
Multi-core architecture for anonymous Internet
streaming

Quinten Stokkink

Multi-core architecture for anonymous Internet
streaming

Master’s Thesis in Computer Science

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Quinten Stokkink

21st February 2017

Author
Quinten Stokkink

Title
Multi-core architecture for anonymous Internet streaming

MSc presentation
03 14, 2017

Graduation Committee
Graduation professor: Prof. dr. ir. D. H. J. Epema Delft University of Technology
Supervisor: Dr. ir. J. A. Pouwelse Delft University of Technology
Committee member: Dr. Z. Erkin Delft University of Technology

Abstract

There are two key components for high throughput distributed anonymizing ap-
plications. The first key component is overhead due to message complexity of the
utilized algorithms. The second key component is an nonscalable architecture to
deal with this high throughput. These issues are compounded by the need for an-
onymization. Using a state of the art serialization technology has been shown to
increase performance, in terms of CPU utilization, by 65%. This is due to the com-
pression (byte stuffing) used by this technology. It also decreased lines of code in
the Tribler project by roughly 2000 lines. Single-core architectures are shown to be
optimizable by performing a minimum s,t-cut on the data flows within the original
architecture: between the entry point and the most costly CPU-utilizing compon-
ent as derived from profiling the application. This method is used on the Tribler
technology to create a multi-core architecture. The resulting architecture is shown
to be significantly more efficient in terms of consumed CPU for the delivered file
download speed. Lastly it is shown that, by utilizing a cutting-edge cryptographic
protocol, anonymizing file streaming applications can be sped up to a degree such
that a web application implementations become feasible.

iv

Preface

Today, we have a world in which everyone has grown together through the Inter-
net. Multimedia is being shared like never before, greatly influencing the overall
information available to the public. For instance, Wikipedia sharing community
moderated articles and media. At the same time we also see a crack-down on media
with more questionable contents. One can think of Wikileaks data being blocked or
shadowbanning and removal of content of certain users on social media websites.
Constructive discussion is only possible when all parties have all information (and
different opinions). It is therefore vital that information remains accessible. Since
the leading anonymizing technology (the Tor project) is really not too fond of host-
ing large media files or bundles, we will look at a technology which does support
this: Tribler. Now, since Tribler uses a Tor-like protocol, which is not suited to
host these files for performance reasons (which is why users shy away from Tor),
the scientific mission is to investigate the architectural shortcomings of the system.

The author would like to thank Dr. Johan Pouwelse for his invaluable feedback
and suggestions during the entire process of writing this thesis. Furthermore, the
author would like to thank Dr. Zekeriya Erkin for his assistance during the research
phase of this thesis project. Lastly, the author’s thanks go out to the Tribler team for
providing feedback on the design during the implementation phase of the project.

Quinten Stokkink

Delft, The Netherlands
21st February 2017

v

vi

Contents

Preface v

1 Introduction 1
1.1 Contribution . 2
1.2 Research question . 2
1.3 Problem Description . 3
1.4 Document Structure . 3

2 Anonymous File Streaming Architecture 5
2.1 High-level architecture . 5
2.2 Peer Discovery . 6
2.3 File Streaming Layer . 7
2.4 Anonymization Layer . 8

3 Generic Message Parsing 11
3.1 Methods of Serialization . 12

3.1.1 Domain Specific Languages 12
3.1.2 Byte stuffing . 13
3.1.3 Real-time serialization 15

3.2 Tribler’s Serialization . 15

4 Performant Anonymous Streaming 17
4.1 Requirements . 17

4.1.1 Maximize parallelization effectiveness 17
4.1.2 Preserve shared-hardware-singleton constructs 18
4.1.3 Preserve anonymization 19
4.1.4 Allow for high throughput 19

4.2 Multi-core in a hostile environment 22
4.3 Practical data streams . 23

4.3.1 Control messages . 23
4.3.2 Data messages . 23
4.3.3 Exit messages . 24

4.4 Optimal parallelization . 24

vii

5 Multi-Core Homomorphic Cryptography 27
5.1 Related Work . 27
5.2 Secure Homomorphic Partitioning Introduction 28
5.3 Secrets, History and Homomorphisms 30
5.4 Steganography . 32

5.4.1 Fake Plaintext . 32
5.4.2 Magic Subset . 32

6 Implementations 33
6.1 Message Serialization . 33

6.1.1 Dispersy . 33
6.1.2 Serialization method . 34
6.1.3 Message design . 36
6.1.4 Resulting Architecture 37

6.2 Multi-core branch-off . 37
6.2.1 Existing architecture . 38
6.2.2 Soft coupling . 39
6.2.3 Creating children . 39
6.2.4 Optimized architecture cut 41
6.2.5 Dynamic worker pool 42
6.2.6 Message passing interfaces 43
6.2.7 TunnelCommunity proxy class 45

6.3 Multi-Core Homomorphic Cryptography 46
6.3.1 Hardware parallelism . 46
6.3.2 Worker pool model . 47

7 Experiments and Results 49
7.1 Serialization . 49

7.1.1 The AllChannel Experiment 49
7.1.2 Results . 50

7.2 Architectural split . 54
7.2.1 Experiment setup . 54
7.2.2 Download speed . 54

7.3 Architectural split in the wild . 56
7.3.1 Experiment setup . 56
7.3.2 Download speed . 57
7.3.3 CPU consumption . 59
7.3.4 Efficiency . 61

7.4 In-Browser Anonymizing File Streaming 63

8 Conclusion and Future Work 65
8.1 Message serialization . 65
8.2 Min-cut multi-core architecture extraction 66
8.3 Multi-Core Cryptography . 67

viii

Chapter 1

Introduction

We have come a long way since RFC1[1], which still required the definition of
messages as data traveling from host to host. We have passed the early days of
the consumer internet where webpages were mostly serving text and images[2]. It
would be fair to say we are now part of the digital media age, in which streaming
media is the dominant factor in the load distribution of the internet. To name a
few of the services contributing to this media revolution, we now see streaming
video platforms such as Youtube (over 300 hours of video served per minute in
2015[3]) and Twitch (over 7500 hours of video served per minute in 2015[4]). By
estimation the amount of data being transferred over mobile networks in the United
States alone is 18 terabytes per minute [5].

At the same time, we also see an increase in the number of reports of censorship
by governments and large companies, moderating the content being shared on-line.
For instance, censorship of WikiLeaks documents[6, 7, 8] or Facebook and Twitter
censoring journalists[9, 10, 11, 12]. Of course, a case can and has been made that
these companies are under immense stress to perform this censorship by all sorts
of other actors[13]. However, this leaves one searching for a platform providing
freedom of expression and freedom of information. One could say that the very
core of scientific discourse is under fire.

At the time of writing there exist a number of anonymization technologies, with
the Tor technology as the de facto standard[14, 15]. However, the Tor technology
is frequently quoted as being suboptimal or barely acceptable in performance[15].
This issue is compounded by the aforementioned transition to more streaming-
media centric internet content. This makes the Tor technology particularly unfit
for the current climate. Clearly, there needs to be a system which can handle these
immense throughputs of data.

One promising adaptation of the Tor protocol is called Tribler[16], which has a
Tor-like anonymization protocol implemented[17]. However, this Tor-like protocol
is implemented on top of the BitTorrent client, making it more suitable for large
files. Still, download speeds are not exceeding 2 MBps with minimal security[17].
One could say that there is still room for improvement.

1

1.1 Contribution

This thesis will focus on the transition of a single-core architecture to a multi-core
architecture in a scalable, performant and maintainable fashion for anonymous file
streaming applications. Since the amount of different kinds of such technologies
is low and the cost of re-engineering is high, this thesis will utilize qualitative
research.

In particular, while presenting several generalizable constructs and algorithms,
methods will be implemented and tested with the Tribler[16] technology. This
serves the purposes of an example implementation, as well as giving a tangible
result for the reader to judge the suggested methods by.

Tribler has been chosen because it offers a significantly hostile environment to
multi-core architectures. This is because it has been implemented in Python, which
does not allow for two threads to execute code concurrently. This hostility should,
in turn, make the results and methods of this thesis more generally applicable, as
better multi-threading support can only further the performance benefits for other
technologies.

1.2 Research question

The main research question for this thesis is the following:

Where in the architecture of a single-core anonymous-streaming application does
one start the multi-core adaptation for the best balance of scalability,

performance and maintainability?

Answering this question will involve determining:

1. The architectural requirements of an anonymous-streaming application

2. The parallelizable components of the source code

3. The benefits and detriments of parallelization for particular components

4. The impact of the anonymization cryptography

Note that the steps in answering the research question are actually generally applic-
able for the re-engineering of any application. The answers which will be found
for this context will however differ from other distributed applications, through the
nature of anonymous-streaming software.

2

1.3 Problem Description

Anonymizing file-streaming technologies intrinsically have two problematic char-
acteristics:

1. Large data flow volume

2. CPU-heavy channel encryption[18]

The large volume of data is a problem for multi-core architectures, as the multi-core
implementations in threads or processes often require pass-by-value communica-
tion. In turn, this (especially in a multi-core hostile environment such as Python)
pass-by-value interaction requires very high performance data streams.

To complicate matters further, these high performance data streams also need
to transport control messages for the anonymization layer. These messages are
numerous and diverse in structure, numbering 14 control messages in the original
Tor specification[19] and at the time of writing 22 in Tribler. Some form of seri-
alization is required to distinguish the different messages being transferred. This
message polymorphism is in stark contrast to the data stream requirement of mono-
morphism for high performance processing.

On the other hand, the CPU-heavy channel encryption also provides a clear
pointer to the components of the application which require a multi-core imple-
mentation. Implementing a multi-core architecture for the encryption layer would
provide a clear benefit. However, a true parallel implementation of the encryption
layer in the Tor stack is still an open problem[15].

To make matters worse, this thesis also imposes the restriction of the architecture
having to be maintainable aside from being performant and scalable. This means
that the architecture should be as flexible as possible, allowing for implementation
changes within the different layers. In other words, it should make use of the exist-
ing separation of concerns in the architecture to allow for future modification. In
yet other words, the multi-core architecture should be non-intrusive in the existing
functionality (as much as possible).

1.4 Document Structure

The rest of this thesis will be structure as follows. In chapter 2 a high-level prelim-
inary introduction to the architecture of anonymizing file streaming applications
will be given. In chapter 3 pioneering research on data serialization for interac-
tions in high throughput multi-core or distributed contexts is presented. This is not
necessarily part of, but and important addition to, the actual multi-core architec-
ture creation method which will be presented in chapter 4. After these high-level
constructs a low-level cryptographic solution will be explored in chapter 5. Fol-
lowing the method descriptions, the actual implementation in the Tribler platform
will be presented in chapter 6, followed by the experiments and their results in

3

chapter 7. Finally this thesis will end with remaining future work and the conclu-
sion in chapter 8.

4

Chapter 2

Anonymous File Streaming
Architecture

Whereas chapter 1 focused more on the abstract issues of anonymizing file-streaming
applications, it is important to start the initiation of architectural change with gain-
ing insight into an actual implementation[20, 21, 22, 23, 24]. This process of
documenting and learning the existing architecture is also known as (software)
Reengineering, Software Reverse Engineering (SRE) or even just refactoring. As
mentioned before, the corpus of examined platforms for this thesis exists of just
one technology: Tribler[16]. This will limit the generalizability of the architec-
tural findings.

To facilitate the understanding of the Tribler project, the two classic reengineer-
ing tools will be used: documentation and code inspection. The following sections
will serve to document the existing Tribler architecture based on documentation,
papers, code inspection and hand-crafted inspection tools.

The following sections will detail the high-level architecture of an anonymous
file streaming application and its components. Components which are unique to
the Tribler technology will be pointed out explicitly.

2.1 High-level architecture

Generally speaking, an anonymizing file-streaming application exists of three com-
ponents. The first component is the peer discovery component. This component is
responsible for finding other users of the applications (also known as peers) which
can facilitate the retrieval of files. The second component is the file streaming layer.
This layer is responsible for managing the files in the operating system the applic-
ation is running on. Furthermore, it is responsible for defining the protocol(s) to be
used between peers. The third component is the anonymization technology. This
third component makes sure that any data being sent over the Internet is crypto-
graphically secured.

Note that all of these components can be decoupled. One can discover peers

5

File Streaming Layer Peer Discovery

Anonymization Layer

Internet

Figure 2.1: Anonymous File Streaming architecture

without sending files or encrypting the communication. One can send/receive files
to/from a peer without content centric peer discovery or communication encryp-
tion. Lastly, one can encrypt communication, without this pertaining to files or
peer discovery. All of these behaviors have been observed both decoupled and in
tandem, from code inspection in the Tribler project.

An overview of the interactions between the components of an anonymous file
streaming application can be seen in Figure 2.1. Typically, the application initiates
the downloading of a file with the File Streaming Layer. The File Streaming Layer
then queries the Peer Discovery component for peers capable of sharing the partic-
ular resource. Once a capable peer has been discovered, the data exchange control
messages and the requested resource can be sent through the anonymization layer.

The next sections will detail the inner workings of each of the mentioned com-
ponents both in general and in Tribler. This is done because Tribler offers more
functionality than a generic anonymous file streaming application, as it also has a
decentralized architecture.

2.2 Peer Discovery

Generally speaking in a peer-to-peer network, peer discovery is aimed at finding
other users of some application to improve the quality of service of the originating
user. In practice, this means that this is a focused effort to find peers which share
a common interest for some resouce. For instance, in the BitTorrent protocol, peer
discovery will be aimed at finding other users which are interested in a specific tor-
rent file (communicated by means of a hash of the torrent contents). This is usually
done by means of Distributed Hash Tables (DHT) or Peer Exchange (PEX)[25].
Another example is Tor’s hidden services, which use DHT to to advertise a peer’s
resource via multiple introduction points[19]. This allows for a peer’s IP-address
to remain hidden while still being able to share a certain resource. The Tribler
technology uses a combination of the BitTorrent and Tor technologies to provide
torrent-based hidden services (ergo sharing by file content instead of name).

The biggest challenge in peer discovery is usually Network Address Translation

6

Figure 2.2: Message synchronization and peer exchange in Dispersy

(NAT) traversal. Most technologies use the UDP protocol because it is easier to
work with than TCP[26] and has a higher success rate[27]. The same is true for
Tribler.

One interesting thing to note about the peer discovery component of Tribler,
is that it has two peer discovery mechanisms. Next to the content/torrent based
peer discovery, it also features a community based peer discovery system called
Dispersy[28]. The Dispersy component of Tribler allows for focused resource
name based discovery (like the hidden services) but with unfocused contents. This
allows for more message board-like behavior, coupled with being a good starting
point for finding peers willing to be a part of a hidden services construction.

Investigation of the Tribler/Dispersy peer and data exchange stack led to creation
of synchronization visualization artifacts1 (see Figure 2.2) and further research into
the threading model of the Python backend[29]. The synchronization mechanism
of Dispersy and converting the synchronous implementation to an event-driven
implementation will remain outside the scope of this thesis however.

2.3 File Streaming Layer

The file streaming layer in an anonymous file streaming application is responsible
for file management on the operating system and sharing files (both sending and re-
ceiving) from other users. This means that it uses file locks to avoid file corruption
while writing and (possibly at the same) time allows for reading.

Several protocols for file exchange (or content delivery) exist, such as BitTorrent,
File Transfer Protocol (FTP) and Hypertext Transfer Protocol (HTTP). However,

1Available at https://github.com/qstokkink/VisualDispersy

7

https://github.com/qstokkink/VisualDispersy

the most scalable and fault-tolerant solution to date is the BitTorrent protocol[30,
31, 32]. These are exceptionally important characteristics in a peer-to-peer setting,
with peers dropping and popping into existence continuously.

The most important characteristic of this layer, is that all of the implementations
named above require a singleton construct to avoid file corruption. This is a very
important observation when considering a multi-core architecture.

2.4 Anonymization Layer

The anonymization layer is responsible for encrypting and decrypting data between
peers in an anonymizing fashion. This could be implemented by using freenet,
GNUNet[33], Tor[19], a mixnet[34] (for example I2P[35] or Java Anon Proxy
[36])[14] or some lesser-known technology. These technologies aim to hide the
path the data traverses over the internet. Note that this is the most fallible com-
ponent of the anonymous file streaming application. Many attacks on anonymizing
technologies have been known for a long time[37]. At the time of writing, re-
searchers are particularly struggling with traffic correlation attacks[38].

Since the attacks on and the appreciation of anonymizing technology are defin-
itely outside of the scope of this thesis, we shall now proceed to focus on Tor. In
Tribler, Tor is also the underlying anonymization technology. To provide a high-
level overview of the inner workings of Tor, it can be viewed as a two step process.
The first step is to create a path (also known as a circuit) spanning multiple peers
between the sending and receiving peer. This first step is the most costly CPU-
wise in the Tor protocol and is also known as telescoping[15]. This circuit serves
as a means to anonymize the source of the data. The second step is to actually
communicate the data through this circuit. There are two things to note about the
second step. The first noteworthy thing is that this second step may not happen im-
mediately after creation of the circuit, instead a pool of circuits is maintained. The
second noteworthy point is that the circuit does not end at the receiving node, but
rather the unencrypted data is sent from the last peer in the circuit (the exit node)
to the receiving peer. In Tribler, this exit node is not used when sending from a
Tribler peer to a Tribler peer.

To visualize the telescoping procedure, Figure 2.3 shows the creation of a 2-
hop circuit (ergo 2 intermediary peers), given 4 available intermediaries and one
receiving node R. First the sending node captures node 4. When successful, the
sending node will capture node 1 through node 4 (note that there is no direct contact
between node 1 and the sending node). In this example node 1 will be used as the
exit node. In practice, most nodes will not accept being appointed as an exit node,
due to liability issues with the transferred content[39].

8

3

S

4

2

R

1

(a) 0 hops

3

S

4

2

R

1

(b) 1 hop

3

S

4

2

R

1

(c) 2 hops

Figure 2.3: Telescoping

Tribler exploits flexibility of the structure of the anonymization layer to allow for
flexibility in the file streaming layer. Tribler will send its small BitTorrent packets
over all of its available circuits (currently in a round robin fashion) to the receiving
peer. In effect, this has become a multipath communication approach. This would
even allow for flow control, which is an open problem in Tor[15], though this is
not implemented.

9

10

Chapter 3

Generic Message Parsing

Whereas most fields in Computer Science are concerned almost exclusively with
time complexity, the field of Distributed Systems also has an emphasis on message
complexity when designing algorithms. This is a logical result of the early days
of the Internet, where transferring any and all data over the Internet was literally
an expensive operation. Likewise, the pass-by-value nature of multi-core architec-
tures, as preluded in the previous chapters, shares many of the same concerns. Any
of the values shared between components executed in parallel, will require some
form of serialization (also known as marshaling). This serialization costs CPU
time and will therefore impose the most basic overhead in parallel and/or distrib-
uted computation. This is a problem of yore within Distributed Shared Memory
(DSM) systems[40]. Many design patterns for synchronizing the serialized objects
do exist however[41].

It is important to note that environments which do support shared memory con-
structs within their multi-core architectures, should use this as it is much faster.
However, this is an unrealistic assumption to make for all distributed applications.
Applications can and will offload computations to distributed hardware and/or be
run in multi-core hostile environments (applications such as Tribler). This makes
message serialization one of the core issues in multi-core scalability for distributed
systems. This is extra important when dealing with anonymizing (polymorphic
messages; serialization needs to be flexible and is therefore slower) file streaming
(high volume; serialization needs to fast or the application locks up) applications.

Research on small high throughput communications devices has shown that
a 75% decrease in message size led to a 59% decrease in message processing
time[42]. Research into online game interactions showed a 84% decrease in mes-
sage size leading to a 90% decrease in message processing time[43].

11

3.1 Methods of Serialization

Even though there is some research on the performance of using purpose-built seri-
alization libraries, research on their inner-workings remains largely non-existent.
To rectify this, this thesis will lay out the general principles, as they have been
inferred from mature codebases. Concretely, this thesis will look at Google’s Pro-
tocol Buffers[44] and Cap’n Proto[45] to construct a scientific description of an
effective serialization protocol. The following subsections will entail the common
elements in state-of-the-art serialization frameworks.

3.1.1 Domain Specific Languages

The first noticeable common element in the design of the aforementioned serializ-
ation protocols is their use of a declarative Domain Specific Language (DSL)[46]
for the specification of data constructs which can be serialized. This is remarkable,
as this requires an additional message parsing structure on top of the serializa-
tion mechanism. For the implementation in most programming languages Protocol
Buffers even requires the DSL message specification to be compiled before use in
an application. In contrast, there exist more implicit specifications based on an-
notation mechanisms available in the programming language. An example of such
an implicit declaration methodology is Java RMI[47].

Another feature which these DSLs support, is implicit versioning. Rather than
explicitly specifying a communication protocol version to the message type, fields
within the message type are assigned a static position by the user. This is used for
both forward and backward compatibility. New fields simply get assigned a higher
id and deprecated fields are left out in the future. This is another baffling feature, as
the rest of the Software Engineering field is moving more and more in the direction
of Semantic Versioning[48], ergo even stricter versioning constructs.

One great feature of using DSLs is the built-in type checking. Whereas types
would have to be checked explicitly in user serialization and types had to be in-
ferred in annotated schemes, types can now be checked statically when serializing
and deserializing. This means that the code which handles the serialization is more
generally applicable over all data with the same type (code reuse) and less com-
plex when dealing with runtime types (serializing data as some type is easier than
serializing from some type).

The last characteristic of DSLs is that they are programming language independ-
ent. This is a double-edged sword. On one hand, this means that regardless of the
programming language being used, the DSL can be integrated. On the other hand,
the DSL parser will have to be integrated for every programming language being
used. This does allow for easy communication between programming languages
though.

12

Sender Receiver

da
ta

(a) No packing

Sender Receiver

pack

data

unpack

(b) With packing

Figure 3.1: Byte stuffing running time

3.1.2 Byte stuffing

One of the key features of the serialization protocols is byte stuffing (also advert-
ised as byte packing). This is a step up from lower level bit stuffing (which has also
been shown to improve performance in distributed systems[49]), but still allows for
some pretty dramatic downsizing of messages (and an increase in performance)[42,
43].

As has been shown, there exists sparse research on the fact that byte stuffing
‘works’ for distributed systems. What is still missing is a scientific explanation for
why and how it works. The how portion of this question is easily answered: data is
packed, sent over the internet and then unpacked, in contrast to simply being sent
over the internet. The high-level visualization of the packing process is available
in Figure 3.1. Answering the why portion of the question is not so trivial though.
The following headings will deal will the synchronous and asynchronous cases.

Synchronous case

At first glance one might define the optimization problem as follows. Given some
data d which can be reduced to d̃, for packing to have a positive effect on the
running time of the entire system, the transfer time of the data T (d) must be larger
than the summation of the packing time of the data P (d), the transfer time of the
packed data T (d̃) and the unpacking time of the packed data U(d̃). To put this in
terms of a speed S of packing versus no packing, we can define:

S =
P (d) + T (d̃) + U(d̃)

T (d)

Since the transfer time of data can be assumed to be a scalar operation in respect

13

to the size of the transferred data, we can redefine the speed as follows:

S =
P (d) + U(d̃)

T (d)
+
|d̃|
|d|

This means that the packing method will become faster if:

P (d) + U(d̃)

T (d)
+
|d̃|
|d|
≤ 1

P (d) + U(d̃) ≤ (1− |d̃|
|d|

)× T (d)

To translate this formula into words: byte stuffing becomes faster than sending raw
data when the relative message size reduction is larger than the packing and un-
packing overhead relative to the transmission time of the raw data. The implication
of this is that, as transferred data gets smaller, the expected message compression
quotient |d̃||d| will be closer to 1 and any speedup near unachievable. This means that
it only makes sense to use byte stuffing for larger messages (which is conform to
intuition).

Asynchronous case

In reality, most implementations will use a socket listener in a thread (Active Object
pattern), feeding data to another thread to handle it (Monitor Object pattern)[50].
Assuming that a sufficient quantity of messages n is sent (U(d̃n) ≤ n×T (d), where
d is the concatenated data for n messages and d̃ is the concatenation of all packed
versions in d), byte stuffing now becomes even more effective, as unpacking can
be performed while receiving new messages. In saturated input buffer scenarios
we can define the following relative speed:

S =
P (dn) + T (d̃) + U(d̃n)

T (d)

This leads to the following speedup condition:

P (
d

n
) + U(

d̃

n
) ≤ (1− |d̃|

|d|
)× T (d)

If the input buffer is mostly in a saturated state, the amount of messages in the
input queue n will be very large. This means that the condition is easier satisfied.
In other words, in high throughput situations, even with smaller messages sizes,
it makes sense to use byte stuffing. This is exactly the case with anonymous file
streaming applications.

14

3.1.3 Real-time serialization

One interesting novelty can be observed from the Cap’n Proto project: real-time
serialization. This means that as an object’s fields are being written, they are im-
mediately stored in memory in serialized form. In other words, there is no packing
overhead when transmitting data to another party.

The downside of this approach is of course that a multitude of changes in an
object’s fields before serialization leads to additional overhead, compared to seri-
alization on demand. This makes it more suitable for applications which change
little and synchronize a lot.

3.2 Tribler’s Serialization

Now that we have seen the state-of-the-art serialization methods and their huge
performance benefits, it’s time to look at a mature anonymous file streaming ap-
plication. When inspecting the Tribler source code one will find the protocol used
for serialization, which is nothing. This makes it a good candidate to observe what
the source code and behavior of a project will look like if existing technology is
ignored.

For starters, one can observe the effect on the code base in terms of project
structure. What we have seen is that every synchronizable object is accompanied
by a payload and conversion object. The payload object serves as a data container
(also known as a data class or simply a struct). The payload object also holds
routing information for synchronization between peers (for example the signature
of the message and whom to confirm this signature with). The conversion object
serves to pack and unpack the binary data sent over the internet and instantiate the
payload structure.

There are several adverse effects tied to this structure. For one, in the payload
definition, there exists a lot of duplicate code and a lot of code which should be du-
plicated, but is not. One example is the encoding of a 20 character torrent infohash
string. Throughout the project there exist 4 different ways to encode the same data.
There is a direct 20 character string definition, an unbounded string definition and
two different utility classes performing the same function. The same happens for
encoding the same long value: it can be encoded as a long long, a long, an unsigned
long or a unsigned long long in different source files.

More or less the same happens in the conversion definition. We have observed
the same type checks over and over. Taking one random file with 9 message defini-
tions we count 25 and 18 instances of the exact same field type check (number and
string type checks respectively). Since all of these checks require 2 lines of code,
we can say for this one example file at least 86 lines of code are wasted (which is
20% of the file size).

Another interesting observation from the code is that Murphy’s law is applicable.
If programmers are defining their messages in their programming language instead
of a restrictive DSL: everything that can go wrong will go wrong. Every so often

15

the payload classes are not completely payload classes. These data containers have
hidden functionality, which is not apparent and not in line with the rest of the
project. This is very bad for the maintainability of the code as new programmers
in the project will expect this and therefore not look for this. In turn mistakes will
probably be made when implementing new behaviors.

One final note about Tribler’s serialization is its synchronization mechanism. To
synchronize messages between peers, Tribler stores its messages in binary form
in its database. This allows for easy retransmission without any compression or
decompression of packets. This also means that there is a huge gain to be had by
byte stuffed packets. This retains the original constraint of packets being imme-
diately available for retransmission, while taking less space in the database. As a
reminder, subsection 3.1.2 explains how packing and unpacking overhead impacts
the performance of the application.

16

Chapter 4

Performant Anonymous
Streaming

So far, in chapter 2, we have seen the overal architecture of an anonymous file
streaming application. Then chapter 3 explained what protocols to use and why
for message serialization in a multi-core architecture. This chapter will actually
explain how and where to create the separation in the single-core architecture to
transform it into a multi-core architecture. We will start by quickly reiterating
the high-level requirements and their consequences. Then the differences of im-
plementation and design between multi-core hostile and non-hostile environments
will be discussed. Next, the the different types of data being transferred through an
anonymizing file streaming application will be brought to light. Lastly a method to
infer the optimal multi-core architecture for an anonymizing file streaming applic-
ation will be presented.

4.1 Requirements

Thus far this thesis has shown some characteristics of anonymizing file streaming
applications, but the requirements have not been specified yet. This section will
deal with the actual specification and explanation of the requirements according to
these observed characteristics. The following subsections will entail the different
requirements and the rationale for their inclusion in a multi-core anonymizing file
streaming application.

4.1.1 Maximize parallelization effectiveness

One of the earliest observations of parallel computing is Amdahl’s observation
that adding more of it, induces more overhead[51]. This, of course, led to the
now famous definition of “Amdahl’s Law” and is applicable to both parallel and
distributed systems. Naturally overhead in distributed systems is even worse than
in parallel systems.

17

Amdahl’s observation is, however, a very important one. If one words it differ-
ently it becomes: the more parts of your architecture you transform into a multi-
core architecture, the less you will gain. In other words, there is negative expo-
nential decay when implementing a multi-core architecture for more components
in an architecture. This means that it is very important that, when you switch a
component in your architecture, you should choose the component which has the
most impact on your running time.

Identifying the most taxing component in a system can be done by using a
CPU profiler. These come in various shapes and sizes, being Operating System
bound (like DTrace for UNIX[52] or .NET applications in Windows[53]) or bound
to the programming language (like cProfile for Python [54] or the Java HPROF
profiler[55]). Previous research by the author of this thesis et al. has already pin-
pointed the CPU-heavy component in Tribler as being the encryption and decryp-
tion calls[18].

4.1.2 Preserve shared-hardware-singleton constructs

One of the biggest issues in database access and distributed data, is recovering
from concurrent modification (for example in distributed systems after network
outage[56]). This leaves the software in a state where it has to choose which
changes to throw away (or in the best case how to merge the changes). Natur-
ally for these applications this is unavoidable and a key feature of these systems.
For any applications seeking performance benefits this is a problem which should
be avoided like the plague.

The core problem for these hard-to-recover concurrent modifications is specific-
ally concurrent modification to a shared resource. On the Operating System level
one may think of this as concurrent access to files (with or without file locks) or the
graphics card. On the interpreter level (for languages such as Java or Python) one
may think of the shared process id or the process executable. For each of these con-
texts one requires a locking mechanism or singleton structure for access to these
shared resources or face corruption of some sort.

This means that, when switching to a multi-core architecture, one first needs to
consider the context of the switch. We can distinguish the following contexts per
different method of multi-core implementation:

1. Threads: Interpreter context

2. Processes: Operating System context

3. Distributed: Universal context

These contexts are ordered in increasing concern. In other words when switching
an architecture to a threaded multi-core architecture, one should make sure to keep
all singleton constructs and locks in tact protecting the state of the interpreter, the

18

operating system and the universe. When switching an architecture to a multi-
process multi-core architecture, one needs to sustain all singletons maintaining
the state of the Operating System and the universe. In a multi-process multi-core
architecture one can refactor the interpreter singletons to their own process. Lastly
one might wonder what a universal singleton is: in this thesis this is defined as a
third party maintained shared object. Practical examples would be adhering to the
transaction mechanism of a database server or maintaining ones id in a server ring.

4.1.3 Preserve anonymization

There are four kinds of application functionalities which can be exploited by hack-
ers: input validation, authorization, race conditions and unexpected interactions[57].
As one might expect, switching to a multi-core architecture opens up all of these
exploit paths. Especially when switching to distributed hardware over the internet,
the data exchanged between cores is a very big issue.

An example of a possible unexpected interaction is with the circuit creation for
the Tor circuits. Normally a peer chooses other peers to create a circuit with. What
can happen if multiple instances of the Tor stack are run on the same machine
(using threads or processes for the multi-core implementation) is that they use
the other local instances for their circuits. So instead of using multiple physical
machines, as intended, for anonymization: one loops with oneself, rendering the
anonymization technology useless.

An obvious exploit relating to sharing data over the internet is not only sending
it encrypted, but making sure it is not altered or duplicated. One easy exploit that
comes to mind would be to use a replay attack and thereby denying service or
worse yet, screwing up the encryption itself.

Note that the context in which one creates the multi-core also defines the possible
attacks. For different use-cases one might consider different levels of protection
built into the message passing layers. For example, thread based communication
may limit itself to interpreter-level attacks, which are basically non-existent over
attacks which would already be possible on the single-core architecture. Multi-
process implementations without socket listeners are also not much more unsafe
than their single-core counterparts. When one shifts to a multi-process architecture
with socket communication or a LAN distributed system, one should start worrying
about input validation and authentication. Having a WAN distributed system is of
course the most dangerous and opens up all attack vectors in regards to message
transformation and interception.

4.1.4 Allow for high throughput

The big caveat of anonymizing file streaming applications is the file streaming
component. This means that large amounts of data will be passing through the
application. If this data crosses the same paths as control data, it will bring the

19

S R
(1,Exit); (2,Critical)

(a) E {C,E}

(b)

E C

C E {E}

Figure 4.1: Non-determinism in priority queues

application to a crawl. This is usually a big concern, as this hurts the end-user
experience of the application[58].

There are two ways to avoid a decrease in application responsiveness. The first
way is to prioritize control messages over data messages. The second way is to sep-
arate the control message flow from the data message flow. The following headings
will deal with both of these solutions. Note that both methods will benefit from fast
message serialization and minimal data transfer, but this will remain outside of the
scope of this section.

Prioritization

The most difficult option to maintain responsiveness is message prioritization. This
means that messages will be assigned tags by the application programmer, by hand.
Note that prioritization may happen at the sending or the receiving node. The
benefit of this solution is that there is only one channel required between the sender
and the receiver of the message.

The easiest structure for prioritization is a sender-only priority send queue, with
a FIFO queue for the receiver. This leaves the entire system in a deterministic state,
where the sender can guarantee the message ordering as it has been sent. This kind
of structure makes sense if the sender has an outbound message queue and the
receiver can keep up with the message flow. In practice this will probably be the
other way around though, most protocols such as TCP seek to increase the data
flow until the receiver can no longer keep up (scaling window)[59].

The more complex solution is to implement a priority queue for both the sender
and the receiver. This does introduce non-deterministic message ordering though.
This system can be very dangerous when dealing with critical messages. Having

20

both the sender and receiver use a priority queue is the fastest method for priority
based messages though.

An example of this non-determinism is given in Figure 4.1. Suppose a sender
S first send a critical message C with a lower priority and then an exit message
E with a higher priority, to a receiver R. The first option (a) is that the critical
message has left the queue and has been handled already before E enters the queue:
this will lead to the execution of both C and E. The second option (b) is that the
critical message C is still in the queue when E arrives: the priority queue will
switch the two and handle E first. Since E inhibits C from being handled (in this
example it signals a hard exit, in practice this may be more complex), we see a
different set of statements being executed: only E. In other words, for the same
order of sent messages C and E we have two different unpredictable outcomes,
this is non-determinism.

If we look at Tribler we see a variation of the more complex solution used,
it offers no send queue but the receiver has a priority-based input queue. Also,
Tribler uses a hybrid priority and FIFO queue. One troubling observation is that
the default priority reigns supreme over the messages which do use the priority
queue though, making it effectively worthless. Of the 9 messages which use the
priority system, only 2 use a non-default priority (this is 22%).

Channel Separation

The easier option to separate control messages from data messages is by assign-
ing them different channels. This can be done by using sockets (on the Operating
System level), file descriptors (on the process level) or queue constructs (on the ex-
ecutable level). Note that these options are ordered in increasing processing speed
and decreasing applicability. A downside of this approach is that the programmer
will have to manage these multiple channels, with the risk of introducing shutdown
race conditions and possibly other unexpected channel interactions.

The fastest and therefore most desirable option would be for applications to
use double-ended queues to deliver messages. This would mean that messages
never leave the application’s memory. This kind of construct is easier to check for
both the sender and receiver and will shut down as the executable is shut down.
So aside from being the fastest option, it is also the safest. The downside is, of
course, that it is only usable in shared-memory contexts: such as threads or pro-
cesses with a shared memory construct. Fast implementations for dealing with
these kinds of shared memory applications already exist: for instance OpenMP,
MPI or Pthreads[60].

Next in line for channel separation would be using file descriptors or pipes
between processes. This means that the messages never leave the machine’s memory.
This is a step up from using threads, being slower and less safe. In the worst case,
open file descriptors can cause blocked processes (and therefore orphaned pro-
cesses) and physical artifacts on a machine. Especially on less powerful hardware,
machines can potentially run out of file descriptors and/or (extra overhead) memory

21

to use for processes[61].
Arguably the worst way to provide multi-core architecture support is by using

sockets. Although this is unavoidable in distributed hardware. One big issue with
using sockets scalably is the sheer number of sockets already in use and the high
chance of collision: the number of known ports in use is reported by Wikipedia
at 1399 (including collisions) on the range of port number 0 through 49151[62].
Another issue with sockets is that it opens up a path for external communication
into one’s hardware. Unless access is restricted to a LAN or by a firewall, sockets
are a big security issue compared to the other options.

4.2 Multi-core in a hostile environment

Parallelism can be implemented on many different levels. One can parallelize pro-
cessor instructions into micro instructions and one can build entire distributed sys-
tems. This thesis will draw the line at hostile environments, meaning environments
where parallelism can only be introduced outside of the application level. This
means that there exist no shared memory constructs between processes or parallel-
ism within a process.

One might be tempted to say that it is useless to introduce parallelism on this
level, as all or nearly all programming languages support threading or concurrent
flows. A major benefit of this hostile environment approach is that it leaves the
different processes room to use their own programming language. This makes it
easier to optimize applications when refactoring different components to parallel
sections. One could for instance decide to implement a time critical portion in C
instead of a slower (semi-)interpreted language like Java, Python, Ruby or Scala.

A second reason why it makes sense to use multiple processes instead of par-
allelism inside of a single process is bad thread management within the process.
The rationale for this can range anywhere from confusing multi-thread construc-
tions using the same resources to actual bad thread implementations offered by the
programming language. The former is caused by the programmer working on the
project, but the latter we can find in a language like Python.

To give an example of this hostility to normal threaded execution we will mo-
mentarily zoom in on Python’s thread model. Python disallows threads to execute
the same block at the same time, to provide thread safety[29]. Now consider the
pseudocode given in Algorithm 1. If the thread’s id is equal to 0 it will block until
some other thread releases the resource it is waiting for. Normally another thread
would then run this code and release the resource, allowing the thread with id 1 to
continue execution. In Python however, the other thread can’t enter this code as the
thread with id 1 is already running it, this will cause the other thread to wait until
it exits the code block. What this mundane code block has created in Python, is a
deadlock.

22

Algorithm 1 Thread safety deadlock
if id = 0 then

WAIT FOR(resource)
else

RELEASE(resource)
end if

4.3 Practical data streams

To discern different types of data, we can take a look at another Distributed Systems
field: Big Data. In particular we will see how applicable the three V’s are which
are applicable to that field: Variety, Volume and Velocity[63]. It turns out that all of
these V’s are applicable to an anonymous file streaming application. The next sub-
sections will detail how and why certain messages in an anonymizing file streaming
application have these characteristics. Note that these different data types are good
candidates to use different channels for, as discussed in section 4.1.4.

4.3.1 Control messages

As presented in section 1.3, Tribler’s anonymization requires the definition of 22
unique messages. This set of pluriform messages, belonging to the Variety category
of the three V’s, can be categorised as control messages.

Typically these control messages have a very wide range of contents. They are
also usually very limited in size, in Tribler, rarely breaking 1Kb. From the fact that
Tribler idle runs (only control messages) produce between 2 and 4Kbps, we can
also infer that the amount of messages being sent is not that great in number. To
sum up this message category, control messages are:

• High Variety

• Low Volume

• Low Velocity

4.3.2 Data messages

The cornerstone of a (anonymizing) file streaming application is streaming files
as quick as possible. Usually this is done in fixed size chunks, like it is done in
BitTorrent and therefore the Tribler implementation[64]. The transport layer will
then take care to maximize the throughput of the network connection, as discussed
in section 4.1.4.

This class of messages specializes in transferring raw data as fast as possible
and therefore sees very little to no variation in the message structure. Because of
the application the volume of these messages is huge though (this is also why the

23

Tor project would rather not route BitTorrent traffic). To summarize this category
of messages:

• No Variety

• High Volume

• High Velocity

4.3.3 Exit messages

The last category of messages is actually a single message, which seems like a
normal control message. This is the request-for-exit message. This is a special
type of control message, which can very much hurt scalability if not processed in
a timely fashion. Especially in distributed systems this is a very big problem.

Exit messages typically have little to no variety, optionally with a reason for ter-
mination. They are only sent once, and exactly once to the receiving party. Usually
exit messages also include a response, containing information about the termin-
ation (which can be a clean exit, or an exit with an exception). For application
responsiveness it is imperative that exit messages are handled immediately. If a
receiver has locked up in its control flow, it should still be able to exit. The same is
true for a receiver with a filled control message input buffer, exit messages should
still go through. Failure to adhere to this behavior can and will lead to lock-ups of
applications, waiting for a long time or never finishing due to buffered or dropped
exit messages. To sum up the exit message category, it has:

• Low Variety

• Low Volume

• High Velocity

4.4 Optimal parallelization

As has been mentioned in subsection 4.1.1, one cannot parallelize effectively without
knowing the most taxing component in the architecture (which can be parallelized),
in terms of CPU running time. Also, as mentioned in subsection 4.1.2, not all parts
of the original architecture can be parallelized. With these restrictions in mind, we
must now attempt to create the most effective separation of application components
to create a multi-core architecture from a single-core architecture.

To create a separation, one must first obtain a graph of all components in the
application and their interactions. Note that this is not necessarily a class diagram.
This method is applicable for any granularity of component separation. One could
go as fine grained as create a graph of instruction blocks, all the way up to groups
of packages and anything in between or a combination. The only restriction is

24

that the components must be separable. That said, some parts of an application
will most likely be more convenient if kept together, from a Software Engineering
perspective. For instance, it could hurt the maintainability of an application if a
functional component is split apart.

Once one has created a graph containing all of the components (as discussed)
in the application, it should be weighted. This weight should be the message flow
of the data being transferred between the components. This is a lot of work and
therefore imposes a course granularity of the component graph, from a practical
viewpoint. First the message sizes must be constructed, which entails the size of
the parameters a component is called with when serialized into a message struct.
In some cases the message size is not static and will have to be determined as the
average message size. The message flow can then be calculated as the average
message size times the average amount of calls per second. When determined,
all components should be connected by one or more weighted edges, expressed as
bytes per second.

As the reader may guess by now, the graph will be optimized for a minimum data
flow between groups of components. The rationale for using data flow, is to meas-
ure parallelization overhead. The CPU runtime improvement is already guaranteed
by offloading the functionality to other cores. In fact, the only parallelization over-
head in a running system (where the set-up has already been completed) is the data
communication overhead. The more data needs to be communicated, the slower
the application becomes. One could in fact see this as a measure of component
autonomy which goes beyond conventional class or package coupling.

Once the weighted graph has been constructed for the application’s single-core
architecture, one can optimize the parallelization. This can be done by construct-
ing a minimum cut in the graph (note that the minimum k-cut with varying k is
known to be NP-complete[65]). There is a small twist to the problem, pertain-
ing to the fact that the optimization target may not be in the same partition as the
main control flow of the program (this is also known as a minimum s-t cut problem
or generally a max-flow min-cut problem, which can be solved using the Ford-
Fulkerson algorithm[66] or derivatives[67]). The partition of the graph including
the parallelizable target in the application, can then be split off from the single-core
architecture to form the multi-core architecture. Recall that this can be offloaded
to a thread, child-process or remote process.

To end on a practical note, as noted before, it makes sense to use a coarse gran-
ularity for component distinction. However, it also makes sense to use a more fine
granularity for the components near the structure of the optimization target. This
is because these components are more likely to be a candidate for an efficient split
in architecture.

25

26

Chapter 5

Multi-Core Homomorphic
Cryptography

Thus far, this thesis has explored generalisable constructs for increasing perform-
ance of high throughput anonymizing file streaming technology, which treats the
anonymizing layer of the technology as a black box. This chapter will focus on
breaking open Pandora’s Box and exploring the capabilities of custom crypto-
graphic protocols. The protocol in question is previous work by this author[68],
due to its intrinsic capacity for deployment in a multi-core environment. This
chapter will expand upon this protocol with a novel multi-core implementation
using JavaScript1 and provide early results.

5.1 Related Work

Traditionally cryptographic technology focuses on end-to-end link encryption, where
packets traverse the network from one peer to the other over a singular set path. Al-
terations to this path are assumed to only come from routing protocols, managing
flows over the network. A good example of this world view is the Transport Layer
Security protocol[69].

An effort in recent years has been to optimize the performance of the existing
technologies by using multiple links (also called paths, depending on the research
field). One can observe this trend unfolding on several levels of technologies. On
the TCP level multiple path research has led to the multipath TCP protocol[70].
On the cryptography level we see multipath Tor[71]. The big difference between
the two protocols is that multipath Tor treats the cryptography over a path as a
black box to be extended upon, whereas multipath TCP actually changes the TCP
specification on a lower level.

The question which needs to be answered for multipath cryptography is how to
(1) reduce data size over (2) multiple paths (3) without breaking security. Espe-

1Open source: https://github.com/qstokkink/qstokkink.github.io

27

https://github.com/qstokkink/qstokkink.github.io

cially (1) data size reduction and (3) upholding security are difficult problems.
The reason for the difficulty of data size reduction are the padding and key re-

quirements of cryptosystems. Padding requirements for cryptosystems state that -
even though you may have cut your original data into small chunks - you still need
to pad your data to reach a certain message size, thus the net data size is increased
for multiple paths. The key requirement for multiple links is (maybe rather obvi-
ously) the sharing of multiple keys, which increase the amount of data needed to
be sent between peers.

Retaining anonymity is also a big concern when using multiple links. In a hos-
tile environment, the chance of running into malicious nodes is simply greater as
the amount of nodes utilized increases. This may open the user up to things like
correlation, timing and replay attacks.

Current efforts by this author include the design of a cryptographic protocol
which takes advantage of distributed multipath network topologies, as found in
peer-to-peer file streaming technology[68]. Specifically the paper shows the com-
bination of the Paillier cryptosystem[72] in combination with a novel message
splitting protocol for multiple network paths, which will be covered in coming
sections. Due to the practical presented network protocol adaptation of the no-
toriously slow homomorphic Paillier cryptosystem, results from this paper show
dramatic improvements in virtual network topology creation time and, in compar-
ison to other existing technologies, high-end maximum throughput.

5.2 Secure Homomorphic Partitioning Introduction

In a nutshell, the new protocol consists of two parts. One half consists of securely
splitting data into multiple partitions, to send over multiple channels. The other half
consists of turning this splitting method into a usable protocol with optimized data
sizes and throughput. The splitting method has been dubbed Secure Homomorphic
Partitioning (SHP).

The way SHP works, can be thought of as an generalisation of Castelluccia’s
scheme[73]. The big differences, of course, are the split into multiple outputs of
the scheme and the extension to any reversible operation, instead of just addition.
That said, the SHP paper has found the addition operation to be the fastest method
for SHP construction. Formally the paper specifies SHPs as follows (see Table 5.1
for the notation system):

Definition 5.2.1 (Secure Homomorphic Partitioning). The set Pk(M) =
{m1,m2, ...,mk} is said to be an SHP of M for E⊕,� iff:
(1) E⊕,�(M) = E⊕,�(m1)� E⊕,�(m2)� ...� E⊕,�(mk)
(2) H(M) = H(M | m1,m2, ...,mk−1)

28

Symbol Definition

n integer valued modulus

M message encoding ∈ Z∗n
k the amount of available channels in the network

E⊕,� encryption function of a partially homomorphic cryptosystem with
⊕ homomorphism and aggregation operation �

H the entropy function

Pk(M) SHP set of M for k channels

Table 5.1: Notation

Since the target audience of this thesis is not expected to understand the formal
definition, the breakdown of this definition is as follows. An SHP (1) is construc-
ted as such that there exists an arbitrary homomorphic cryptosystem which it is
constructed for, such that the encryption of the original message can be reconstruc-
ted from the partitions of the SHP while each of the elements is still encrypted. On
top of that, (2) none of the elements in the SHP, or any grouping thereof strictly
smaller than the SHP set size, offer any insight into the original message.

But, by itself, the SHP definition is of course useless without an implementation.
However, as mentioned earlier, there exists a very fast (additively homomorphic)
implementation of the SHP scheme, as presented in the paper. By the nature of
the split into multiple messages, this makes it interesting for deployment in mul-
tipath scenarios like anonymizing file streaming technologies. The definition of an
additively homomorphic SHP for k available paths and a bitspace n is as follows:

Definition 5.2.2 (Secure Additive Partitioning). Let k > 1. Let R be a
collection of k − 2 random integers ∼ U [1, n〉. Let r be a random integer
∼ U [1, n〉, regenerated if M − r mod n = 0. The additive SHP Pk of M is
calculated as follows:
Pk(M) = R ∪ {r −

∑
R mod n, M − r mod n}

Given Theorem 5.2.1, property (1) of Definition 5.2.1 can be proven for Defini-
tion 5.2.2 by deriving

∑
Pk(M) mod n = M :

∑
Pk(M) mod n =

∑
(R ∪ {r −

∑
R, M − r}) mod n

=
∑

R+ (r −
∑

R) + (M − r) mod n

= (r) + (M − r) mod n

= M mod n

29

Theorem 5.2.1. A set Pk(M) = {m1,m2, ...,mk} using an additively ho-
momorphic cryptosystem conforms to the first property of SHPs for M iff
M =

∑k
i=1mi =

∑
Pk(M).

Proof. Using generic homomorphism E⊕,�(a ⊕ b) = E⊕,�(a) � E⊕,�(b)
and given the first property of Definition 5.2.1 E⊕,�(M) = E⊕,�(m1) �
E⊕,�(m2) � ... � E⊕,�(mk), substitute E⊕,� with the signature of additive
homomorphic cryptosystems E+,�:
E+,�(M) = E+,�(m1)� E+,�(m2)� ...� E+,�(mk)
E+,�(M) = E+,�(m1 +m2 + ...+mk)
M = m1 +m2 + ...+mk

M =
k∑

i=1

mi =
∑

Pk(M)

There are three things to note before this thesis will expand upon this work. The
first thing the reader should take notice of, is the the fact that the set R consists of
uniformly randomly distributed values. When implementing, this is a very practical
way to use shared secrets (even extending to multiple secrets for multiple parties)
and to include decryption dependencies for Mn on Mn−1 or Pk(Mn−1). This will
be elaborated upon in the coming section. The second thing to take note of is the
lack of ordering in the SHP set. This eliminates the need for sequence numbers
within a set, making it more difficult for attackers to piece together messages. The
final noteworthy property is the ease of parallelizing this SHP set construction.
This parallel implementation will be covered in the implementation chapter.

5.3 Secrets, History and Homomorphisms

One of the advantages of the SHP construction, is that it can easily incorporate
shared secrets between a sender and a receiver. To construct an SHP using a shared
secret value s on performs the following construction:

Pk(M) = R ∪ {r −
∑

R mod n, s−1M − r mod n},where |R| = k − 2

The value of M can then be found as follows:

M = s
∑

Pk(M) mod n

The security of this method is based on the difficulty of calculating M using only∑
Pk(M) = s−1M , which can be calculated by anyone. For this reason, this

method should not be used for messages M which are prime: this can be solved by
proper message padding.

30

Another alternative for SHPs is to include the shared history into the SHP. Given∑
Pk(M−1) of the previous iteration, as known by both the set constructor and

receiver, the SHP to send would be the following:

Pk(M) = R ∪ {r −
∑

R−
∑

Pk(M−1) mod n,

M − r mod n},where |R| = k − 2

M =
∑

Pk(M) +
∑

Pk(M−1) mod n

This is a practical extension for incorporation of the history, building on the diffi-
culty of gathering all of the previous values of Pk. It should however, not be used
for secret values as it is vulnerable to known plain-text attacks.

The attentive reader will notice that the latter way, incorporating history, builds
on the fact that SHPs are additively homomorphic. To be precise, an additive trans-
formation of any element in an SHP set has the equivalent effect on the decoded
output. It will be left to the reader to validate the correctness of this claim.

Surprisingly, the SHP construction can also be thought of as multiplicatively ho-
momorphic. This works in a different fashion than the additive homomorphism.
Instead of transforming a single value, each value in the SHP will have to be multi-
plied with a value to cause a corresponding equivalent multiplication of the output.
This can be shown for multiplication of the SHP definition (see Definition 5.2) with
a value x:

∑
Pk(M)x =

∑
ri∈R

(x× ri) + x(r −
∑

R) + x(M − r) mod n

= x
∑

R+ xr − x
∑

R+ xM − xr mod n

= xM

By utilizing these additive and multiplicative transformations as keys it is pos-
sible to forward transformed SHPs to other nodes. Such a transformation chain
throughout a network path can deliver anonymization. The implementation of such
a chain will remain outside of the scope of this thesis though.

31

5.4 Steganography

With the excellent malleability of SHP sets come several interesting methods of
steganography. Since there is no security through obscurity, the methods presented
in this section can not be thought of as security measures though. Nevertheless,
two steganographic “tricks” will be discussed.

5.4.1 Fake Plaintext

The first method is full inclusion of SHPs within other SHPs, substituting the par-
ent’s random values. This can be used when forwarding data between nodes. In
Tor terms, this could be used when an exit-node is not trusted.

The idea here is that an intermediary SHP decoding will result in a valid mes-
sage. However, this valid message is simply part of the decryption of another
message. This means that, if the fake message is constructed properly, any eaves-
dropper can no longer determine whether or not the message it is forwarding is exit
data or not. Effectively, this conceals whether or not a node forwarding data, is the
last node in a circuit or simply a relaying node.

For instance, consider the following byte data in alphabet space:

THISISDATA | 20 08 09 19 09 19 04 01 20 01

An “exit node” will exit this data thinking that it is actually data. The node receiv-
ing this will also get data from other parties though, for instance:

THISISDATA | 20 08 09 19 09 19 04 01 20 01
HNEEIRYEHB | 08 14 05 05 09 18 25 05 08 02
YGFWIAAURX | 25 07 06 23 09 01 01 21 18 24
-- (+)
ACTUALDATA | 01 03 20 21 01 12 04 01 20 01

The two types of data which are best suited for this type of steganography are text
and image files. Furthermore, detection of elements in a received SHP set may
signal the actual receiver that the channels over which non-random data has been
received, are untrusted by the sender.

5.4.2 Magic Subset

Because all of the elements in an SHP set cannot be distinguished from random
values, it is almost trivial to use an obscure system to only use elements originating
from specific paths in decoding. For instance, one can send random data over
mutually agreed untrusted links or signal noise flows by reducing the data flow over
the link. Piecing together the correct values to produce the actual message would
require an O(k2) runtime algorithm for k channels and an oracle to detect correct
messages. This approach would be most effective when dealing with attackers that
store values and decrypt later, losing runtime statistics like data flow.

32

Chapter 6

Implementations

In chapter 3 this thesis has presented the technique of message serialization, with
reportedly up to 90% CPU running time reductions. Then in chapter 4 require-
ments, restrictions and a method of creating a multi-core architecture from a single-
core architecture have been presented. Finally chapter 5 has shown a promising
option for replacing the anonymization cryptography. To provide isolated results,
these methods have been implemented separately. This implementation isolation
makes sure there is a causal link between the method and the performance changes.

As mentioned earlier, most of the implementations will be created for the Tri-
bler technology. In section 6.1 the message serialization implementation will be
discussed. Then in section 6.2 the multi-core architecture creation and implement-
ation will be discussed. The one exception is the cryptography in section 6.3, which
has been implemented in JavaScript on a webpage.

6.1 Message Serialization

As discussed previously, Tribler uses Dispersy for its communication between
users[28]. So it is on top of this component of Tribler that the message serial-
ization will be implemented. To perform this implementation this thesis will first
discuss the Dispersy infrastructure and the method of serialization used. Then the
new structure, after implementation of this serialization, will be discussed.

6.1.1 Dispersy

To quote the Dispersy GitHub page, Dispersy is an “elastic database system”. In
practice it is more akin to a message propagation protocol, which allows a per-
message network propagation definition. Furthermore, it allows for message scop-
ing within a certain per-peer interest context, it calls these contexts communities.

The peer discovery component of Dispersy works by peer gossiping using intro-
ductions to other peers, based on community. Once a peer has been introduced and
accepted in a community, messages pertaining to this community can be commu-

33

Community Conversion Payload

ACommunity APayload

AConversion

0..*

Dispersy

Figure 6.1: Implementing a user community in Dispersy

nicated between peers. This is a slow, but scalable way to share messages in large
communities: local views of members of this community will intersect and this
causes messages to be shared between local clusters of these community members.
To facilitate this behavior messages consist of five key components:

• Authentication

• Destination

• Distribution

• Resolution

• Payload

The authentication portion of the message defines which member(s), if any, au-
thorized this message. The resolution portion of the message defines how to con-
firm the authentication signature. The distribution portion then defines how the
message should propagate through the network (whether it should be shared with
everyone, a group of members or just one other member). The destination then
specifies which members to send the message to. Finally the most important part
for the functionality and for this thesis, is the message payload. To maintain com-
patibility with the rest of Dispersy, only the message payload will be serialized.

A diagram of the resulting architecture of implementing a user community with
Dispersy is given in Figure 6.1. Here a user community ACommunity is implemen-
ted. This community requires the implementation of an APayload-type class for
each message and an entry in AConversion for each of the APayload-type classes.

6.1.2 Serialization method

As mentioned before the existing Tribler serialization method is direct serialization
using the Python struct library. This library allows programmers to serialize
data by providing a type, or a sequence of types, to serialize given data to. For
instance, one could define a message format M as follows:

34

Technology Format Read. Serialized Read. Size Avail.
XML G VG VB S
JSON G G M S
struct B B M S
Cap’n Proto VG VB VG C
Protocol Buffers VG VB G T

Table 6.1: Serialization technology comparison

M = !20shl

This means that (in order of symbols) a big-endian, 20 character string followed
by a signed short and a signed long will be serialized (capitalization matters). Note
that this is not very much adapted to human-readability.

To select a serialization method to replace this with, several methods have been
examined. The selection criteria included:

• Format readability

• Serialized readability:

• Serialized size

• Availability

The format readability is a measure for how well a human can understand the mes-
sage formatting. This is useful for the design/modeling of the messages. The
serialized readability is a measure for how well a human can understand the serial-
ized message. This is useful for debugging applications, when raw i/o is inspected
(optionally using some debugger which allows memory inspection). The serialized
size concerns the size increase or decrease of a message’s serialized form compared
to the size of the original data. Lastly, the availability concerns whether or not the
package available in the standard Python distribution, multi-platform third party
distribution platforms or if it requires a custom build. The availability is score on a
scale of [Standard, Third party, Custom build] respectively. The other selec-
tion criteria have been scored on a scale of [Very Bad, Bad, Mediocre, Good,
Very Good] and the results of this selection can be found in Table 6.1. Note that
this table is the outcome of discussion between a handful of people, future work is
to have the presented technologies judged by a body of people of more significance.

Since this thesis has determined that serialization size is a very important factor
(see chapter 3), Cap’n Proto is the obvious choice. However, this choice was also
rejected by the Tribler team. The reason for this is the fact that Cap’n Proto is not
available in either the standard Python distribution, or third party distribution plat-
forms. So to ease Software Engineering concerns, the Protocol Buffers technology
was chosen.

35

6.1.3 Message design

After the underlying technology has been chosen, the message design can proceed
to happen. This process involved extracting all of the 53 old messages format
definitions in Tribler (defined in the struct format) and porting them to the Protocol
Buffers DSL. This also exposed a lot of inconsistencies in serialization of the same
data in different messages, as pointed out in section 3.2. Due to the loss of the old
conversion and payload structures, a little over 2000 lines of code were lost (which
is about 1% of the 174, 000-line Tribler source code).

During this message porting process another important concern surfaced, which
was for the implementation to be backward compatible with the old wire format.
To alleviate this a boilerplate layer was constructed on top of the Protocol Buffers
serialization. In turn this also allows for the serialization implementation to change
at a later date (should Cap’n Proto become more interesting to the Tribler project
at a later date, for instance). What the boilerplate layer allowed was to receive
messages from both the old and the new formats, while leaving the application the
choice in which format to send data. This still leaves a problem open though: when
do the the peers start using the new wire format with each other.

To illustrate the protocol problem, we shall define the Spies in an Enemy Bar
problem:

American spies gather in a German bar, where no Germans speak
English. Only the master spy knows the identities of all other spies.
If any of them start talking in English while there are still Germans
around, they will be shot. They want to talk English, but no Amer-
ican spy wants to be shot.

When do the American spies start speaking English?

The solution to this problem is: when another person in the bar starts talking Eng-
lish. Since Germans can’t speak English, if another person is speaking English,
they must be a spy. Since no spies want to be shot, they must know there are
no Germans in the room. If there are no Germans in the room, it is safe to start
speaking English.

This problem is not just for fun, but can be used in practice to design message
backward compatibility. In a system, all peers start by sending messages in the
old wire format. Once a peer received a message in the new wire format, it will
also start sending its messages in the new format. For, when a peer receives a new
format message, it must mean that someone knows it to be safe for everyone to
start using the new message format. This safety will be assured by the application
owner’s deprecation labeling of the old wire format, once enough users switch to a
compatible version.

36

Community Conversion Payload

BaseCommunity BasePayload

BaseConversion

ACommunity AProtoBufDefinition

0..*

0..*

Dispersy

Base

Figure 6.2: Implementing a user community with a BaseCommunity

6.1.4 Resulting Architecture

The resulting architecture of this serialization design is a single Dispersy com-
munity structure, dubbed the BaseCommunity, from which all other communities
can inherit. To retain compatibility with the old design, the new messages are seri-
alized into the payload of a Dispersy message. This led to the BaseCommunity only
sharing one type of message, the BaseMessage, which had the serialized version
of the old messages as its payload. Contrary to the old system, which statically
defined the authentication, destination, distribution, resolution and payload, this
new message dynamically adapts to its serialized contents. This allows for more
flexible message definitions, while retaining support for the old static definitions.

All of the existing Tribler communities had to be rewritten to inherit from the
new BaseCommunity. This changed nothing in respect to received message hand-
ling within the communities, as the old conversion and payload were kept for back-
ward compatibility using the boilerplate layer. What did change within the existing
communities is the switch based sending of messages to other peers, which should
be removed in later versions.

The resulting architecture can be observed in Figure 6.2. Instead of the huge
code backlog imposed by Dispersy’s Payload and Conversion classes, the only
definitions a user community ACommunity has to deal with now are its AProtoBuf-
Definition definitions. These are much smaller in size and much easier to read (as
established earlier in this chapter).

6.2 Multi-core branch-off

As mentioned repeatedly, the optimization target in the Tribler software was the
encryption. This was the starting point for employing the architecture optimization
and to start growing the parallel component in the new system. In this section
the actual layout and interactions of the existing components in Tribler will be
discussed. Then the implementation complications will be discussed, followed by

37

the resulting architecture.
From a code base management perspective the multi-core architecture was de-

cided to map onto processes. The rationale was, as mentioned in section 4.2, that
Python is too hostile for a threading implementation. Furthermore, a Tribler user
is not expected to own multiple machines. This leaves processes as the most per-
formant choice.

6.2.1 Existing architecture

Following the suggestion given in section 4.4 the existing architecture will be
modeled in an increasingly coarse grained fashion starting from the encryption.
For ease of explanation, this subsection will actually explain the different compon-
ents the other way around (starting with the most coarse granularity). In the most
high-level view (see Figure 6.3), Tribler consists of two components:

1. Communities

2. Session

The communities component of Tribler (mostly) passively collects and shares Dis-
persy messages. The Session component of Tribler manages all of the torrent
downloads. These are the two main interfaces Tribler uses to communicate with
the outside world.

There is one Dispersy community in the communities component responsible
for all encryption and peer discovery. This community is called the TunnelCom-
munity. To be more precise, the actual community handling all of the encryption
is the HiddenTunnelCommunity (HiddenCommunity for brevity), which inherits
from the TunnelCommunity. What this HiddenCommunity offers over the Tun-
nelCommunity is a Tor hidden services-like implementation on top of the Tor-like
communication offered by the TunnelCommunity. This allows for hidden seeding
(sharing) of torrent files, instead of just hidden leeching (downloading) of torrent
files.

In the Session component there exists a torrenting implementation (provided by
the libtorrent library). Because this torrenting implementation can only com-
municate via socket, the data flow has to be brought back to the application from
the socket communication if the Tribler user wishes to use encryption. To perform
this the communication is forwarded to a local port, where a custom SOCKS5 local
server implementation is listening for connections. This SOCKS5 server then for-
wards the data to the TunnelCommunity, which uses the usual Tor-like protocol to
forward this data through circuits.

Finally, note that this architecture description does, by no means, cover all of the
interactions in the Tribler software. However, this description is sufficient to form
an understanding of the encryption in Tribler.

38

Tribler

Communities Session

TunnelCommunity

HiddenTunnelCommunity

Socks5Server

Figure 6.3: TunnelCommunity-centric architecture overview

6.2.2 Soft coupling

As one can see from the architecture overview from last subsection, there is a
dependency between the Session component (most importantly the Session class).
The Session class is in fact a god class within Tribler, being used by all of the
communities for execution.

This singleton dependency is a problem for the implementation. As mentioned
in subsection 4.1.2, Operating System context singletons cannot be included when
parallelizing to processes. This would trivialize the ability to cut the architecture,
limiting it to just the encryption and decryption functions.

Thankfully, even though the Session has a very strong coupling, it can be re-
instantiated for other processes in case of the TunnelCommunity. This is done
by giving each process running a TunnelCommunity instance its own (severely
inhibited) Session singleton, with its own folder in the Operating System folder to
perform file I/O in. The only required shared construct with the original Session is
the private key of the community member, which is already stored on disk. Disk
storage is arguably very unsafe, but this is outside of the scope of this thesis.

6.2.3 Creating children

When creating processes from a process, one has two choices. One can either
fork or spawn a process. Forking involves providing a reference of the parent
process’s memory to the child process, which then has copy on write access.
This means that it will read the parent process’s memory, until it needs to change
a block of memory. Then it is assigned its own block of memory. Spawning a
process, on the other hand, involves giving a child process a completely blank
memory allocation. The next part of this section will discuss some of the benefits
and downsides of forking and spawning.

39

Main Template Child

fork()

cfork()

fork()

Figure 6.4: Optimal forking architecture

Forking

The big benefit of creating child processes by using forking is reduced Random
Access Memory (RAM) usage. If at all possible, this should be used over spawning
a process. There are two big caveats to using forking though. The first caveat is
that the forked process inherits the memory from the parent exactly as it was before
forking. The second caveat is that the inherited memory may include read-only
singletons which no longer apply to the child process.

The inherited memory snapshot can be a problem, as Python cannot garbage
collect unloaded modules very well. Since any module that offers non-trivial func-
tionality will update itself periodically, this will lead to module copies in child pro-
cesses which make no sense. Avoiding this can be done by determining the shared
libraries between the child and the parent processes. A fork can then be made when
these shared libraries have been loaded and this fork can then be forked to create
the actual child processes. This allows for optimal memory usage, but also adds
a level of indirection to the architecture. An overview of the optimal forking ar-
chitecture functionality can be found in Figure 6.4: as the main process dirties its
memory, the template still has the reference to the original clean memory.

The inherited memory can also contain process specific singletons. One can
think of things like the process id or thread manager singletons. Examples include
the twisted thread manager thinking it was running before the child process
started it and threads being managed which the child process did not own. This
unexpected behavior can all be explained as being due to inherited self reflection
of a process. This is the second reason why Figure 6.4 is set up the way it is.

This tandem of severely dangerous caveats is what ultimately led to using pro-
cess spawning instead of forking. The risk of very-hard-to-trace bugs is simply too
great.

40

Spawning

Using spawning to create a process does not offer any benefit, other than the assur-
ance that the code being run does not run into dirty inherited artifacts. The price
for this is heavy in memory usage. The Python interpreter takes 5 MB without any
additional loaded packages, when forking this would actually be 0 MB. Loading
Tribler takes about 25 MB when spawning, but only 16 MB when forking. In other
words, one buys program correctness for scalability in less powerful devices. A
typical 8 GB RAM machine will be dropped down from 500 instances of Tribler
to only 320 instances. This is a 36% decrease in the maximum amount of runnable
processes.

Another disadvantage of spawning is that it requires self reflection on the execut-
able of the application. This is problematic as Tribler can be run in three different
ways:

1. Runnable script

2. Python interpreter with script argument

3. Compiled into executable

This means that for scalable code, every distribution will have to be hard-coded
into the source, to run a different child executable. This is because the command
line invocation of each of these options is different, with different execution paths,
different executable paths, different environments and so on. This greatly complic-
ates finding the child executable.

There is however one (and only one) multi-platform way to spawn child pro-
cesses: by not having a child executable. What the main executable needs is a
switch for execution as the normal application or execution as the child applica-
tion. This switch is controlled by the only safe multi-platform available variable:
a command line argument. All of the complicated platform specific things like ex-
ecutable, environment, etc. can then simply be copied from the parent executable.

Finally, note that when spawning a process there is no longer any indirection
needed, as it is when forking. Since the child’s memory is clean anyway, the main
process can simply invoke a spawn, regardless of the state of its own memory.

6.2.4 Optimized architecture cut

When performing the architectural cut in Tribler, the project team’s requirements
were clear. There would be no cutting in the any of the Tribler functionality which
does not concern the encryption and/or decryption. Furthermore the TunnelCom-
munity itself should remain unscathed. This was very valuable input for construct-
ing the component graph of Tribler, to perform the optimal architecture cut on. It
allows for making a much more manageable component graph. Do note that a key
observation in making this possible at all was the soft coupling of the Session class.

41

In fact, the component graph is equal to the one presented in Figure 6.3. Be-
cause there is only cutting edge between the TunnelCommunity and the Tribler
communities component, this is always part of the optimal cut. The only cutting
choice to be made for an optimal cut, was to either include the Socks5Server class
in the parallelization or not. In other words, is the cut made between the Session
component and the Socks5Server or is the cut performed between the Socks5Server
and the HiddenCommunity. To adhere to the cutting method we have to find out
which of the data streams is the largest, for the optimal cut. In this case we can
derive the inequality for the message stream sizes without attaching profilers to the
application, which saves time. To do this we must inspect the source code of the
Socks5Server, which we will spend the remainder of this subsection on.

The Socks5Server class

The Socks5Server class is a local listen server using the SOCKS5 protocol[74]. It
accepts UDP connections, which originate from the libtorrent library used
by the Session component. What the class accepts are CONNECT, BIND and
ASSOCIATE requests. When UDP datagrams are received by the Socks5Server it
will choose a circuit from the TunnelCommunity and then call the tunnel data()
method on the chosen Circuit object. When a response is sent over the circuit it
will be delivered by the TunnelCommunity to the Socks5Server through the
on incoming from tunnel() method. This will, in turn, be forwarded back
to the libtorrent library in the Session component.

Viewing these interactions abstractly, there is a strictly larger message flow
between the Session component and the Socks5Server, than there is between the
Socks5Server and the TunnelCommunity. The data flow between the former pair
consists of both UDP connection messages and UDP wrapped data payload, the
flow between the latter just consists of the data payload. Thusly, without meas-
uring the actual flow, we can conclude that the flow between the Socks5Server
and the TunnelCommunity is smaller than the message flow between the Session
component and the Socks5Server. This means that the optimal cut is between the
Socks5Server and the TunnelCommunity. The final architectural cut is shown in
Figure 6.5.

6.2.5 Dynamic worker pool

To allow for scaling behavior and to switch between testing forking and spawning
(results discussed in subsection 6.2.3) a process manager has been implemented.
This process manager follows the worker pool pattern (also known as the master-
worker pattern), as this is know to allow for fine tuning in parallelization[75]. As
far as the data flow is concerned this is merely a decorator of the flow in the archi-
tectural cut.

This is a very practical and important bit of in-between code though. It allows for
transparent fault recovery and process management. Furthermore, this can define

42

Tribler

Communities Session

TunnelCommunity

HiddenTunnelCommunity

Socks5Server

Main Process

Child Process

Figure 6.5: TunnelCommunity-centric architecture cut

scaling behavior according to Operating System based measures (such as number
of cores and current utilization) and programmer inputs (such as required amount
of Tor-like circuits).

Lastly, by implementing this abstraction for the main process, it allows for the
multi-core components to change. What this means is that part of the architecture
could be offloaded to distributed child processes instead of (just) local processes.
This is a way of both future proofing the application and improving maintainability
and extensibility.

6.2.6 Message passing interfaces

As mentioned in section 4.3, all of the communication between the main process
and each of the child processes should flow through 3 streams: the control, the data
and the exit streams. These flows are bidirectional by conception, but have been
implemented unidirectional for simplicity of the line protocol and to conform to
the unidirectionality of the stdin, stdout, stderr standard streams. The re-
mainder of this sections will describe the low level message passing API as viewed
from the main process and a child process. Also, the shared remote procedure call
construct will be discussed.

43

Low-level Views

From the main process’s point of view, a pool of ChildProcess objects is managed.
Such a child process has a process id (assigned by the Operating System) and read
and write capabilities to the std, control, data and exit streams. Creation of child
processes is handled by the twisted library, which is multi-platform and has
built in support for custom file descriptors. Child processes can be requested to
exit and force-exited if necessary from this view.

From the child process’s point of view there only exists one process, the main
process. The child process is responsible for exiting itself when requested. Be-
cause there is no (at the time of writing) framework or library for listening on file
descriptor streams, this had to be implemented from scratch for the child processes.

Generic RPCs

As identified early on, control messages are almost always in the form of a re-
mote procedure call (RPC). Which is to say that they request execution of a remote
method and expect a response. This led to a standardized RPC abstract class to
separate concerns in the design. This also allows for better testability of the frame-
work.

The RPC calls are implemented asynchronously using unique local identifiers.
Ergo, the control flow for a message is restored when a response has been received.
This is done by using the twisted threading library, conforming to the rest of the
Tribler project.

In total the entire control message flow can be captured in 6 calls (reported here
as they are defined in the code). These are the following, of which the first half are
RPC calls from the main process to a child process and the latter half are RPC calls
from a child process to the main process:

• RPC CREATE: Set-up the child’s TunnelCommunity

• RPC MONITOR: Hidden services hash monitoring

• RPC CIRCUIT: Try creating a circuit

• RPC SYNC: Synchronize a shared object

• RPC CIRDEAD: Forward that a circuit has died

• RPC NOTIFY: Forward a generic notification from the child

These calls mostly speak for themselves, except for the synchronization of shared
objects. What is done here is the forwarding of a change frame to the main process
for visualization in the Graphical User Interface. This change frame is constructed
by taking the shared objects (circuits and hops in the circuits) and monitoring the
variable access to these objects. Once a variable has been changed/is dirty, it will
be sent in a change frame. This change frame is sent periodically (by default,

44

every 5 seconds). This keeps the amount of calls and the amount of shared data to
a minimum.

High-level Views

To separate concerns there is a functionality level built on top of the low-level views
to provide functionality specific to management of a remote TunnelCommunity.
Here the main view processes generic notifications, forwards synchronization calls,
processes circuit deaths and hands over circuit return data to the main process’s
TunnelCommunity.

The child process, in this high-level view, is responsible for delivering data to its
locally managed TunnelCommunity and sending data responses back to the parent
over the data stream. The child process handles creation of the local TunnelCom-
munity, discovering peers interested in a certain torrent hash and circuit creation.
All of the generated events are passed on to the main process, for visualization and
high-level management. For all intents and purposes though, the child process is
completely autonomous.

6.2.7 TunnelCommunity proxy class

Even though the design could function as it stands, another level of indirection
has been added in the implementation. This is done to make the multi-core and
the single-core architectures completely interchangeable according to the under-
lying hardware in the system. A proxy class for the TunnelCommunity has been
implemented for the main process, providing the exact same functionality. This
decorator is called the PooledTunnelCommunity.

This may seem useless, but becomes rather important when considering trivial
variable access. Classes may contain static functions or attributes which can be
predicted within the local process. For instance when dealing with circuits one
may use a circuit id which was last updated several seconds ago. If the circuit no
longer exists, which will happen rarely, data can be forwarded to the next available
circuit as needed. This circumvents having to use aggressive circuit management,
which could even also suffer the same problem.

45

6.3 Multi-Core Homomorphic Cryptography

The goal of this section is to provide a sufficiently fast cryptographic protocol
design, such that it is feasible to execute in JavaScript (ergo in software). To
provide a comprehensive list of parallelizations of the additive SHP construction
however, this section will supply both a hardware and software parallel implement-
ation scheme.

6.3.1 Hardware parallelism

The first implementation which will be discussed, is a hardware implementation.
Between the software and the hardware implementations presented here, this is the
most expensive option component-wise. The hardware implementation also has
the highest possible parallelization speedup and is (potentially) more secure than
the software variant.

The means by which a hardware implementation can be more secure than a soft-
ware implementation, is by utilization of true random number generation hardware
(quantum event-based entropy collectors). This would allow for the each of the
paths to have its own Cryptographically Secure Pseudo Random Number Gener-
ator (CSPRNG) construction mechanism, using the true random numbers gener-
ated by the dedicated hardware. By deploying multiple of these components one
can drastically outperform any software implementation, generating random num-
bers in parallel. In contrast, most software implementations depend on a single
entropy collector to generate CSPRNGs.

The one caveat, when creating a hardware design, is the set ordering of SHPs. It
has been implicitly assumed that the set ordering of an SHP is random. So, to avoid
information leakage, the created SHP set elements should be randomly permutated
before being sent over the network. Other than that the SHP construction circuit
is rather simple, requiring some form of permutation box (P-box) to facilitate this
behavior, two subtraction units and a summation unit.

The high-level circuit overview can be found in Figure 6.6, where R is a secure
random number generator. Note that this overview is bit space agnostic. Further-
more, note that number generation as prescribed in Definition 5.2 has not been
explicitly shown in this image, but rather has been made part of the secure random
number generator black box Rk−1.

In respect to the runtime complexity over channel count k, all of the opera-
tions in this circuit are O(1), except for the summation which is O(log(k)). One
could also consider the bitspace n as a variable. For the subtraction units, carry-
lookahead adders can be used, these have a runtime complexity of O(log(n)). For
the summation unit, a carry-save adder can be used, which has a runtime com-
plexity of O(log(k) + log(n+ log(k))) (Wallace tree method). The P-box would
at most (using random permutations) be O(log(n)). This makes the aggregated
runtime complexity of the circuit O(log(k) + log(n+ log(k))).

46

R1 · · · Rk−2 Rk−1 M

• −

−
∑

•◦•

P-box

Figure 6.6: Hardware additive SHP construction circuit

6.3.2 Worker pool model

In software implementations, one often suffers enormous overheads using inter
thread communication. This is especially true in JavaScript, where the amount
of threads has also been limited (to 20). In non-web applications one might be
able to offload to a machine’s graphics card, although this also requires (relatively)
expensive copy-to and copy-from operations (bumping up the runtime complexity
from O(log(kn)) to O(kn)).

So, instead of simulating the parallelism of Figure 6.6, one captures this in its
entirety using the Ri values as additional inputs and offloads it to a worker thread.
This is still efficient, as multiple messages are usually sent between nodes in the
network. Do note that a worker thread does not generate its own randomness. This
is because operating system delivered CSPRNGs will (forcibly) have to be recycled
after so many values have been generated for security reasons.

The actual logic per worker thread was implemented as shown in Algorithm 2.
Here k is the amount of available channels, n is the message bitspace, M is the
message to be encrypted and the random() functions produces a CSPRNG output
value r such that r 6= M and r ∼ U [1, n〉. Instead of costly resampling as specified
by Definition 5.2, the random function can be efficiently calculated as follows:

random(M) =

(
(x, y) 7→

{
x, if x < y

x+ 1, otherwise

)
(r,M), where r ∈ U [1, n−2]

Note that this also allows for the precalculation of the k−1 random values required
for each worker.

47

Algorithm 2 SHP construction for JavaScript
output← new Array of size k
sum← 0
for i← 0, k − 3 do

r ← random(M) mod n
sum← (sum+ r) mod n
output[i]← r

end for
r ← random(M) mod n
output[k − 2]← (n+ r − sum) mod n
output[k − 1]← (n− r +M) mod n
return output

(a) Original ↔ (b) Output 1 (c) Output 2

Figure 6.7: JavaScript color space SHP

The implementation presented in the open-source reference uses Algorithm 2 to
encrypt image color data, which consists of byte values. This means that it uses an
n value of 256 per color channel. An example of the output this generates for a k
value of 2 and a message count of 30000 (3 × 100 × 100) is given in Figure 6.7.
This output can then later be transformed back into the original image by adding the
output values together mod n, which is much less impressive but also available in
multi-core JavaScript.

48

Chapter 7

Experiments and Results

This chapter will discuss the experiments with the implementation as discussed in
chapter 6. This chapter will also present the results of these experiments. These
experiments will usually use Tribler’s Gumby experiment framework to gather its
results. This framework is made for large scale experiments and is therefore very
suitable for a performance analysis of the given implementation.

The rest of this chapter will be structured as follows. First section 7.1 will lay out
the experiments done with the message serialization, as described in section 6.1.
Lastly, in section 7.2 and section 7.3 the experiments and results for the multi-core
architecture implementation, as described in section 6.2, will be presented.

7.1 Serialization

Testing of the serialization implementation came in two flavors. First a lot of unit
tests were added to the existing suites, providing just under a 25% increase in class
coverage (line and statement coverage). Second, a large scale experiment was
conducted, with profiling attached, to judge overall performance.

The first results from the unit tests showed a slight, but no significant perform-
ance benefit in the running time of the unit tests. The rest of this section will be
devoted to the second experiment, also known as the AllChannel experiment.

7.1.1 The AllChannel Experiment

The AllChannel experiment involves running the Triber AllChannel community on
1000 Tribler instances, using 20 nodes. This is a default experiment shipped with
the Gumby package. The nodes in this experiment are managed by the Distributed
ASCI Supercomputer 5 (DAS5) server cluster on a single physical venue.

The AllChannel community itself is responsible for sharing channels between
peers. Each of these channels form their own community, a ChannelCommunity.
In turn, each of these channels share torrent files, playlists, moderations, comments
and modifications. To provide load in the experiment, a single node publishes

49

torrent files in the experiment. At the start of the experiment this node publishes
497 torrent messages and will keep publishing 1 through 4 torrent messages for the
following 150 seconds. The scenario is actually written for 3000 seconds, but this
is to limit the system load. On another side note, the actual running time of the
experiment is 350 seconds, but only 150 seconds remain for the actual scenario to
run after set-up.

This test has been rewritten to allow for switching between the communities
using serialization (BaseCommunity architecture) and all of the communities not
using serialization. This allows for performance to be compared between the two
implementations. The Gumby framework automatically collects data like RAM
and CPU usage and Dispersy message synchronization statistics.

7.1.2 Results

The first notable result of the new communities is that they require more RAM
to be run by the application. However, this is a logical consequence of loading
Google’s protobuf library. A more interesting difference was in CPU consump-
tion between the two implementations.

To explain these results the difference between the two CPU measures provided
by Gumby must be explained. These are utime and stime. The utime measures
the amount of time spent by a process being run in user space. One can think
of the utime as the regular execution time of the process, being spent executing
calculations on registers and RAM. In contrast, the stime measures the time spent
by a process being run in kernel space. This means that this is the accumulation
of time spent by the process handling Operating System level operations like disk
I/O or interrupts. Both the utime and the stime are reported in hundreds of jiffies,
which, for ease of explanation, we will refer to as simply the time units. A jiffy is
actually one clock cycle of the CPU (so the clock frequency in Hertz of a machine
is the amount of jiffies in a second).

Both of the results of this experiment, which are presented in this section, have
two graphs. One is the node (machine) aggregated CPU consumption, this is the
top graph. This is the average of 50 processes running on the node. The bottom
graph displays the results per process: this is useful for discovering excessive load
on a single process.

Utime

First we will discuss the CPU time spent on user code, as presented in Figure 7.1.
Chronologically, the first thing to take note of, for the user code, is the CPU time
utilized by the initiating process. It can be observed that the CPU time spike for
the initiating process in Figure 7.1b is much higher than the CPU time spike for
the same process in Figure 7.1a (roughly 0.3 versus 0.1 units, in the per-process
bottom-half graph). What this is telling of, is a much higher cost in CPU time for
serialization of messages using the Protocol Buffers in comparison to the struct

50

(a) Old (struct) serialization

(b) New Protocol Buffers serialization

Figure 7.1: User code CPU times (utime)

51

packing. This is also logical, as the struct library does not perform any byte
packing, whereas the Protocol Buffers library does.

The second thing one notices, when looking at the cumulative CPU time usage
per node (which are the upper-half graphs), is the enormous difference in CPU
usage behavior. This phenomenon can be explained by two factors: the packing
versus unpacking speeds of Protocol Buffers and the CPU scaling behavior as laid
out in subsection 3.1.2.

The Protocol Buffers packing/serialization speed is much lower than the struct
packing speed. This causes larger CPU usage spikes when packing messages, as
shown by the higher CPU usage of the initiating process. As the initial batch of
messages is shared with the first neighboring processes, Figure 7.1b also shows a
bigger spike in the overall node CPU usage. This reactive spike to the first batch
of messages is hardly visible in the old struct packing of Figure 7.1a.

After this initial reactionary spike, the byte stuffing phenomenon from subsec-
tion 3.1.2 really starts influencing CPU usage. To reiterate, this phenomenon en-
tailed that as the input buffers are saturated, the packing and unpacking time mat-
ter less than the message size reduction. This has the dramatic effect of a CPU
usage reduction of about 65% under high network load. This is in the range of the
aforementioned research, which found 59% and 90% decreases in CPU time (see
chapter 3).

Stime

The next thing to look at is the CPU usage from system code, as presented in
Figure 7.2. One can observe that the Protocol Buffers implementation (see Fig-
ure 7.2b) has a slight increase in usage at the first reactionary message serializa-
tion. This usage stabilizes at around 0.1 time units. This reactionary spike is (once
again) all but invisible in the struct packing approach (see Figure 7.2a). The
struct packing does peak higher when the network comes under load though.
This is likely due to the utime CPU usage, causing the Operating System to inter-
rupt more to free up CPU for process switching.

52

(a) Old (struct) serialization

(b) New Protocol Buffers serialization

Figure 7.2: System code CPU times (stime)

53

7.2 Architectural split

For the architectural split testing, a Gumby experiment was created. This exper-
iment was performed on a 48-core 64 GB RAM server with a 1 GBps network
adapter. Only local nodes were used (exit nodes, relay nodes, downloaders and
seeders), isolating it from interaction with the Internet.

A 100 MB file was used per file transfer in the experiment, which provided sev-
eral dozens of seconds of download time per transfer. This is almost the exact
same setup as has been used by Ruigrok[17], with the exception of the file be-
ing transferred. In the experiment of this thesis the file was seeded with random
bytes, in Ruigrok’s case the file was filled with 0-byte values. The next subsection
will discuss the exact experiment setup and will be followed by the results of the
experiment.

7.2.1 Experiment setup

The experiment consisted of the following nodes:

• 1 Node with the new implementation running 16 workers/processes

• 1 Node with the new implementation running 32 workers/processes

• 1 Node with the new implementation running 48 workers/processes

• 4 Nodes seeding the random file

• 9 Nodes available for exiting the data in a circuit (candidate exit nodes),
using the old single-core architecture

In the experiment the 4 seeders and 9 candidate exit nodes were statically present.
The 3 downloading nodes with different amounts of workers were only loaded and
utilized when a file transfer was initiated. After this they were unloaded as to not
interfere with each other. This allowed for multiple file transfers within the same
run of the experiment. Each file transfer was allocated 300 seconds to complete.

Early results showed that an abundance of seeders and exit nodes was beneficial
for the download speeds. However, this also proved too much to handle for the
experiment server. In fact, the multi-core implementation turned out to utilize so
many resources the machine required a physical reset.

7.2.2 Download speed

In Figure 7.3 the download speeds (in KiBps) are presented for the nodes running
16, 32 and 48 processes during a typical experiment. One can observe two behavi-
ors in these results:

1. Download speed increases as the number of processes increases

54

Figure 7.3: Download speeds for differing amounts of processes

2. Stability of the download decreases as the number of processes increases

These behaviors are noteworthy because behavior 2 is not in line with research
conducted for multipath TCP, which suggests download speeds should become
more stable and (at least) not slower when more paths are introduced[76].

Additional testing in both clinical environments and using the wild internet have
however shown that this behavior stems from a shortage of seeding nodes. The
unstable nature of the download speed seems to stem from the attention of too few
seeders being divided over multiple downloaders (which are actually the multiple
exit nodes used by the same downloader). In section 7.3 an experiment will be
presented using the wild internet, showing this is indeed the case.

As a final note one might observe the slow download speed (roughly 0.9 Mbps)
in this experiment. This is mostly due to the fact that the exit nodes are running the
old architecture and the lack of seeders. Using a multitude of seeders, download
speeds have been observed of 2.4 Mbps in the wild internet. Download speeds have
been observed up to 18 Mbps (once under favorable conditions) when exit nodes
also run the new multi-core architecture.

55

7.3 Architectural split in the wild

The wild internet was also utilized in the testing of the architectural split, to al-
leviate the bounds of isolated experiment execution as explained in the previous
subsection. Experiments were performed on a 3.50 GHz quad core, 32 GB RAM
physical machine with a 1 Gbps network adapter and Cat 6 Ethernet cabling. A
fairly regular (slightly higher end) consumer machine. To control the available
physical cores for testing, a virtual machine environment was used. The loaded
Operating System on the virtual machine was Ubuntu 15.10.

Measurements are all based on 8 separate 2 minute runs using the same para-
meters. This was done to minimize the risk of ‘getting lucky’ when finding peers
sharing a file. Some peers have higher bandwidth allocation than others, causing
some peer selections to be more beneficial than others when testing. Overall these
measurements spanned just over 20 hours (due to the author requiring sleep this
was split up into one 14 hour and one 6 hour session). The experiment setup will
be discussed in more detail in the following subsection, followed by the results of
the experiments.

7.3.1 Experiment setup

For each of the measurements the procedure was as follows:

1. Remove existing Tribler settings and downloads

2. Start Tribler and initiate the designated download

3. Once the download has initiated its circuits and starts downloading, start
measuring

4. After 2 minutes of downloading, stop measuring

Removal of Tribler settings was not strictly mandatory, but this was a convenient
way to make sure the newly set defaults concerning the amount of processes used,
were used by Tribler. Removal of downloads was done to make sure that chunks
of the file with higher availability in the torrent swarm would persist for each ex-
periment. In other words, if a highly available piece of a file has been downloaded
by one experiment, the other experiment will be at a disadvantage, as other pieces
of the file are not so easy to get.

To make sure that all experiments had equal opportunity to download, a single
well-seeded file was selected. This selection consisted of using the most popular
torrent tracker and selecting the most well seeded file. All experiments used this
same file to download. The file remained seeded relatively the same throughout
the experiment. The amount of seeders remained between 7150 and 7724 the en-
tire time (mean: 7528.4, median: 7551). The amount of seeders was logged every
30 minutes, based on tracker info. Accuracy of these returned values may be ques-
tioned as several of the same values have been reported by the tracker (intuitively

56

the chance of 7544 seeders occurring 3 times in this process is rather low). At any
rate, the actual number is not that important, as only a selection of 40 to 50 peers
will be connected to each experiment.

Since it is already known that spawning more processes incurs more overhead,
the measurements were only started when Tribler had created its required circuits.
Application performance during circuit setup will remain outside of the scope of
this thesis. This makes sure only the downloading portion of the application is
tested. The downloading portion is the high throughput context this thesis aims to
address.

Lastly, to collect the data presented in this thesis, every 1 second the aggregated
CPU utilization percentage (over all cores) and the current download speed of the
file were collected. For a 2 minute run this means that 120 data points were collec-
ted. This was done for virtual machines with full access to 1, 2, 3 and 4 3.5 GHz
cores. The tested implementations were:

• 1 Child process multi-core architecture

• 2 Child process multi-core architecture

• 3 Child process multi-core architecture

• 4 Child process multi-core architecture

• The old single-core architecture

Each of these children (and the single-core architecture) was running the Tribler
default of 4 circuits. So the applications for 1 through 4 processes had 4, 8, 12 and
16 circuits available respectively. Applications were also allowed to grow beyond
this at runtime, up to double of the amount of circuits required before starting the
download. This is also default behavior in Tribler.

Finally, results have been filtered to strip measurements with either 0% CPU
utilization or 0 KBps download speed. Overall this resulted in 18719 out of 21600
theoretical data points remaining. This means that 87% of the collected measure-
ments were useful to this experiment. For easy viewing, this data will be presented
throughout the rest of this section in box-and-whisker plots The rest of this sec-
tion will also refer to the “X child process multi-core architecture” simply as an x
workers process and the “old single-core architecture” as the old worker.

7.3.2 Download speed

The acquired results in terms of download speed are been presented in Figure 7.4.
Overall there are no significant differences in download speed, except for the 3
worker process on 2 cores (see Figure 7.4b) and the 2 worker process on 3 cores
(see Figure 7.4c). What seems to have happened is that, even though measures
were taken to prevent single experiments using high-speed peers, the overall speed

57

●

●

●
●

●

●
●

●●●

●

●

●

●

●●
●
●

●
●

●

●
●

●
●

●

●

●●●●●

●

●
●●
●

●

●

●
●

●

●

●
●●

●
●●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●
●●
●

●
●●
●

●

●
●

●

●

●
●

●

●

●

●●●●
●
●●
●
●●●

●
●
●
●

●●
●
●●
●

●

●●

●

●

●
●●●●●●
●
●
●●

●●●●●
●●●
●●●●●●●
●
●
●
●●●●●●

●

●

●
●

●

●●

●

●●

●

●
●
●●●●●

●

●
●

●
●●

●

●

●

●

●

●
●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●
●
●

●
●

●
●●
●

●

●

●

●

●
●
●●●●●
●

●●

●

●●●●●
●

●
●

●

●
●
●●●●
●

●

●●●
●

●
●●

●

●
●
●
●●●●●●●

●

●●

●●
●

●
●
●

●
●

●

●

●
●
●
●

●

●
●
●

●
●
●●●●
●
●

●●●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●

●●
●

●●
●●
●

●

●

●

●

●
●●
●●●●●●
●

●●
●
●
●

●
●
●
●●
●

●
●

1 2 3 4 old

0
20

0
40

0
60

0
80

0
10

00

Workers

D
ow

nl
oa

d
sp

ee
d

(K
b/

s)

(a) 1 Physical Core

●●●●
●

●
●

●●●

●

●
●●●

●

●

●

●

●
●
●
●●

●●

●
●●
●●●
●●

●

●
●
●●

●●

●

●
●
●

●●●

●
●
●
●
●

●

●
●●●●●

●
●●
●●
●●
●●

●
●●●

●●
●
●
●●
●

●

●
●

●

●

●

●
●

●

●
●
●
●
●
●●●●

●●●●●●●
●

●

●

●●

●
●

●

●

●
●
●
●●

●

●

●

●
●

●
●●
●

●
●
●
●

●

●

●●●
●
●●

●

●

●●●
●
●
●

●

●

●●●
●
●●●●●●●
●●●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●
●

●

●
●

●●
●
●
●●●
●●●
●●

●

●

●●

●
●●●
●
●
●●
●●

●

●●
●
●●

●●
●●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●
●
●
●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●
●

●

●

●
●●
●

●●

●
●

●

●●

●

●●

●
●

●
●●

●

●

●●

●
●
●
●

●
●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●●
●
●

1 2 3 4 old

0
20

0
40

0
60

0
80

0
10

00

Workers

D
ow

nl
oa

d
sp

ee
d

(K
b/

s)

(b) 2 Physical Cores

●
●
●
●
●

●●●●
●●
●●

●

●

●●
●●
●●
●

●●●●

●
●
●

●

●●
●●
●●●
●

●

●

●●
●●

●
●●●
●
●

●

●
●

●
●
●

●

●
●
●

●●

●
●
●
●
●●

●●●●
●

●
●

●●

●

●
●
●

●
●
●●
●●
●●

●

●

●
●

●
●●●●
●●
●

●●
●●
●
●

●
●●
●

●●

●
●

●●●
●
●●●
●
●
●●
●
●●

●●
●●●●●
●
●

●
●

●●

●●

●
●●
●
●
●●●
●

●

●●●
●●

●

●
●
●
●
●
●
●●
●●●●●●●
●

●
●
●
●●●●●●●●
●●●●●●●
●
●●●●●●●
●
●
●●
●●●●
●●●●●●●●
●

●

●●
●
●●●
●●●
●●●●
●●
●
●
●
●
●
●
●
●
●
●●●●●
●●
●
●

●

●
●
●●●●

●

●

●

●

●
●

●

●
●

●
●●
●●
●●●
●●
●
●

●
●

●

●

●

●

●

●
●

●

●
●
●
●
●●

●
●
●
●

●
●●
●
●●●●
●●●
●
●
●
●

●●
●

●

●●●
●

●●●●●
●

●

●●

●
●

●
●

●
●●
●●

●

●
●●

●●●

●

●

●
●

●●
●

●

●
●●
●
●
●●

●

●
●
●
●

●
●

●

●

●

●

●●●●
●

●
●
●
●
●
●
●●
●

●

●

●●●●
●●
●
●
●
●●●
●
●

●●

●●●
●

●●●●●
●
●
●●●●●
●●●●●●●●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●
●●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●●●
●
●●●●●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●
●●

●

●

●

●
●●
●

●
●
●

1 2 3 4 old

0
20

0
40

0
60

0
80

0
10

00

Workers

D
ow

nl
oa

d
sp

ee
d

(K
b/

s)

(c) 3 Physical Cores

●

●

●

●●
●

●
●

●

●
●
●
●
●

●
●

●

●

●●

●
●●

●

●
●

●
●
●
●

●

●

●●

●●
●
●
●

●
●

●

●

●

●

●

● ●
●●
●●

●
●●

●●

●●

●●
●
●

●
●●●

●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●

●●
●●●
●
●

●●

●
●●

●
●●●

●
●●
●
●

●
●
●

●

●

●
●●●
●
●

●

●

●
●
●

●
●

●

●

●

●●

●●●
●
●●
●
●
●

●

●

●●
●●●
●
●●●
●●
●
●●●●
●
●

●

●
●●●
●●●●●

●
●

●

●●

●

●●
●

●

●
●

●

●●
●

●
●

●
●
●

●
●●
●
●

●
●●
●

●

●

●

●

●
●●●

●

●

●
●
●●
●●
●●●
●

●●●
●

●●
●
●●

●
●

●
●
●●●
●●
●
●●

●
●●
●●

●●

1 2 3 4 old

0
20

0
40

0
60

0
80

0
10

00

Workers

D
ow

nl
oa

d
sp

ee
d

(K
b/

s)

(d) 4 Physical Cores

Figure 7.4: Download speeds versus amount of workers

58

of the entire connected peer swarm was lower. This was not taken into account
when designing the experiment.

Even though the mean value of the downloads speeds for a higher worker and
higher physical core count seems to be prevalent, the fact that they are not univer-
sally significantly faster was a surprise. For instance, the 3 worker 4 core experi-
ment only has a p-value of 0.2892 for having a higher download speed than the old
worker 4 core experiment. That said, the is one significant speedup: the 4 worker
4 core experiment does achieve a statistically significantly higher download speed
than the old worker 4 core experiment (with a p-value of 1.445×10−14). Note that
the reported p-values were calculated using Welch’s t-test, thus the p-value reports
the chance of equality of the datasets’ means.

A final observation from Figure 7.4 is that, as the amount of cores increases, the
(absolute) amount of data points which are higher in download speed than the box’s
whisker decrease. In other words, the download speed becomes more predictable,
or stable if you will. This is in line with multipath communications research for
TCP, suggesting a more stable connection when more paths are used[76]. The
paths in this experiment are equivalent to the circuits used.

7.3.3 CPU consumption

CPU utilization has been plotted in Figure 7.5. Note that the values in these graphs
are in respect to the total CPU “power” available. Thusly it makes sense that as the
amount of cores increases, the overall CPU usage lowers for the same experiments,
as can be observed from the graphs.

From Figure 7.5a we can see that the core utilization is scaling as expected. The
higher the amount of processes utilized, the higher the CPU utilization is. This
leads up to the 4 worker 1 core scenario, where the whisker of the box plot is even
touching the 100% mark. We also observe the expected behavior of the old worker,
for which the CPU utilization drop proportionally as the amount of core increases.
This is due to the fact that the old worker only uses a single core.

Interpreting Figure 7.5d we can determine the (median based) overhead costs of
the 1 through 4 worker scenarios compared to the old worker scenario. These are
22.0%, 42.4%, 79.7% and 62.7%. This is interesting, as the amount of circuits is
respectively 4, 8, 12 and 16 compared to the 4 of the old worker. In terms of scalab-
ility this would be a great result. This is also however, a bit unfair, as the amount of
data passing through each of these applications differs (recall Figure 7.4). There-
fore, in the next subsection we will look at a more fair metric.

59

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

1 2 3 4 old

20
40

60
80

10
0

Workers

C
P

U
 U

til
iz

at
io

n
(%

)

(a) 1 Physical Core

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●
●
●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●

●
●
●
●

●

●

●
●●
●

●

●
●●

●

●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●

●●
●●
●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

1 2 3 4 old

0
20

40
60

80
10

0

Workers

C
P

U
 U

til
iz

at
io

n
(%

)

(b) 2 Physical Cores

●
●●●

●
●

●
●●

●

●

●
●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●●

●

●●

●
●
●

●

●

●
●
●●

●
●

●

●●

●

●●

●●
●●
●
●
●●●
●●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●
●
●●
●
●

●

●
●

●

●

●●
●●●

●

●
●

●●●
●

●●

●

●

●
●

●
●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●
●
●●
●●●

●

●

●

●

●●

●●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

● ●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

1 2 3 4 old

0
20

40
60

80
10

0

Workers

C
P

U
 U

til
iz

at
io

n
(%

)

(c) 3 Physical Cores

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●
●
●

●

●
●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●
●
●

●

●

●
●

●

●●
●

●

●●
●●
●

●

●

●

●

●

●

●

1 2 3 4 old

0
20

40
60

80
10

0

Workers

C
P

U
 U

til
iz

at
io

n
(%

)

(d) 4 Physical Cores

Figure 7.5: CPU Utilization versus amount of workers

60

7.3.4 Efficiency

In an effort to alleviate the differences in download speed, we will also present
the efficiency of the implementation. The efficiency can be described as the effort
(CPU consumption) divided by the workload (download speed). Judging by the
scaling behavior of Figure 7.5 we can assume the relation to be more or less linear.
The results of this metric are presented in Figure 7.6: note the difference in y
scales between the sub-figures. An important note here is that the CPU utilization
per KB/s is given as it occurred at a certain time in the experiment, it is not a post-
experiment calculation using the previously presented data. In other words, these
are the unique (CPU utilization, download speed) pairs as they occurred for the
5 different scenarios.

As previously noted, the download speeds for the 3 worker 2 cores and the 2
worker 3 cores scenarios were uncharacteristically low. We see the same in Fig-
ure 7.6b and Figure 7.6c, where the variance and median of both are very high.

Since the 4 core scenarios do not suffer from CPU choking or lowered swarm
bandwidth, we will once again perform our median analysis on these. We now see
a −5.9%, −7.2%, −17.6% and 10.9% increase in median utilization of the 1, 2, 3
and 4 worker scenarios compared to the old worker. So in comparison, the multi-
core architecture (75% of the time) actually uses less CPU per kilobyte delivered
per second.

It is unclear what causes this dip in performance of the 4 worker experiment
compared to the 1, 2 and 3 worker experiments. One of two things may be hap-
pening here. The first option is that the measurements were simply unlucky. In
this case further research should be done with larger data sets and/or more workers
and processors. The second option is that this is a turning point in performance. In
other words, this could be the point where the overhead of extra processes becomes
more than the CPU gain from parallelization. In this case further research should
use more processors in experiments. Note that this turning point is expected at
some point due to Amdahl’s law.

61

●
●

●
●●

●

●
●

●

●●●
●

●

●●

●

●●●

●

●●
●●

●●
●
●

●

●●●
●●
●

●
●
●
●
●●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●●
●

●

●
●
●

●●

●

●

●
●
●

●●
●

●●
●

●

●

●●
●
●
●

●●●●

●

●

●

●●●●
●
●●●●
●●
●●●
●

●

●●●●

●
●
●●

●

●

●●

●

●

●

●
●●●

●

●

●

●●●
●
●●

●
●

●

●

●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●●●
●
●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●
●
●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●●●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●
●

●●
●

●

●

●

●●

●●●
●

●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●
●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●

1 2 3 4 old

0
20

40
60

80
10

0

Workers

C
P

U
 U

til
iz

at
io

n
pe

r
K

bp
s

(%
s/

K
b)

(a) 1 Physical Core

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●
●
●
●●
●

●

●

●
●

●
●

●

●

●
●
●●

●●

●

●
●

●

●

●

●●
●●

●

●●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●●●
●●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●●
●
●

●

●

●

●●●
●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●
●
●●
●

●

●
●

●

●

●

●

●

●

●●
●●●
●●

●●
●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●
●
●

●●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●
●

●
●

●

●

●

●
●

●
●
●
●●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●●
●
●●

●

●●
●
●
●

●

●●

●

●

●

●

●

●●

●

●
●
●●●●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

1 2 3 4 old

0
10

20
30

40
50

Workers

C
P

U
 U

til
iz

at
io

n
pe

r
K

bp
s

(%
s/

K
b)

(b) 2 Physical Cores

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●●
●
●

●
●●

●
●

●

●●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●
●
●●●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●

●

●
●

●

●

●
●●
●

●

●

●

●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●
●
●●
●

●

●●
●
●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●
●●
●

●

●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●●
●

●●

●
●

●

●

●
●●
●
●
●●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●
●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●
●●●
●

●

●

●
●
●
●

●●●
●
●●
●●●
●

●
●
●

●

●

●

●

●

●

●

●●
●
●●
●●●

●
●●
●
●

●
●
●

●

●
●●

●

●
●
●●

●●

●●
●
●

●
●

●

●

●

●

●

●
●

●●●●

●

●
●

●●

●

●

1 2 3 4 old

0
5

10
15

20
25

30

Workers

C
P

U
 U

til
iz

at
io

n
pe

r
K

bp
s

(%
s/

K
b)

(c) 3 Physical Cores

●

●●

●
●
●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●●●●●●
●

●

●
●●
●
●●●

●

●
●●
●
●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●
●
●
●

●
●
●●

●

●
●
●●●●

●

●

●

●

●●●●
●●
●
●●
●●
●●●●

●

●

●

●●

●

●

●
●●●
●●
●
●
●
●

●

●

●
●

●

●

●
●
●●●●●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●●●●
●●●
●●

●

●

●

●●
●●
●

●

●
●

●

●●
●

●●
●
●

●
●

●●●●

●

●

●
●
●

●

●

●
●●
●
●

●

●

●

●●
●

●

●

●

●●●●●●●●●●
●
●
●●

●
●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●●●●●●●
●●●●
●

●

●●●●

●

●●

●

●

●

●

●
●
●●●●

●

●

●

●

●●

●

●●●●●●
●
●●●
●

●

●●
●●

●●

●●
●
●

●●

●

●
●

●

●●●
●●
●●
●●●

●

●

●
●

●

●●●
●
●

●

●●

●

●

●

●

●●
●

●

●

●

●
●
●
●
●●

●●
●

●

●
●
●●●●
●●
●
●●

●

●●●
●
●●

●

●●

●

●

●

●

●

●●●●●●●
●●●●
●●

●

●

●●

●●
●●

●

●

●

●

●
●

●

●
●
●●●

●

●

●
●
●

●
●

●

●

●●●●
●●●
●●●

●
●
●

●
●
●
●
●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●

●●●
●●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●
●
●●●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●●

●
●
●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●●●

●

●

●●
●

●

●

●

●

●

●●●
●●
●●●

●

●
●●●

●

●
●

1 2 3 4 old

0
5

10
15

20
25

Workers

C
P

U
 U

til
iz

at
io

n
pe

r
K

bp
s

(%
s/

K
b)

(d) 4 Physical Cores

Figure 7.6: CPU Utilization per Kbps versus amount of workers

62

7.4 In-Browser Anonymizing File Streaming

The SHP paper reported sub 100 microsecond encryption speeds for SHP construc-
tion of 256 bits[68]. This would be the one-time setup cost for a network topology
using 256-bit AES. Effectively, this makes it possible to switch network topologies
sub-second with AES-level throughput. In terms of security, as mentioned in the
paper, this is nice for making correlation attacks substantially more difficult. For
multipath protocols in general this also has the added benefit of intrinsically load
balancing over all of the nodes in the network.

If we compare this AES speed, which has been reported to reach up to 1 Gbps
in modern implementations[77] to the existing work of Ruigrok[17] with up to 2
Mbps and up to 18 Mbps (once under favorable conditions) in this thesis, one can
quickly conclude that this is a very promising approach.

To provide an answer to how far this new approach can be pushed, this thesis has
explored the use of this technology for deployment in today’s status quo: the web
application. Whereas the SHP paper’s results were generated using Java, this thesis
has created a multi-core JavaScript implementation of the additively homomorphic
SHP scheme. In effect, this led to the first in-browser anonymizing file streaming
application.

There were two key components, which are available in modern HTML5 capable
browsers, to make this application feasible. The first key component was the ex-
posure of the Operating System’s CSPRNG creation interface to Javascript, which
is a key component of additive SHP construction. The second key component was
the availability of threading (albeit that browsers limit the amount of available web
threads to 20). This allowed for the implementation of the algorithm as specified
in Algorithm 2.

The results of the SHP creation speed can be found in Figure 7.7, including
51 measurements using the same data truncated to fit different byte sizes. The
experiment has intentionally been performed with 16 channels to be comparable to
the SHP paper. Also, this experiment was performed on the same machine as the
SHP paper. However, since Javascript does not allow for microsecond measuring
the data size has been increased to be measurable on a millisecond scale.

For 32 bytes (256 bits) the Javascript implementation SHP construction finished
in 53 milliseconds. In comparison, the (non multi-threaded) Java implementation
achieved the same in 62 microseconds. This makes the Javascript version roughly
1000 times slower than the Java version.

Even though the Javscript implementation is a lot slower than the Java imple-
mentation, sub-second network topologies are still feasible. In turn this means that
an actual deployment of in-browser anonymous file streaming would have accept-
able performance. This is, however, just the anonymization layer, an actual imple-
mentation of an anonymizing file streaming technology will also need to meet the
other requirements for file streaming and peer discovery.

63

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

50

100

150

200

250

300

DataSize(bytes)

T
im

e
(m

s)

Figure 7.7: Additive split construction times for 16 channels.

64

Chapter 8

Conclusion and Future Work

This thesis has presented multiple solutions to the anonymous streaming problem.
This thesis has modeled, predicted and confirmed key architectural opportunities
for transitions to multi-core architectures for both distributed systems in general
and anonymous file streaming applications in particular. In particular this thesis
has contributed to the architecture design of these applications by:

1. Providing a solution for message handling scalability in high throughput
contexts

2. Providing a method for scalable and performant architecture parallelization
for high throughput contexts

This provides a roadmap for applications as to how, why and what parts of the
architecture to change for optimal performance, maintainability and scalability.

Concretely, the two key components were: using message serialization with byte
stuffing (or other compression) and cutting the single-core architecture for minimal
data flow. It has been proven feasible, that one can use a custom cryptographic
protocol for substituting and/or enhancing the latter. The following sections will
provide a quick summary of these findings.

8.1 Message serialization

Other research has shown that message serialization in distributed systems was
wildly effective, with application CPU load being decreased by 59% through 90%.
What has thus far been outside of the scope of scientific inquiry is why this is so
wildly effective. This thesis has presented the compression (or packing) by byte-
stuffing in input saturated systems to be the cause of this speedup.

In a normal sterile environment it has been shown that the speedup condition
for message serialization is hard to satisfy. Scanning over a message and sending
it, is also intuitively faster than scanning over a message, compressing it, sending

65

it and decompressing it: judging sheerly by the number of steps involved. How-
ever, when the input buffer of the receiving node is emptied in parallel with the
decompression of received messages the speedup condition changes. Now it is
more easily satisfied and if the input buffer is guaranteed to be full for a significant
amount of time the speed of the compression and the decompression algorithm is
nullified.

The implementation of serialization in Tribler had to be packed into existing
structures for compatibility. It was decided that Google’s Protocol Buffers was the
best choice in terms of software compatibility, compression and format readability.
Furthermore, issues with backward compatibility were presented and a simple but
effective protocol to solve this issue.

When implemented in the Tribler platform, message serialization using Google’s
Protocol Buffers library also showed big changes. One noteworthy detail of this
was that the packing time of the messages had a CPU load which was nearly
tripled. In the end, under high load, this turned around completely, as expected.
Under maximum load, the CPU load was, instead, one fifth of the original non-
compressing implementation. In other words, this was a speedup of around 65%,
which is in line with previous research.

The other noteworthy result is the approximate 2000 lines of code which were
lost when switching to Protocol Buffers. It was found that Tribler used several cus-
tom serialization constructs which were intrinsically solved by the Protocol Buffers
Domain Specific Language use. Most importantly, the cause of this was forced du-
plicate code.

8.2 Min-cut multi-core architecture extraction

A method to create a multi-core architecture from a single-core architecture for
high throughput applications has been presented. This method involves profiling of
the application to identify an application’s component, which causes a high CPU
load. Using a minimum s,t-cut in terms of data flow, one can create an optimal
architecture with minimum overhead.

Furthermore, 3 data stream types have been identified, which will pass through
these high throughput applications. These consist of control, data and exit flows.
The data flows have been classed in terms of their Variety, Volume and Velocity
(which are terms which were borrowed from the Big Data field and are very ap-
plicable). Due to the different characteristics of each of these data flows, it has also
been determined that they should not be mixed.

The implementation of this multi-core architecture in Tribler brought several
issues to light. These can mostly be attributed to software maintainability. For
instance, the application should have a transparent architecture, instead of the non-
transparent architecture resulting from a direct cut in the architecture. This trans-
parency is not limited to improving maintainability, but also increases the scalabil-
ity. The scalability stems from the scaling control based on real-time measurements

66

which are possible in an Operating System (like current CPU load).
Another big problem in the implementation phase was the process creation. It

was determined that Tribler was too complex for the memory re-use method called
forking. Instead, spawning new processes was determined to be the only feasible
way to guarantee correct execution of the code.

Clinical trials were conducted using the multi-core implementation, showing an
increase in download speed as the amount of deployed processes increased. Due to
a relative shortage of seeding peers it was also shown, however, that the download
speed was actually more unstable than single path communication. Consequently,
when the amount of seeders was increased, the stability of a download was also
shown to increase as the amount of processes/paths increased. The latter behavior
was in line with existing research.

The results of the experiments show that there is a significant gain to be had
from using a multi-core architecture over a single-core architecture. The amount
of circuits which can be created with the same CPU utilization cost is, at least, more
than linear. What has been identified as a possible point of diminishing returns for
consumer hardware is 4 separate processes.

Future work for this architecture splitting, would be optimizing the architecture
for multiple optimization targets. This would cause not only data flow between
the target and the program entry point, but also between target components them-
selves. Especially in a distributed setting, this would offload clock cycles to other
machines, distributing the computational effort over the network. This is a prac-
tically feasible extension to the algorithm presented in this thesis, increasing the
runtime complexity to O(log2(n)), for n components in the component graph[78].

8.3 Multi-Core Cryptography

After exploring multi-core architecture extractions, a multi-core cryptography im-
plementation was examined. The utilized cryptographic protocol was cutting edge
work, with intrinsic multipath support and the capability to provide sub-second
network topologies.

This thesis has explored efficient implementations for both hardware and soft-
ware using the aforementioned cryptographic protocol. The hardware implement-
ation would be, in terms of runtime complexity, a lot faster than the software im-
plementation. However, as has been the running assumption throughout this thesis,
when multi-core hostile contexts are considered deployment of this technology will
probably use the software multi-threaded approach.

As a proof of concept for possible future applications, a web application written
in JavaScript was created and tested. It turned out that the JavaScript implementa-
tion was approximately 1000 times slower than its corresponding Java implementa-
tion. Surprisingly, the JavaScript implementation did bolster enough throughput to
still provide sub-second network topologies. This makes a future in which anonym-
izing file streaming technologies are implemented as web applications, a feasible

67

scenario.
Even though computation-wise in-browser cryptography would be feasible, some

future work remains before such an implementation could exist. One hindrance is
the fact that WebSockets only communicate data between client and server. This
means that, for a functional anonymizing file streaming application, the server
would either need to function as a proxy to the outside world or be part of a packet
switching internet overlay. So, until JavaScript is allowed to communicate with
other addresses (which is in violation of the cross-site scripting rules), the server
will be the single point of failure. In other words, if the server is compromised, all
of its clients are deanonymized. Also, apart from the functional limitations of hav-
ing to use JavaScript through a trusted proxy. There is also a JavaScript intrinsic
security issue: JavaScript is supplied by the server to the client. Even assuming this
script has not been modified on-route to the client, a client is expected to entrust
his security to the code of a server.

68

Bibliography

[1] Steve Crocker, D McMaster, and K McCloghrie. Host software. 1969.

[2] Thomas T Kwan, Robert E McGrath, and Daniel A Reed. Ncsa’s world wide
web server: Design and performance. Computer, 28(11):68–74, 1995.

[3] Phil Benson. The Discourse of YouTube: Multimodal Text in a Global Con-
text. Routledge, 2016.

[4] Twitch. Twitch 2015 retrospective. 2016. Available at: https://www.
twitch.tv/year/2015. Accessed November 3, 2016.

[5] Josh James. Data never sleeps 4.0. 2016. Available at: https://www.
domo.com/blog/data-never-sleeps-4-0/. Accessed November
3, 2016.

[6] Max Rothschild. Corporate cyber-censorship: The problems with freedom of
expression online. Canadian Journal of Law and Technology, 11(1), 2015.

[7] Philip Di Salvo. Strategies of circulation restriction in whistleblowing: the
pentagon papers, wikileaks and snowden cases. TECNOSCIENZA: Italian
Journal of Science & Technology Studies, 7(1):67–86, 2016.

[8] Annemarie Bridy. Internet payment blockades. Fla. L. Rev., 67:1523, 2015.

[9] Mathew Ingram. Facebook’s censorship of palestinian journalists raises ser-
ious questions. 2016. Available at: http://fortune.com/2016/09/
28/facebook-censorship-palestinian/. Accessed November 3,
2016.

[10] Rima S Tanash, Zhouhan Chen, Tanmay Thakur, Dan S Wallach, and Devika
Subramanian. Known unknowns: An analysis of twitter censorship in tur-
key. In Proceedings of the 14th ACM Workshop on Privacy in the Electronic
Society, pages 11–20. ACM, 2015.

[11] Marjorie Heins. Brave new world of social media censorship, the. Harv. L.
Rev. F., 127:325, 2013.

69

https://www.twitch.tv/year/2015
https://www.twitch.tv/year/2015
https://www.domo.com/blog/data-never-sleeps-4-0/
https://www.domo.com/blog/data-never-sleeps-4-0/
http://fortune.com/2016/09/28/facebook-censorship-palestinian/
http://fortune.com/2016/09/28/facebook-censorship-palestinian/

[12] Marko Milosavljević and Sally Broughton Micova. Banning, blocking and
boosting: Twitters solo-regulation of expression. Medijske studije, 7(13):43–
57, 2016.

[13] Benjamin F Jackson. Censorship and freedom of expression in the age of
facebook. New Mexico Law Review, 44(1), 2014.

[14] Kriti Arora. A study on privacy enhancing technologies for the internet. In-
ternational Journal of Advanced Research in Computer Engineering & Tech-
nology (IJARCET), 4(2):306–316, 2015.

[15] Mashael AlSabah and Ian Goldberg. Performance and security improvements
for tor: A survey. Cryptology ePrint Archive, Report 2015/235, 2015. http:
//eprint.iacr.org/.

[16] Johan A Pouwelse, Pawel Garbacki, Jun Wang, Arno Bakker, Jie Yang, Alex-
andru Iosup, Dick HJ Epema, Marcel Reinders, Maarten R Van Steen, Henk J
Sips, et al. Tribler: A social-based peer-to-peer system. Concurrency and
computation: Practice and experience, 20(2):127, 2008.

[17] RJ Ruigrok. Bittorrent file sharing using tor-like hidden services. Master’s
thesis, TU Delft, Delft University of Technology, 2015.

[18] Quinten Stokkink, Harmjan Treep, and Johan Pouwelse. Performance
analysis of a tor-like onion routing implementation. arXiv preprint
arXiv:1507.00245, 2015.

[19] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, DTIC Document, 2004.

[20] Vairam Arunachalam and William Sasso. Cognitive processes in program
comprehension: An empirical analysis in the context of software reengineer-
ing. Journal of Systems and Software, 34(3):177–189, 1996.

[21] Harry M Sneed. Architecture and functions of a commercial software reen-
gineering workbench. In Software Maintenance and Reengineering, 1998.
Proceedings of the Second Euromicro Conference on, pages 2–10. IEEE,
1998.

[22] John J Marciniak. Reengineering. Wiley Online Library, 2002.

[23] Elliot J. Chikofsky and James H Cross. Reverse engineering and design re-
covery: A taxonomy. IEEE software, 7(1):13–17, 1990.

[24] Teodoro Cipresso and Mark Stamp. Software reverse engineering. In Hand-
book of Information and Communication Security, pages 659–696. Springer,
2010.

70

http://eprint.iacr.org/
http://eprint.iacr.org/

[25] Di Wu, Prithula Dhungel, Xiaojun Hei, Chao Zhang, and Keith W Ross. Un-
derstanding peer exchange in bittorrent systems. In 2010 IEEE Tenth Interna-
tional Conference on Peer-to-Peer Computing (P2P), pages 1–8. IEEE, 2010.

[26] Saikat Guha and Paul Francis. Characterization and measurement of tcp tra-
versal through nats and firewalls. In Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement, pages 18–18. USENIX Association,
2005.

[27] Andreas Müller, Georg Carle, and Andreas Klenk. Behavior and classi-
fication of nat devices and implications for nat traversal. IEEE network,
22(5):14–19, 2008.

[28] Niels Zeilemaker, Boudewijn Schoon, and Johan Pouwelse. Dispersy bundle
synchronization. TU Delft, Parallel and Distributed Systems, 2013.

[29] LFD Versluis. Software performance engineering in complex distributed sys-
tems. Master’s thesis, TU Delft, Delft University of Technology, 2016.

[30] Benjamin Frank, Ingmar Poese, Georgios Smaragdakis, Anja Feldmann,
Bruce M Maggs, Steve Uhlig, Vinay Aggarwal, and Fabian Schneider. Col-
laboration opportunities for content delivery and network infrastructures. Re-
cent Advances in Networking, 1:305–377, 2013.

[31] B Pourebrahimi, K Bertels, and S Vassiliadis. A survey of peer-to-peer net-
works. In Proceedings of the 16th Annual Workshop on Circuits, Systems and
Signal Processing, ProRisc, volume 2005. Citeseer, 2005.

[32] Al-Mukaddim Khan Pathan and Rajkumar Buyya. A taxonomy and survey of
content delivery networks. Grid Computing and Distributed Systems Labor-
atory, University of Melbourne, Technical Report, page 4, 2007.

[33] Krista Bennett and Christian Grothoff. Gap–practical anonymous network-
ing. In International Workshop on Privacy Enhancing Technologies, pages
141–160. Springer, 2003.

[34] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[35] Bassam Zantout and Ramzi Haraty. I2p data communication system. In
Proceedings of ICN, pages 401–409, 2011.

[36] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web mixes: A sys-
tem for anonymous and unobservable internet access. In Designing Privacy
Enhancing Technologies, pages 115–129. Springer, 2001.

[37] Jean-François Raymond. Traffic analysis: Protocols, attacks, design issues,
and open problems. In Designing Privacy Enhancing Technologies, pages
10–29. Springer, 2001.

71

[38] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao.
Correlation-based traffic analysis attacks on anonymity networks. IEEE
Transactions on Parallel and Distributed Systems, 21(7):954–967, 2010.

[39] Keith D Watson. Tor network: A global inquiry into the legal status of an-
onymity networks, the. Wash. U. Global Stud. L. Rev., 11:715, 2012.

[40] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of issues
and algorithms. Distributed Shared Memory-Concepts and Systems, pages
42–50, 1991.

[41] František Plášil and Michael Stal. An architectural view of distributed objects
and components in corba, java rmi and com/dcom. Software-Concepts &
Tools, 19(1):14–28, 1998.

[42] Jürgen Müller, Martin Lorenz, Felix Geller, Alexander Zeier, and Hasso
Plattner. Assessment of communication protocols in the epc network-
replacing textual soap and xml with binary google protocol buffers encod-
ing. In Industrial Engineering and Engineering Management (IE&EM), 2010
IEEE 17Th International Conference on, pages 404–409. IEEE, 2010.

[43] Jianhua Feng and Jinhong Li. Google protocol buffers research and applica-
tion in online game. In Conference Anthology, IEEE, pages 1–4. IEEE, 2013.

[44] Google. Protocol buffers. 2016. Available at: https://developers.
google.com/protocol-buffers/. Accessed November 9, 2016.

[45] Sandstorm.io. Cap’n proto: Introduction. 2016. Available at: https:
//capnproto.org/. Accessed November 9, 2016.

[46] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how
to develop domain-specific languages. ACM computing surveys (CSUR),
37(4):316–344, 2005.

[47] Oracle. An overview of rmi applications. 2016. Avail-
able at: https://docs.oracle.com/javase/tutorial/rmi/
overview.html. Accessed November 9, 2016.

[48] Steven Raemaekers, Arie Van Deursen, and Joost Visser. Semantic version-
ing versus breaking changes: A study of the maven repository. Technical re-
port, Delft University of Technology, Software Engineering Research Group,
2014.

[49] Mouaaz Nahas, Michael Short, and Michael J Pont. The impact of bit stuff-
ing on the real-time performance of a distributed control system. CAN in
Automation, pages 101–107, 2005.

72

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://capnproto.org/
https://capnproto.org/
https://docs.oracle.com/javase/tutorial/rmi/overview.html
https://docs.oracle.com/javase/tutorial/rmi/overview.html

[50] Douglas C Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture, Patterns for Concurrent and Net-
worked Objects, volume 2. John Wiley & Sons, 2013.

[51] Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, pages 483–485. ACM, 1967.

[52] Bryan Cantrill, Michael W Shapiro, Adam H Leventhal, et al. Dynamic in-
strumentation of production systems. In USENIX Annual Technical Confer-
ence, General Track, pages 15–28, 2004.

[53] Alex Zakonov and Victor Mushkatin. Exposing application performance
counters for. net applications through code instrumentation, November 1
2011. US Patent 8,051,332.

[54] Alexander Roghult. Benchmarking python interpreters: Measuring perform-
ance of cpython, cython, jython and pypy. 2016.

[55] Deepa Viswanathan and Sheng Liang. Java virtual machine profiler interface.
IBM Systems Journal, 39(1):82–95, 2000.

[56] Dale Skeen and Michael Stonebraker. A formal model of crash recovery in
a distributed system. IEEE Transactions on Software Engineering, (3):219–
228, 1983.

[57] Daniel Bilar and Daniel Burroughs. Introduction to state-of-the-art intru-
sion detection technologies. In Enabling Technologies for Law Enforcement,
pages 123–133. International Society for Optics and Photonics, 2001.

[58] Jack Shih-Chieh Hsu, Chien-Lung Chan, Julie Yu-Chih Liu, and Houn-Gee
Chen. The impacts of user review on software responsiveness: Moderating
requirements uncertainty. Information & Management, 45(4):203–210, 2008.

[59] Van Jacobson, Robert Braden, and David Borman. Tcp extensions for high
performance. Technical report, 1992.

[60] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for
shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

[61] Christof Fetzer and Zhen Xiao. A flexible generator architecture for improv-
ing software dependability. In Software Reliability Engineering, 2002. ISSRE
2003. Proceedings. 13th International Symposium on, pages 102–113. IEEE,
2002.

[62] Wikipedia. List of tcp and udp port numbers. 2016. Available at:
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_
port_numbers. Accessed November 12, 2016.

73

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

[63] Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne Media,
2011.

[64] Johan Pouwelse, Paweł Garbacki, Dick Epema, and Henk Sips. The bittor-
rent p2p file-sharing system: Measurements and analysis. In International
Workshop on Peer-to-Peer Systems, pages 205–216. Springer, 2005.

[65] Burkhard Monien and Ivan Hal Sudborough. Min cut is np-complete for edge
weighted trees. Theoretical Computer Science, 58(1):209–229, 1988.

[66] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8(3):399–404, 1956.

[67] Michael T Goodrich and Roberto Tamassia. Algorithm design. Wiely India,
2002.

[68] Quinten Stokkink. Multipath encrypted data transfer: Networking based on
homomorphism. Under publication.

[69] Tim Dierks. Rfc 5246: The transport layer security (tls) protocol version 1.2.
Technical report, RFC, IETF, August, 2008.

[70] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
Design, implementation and evaluation of congestion control for multipath
tcp. In NSDI, volume 11, pages 8–8, 2011.

[71] Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. The path less
travelled: Overcoming tors bottlenecks with multipaths. University of Water-
loo Centre for Applied Cryptographic Research, Technical Report CACR, 29,
2011.

[72] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Advances in cryptology-EUROCRYPT’99, pages 223–238.
Springer, 1999.

[73] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. Efficient aggregation
of encrypted data in wireless sensor networks. In Mobile and Ubiquitous
Systems: Networking and Services, 2005. MobiQuitous 2005. The Second
Annual International Conference on, pages 109–117. IEEE, 2005.

[74] Marcus Leech, Matt Ganis, Y Lee, Ron Kuris, David Koblas, and L Jones.
Rfc 1928: Socks protocol version 5. Technical report, RFC, IETF, March,
1996.

[75] Li Li and Allen D Malony. Model-based performance diagnosis of master-
worker parallel computations. In European Conference on Parallel Pro-
cessing, pages 35–46. Springer, 2006.

74

[76] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens, Erich M Nahum, Ramin
Khalili, and Don Towsley. A measurement-based study of multipath tcp per-
formance over wireless networks. In Proceedings of the 2013 conference on
Internet measurement conference, pages 455–468. ACM, 2013.

[77] CALOMEL. Aes-ni ssl performance. 2017. Available at: https:
//calomel.org/aesni_ssl_performance.html. Accessed Feb-
ruary 2, 2017.

[78] Yonatan Aumann and Yuval Rabani. An o (log k) approximate min-cut max-
flow theorem and approximation algorithm. SIAM Journal on Computing,
27(1):291–301, 1998.

75

https://calomel.org/aesni_ssl_performance.html
https://calomel.org/aesni_ssl_performance.html

	Preface
	Introduction
	Contribution
	Research question
	Problem Description
	Document Structure

	Anonymous File Streaming Architecture
	High-level architecture
	Peer Discovery
	File Streaming Layer
	Anonymization Layer

	Generic Message Parsing
	Methods of Serialization
	Domain Specific Languages
	Byte stuffing
	Real-time serialization

	Tribler's Serialization

	Performant Anonymous Streaming
	Requirements
	Maximize parallelization effectiveness
	Preserve shared-hardware-singleton constructs
	Preserve anonymization
	Allow for high throughput

	Multi-core in a hostile environment
	Practical data streams
	Control messages
	Data messages
	Exit messages

	Optimal parallelization

	Multi-Core Homomorphic Cryptography
	Related Work
	Secure Homomorphic Partitioning Introduction
	Secrets, History and Homomorphisms
	Steganography
	Fake Plaintext
	Magic Subset

	Implementations
	Message Serialization
	Dispersy
	Serialization method
	Message design
	Resulting Architecture

	Multi-core branch-off
	Existing architecture
	Soft coupling
	Creating children
	Optimized architecture cut
	Dynamic worker pool
	Message passing interfaces
	TunnelCommunity proxy class

	Multi-Core Homomorphic Cryptography
	Hardware parallelism
	Worker pool model

	Experiments and Results
	Serialization
	The AllChannel Experiment
	Results

	Architectural split
	Experiment setup
	Download speed

	Architectural split in the wild
	Experiment setup
	Download speed
	CPU consumption
	Efficiency

	In-Browser Anonymizing File Streaming

	Conclusion and Future Work
	Message serialization
	Min-cut multi-core architecture extraction
	Multi-Core Cryptography

