].
This was found to stimulate the desired behavior among peers playing by the rules,
but encountered problems with whitewashing; behavior where a user can clear a
negative reputation by creating a new identity. More problematically, in this and
many other systems, the reputation is self-reported, meaning peers communicate
about their own reputation towards other peers. This makes it fairly trivial for peers
to lie about their reputation, presenting an unfairly aggrandized reputation to oth-
ers. As a result, a secure decentralized incentive system that incorporates history
is still an open problem.

The Tribler project is a research project a Delft University of Technology which
aims to create new methods and algorithms for distributed networks. To invest-
igate the properties of such networks in the real world, a BitTorrent client with
advanced features is available to the general public. A recently added feature of
the Tribler software is to provide anonymous routing, in order to enable privacy and
prevent censorship. This feature is currently being utilized by Tribler users, and is
functional, but the performance is often lacking in comparison to open traffic. One
of the root causes of the performance degradation is the increased bandwidth re-
quirements. Since the traffic is routed through multiple hops, the total bandwidth
requirements are proportional to the number of hops. This means that a network
that enables anonymous routing has even more need for a good incentive scheme.

2

Previous attempts in Tribler to create incentives for contributions culminated in
the Bartercast protocol [7]. This is a fully distributed system that associates a
reputation to each peer in the network based on a maxflow algorithm. While this
protocol proved to be a resilient way to motivate most users to cooperate, the pro-
tocol was not tamper-proof, meaning code-savvy peers could cheat the protocol by
providing false information to the system. While in most networks there is only
a small fraction of users that is willing to actively cheat, this minority can never-
theless undermine trust in the system and disrupt its functionality. This calls for a
system that cannot be manipulated and is tamper-proof.

The solution pursued by the Tribler team is the Multichain; a distributed database
based on blockchain technology. The blockchain has shown to be a great way of
creating tamper-proof records in a distributed environment [8]. The concept also
shows great promise in recording cooperative behavior. In the Multichain, a record
is created for each interaction between the participating nodes. Both parties then
store their record, and can show them to other peers to prove their historic reliabil-
ity.

A preliminary version of the Multichain has been implemented in code by S.
Norberhuis [9]. Conceptual and practical issues still remain in this version of the
code, and it has therefore not yet been integrated in a release of Tribler. This ver-
sion is rather limited in scope, and does not implemented checks and measures to
prevent cheating.

This thesis develops the Multichain further, outlining the road to the creation an
all-round blockchain based incentive system that can influence behavior in actual
systems. It also takes some steps on this road by implementing features and eval-
uates various forks on the path by evaluating different algorithms and strategies.
In its fundamental form the Multichain system can be applied to a wide variety
of scenario’s where cooperation of individuals is desirable but does not come nat-
urally. The theoretical properties of the system are mostly evaluated in such a
generalized context, but to see the actual effects of different policies the system
is applied to the file-sharing use case. Peer-to-peer file-sharing provides a useful
test case for the Multichain because is representative of other cases, has been the
subject of scientific research in the past, and the Tribler platform provides a way to
study the behavior of actual users.

The challenges and properties of the problems involved in realizing the Multichain
system are explored in chapter 2. The design of the historic record creation part of
the system is described in chapter 3, including several conceptual and implementa-
tion improvements upon the existing record creation protocol. This record creation
part is then evaluated in chapter 4, using a combination of specific tests, wider
experiments and deployment to actual Tribler users. Chapter ?? explores another
part of the Multichain system; that of record discovery, where created records are

3

shared among the network. Various algorithms are evaluated in their effectiveness
and their impact on resources using a trace-driven simulation. Based on this eval-
uation, a simple version of such a record sharing system is then implemented and
tested using Tribler in chapter 6.Finally, chapter 7 summarizes the results of the
research in a conclusion, and surveys future steps for the Multichain system.

4

Chapter 2

Problem Description

The goal of the multichain system is to enforce cooperation of peers in a decent-
ralized manner. In order to achieve this, the peers should be incentivised is such a
way that their goals are aligned with the goal of the network. Behavior that is be-
neficial to the individual peer should also be beneficial for the network as a whole.
Since the application domain is that of file-sharing, this means that making files
available to the network by uploading them should be rewarded appropriately. To
achieve this, the Multichain system must be influenced by the events that occur
in the underlying network. These events must then result in some sort of judge-
ment, which then affects the behavior of the peer in the original network. This
creates a feedback loop, which, when designed properly improves the behavior in
the underlying network. This concept is shown in figure 2.1. In the figure, the red
interactions represent the underlying network in which we want to change beha-
vior. In the Tribler use case, these are the interactions in the file-sharing network,
but this could potentially consist of any type of peer-to-peer interactions. The blue
Multichain comprises of the system we use to observe the network, and to adjust
our own behavior in the network.

Figure 2.1: The feedback loop between the Multichain system and the underlying
network.

5

To reward certain behavior in a peer-to-peer network, other peers must be made
aware of this behavior. In the network, behavior consists of interactions between
peers. We therefore need some sort of record-keeping system that keeps track of
interactions between peers. This step is titled record creation. Peers must then
discover the records of other peers, to be able to consider their behavior; record
discovery. When a sufficient amount of information is available, a peer can ana-
lyze the behavior of other peers, and make some kind of judgement on it. A concise
way of judging behavior is assigning a numerical score to each known peer. The
score is assigned base on an Accounting Mechanism. The final step then attaches
consequences to the perceived behavior by initiating (or avoiding) new interactions,
and by allocation various amount of resources to it based on the perceived priority
based on the reputation score. This is called the Allocation Policy. These steps are
shown in figure 2.2 for two peers. Both peers take the different steps involved in
the system. The first steps require communication with other peers; the interactions
are by definition between to peers. The record creation process also involves com-
munication, since both peers must agree on the content of the record. This is again
true for the record discovery process, since it consists of peers sharing records of
themselves and third parties. The final steps, consisting of the judging of behavior
and the attachment of consequences to this judgement are however autonomous;
each peer makes its own decisions. This approach makes it harder to manipulate
reputations and allows different peers to have different policies.

Figure 2.2: The different steps taken by the multichain system to enforce coopera-
tion of peers.

Since the different steps can operate somewhat independently of each other, it is

6

beneficial to implement them separately. This compartmentalisation makes it more
manageable to implement the different aspects of the protocol in software and to
test and evaluate parts of the system before the entire system is completed. This
is in line with the principles of agile software development [10], allowing for im-
provement of the software and inclusion of new insights on the go. It also enables
the evaluation of different combinations of Accounting Mechanisms and Alloca-
tion Policies to see which is most effective in realising beneficial behavior in the
network. Even in the long term implementations of different peers do not have to be
identical; it is possible for different peers in the network to have different policies
for judging and rewarding behavior while interacting with each other. This means
different peers can make different decisions based on the same multichain. The
steps are however not completely independent, as some policies in the higher steps
might affect the feasibility of certain ways of cheating. Previous research on the
third layer [11] has mathematically proven that some possible attacks on the record
creation step, specifically Sybil attacks, can be mitigated by an Accounting Mech-
anism that is built to deal with them.

As mentioned in the previous chapter this thesis will focus on the first two steps.
Previous work exists on the first step [9], but some issues remain with this work.
On a fundamental level, the protocol as envisioned there is not sufficiently scalable,
leading to problems for busy nodes. Additionally there exist several problems with
the implementation. The second layer has until now remained unexplored in the
context of multichain, and this thesis evaluates different protocols that could per-
form this function.

We first consider the requirements for the record creation layer. The first, most
obvious requirement is that the record creation process is sufficiently accurate. In
order to reward certain behavior, me must first have records faithfully describing
the behavior. A simple record-keeping system would consist of each peer maintain-
ing a list of his own interactions. Other peers could then receive the list, and decide
based on these interactions whether the peer has shown good behavior in the past
and should be rewarded or not. While this approach does in theory provides some
incentives to be cooperative, it is obviously very tempting to cheat by providing a
modified list, that shows fake good behavior. The goal of the multichain is to pre-
vent this kind of cheating by making it infeasible, thus providing a tamper-proof
record keeping system.

Networks generally become more useful when it includes more users. Meltcalfe’s
law even states that the utility is proportional to the square of the users. In a file
sharing network, the availability of files is increased when more users are con-
nected, greatly increasing the chance of a useful interaction being realized. This
means we aim for a large network with a lot of users. This requires all components,
including the multichain, to be scalable. This means the performance of the soft-
ware will not degrade when more users join the network. For the multichain this

7

means that each user cannot have complete information of all users in the network.
However, the partial information must still be useful for judging the behavior of
other peers. This means each user will have to store significant amounts of data
on a large number of peers, and hence the database used for this storage should be
light-weight and efficient.

In summary, the record creation layer should create across the network an accurate
record of all interactions that have occurred. In order to fulfill this role, it should
be:

• Accurate in registering the interactions that occur.

• Tamper-proof in the face of malicious users.

• Scalable across millions of users

Record creation is not enough for rewarding good behavior; this behavior must first
be known to other people. This means nodes must be able to discover records of
other peers in the network. The discovery process must be informative; meaning
each peer should have sufficient information regarding the behavior of its relevant
neighbours. Furthermore, the process must be efficient. Since a lot of interactions
occur in the total network over time, discovering all records would be costly in
terms of bandwidth and storage space. It is thus important to communicate as few
records as possible, while still realizing the required informativeness.

An emergent problem in many possible solutions for record discovery is that of
load balancing. Nodes with a high amount of records or nodes that show good be-
havior might be considered important nodes by certain algorithms. If these nodes
are expected to have more informative records, these nodes may be polled for re-
cords very often. In some way this may be desirable behavior, since having a lot
of records shows a high capacity for interactions, which might be an indicator of a
high capacity for handling requests for records. However, when specific nodes are
polled too much, this might lead to capacity problems, disturbing the functioning
of the network.

In summary, the record discovery layer should spread the records to nodes for
which they are relevant. In order to fulfill this role, it should be:

• Informative by providing relevant information describing the behavior of rel-
evant peers.

• Efficient in its usage of bandwidth and storage space.

• Load-balancing with regards to differing nodes.

For both layers there are some boundary conditions to the design space, designated
by the research context, ethical and practical issues. An important design principle

8

is the use of a distributed architecture. This means there can be no reliance on cent-
ral servers, and all nodes operate autonomously. This constraint provides a lot of
challenges regarding the availability and trustworthiness of information. Another
premise is the principle of open enrollment; any internet user should be able to
join the network. Furthermore, the system should be churn resilient; as new peers
come online and old ones go offline, the system should continue to function. Fur-
thermore, it is not guaranteed that all peers in the network are directly connectable
with all other peers. These constraints have to be taken into account when design-
ing the Multichain system.

9

10

Chapter 3

Design of the Record Creation
functionality

The first step in the Multichain system consists of creating records of interactions
between peers that have occurred in the network. To store these records in a reliable
and tamper proof manner, blockchains are used.

3.1 Blockchains

The interactions between peers are stored in blocks. The blocks contains the trans-
action data that is relevant to the behavior that the system aims to influence. In
our use-case this is the amount of bytes that have been uploaded, and the amount
of bytes that have been downloaded. This transaction data will be signed by both
peers using public-key cryptography, and hence the public key of each peer is also
included. When the transaction is signed by both peers neither peer can deny that
the interaction has occurred while the block is available for checking. The signed
block forms irrefutable proof of the interaction.
While individual blocks can be used to prove that certain interactions have oc-
curred, this does not ensure an accurate representation of the behavior of a peer is
shown by a subset of the blocks. It might be tempting for peers to hide certain inter-
actions that reflect poorly upon them, by not providing the blocks that correspond
to these interactions. To prevent people from hiding some of their blocks, and
thereby their historic behavior, the blocks are chained together to form a block-
chain. This means that for each peer there exists a unique, ordered sequence of
blocks. This order is indicated by a sequence numbers that are included in the
block, one for each peer. The sequence of interaction blocks that form the total
history of a peer is then a chain of blocks. Other peers can request a section of
the chain, indicated by sequence numbers. When a certain block is missing from
the sequence, it is immediately obvious, meaning it is no longer possible to filter
blocks to only show a positive subset. A more advanced strategy to misrepresent
behavior is to replace certain unfavorable blocks in the blockchain with other more

11

favorable blocks. To prevent peers from doing this, each block contains a hash that
refers to the previous block. This hash is a value that describes the previous block
in such a way that any modification of the block will also result in a change in the
hash. This means that when someone with malicious intentions modifies a block,
the hash will change. However, since the next block will still contain the old hash,
the modification is detectable. Hence, to modify a block while maintaining internal
consistency of the chain, all blocks that come after the block in question must also
be modified. This means it is much harder to make changes to previous blocks
without anyone noticing.
The resulting record of interactions should thus form a complete overview of the
behavior of all nodes that can be used as the foundation for an evaluation of repu-
tation.

3.2 Concurrency

Peers can have multiple simultaneous interactions with different counterparties.
This could potentially can cause problems when recording these interactions using
the Multichain. As a result of the immutable nature of the blockchain, blocks can-
not be altered once they have been inserted. Furthermore, due to the strict ordering,
there is only one place where a block can be inserted into the chain. However, the
signing of a block by both parties may take some time, since it requires commu-
nication between both parties. During this time, the chain is effectively blocked, as
the next block can not be appended to the chain. This is a result of the fact that a
block with sequence number n+1 cannot be created, until the block with sequence
number n is completely determined, since block n + 1 must contain the hash of
block n.
This blocking of the chain leads to problems: since if only one block can be signed
at the same time the number of blocks that can be signed is severely limited. If the
signing of a block takes t minutes, the average amount of interactions that can be
recorded on a blocking chain is 1/t. This limit can easily become problematic in
many scenario’s: in the Tribler use case file transfers over the Internet are recorded.
A reasonable amount of time for a record to be signed, including sending a request
to a peer, waiting for the peer to process it, and receive the reply, could be in the
order of 2 seconds. This would limit amount of interactions that can be recorded
to 30 per minute, while there are many nodes that have more interactions than this
limit. This means a blocking Multichain would not suffice for this application, and
this is likely to be the case in many relevant scenarios.

There is another, more fundamental problem arsing from blocking chains. It is pos-
sible that a series of requests form a blocking cycle. Imagine a node A requesting
a signature from node B. Node B is however blocking this request because it has
an open request towards node C that must be resolved first. Imagine further that
node C has also blocked its chain, since it is requesting a block from node A. Of

12

course, node A is still blocked form accepting this request, since it has an open re-
quest towards node B. In such a scenario, none of the nodes can ever resolve their
requests, and a form of permanent deadlock occurs. Due to the delays inherent in
communication across the Internet, it is realistic that such a cycle would actually
arise in practice. While it is possible to implement measures to recover from such
a scenario, the Multichain would be polluted, the accuracy reduced, and time and
resources would be wasted.

The above problems make it clear that the Multichain should feature concurrency;
being able to have multiple outstanding requests at the same time. The previous
version of the multichain did not have this feature, making it unsuitable for deploy-
ment on a large scale. The work in this thesis makes the multichain non-blocking,
solving the issue.

The hashes used to chain blocks together make it non-trivial to come to a non-
blocking protocol. The solution is to base the chain on half blocks. These half
blocks describe the interaction from the point of view of one of the interacting
parties. This half block is then linked with the half block from the other party such
that the interaction is again signed by both parties. Two half blocks together form
the record of the interaction. The key difference is that the previous hash is based
only on the information coming from the peer itself, not the counterparty. This al-
lows each peer to continue making blocks after appending a half block to its chain.
This structure retains the feature of irrefutable proof by both parties, while sim-
ultaneously enabling concurrency across different peers in the network, allowing
chains to grow without blocking waits.

Figure 3.1: A simplified representation of some blocks in the multichains of three
peers .

13

Figure 3.1 illustrates the structure of the blockchain, showing three half blocks per
chain for three peers in a simplified format. Half blocks can be identified by the
combination of identity of the peer that created the half block, and the sequence
number of the half block in the chain of the creating peer. In the implementation
these fields are a 74 byte public key and a 4 byte sequence number, but in this fig-
ure half blocks are identified by the letter corresponding to the peer and a 2 digit
sequence number, for example: A13. Looking at half block A13, we see that it
contains a previous hash that refers to half block A12. This principle chains all
of A’s half blocks together. Since the hash describes all the contents of half block
A12, block A12 cannot be modified without making half block A13 invalid.
Also shown is the linked block field, which points to the half block B64. This
means peer A and B have interacted, and this interaction is recorded by the com-
bination of the blocks A13 and B64. We can also see that B64 has no linked block.
This implies that peer B requested the interaction to be signed, and was the first to
create his half block. It was not possible to point to the other half block at that time,
since it did not yet exist. Peer B has then sent his half block to peer A, requesting
it to create the corresponding half block. Due to the half block structure, peer B
did not need to wait for a reply from peer A and could immediately continue and
request the creation of a block with peer C, as it did in half block B65. The figure
shows an interaction between A and B, one between B and C, and one between A
and C. Some other half blocks are also visible, corresponding to interactions with
peers that are not shown.

3.3 Block protocol

The creation of the multichain blocks is a process that takes place between two
peers. This process takes place after an interaction (or a part of an interaction) has
completed. The protocol to create the blocks is asymmetric, meaning both peers
have distinct roles in the protocol. One of the peers will initiate the process, and
this peer then becomes the requester. The requester will create his half of the block
containing information about the interaction, and the public keys of both parties. In
the Tribler use case, the interaction data consists of the amount of bytes that were
up- and downloaded. The requester half also contains the sequence number of the
half-block in the chain of the requester. Since the requester manages his own chain,
this number is known by him at the time the half-block is created. The combina-
tion of the public key and sequence number uniquely identifies the half-block. The
two halves of the block must be linked together to ensure both parties agree on the
same interaction data. To link to another half-block, we can use the combination of
public key and sequence number as identification of a block. However, at the time
the requester creates his half, it does not yet know what the sequence number of the
block of the counterparty will be. Hence the requester will only include the public

14

key of the counterparty, and leave the field for the counterparty sequence number
blank. To create the blockchain structure, the requester then includes a SHA-256
of his previous block. The whole block is then signed using the keypair of which
the public key has already been included. The requester will then send his signed
half block to the counterparty, thereby requesting it to create and send the other
half block. The counterparty which receives the half block, then takes on the role
of responder.

The responder will validate the incoming block based on its perception of the in-
teraction, its own chain, and its available knowledge of the chain of the responder.
If everything seems valid the responder will create a half block following the same
procedure as the requester, with the notable difference that the linked sequence
number will actually contain the sequence number of the corresponding linked
block, namely the block which the requester has just sent. The responder will then
send this half block back to the requester ensuring both parties possess both halves.
Together these blocks form irrefutable evidence that both parties have agreed on the
transaction data, verifiable by any peer in the network that possess the blocks.

The different fields present in a half block in the Tribler use case, including their
type and their size are enumerated in table 3.1

Field Type Size (Bytes)
Transaction:

1 Bytes uploaded Unsigned integer 8
2 Bytes downloaded Unsigned integer 8
3 Total bytes uploaded Unsigned integer 8
4 Total bytes downloaded Unsigned integer 8

Identity:
5 Public key Character array 74
6 Sequence number Unsigned integer 4

Counterparty identity:
7 Linked public key Character array 74
8 Linked sequence number Unsigned integer 4

Validation:
9 Previous hash Character array 32
10 Signature Character array 64

Total: 284

Table 3.1: Data contained in a half block

3.3.1 Signing initiation

Since the protocol has distinct roles for the requester and the responder, it is im-
portant to decide which role each party involved in the interaction will play. When

15

two parties simultaneously decide to initiate, and both parties create a request block
before they have received the other request block, two requester blocks describing
the same interaction will exist. Due to the immutable nature of the blockchain, it is
neither possible to link these blocks together, nor to remove either of these blocks
from the multichain. Hence, in this scenario we have created an intrinsic inaccur-
acy in the multichain. The best possible resolution would now be to decide on
one block to remain unsigned, and making the other block fully signed. However,
deciding on which one is to be signed, and which one is not to be signed is again
non-trivial, and one could easily end up in a scenario where both blocks are either
signed or unsigned. It might be possible to resolve this ordeal by using a special
block that indicates a perceived ’honest mistake’ by the counterparty, nullifying a
block. However, it seems obvious that simultaneous initiation is a scenario best
avoided. To achieve this, unambiguous rules must exist for deciding which party
takes the role of initiating, and both parties participating in an interaction must ad-
here to the exact same rule set. This puts some constraints on the interoperability
of between different implementations. A natural way to determine the initiator is
to let the party whose reputation will likely benefit most from the interaction ini-
tiate. Since this party has a bigger incentive to record the transaction, it has every
reason to properly initiate the interaction. Assuming that both parties are honest,
any deterministic mechanism can be used to decide on roles. An example might be
the alphabetic order of the names of both parties, assuming the name of the coun-
terparty is know before signing. In the Tribler use case, the primary determinant is
the upload ratio; the party who has uploaded the most bytes will initiate the signing
process. This party will likely have the most reputation to gain from the interac-
tion. If both parties happen to have the exact same amount of bytes, the initiator
will be decided based on the alphabetical ordering of the public keys.

3.4 Attacks and defenses

A system that provides rewards to some of its participants is likely to be subjected
to agents that attempt to abuse the system, trying to obtain the rewards without
putting in the efforts desired by the system. For the multichain, it is likely that some
peers will attempt to receive better service from the network without contributing.
If successful, this behavior is seen as unfair, and when it becomes prevalent it can
reduce the faith of the users in the system and the effectiveness of the system.
Therefore, the system should defend against different attacks and be tamper-proof
to be functional. Attacks on the system can be divided in two types; first of all
attacks can be devised against the protocol itself. These attacks consist of abusing
the options that the system offers. A second type consists of attacks against the
implementation of the protocol, and consists of doing things that should not be
possible at all.
The idea is to operate on two levels. First of all, each peer has some reputation
based on its interaction history. Other peers can evaluate this reputation using the

16

information in the multichain and provide or refuse services based on this repu-
tation. The second level consists of some peers that are lying about their history
using the multichain. When evidence of such lies is acquired, the act of lying can
be proved irrefutable by conflicting messages signed by the same peer. (The evid-
ence is irrefutable assuming that the cryptography used to sign messages can not
be broken, and the private key of the peers remains private.) This proof can then
be broadcasted along the peers in the network. Peers that are found lying should
immediately be refused any service for which the multichain is used, both because
no reputation can be reliably ascertained form the multichain, and to discourage
lying in general.

False request A trivial way to cheat the record creation step is to create false
requests, i.e. requests to sign an interaction that has never taken place. If these in-
teractions consist of contributions of the cheater, the signed records would falsely
improve his reputation. In the previous version of the Multichain system, any re-
quest was signed, making this a vulnerability. To prevent this attack, nodes must
check incoming requests for validity. This implies each node must keep track of
outstanding transferred amounts, and compare incoming requests with these num-
bers. A module to do exactly this is included in the Multichain system.

Deny requests Reciprocally to the previous attack, a peer can also refuse to sign
records of interactions that have actually taken place. If these interactions con-
sist of the cheater receiving contributions, the absence of the signed records would
falsely improve his reputation. While this sounds very similar to the previous at-
tack, mitigating this attack is much harder since the honest peer cannot force the
other party to sign. An obvious recourse is to not interact with this peer again.
This alone however, will not solve the problem, since a peer with a good reputation
can receive contributions form many different peers. By denying requests from
different peers in a hit-and-run fashion, a cheater can gain a large amount of con-
tributions from a large number of peers, without this being properly reflected in a
lowered reputation. The Multichain system does not provide an effective way for
honest users to communicate this form of cheating to other peers, since a simple
message claiming some peer cheated in this manner could also easily be faked. To
ascertain the truth about such attacks on the reputation system, an entirely separate
meta-reputation system would have to be created, but this seems a rabbit hole that
leads nowhere.

One way to deal with this attack is to use a policy of gradually developing trust
between peers. Using such a policy, peer who have no prior direct interaction
history first establish trust by signing smaller blocks, covering only parts of an in-
teraction. When one of the smaller blocks is not signed, the interaction is aborted.
A suitable scheme might start with small blocks (for example 1 MB), and use a
exponential growth. Such a scheme incurs minimal initial risks, while allowing

17

for rapid growth of the block size, keeping overhead costs of creating extra blocks
limited.

Hiding blocks Once blocks are created, a way for cheaters to polish up their
reputation is to hide blocks that portray them negatively. When someone requests
some blocks from them to gauge their reputation, the might send only their best
blocks. The blockchain structure however defends against such tricks; since every
block has a sequence number, anyone can request specific blocks, which the cheater
cannot simply refuse to provide without being detected as a cheater. Furthermore,
since every block is available to both parties involved, a cheater can never prevent
distribution of the block by the counterparty.

Branching To hide some negative records from others regardless of the block-
chain structure, attackers might branch their multichain. In this attack, the at-
tacker’s blockchain is at some point split into two sequences. By signing the use of
contributions on one of the branches, and showing the other branch when a reputa-
tion is requested, the attacker can still attempt to hide some blocks. This however
always creates evidence; the two branches must contain blocks with the same se-
quence number. When these blocks are distributed in the network, some peers will
eventually find the two conflicting blocks. Since the blocks are clearly in violation
of the protocol, and are both signed by the attacker these for irrefutable proof of
lying. Such a proof consists of only the two blocks with identical sequence num-
bers, and can thus easily be distributed as evidence of the attacker being malicious,
resulting in a ban from the network.

White-washing The principle of open enrolment makes it easy to create a new
identity on the network. This means that anyone with a negative reputation can opt
to leave their identity behind and create a new one, white-washing their reputation.
This means that new identities must always be treated with some distrust; they have
no record showing their reliability. However, it not possible to completely deny
service to new identities; this would prevent legitimate new users from ever joining
the network. This means there is always the inherent possibility of some leakage
of contributions to fresh identities who will never reciprocate. This problem can
be managed by giving fresh identities low priorities when allocating resources, and
this is something the Allocation Policy step should implement.

Sybil attack Open enrolment also enables another type of attack involving mul-
tiple identities that correspond to the same agent: the Sybil attack. In such an
attack, a number of fake identities create fake interactions between them. Since
both parties involved in the record are complicit in the attack, they will both sign
the fake interaction. The system of fake interactions can be used to unjustly boost
the reputation of some of the identities of the attacker. Since there is no know

18

feasible method of preventing such an attack in the Record Creation step, this at-
tack must be dealt with in the Accounting Mechanism step. Fortunately, P. Otte
has proven mathematically that, under certain conditions, the Sybil attack can be
curbed [11].

Denial of service Every service on the internet is to some extent susceptible to
denial of service attacks, where attackers make such a large amount of requests
to the service that the service is unable to process them. As a result, legitimate
requests can also not be handled. To defend against such attacks, bogus requests
should be detected quickly and handled without using to much resources. This
should be kept in consideration when implementing the protocol.

Hash Collision One of the aspects that underpin the security of the Multichain
is the assumption that it is not possible to create a block with a specific hash.
If it would be possible to do so, an attacker could replace a block in his chain
without invalidating the previous hash pointer. Although it would still be possible
to detect such attacks by finding duplicate public key and sequence number pairs,
replacement blocks with the same hash would violate the idea of immutability and
would compromise the security of the Multichain. Because the nature of a hash is
to reduce a large string of bits to a smaller string, there will always be multiple bit
strings that produce the same hash. A bit string, in this case a Multichain block,
that produces the same hash as another is called a Hash Collision. While the theory
guarantees that such hash collisions exist 1, hashing algorithms used for security
purposes, known as cryptographic hashes, make it deliberately hard to find such a
collision. With such hashes a brute force attack, consisting of guessing random bit
strings until a collision is found, are usually computationally infeasible. However,
sometimes weaknesses are found in hashing algorithms that allow for the efficient
generation of collisions, breaking the security aspects of the hash. A well-known
example is the MD5 hash, which was designed as a cryptographic hash in 1991
[12], shown to be vulnerable in 1996 [13], broken in 2004 [14], and has since been
exploited in real world attacks. The pre-existing version of the Multichain uses the
SHA-1 hash to refer to previous blocks. However, the SHA-1 hash had already
been subject to better-than-brute-force attacks and was theorized to be vulnerable
to even more efficient attacks [15]. Since SHA-1 might be vulnerable to attacks
in the future, the protocol was upgraded to use the safer SHA-256 hash 2. This
decision was later supported by the release of a practical attack in SHA-1 [16].

1Given that the bit string has more entropy than the hash
2See: https://github.com/Tribler/tribler/commit/

f353156cd0de769f6874d375800a34cb0c75e7f0#diff-df44fd1a9b4533421509f4ddf8ddbaa4

19

20

Chapter 4

Evaluation of the Record
Creation functionality

The goal of this thesis is not to merely contrive a protocol that works in theory, but
to actually implement the protocol in software, in order to verify the functionality
and demonstrate its usefulness in the real world. During the software development,
the code is continuously tested for correctness using unit tests. When features and
aspects of the software are somewhat complete, they are evaluated using exper-
iments where the software runs integral. Finally, the software is deployed and
released to users to see its real world performance.

4.1 Implementation

The protocol is tested in the context of the Tribler project. This is a project that
studies advanced features peer-to-peer file sharing networks. Tribler incorporates
communities, which are used to share data among a subset of peers. Some com-
munities share content based on communal interest,, but the system of communities
is also used to implement some of the advanced features of Tribler. The Multichain
system is implemented in Tribler as a community, where the participating peers
share data about each others blockchains. The community is used as a wrapper in
which the peers communicate and send requests for the signing of new interactions
or historical record.
Like all Tribler communities, the Multichain community uses the Dispersy frame-
work to exchange messages among peers [17]. Dispersy enables the Multichain to
send messages to other peer reliably without worrying about the protocols on the
lower levels. However, the Multichain does not use the more advanced methods of
message distribution available in Dispersy instead relying on point-to-point mes-
sages. This means that it would not be too problematic to remove the dependency
on Dispersy, might it ever form a liability.
This is also one of the reasons why the blocks are stored in a database separate
from the Dispersy framework. In addition, such a separate database allows for

21

more control over and optimisation of database operations that are specific to the
Multichain. The database is implemented using SQLite [18].

4.2 Experiments

In order to verify the workings of the protocol, several experiments were run in
a controlled environment were real world situation were simulated. These exper-
iments helped to detect certain bugs and identify improvements to the protocol,
which have since been implemented in the code.

4.2.1 Signing policy

An important implementation detail of the signing protocol is the timing; when to
initiate the creation of a block. The initial idea was to do this at regular intervals
in the amount of data transferred; when a certain threshold of outstanding data is
reached, a block would be signed. The threshold was originally set at 1 MB, but
due to the amount of blocks this would create, it was soon increased to 5 MB. An
experiment was done using this policy by running several instances of the code
simultaneously. During the experiment the instances would communicate with
each other using Internet protocols mimicking the real world scenario of globaly
diverse peers. A graph of the Multichain produced by this experiment is shown in
figure 4.1.
In the graph, each vertex represents a Multichain block. Note that at the time the
experiment was run, concurrency was not yet implemented, so these are full blocks,
not half blocks. Each block thus represents a part of an interaction between two
peers, each part consisting of 5 MB of data. Each block has two arrows pointing to
an earlier block. This is for each peer the last block in the chain before this block.
Since there are two peers involved in an interaction, there are two arrows per block.
Vertices in green are origin blocks; these are the first blocks in a chain for a certain
peer. Because it is the first, it has no reference to a previous block for this peer.
A light green block is a genesis block for both peers, and thus has no reference to
any previous block. A dark green block is an genesis block for one of the peers
involved, and thus there is one reference to a previous block, from the peer for
whom the block is not a genesis block. Red vertices represent half-signed blocks;
these blocks were not countersigned by the other party and thus only include the
request part. These blocks are not usable as a reliable record of interactions in the
network.

On the very bottom of the image, a structure is seen where both arrows from a
block repeatedly point to the same block. This means the last block is the same
for both peers; i.e. the previous interaction was also between them. The chain
thus represents an interaction between two peers that was cut up into multiple 5
MB blocks. The structure seen on the top right part of the graph shows a similar

22

Figure 4.1: A block graph showing the blocks created during a few file transfers
using the 5 MB block limit.

occurrence but here three peers are involved; one of them interacts with two others
simultaneously. This peer alternately creates blocks with both peers.

While covering a continuous interaction by multiple smaller blocks results in a lot
of entanglement, improving security, it also results in a lot of blocks being created.
This is costly in terms of processing time, bandwidth and data storage. With a 5
MB limit, these cost would make it problematic to operate the Multichain network
on more active nodes. While one solution would be to use a larger limit, a more
elegant solution is to strive for a single block per interaction. To achieve this, the
signing process is initiated only when an interaction has come to an end. This
measure greatly reduces the number of blocks, and thus the cost of operating the
Multichain system. The larger block size also has an inherent problem; the average
amount of pending bytes, i.e. the amount of transferred bytes that have not yet
been included in a signed block, is proportional to the size of blocks. This means
that when after an interaction a block is not signed by both parties, a larger amount
of data is unaccounted for in the Multichain record. The failure to sign could be a
result of a disrupted connection between peers – always a possibility due to the un-
reliable nature of Internet connections. In this case, there is a trade-off between the

23

expected accuracy of the Multichain records, and the cost of running the protocol;
a smaller block size, leads to higher accuracy, but a higher running cost in terms of
bandwidth, processing time and storage space.
Another reason why a block could fail to be signed is by a conscious refusal of a
malicious peer to sign it when the block would lower its reputation. This would be
an attack on the system, as discussed in section 3.4.

The next step in the experimentation process consists of increasing the amount of
nodes that run in parallel. A large scale experiment was run with 100 nodes inter-
acting simultaneously. A Multichain resulting from such an experiment is shown in
figure 4.2. As visible, it is non-trivial to show the structure in a clear layout, without
crossing edges. The graph is plotted here using the Kamada-Kawai algorithm [19]
which seems to produce the best results among general purpose layouts. Note that
there are still chains of repeated interactions, as a result of single interactions being
split into multiple blocks. One such repetition chain extrudes from the graph on the
left side of the image. The scaled-up experiment showed the cluttering resulting
from small blocks, and emphasized the need for fewer blocks.

Figure 4.2: A block graph showing the blocks created during an experiment with
100 nodes creating 1 MB blocks.

24

To implement a policy where an interaction corresponds to a single block, the
tunnel close event is used. Since downloads in Tribler occur in encrypted tunnel
that guarantee privacy, the end of an interaction correspond to the closure of such a
tunnel. The tunnel closure is a natural point to trigger the signing of a block. This
policy was implemented and tested in experiments. A Multichain resulting from
such an experiment is shown in figure 4.3.

Figure 4.3: A block graph showing the blocks created during an experiment with
100 nodes using the tunnel close event.

The Multichain resulting from this policy has fewer blocks, and a simpler structure.
Note that there are no longer chains of repeated interactions.

4.2.2 Performance

To use the Multichain system across a peer-to-peer network, the computational
requirements must be kept in check, so that regular users can run the software on
their computers. To check the performance of the software, an experiment is run
using Tribler, creating a number of half blocks while measuring the elapsed time.
The results are shown is figure 4.4. While the figure is just a single run on a single
machine, it gives an impression of the order of magnitude of the amount of records

25

a computer can sign per unit of time. This amount is rather large, with several
thousand half blocks per minute being created. This is enough for the Tribler use
case, and likely for many other potential uses for the Multichain. The graph shows
a slight slowdown of the rate at which blocks are created. This is a result of the
database filling up, making the insertion of new records and the retrieval of others
slower. This slowdown is however so small that it should not be problematic, as
long as the records that are gathered by the Record Discovery step are selected
carefully, such that the rate is not too high. This problem is considered in section
5.1.3.

Figure 4.4: The amount of half blocks created over time during an experiment on
a personal computer.

4.3 Deployment

While the experiments in simulated experiments provide some validation of the
protocol, the real test for the protocol consists of it’s deployment in the real world
across Tribler users all over the world. In this setting, all kinds of limitations
and noise factors are present, and this provides a great test to the resilience and
robustness of the software. Since the Tribler software is actively being used by real
people, it is essential not to impede with the working of the software. This means
that for the very first phase of the deployment of new features, a lack of correctness
is an acceptable outcome, but under no circumstances may the working of the rest

26

of the software be affected, for example by crashes. This idea is summarized as the
’do no harm policy’.

4.3.1 Internal testing

The first integrated test was conducted with an early version of the software among
members of the Tribler. Although the number of peers and the geographical spread
was very limited, this for of testing still brought many problems to light that were
not seen when testing in a virtual environment. Some statistics are shown in table
4.1.

Number of blocks 4823
Number of distinct identities 111
Total MB uploaded 441370
Total MB downloaded 13169451
Average MB uploaded in a block 91.5
Average MB downloaded in a block 2730.6

Table 4.1: A number of metrics resulting from the internal testing

The table shows a big difference between the amounts uploaded and downloaded.
This is fundamentally speaking possible in the version tested here, since the blocks
here contain the amounts up- and downloaded from the perspective of the requester
of the block. The ratio here is however so extreme, that it a sign of a bug. This
turned out to be indeed the case. This was a bug not in the Multichain itself, but in
the code that accounts for the data amounts during the interactions.

An excerpt from the block graph is shown in figure 4.5. Another bug is clearly
visible here; each block should have at most two other blocks referring to it, since
each peer involved can have only one next block pointing towards it. However, the
graph clearly shows several nodes that have much more blocks referring back to
them. Since there were no attackers in this scenario it must be the result of a bug.
As a result of the experiment, the bug was detected to be the result of unforeseen
behavior of one of the SQL-queries used in certain scenario’s.

The bugs that were detected were fixed, and the testing suite used to evaluated the
software was updated to include tests that would detect bugs of these types. The
chain itself was discarded after the bugs were fixed. Discarding the chain was not
a problems since this was only an internal release.

27

Figure 4.5: An excerpt from an early multichain block graph, highlighting internal
inconsistencies.

4.3.2 Alpha Release

After updating the software to deal with the bugs that were found during the in-
ternal release, the first version of the Multichain system was released to the pub-
lic. This version only covered the first step of the process, Record Creation, an
included a limited amount of features. This version did not yet include the half-
block structure, and did not include validation of requests or blocks. This lack of
features meant that updates would be required, and that these features might break
compatibility with older database versions. The decision was made not to aim
for migration of the database, but to simply discard the data when a new format
would become available. This means that any records of contributions created in
this version of the Multichain would be lost in the long run. This choice was com-
municated to the users, and the update was optional, making it primarily for users
interested in the technology.

As the most important goal of the release is to evaluate the functioning of the
software in the real world, it is important to consider how we enable useful meas-
urements. The fact that the system is distributed makes it hard to monitor the
behavior of the different nodes. To check the operation of the Multichain, E.M.
Bongers another member of the Tribler team, implemented crawler functionality
which enables one of our machines to gather all blocks from the network. This
results in a dataset that can be used to analyse the Multichain that is created by the
network using the Alpha release.

A snapshot was taken on the 10 of august 2016, containing all blocks created be-
fore that date. Some statistics resulting from the dataset are shown in table 4.2.
The first 256 blocks that were gathered by the crawler are displayed in figure 4.6.
The nodes in this graph are positioned using a Hilbert curve, an innovation from
the same E.M. Bongers. As expected, the up- and downloaded amounts here are

28

much more balanced, and there are no incidents where hashes or public key and
sequence number pairs are reused. As such, most blocks will have exactly 2 in-
coming edges, and two outgoing edges, referring to the next and previous blocks
of both participants. Edges that are missing can be explained by the fact that the
relevant blocks have not been gathered as one of these 256 blocks.

Number of blocks 43908
Number of distinct identities 708
Total MB uploaded 379633
Total MB downloaded 526839
Average MB uploaded in a block 8.6
Average MB downloaded in a block 12.0

Table 4.2: A number of metrics gathered by crawling the nodes in the Alpha release

29

Figure 4.6: A Multichain block graph showing the 256 first crawled blocks from
the Alpha release.

30

Chapter 5

Record Discovery Algorithms

5.1 Design

Once the protocol to create blocks is used by the network, interactions by all peers
are securely recorded on the Multichain. However, in order to accurately evaluate
behavior of other peers using the Accounting Mechanism, individuals must first
find out about the interactions they are not directly involved in. In order to do
this, peers must share blocks with others in the network. Nodes achieve this by
finding out which nodes are currently online, and requesting from them a subset
of their blocks. The other node will then send the indicated blocks to the origin
of the request, allowing it to acquire information about interactions it was not it-
self involved in. Since each node is responsible for maintaining it’s own chain,
it should always be able to handle requests for it’s own blocks. For example, if
node A wants to find out about node B, it could ask node B for it’s last 100 blocks.
Node B should always be able to provide these blocks. It is also imaginable one
would want to acquire information indirectly, for example node A could request
from node C all available blocks from node B. However, node B might not always
be able to provide such blocks.

5.1.1 Continuous exploration

Two general strategies might be envisioned around acquiring blocks. The first
would consist of requesting the information when needed. This would mean that
when an interaction with a certain peer is being considered, the system would then
try to verify the reputation of the peer in question by requesting blocks regarding
the peer before starting the interaction. While this is efficient in the sense that
only relevant information is collected, such a manner of operation might introduce
delays in the interactions. Furthermore, this might make it easier to provide fake
information, since the time between the gathering of information and the decision
whether or not to interact is relatively short, reducing the time span in which con-
tradictory information might arise.

31

Another strategy is to explore the Multichain ahead of time, gathering information
continuously. In this way when an interaction with some peer is considered, there
is often already an idea of the reputation of that peer allowing a decision to be made
much faster. Furthermore, this exploration enables the system to detect conflicting
blocks that are around in different parts of the network, increasing the capability of
the network to prevent fraudulent behavior. Additionally, a continuously available
overview of the reputation of peers in the network could potentially be used for
many additional purposes, such as searching for information, or preventing spam.
The different algorithms and parameters that can be used to explore the Multichain
are investigated using a simulation. This simulation is based on the results of the
experimental release of the record creation protocol as discussed in section 4.3.2.
Each real world node that is know from the release is mapped to a simulated node
in the experiments, and given it’s corresponding blocks. A simulation of block ex-
ploration is then run using these nodes. By setting up the nodes in such manner,
the characteristics of the data set are representative of real world behavior.

The simulation is based on discrete events occurring at certain times. These events
are stored in a queue that is ordered based on time. Events are then simulated in
that order, and events can themselves insert new events into the queue. Each node
is an instance of a node class, and events primarily consist of functions of nodes
being called. In this manner, the distributed system is simulated in a single thread.
The run time of the simulation does not have a one-to-one correspondence to the
simulated time, as the run time depends on the amount of events generated by the
simulation. All events are executed in order, guaranteeing none are dropped due to
a lack of resources. The code for this simulator is available on GitHub [20].

5.1.2 Random walks

A commonly employed strategy to explore a graph is that of a random walk [21],
[22], [23]. Here information is gathered by querying nodes, then traversing one
of it edges, and proceeding to query that node. This process is then repeated for a
number of times, until a new random walk is started. In this way, information is
gathered about the nodes in the vicinity of the node that is walking. The number of
steps taken from the starting point can be a fixed value, but can also be subject to
some variation by using a teleport probability p. When using this variation of the
algorithm, after each step there is a probability p of teleporting home, restarting
the random walk. The resulting length of the path is a binomial distribution with
expected value 1/p.
Walking in a peer-to-peer network is hindered by the fact that not all participants
are online at all times. Peers which are offline cannot be contacted and cannot
provide information. To walk the network where some fraction of the peers is
online, the algorithm maintains a list of nodes of which it is aware that they are
currently available. The association with the peer being online then forms an edge,
over which the algorithm can walk. Note that by this definition an edge between

32

two nodes does not necessarily mean that there exists an Multichain record between
them.

When querying a node in a random walk, various types of information can be
transferred. To be able to sustain the walk, at least one edge must be given. In the
random walk used by Dispersy and in the experiment, only one edge, correspond-
ing to an online peer, is given. This peer will then be added to the list of online
peers by the originator of the walk. Additionally, in the experiment the Multichain
blocks of the peer being queried are shared. The algorithm for random walking as
described is shown in pseudo-code below.

for each step:
if uniform_random_variable() < teleport_probability:

teleport back home and random walk from there
next_node = pick_random_from(connected_neighbours)
walk_towards(next_node)

else:
continue the walk
next_node = connected_neighbours.last_added()
walk_towards(next_node)

The fact that a discovered peer is added to the list of connected peers gives this
form of random walking remarkable characteristics. It means that even when using
walks with a fixed length, all nodes can eventually be explored. This is a result of
the fact that a newly discovered peer is added to the local list of connected peers,
the distance is reduced from two hops to one hop. In effect, the graph is modified
during the walking process. This non-standard method of walking which is used in
Dispersy allows for a significant simplification in the walking algorithm. We can
use a walk length or one, or equivalently a teleport probability of 1. This removes
the need for a conditional branch. The resulting pseudo-code below shows that the
resulting code is significantly simpler.

next_node = pick_random_from(connected_neighbours)
walk_towards(next_node)

To evaluate the differences between these variants of the random walking algorithms,
[Graphs of teleport is 1,2,3]
Since edges are added, it doesn’t make a lot of difference. We just use teleport is
one for the rest of the experiment.

5.1.3 Focused walking

One way to potentially obtain more relevant information is to not pick a next node
to explore at random, but to prefer nodes with a higher reputation from your per-
spective. Such a node is more likely to have information regarding other nodes with

33

high reputation, and thus furthers the general goal of record discovery: obtaining
information about the nodes with the highest reputation. A potential downside of
this manner of walking is that it will lead to more requests to nodes that have a
good reputation towards most of the nodes in the network. This could mean that
well-behaving nodes are overloaded by the record discovery system.

Generalized explanation: For any transitive scoring algorithm, the neighbours of
an node with a high ranking have a higher expected ranking than a random node
in the network. It thus makes sense to walk here. However this might cause load
balancing problems, and, if done to strict, result in convergence to a non-optimum
point.

To focus on walking towards nodes with a higher score, the score for each available
live peer is first calculated, and these peers are then sorted in order of their score.
The algorithm then picks the peer with the highest score with a probability α. If it
does not pick the peer with the highest score, it moves on to the next peer, and picks
it with a probability α. This process is repeated until a peer is picked. If the end
of the list is reached, it loops back to the beginning. This algorithm is described in
psuedo-code below.

index = 0

Select an edge from the ranked connected neighbours:
while uniform_random_variable() > alpha:

index = (index + 1) % len(ranked_live_edges)

next_node = ranked_connected_neighbours[index]
walk_towards(next_node)

The peer that is picked will be the target of the next walk step. The extend to
which the walking is focused on peers with a high reputation is determined by
the parameter α. When the parameter is 1, all walks will be directed to the peer
with the highest reputation, resulting in repeated requests to the peer with the same
peer, until a peer with an even higher score is found. When α approaches 0, there
is no bias towards nodes with a higher score, and the walk becomes purely random.
While focused walks have potential to increase the efficiency of the walk, an α that
is to high will have adverse effects. The walk will in many cases converge rapidly
to a steady situation, where only a small subset of nodes is explored. Furthermore,
a high αwill result in a high fraction of requests being directed to nodes with a high
reputation, creating load balancing issues. An important challenge in applying this
algorithm is thus to find an appropriate value for α.

The algorithm results in a certain distribution

34

5.2 Results

The performance of the different algorithms as described earlier and the impact of
variation in the different parameters are evaluated by experiments. These experi-
ments consist of a simulation of these algorithms in a scenario with a number of
nodes, which represent real world users. The multichain records the nodes have are
based on the data set that is obtained through the deployment of the record creating
protocol as described in section 4.3. Reputation scoring of multichain peers plays
an important role in the discovery of blocks, both as a metric of the accuracy of
the local subset of blocks as an approximation of the total set, and as an heuristic
as to which peers could provide relevant blocks. The scoring module is therefore
included in the evaluation.
Several aspects are assessed when evaluating the algorithms, as described in the
sections below.

5.2.1 Convergence

The goal of the discovery algorithm is to acquire blocks. The most basic metric is
thus the progression of the acquired blocks over time. This progression is shown is
figure ?? for the random walk and figure ?? for the biased walk. For each point in
time a boxplot is constructed, which indicates the distribution of blocks available
at the different nodes. The figures shows that in both cases the amount of blocks
monotonically increasing; at a later time step, nodes will have more or the same
amount of blocks available in their database. It is also visible that the amount of
blocks available for each nodes trends towards a limit; this limit is the amount of
blocks in the dataset. This means that as a result of the relatively small network
and the fact that no new blocks are created during the simulation, nodes develop
towards having full information of the network, i.e. having all available blocks in
their database.

5.2.2 Efficiency

However, the total set of blocks is proportional to the amount of users and the time
the system has been running. This means that on a large network, it is not feasible
for most nodes to obtain the complete set of blocks. The task of the discovery al-
gorithm thus becomes to discover only the most relevant blocks.

One way to take into account the relevance of blocks is to evaluate the Accounting
Mechanism used in the next step in the multichain system. A block is more relevant
if it has a larger impact on the scores assigned by the Accounting Mechanism.
Since the last step in the progress, the Allocation Policy, is assumed operate based
on the comparison of scores of different peers, rather than the absolute values of

35

(a) Using the random walking algorithm. (b) Using the biased walking algorithm.

Figure 5.1: The block collection process using different algorithms.

the scores we are mainly interested in the ranking of peers. If we first consider
the full set of records we can use the Accounting Mechanism to assign scores
to each peer based on this set. By then ordering the peers based on their score,
we create a ’true’ ranking of all peers. Since the Accounting Mechanism used
by the peers to calculate scores is dependent of the location of the peer in the
interaction graph, each peer has its own point of view of the network, and thus its
own unique ranking of peers. We can consider this ranking of peers based on all the
blocks in the system as the ground truth, the most accurate ranking the system could
possibly provide. However at the start of the experiment each peer only has its own
chain, containing transaction that directly involve the peer. Based on this subset of
blocks, the peer can also calculate the score and ranking of all known peers, but
this ranking will not be as accurate as the ranking based on the full set of blocks.
As the peer gathers more blocks during the experiment, the accuracy of the ranking
will improve, and the ranking will converge towards the ground truth. To evaluate
the performance of the record collection process we can compare the ranking based
on the collected subset of blocks versus the ranking based on the complete set of
blocks. Comparing the rankings is however non trivial, since some of the peers
in the complete ranking will not occur at all in the subset ranking. While a lot
of research has been done regarding the measurement of ranking similarity [24],
most of it is specific to rankings that are in the same domain, i.e. have the same set
of entries being ranked. However, a Phd thesis by Dimitra Gkorou [25] contains
a metric of ranking similarity that does allow for dissimilar entries. Denoting the
full ranking as R, and the subset ranking as Ri, with the reputation scores of the
entries as s and si respectively, and the rank of an entry in its list as the function
σ(), this metric is defined as:

36

RS(R,Ri) = 1 − Σu∈Ris(u)(σ(s(u)) − σ(si(u))2

D
(5.1)

where:

D = Σu∈Ris(u)(σ(s(u)) − σ(sw(u))2 (5.2)

with sw being the sequence containing the entries of Ri in reverse order.

Figure 5.2: The convergence of the ranking similarity using the random walking
algorithm.

Figure 5.3: The convergence of the ranking similarity using the biased walking
algorithm.

5.2.3 Load balancing

Algorithms might visit some nodes more often than others, based on their reputa-
tion or their position in the network. While this can lead to efficient discovery of

37

relevant blocks, this imbalance might cause capacity problems for nodes that are
visited often.

Figure 5.4: Ordered values of the amount of incoming request per node during the
simulation using the random walking algorithm.

Figure 5.5: Ordered values of the amount of incoming request per node during the
simulation using the biased walking algorithm.

for algorithm in algorithms:
create_distribution_graph(introduction_requests_per_node)

for algorithm in algorithms:
create_distribution_graph(blocks_sent_per_node)

On the other hand, an egalitarian distribution of request might actually not be the
best case scenario, since not every node has the same capacity. If we use the
total amount of MBs recorded in the multichain for that node as a proxy for the
bandwidth capacity of the node, we can normalize the this data to the capacity of
the node.

38

for algorithm in algorithms:
create_distribution_graph((blocks_sent/bandwidth)_per_node)

5.2.4 Parameter variation

Variation of alpha with smaller dataset.

5.2.5 Method Limitations

The simulation used to obtain these results is a representation of the network as
it would behave running the Multichain system. However, the correspondence
between the simulation and the real world scenario is of course not perfect. A
numb - No churn - No NAT - No new blocks created - Exit nodes
- The overall feedback loop is not yet closed.

39

40

Chapter 6

Trust Edges

Aso did someting in dispersy to actually test stuff in a distributed way.
Here we used the requirement that an edge in the live overlay must also be an edge
in the Multichain interaction graph. This is much stricter than in chapter 5
Walking is random, not foccused on high reputation peers.
Some graphs showing:
- Live edges over time - Load balance - Block accumulation

41

42

Chapter 7

Conclusions and Future Work

- There is a decent protocol in place for record creation - Well tested, and proven
in the real world - Vunerabilities to noivel attacks unnknown, not battle hardned
- Some inversigation into record sharing and edge traversal, directed walking seems
to have benefits, more research nessecary.
- Accounting Mechanism still needed, most are very costily.
More work is required to close the loop, and if it works reamins to be seen, but
we’ve not seen any fundamental problems.

7.1 Conclusions

TODO CONCLUSIONS

7.2 Future Work

TODO FUTURE WORK

43

44

Bibliography

[1] G. Hardin, “The tragedy of the commons,” science, vol. 162, no. 3859,
pp. 1243–1248, 1968.

[2] E. Adar and B. A. Huberman, “Free riding on gnutella,” First monday, vol. 5,
no. 10, 2000.

[3] F. Le Fessant, S. Handurukande, A. M. Kermarrec, and L. Massoulié, “Clus-
tering in peer-to-peer file sharing workloads,” in Proceedings of the Third In-
ternational Conference on Peer-to-Peer Systems, IPTPS’04, (Berlin, Heidel-
berg), pp. 217–226, Springer-Verlag, 2004.

[4] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on Eco-
nomics of Peer-to-Peer systems, vol. 6, pp. 68–72, 2003.

[5] S. Jun and M. Ahamad, “Incentives in bittorrent induce free riding,” in Pro-
ceedings of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-
peer Systems, P2PECON ’05, (New York, NY, USA), pp. 116–121, ACM,
2005.

[6] M. Yang, Z. Zhang, X. Li, and Y. Dai, “An empirical study of free-riding
behavior in the maze p2p file-sharing system,” in Peer-to-Peer Systems IV,
pp. 182–192, Springer, 2005.

[7] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips, “Bartercast:
A practical approach to prevent lazy freeriding in p2p networks,” in Parallel
Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, pp. 1–8, May 2009.

[8] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[9] S. D. Norberhuis, “Multichain: A cybercurrency for cooperation,” MSc
thesis, Delft University of Technology, 12 2015.

[10] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al., “Manifesto
for agile software development,” 2001.

45

[11] P. Otte, “Sybil-resistant trust mechanisms in distributed systems,” Master’s
thesis, Delft University of Technology, 2016.

[12] R. Rivest, “The md5 message-digest algorithm,” 1992.

[13] H. Dobbertin, “The status of md5 after a recent attack,” CryptoBytes, vol. 2,
no. 2, 1996.

[14] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4,
md5, haval-128 and ripemd.,” IACR Cryptology ePrint Archive, vol. 2004,
p. 199, 2004.

[15] X. Wang, Y. L. Yin, and H. Yu, “Collision search attacks on sha1,” 2005.

[16] “Announcing the first sha1 collision.” https:
//security.googleblog.com/2017/02/
announcing-first-sha1-collision.html, 2 2017.

[17] N. Zeilemaker, B. Schoon, and J. Pouwelse, “Dispersy bundle synchroniza-
tion,” TU Delft, Parallel and Distributed Systems, 2013.

[18] “Sqlite database engine.” https://www.sqlite.org/.

[19] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Information processing letters, vol. 31, no. 1, pp. 7–15, 1989.

[20] “Multichain walker simulation.” https://github.com/
pimveldhuisen/multichain-walker-simulation.

[21] L. Lovász, “Random walks on graphs,” Combinatorics, Paul erdos is eighty,
vol. 2, pp. 1–46, 1993.

[22] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama, “Distributed uniform
sampling in unstructured peer-to-peer networks,” in System Sciences, 2006.
HICSS’06. Proceedings of the 39th Annual Hawaii International Conference
on, vol. 9, pp. 223c–223c, IEEE, 2006.

[23] A. Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time of social
graphs,” in Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pp. 383–389, ACM, 2010.

[24] J. Mazurek, “Evaluation of ranking similarity in ordinal ranking problems,”
Acta academica karviniensia, pp. 119–128, 2011.

[25] D. Gkorou, Exploiting Graph Properties for Decentralized Reputation Sys-
tems. PhD thesis, Delft Univeristy of Technology, 2014.

46

