
TODO TITLE

Pim Veldhuisen

TODO TITLE

Master’s Thesis in Computer Science

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

TODO AUTHOR

16th December 2016

Author
Pim Veldhuisen

Title
TODO TITLE

MSc presentation
TODO GRADUATION DATE

Graduation Committee
TODO GRADUATION COMMITTEE Delft University of Technology

Abstract

TODO ABSTRACT

iv

Preface

TODO MOTIVATION FOR RESEARCH TOPIC

TODO ACKNOWLEDGEMENTS

TODO AUTHOR

Delft, The Netherlands
16th December 2016

v

vi

Contents

Preface v

1 Introduction 1

2 Problem Description 5

3 Design 9
3.1 Record creation . 9

3.1.1 Protocol . 10
3.1.2 Protocol . 10
3.1.3 Implementation . 10
3.1.4 Attacks and defenses . 11

3.2 Record discovery . 12
3.2.1 Unconditional Random walk vs reputation-directed walk . 12
3.2.2 Statefull vs stateless walk 12
3.2.3 Algorithms . 13

4 Evaluation 15
4.1 Record creation . 15

4.1.1 Block creation performance 15
4.1.2 Signing policy . 15
4.1.3 Scalability . 15
4.1.4 Deployment . 15

4.2 Record discovery . 17
4.2.1 Convergence . 17
4.2.2 Efficiency . 18
4.2.3 Load balancing . 18

5 Conclusions and Future Work 19
5.1 Conclusions . 19
5.2 Future Work . 19

vii

viii

Chapter 1

Introduction

The introduction of the Internet to the world in the nineties brought unprecedented
opportunities for interaction and cooperation between people. However, without a
powerful organizational structure, interacting people often act selfish and attempt
to greedily pursue their own goals. This often means that cooperation grinds to a
halt and the benefits of synergy are lost to all. A famous example is the prison-
ers dilemma, where game theory shows that fully rational individuals would not
cooperate, even if it is in their best interest to do so. One situation where each
individuals pursuit of his own goals leads to the devaluation of the community as a
whole is the sharing of a common good. In a 1986 Science article Garrett Hardin
showed that unregulated use of a limited common good leads to a situation where
everybody is worse off [3]. This is known as the tragedy of the commons.

Early Internet applications that attempted to stimulate cooperation between In-
ternet users were also affected by these problems. This is strongly apparent in
peer-to-peer file sharing networks. A study from 2000 showed that almost 70% of
users of the Gnutella network were free riders; meaning that they used the network
to access files from other users, but did not contribute files themselves [1]. A sim-
ilar experiment performed on the eDonkey network in 2004 identified 68% of the
users as free riders [5]. These large percentages of peers that do not contribute to
the network reduce the availability of scarce files, and the bandwidth with which
popular files can be downloaded, thus reducing the utility of the network. The per-
formance of the network could potentially be much higher when all peers would
contribute to the extend of their capability.

One way to solve the problems with uncooperative users is to introduce a central
party that regulates the users, enforcing certain behaviors. While this is an effective
manner to create a more optimal mode of cooperation, it has its downsides. The
main drawback of this concept is that it centralizes power. While a benevolent dic-
tator can often achieve great results, dictators can also create great injustice. There

1

is always the question of who can be trusted with the power to regulate the users,
and whether this entity will not abuse this power. Other disadvantages of central-
isation are more practical; the central party can be a performance bottleneck and it
forms a single point of failure. Considering all this, it is desirable to realize fruit-
ful behavior not through binding rules imposed by a centralized master node, but
through a communal sense of duties and obligations towards peers. Unfortunately
anyone who has used the Internet will know that one cannot simply rely on the gal-
lant nature of all Internet users. Many users need the proper motivation to behave
in a way that is beneficial for the system as a whole. This motivation can be created
by setting up a system of rules that provides benefits for users that contribute to the
operation of the network, and disadvantages to those who do not contribute. Such
a set of rules is called an incentive scheme.

BitTorrent is one of the most used systems with a successful decentralized incent-
ive mechanism [2]. It is based on a memory-less tit for tat principle, meaning peers
allocate upload bandwidth to the peers it currently receives the most download
bandwidth from. This protocol has shown to result in a functional network where
many peers choose to cooperate. The system is however not watertight, and free
riders are still able to realise significant download speeds [4]. Distributed global
networks could still perform much better when all peers cooperate. The key to real-
izing this behavior is a better distributed incentive scheme. A critical innovation
that is needed is the incorporation of the history of peers within the decision mak-
ing process. The Maze project attempted to use a persistent score for each user [9].
This was found to stimulate the desired behavior among peers playing by the rules,
but encountered problems with whitewashing; behavior where a user can clear a
negative reputation by creating a new identity. Furthermore, the solution might not
be resistant to users tampering with their score, which is self-reported.

The Tribler project is a research project a Delft University of Technology which
aims to create new methods and algorithms for distributed networks. To invest-
igate the properties of such networks in the real world, a BitTorrent client with
advanced features is available to the general public. A recently added feature of
the Tribler software is to provide anonymous routing, in order to enable privacy and
prevent censorship. This feature is currently being utilized by Tribler users, and is
functional, but the performance is often lacking in comparison to open traffic. One
of the root causes of the performance degradation is the increased bandwidth re-
quirements. Since the traffic is routed through multiple hops, the total bandwidth
requirements are proportional to the number of hops. This means that a network
that enables anonymous routing has even more need for a good incentive scheme.

Previous attempts in Tribler to create incentives for contributions culminated in
the Bartercast protocol [6]. This is a fully distributed system that associates a
reputation to each peer in the network based on a maxflow algorithm. While this
protocol proved to be a resilient way to motivate most users to cooperate, the pro-

2

tocol was not tamper-proof, meaning code-savvy peers could cheat the protocol by
providing false information to the system. While in most networks there is only
a small fraction of users that is willing to actively cheat, this minority can never-
theless undermine trust in the system and disrupt its functionality. This calls for a
system that cannot be manipulated and is tamper-proof.

The solution pursued by the Tribler team is the Multichain; a distributed database
based on blockchain technology. The blockchain has shown to be a great way of
creating tamper-proof records in a distributed environment [7]. The concept also
shows great promise in recording cooperative behavior. In the Multichain, a record
is created for each interaction between the participating nodes. Both parties then
store their record, and can show them to other peers to prove their historic reliabil-
ity.

A preliminary version of the Multichain has been implemented in code by S.
Norberhuis [8]. Conceptual and practical issues still remain in this version of the
code, and it has therefore not yet been integrated in a release of Tribler. This ver-
sion is rather limited in scope, and does not implemented checks and measures to
prevent cheating.

This thesis describes two important steps on the road to the creation an all-round
blockchain based incentive system that improves network performance in the real
world. The first step consists of reliable record creation. While reliable record
creation is the foundation of the Multichain, it is not sufficient to create a tamper-
proof reputation system. Nodes must be able to discover records through third
party nodes, to verify the reputation of peers the could interact with. Discovery of
records also enables peers to determine a reputation based on interactions in the
wider network. Record discovery thus constitutes the second step.

Challenges and properties of the problems the two steps form are explored in
chapter 2. This chapter also takes into consideration prior work in this field. Con-
ceptual and implementation improvements upon the existing record creation pro-
tocol are described in chapter 3. Furthermore, this chapter lays out different options
for the design of a discovery protocol. This thesis not only focuses on theoretical
properties of the system, but also on experimental validation and real world per-
formance. Chapter 4 then describes how both protocols are evaluated using vari-
ous simulations and experiments, including deployment to Tribler users. Finally,
chapter 5 summarizes the results of the research in a conclusion, and surveys future
steps to the path of the multichain system.

3

4

Chapter 2

Problem Description

The goal of the multichain system is to enforce cooperation of peers in a decentral-
ized manner. In order to achieve this, the peers should be incentivised is such a way
that their goals are aligned with the goal of the network. Behavior that is beneficial
to the individual peer should also be beneficial for the network as a whole. Since
the application domain is that of file-sharing, this means that making files available
to the network by uploading them should be rewarded appropriately.

To reward certain behavior in a peer-to-peer network, other peers must be made
aware of this behavior. In the network, behavior consists of interactions between
peers. We therefore need some sort of record-keeping system that keeps track of
interactions between peers. Peers must then discover the records of other peers,
to be able to consider their behavior. When a sufficient amount of information is
available, a peer can analyze the behavior of other peers, and make some kind of
judgement on it. The final step then attaches consequences to the perceived beha-
vior by initiating (or avoiding) new interactions. These steps are shown in figure
2.1.

Figure 2.1: The different steps taken by the multichain system to enforce coopera-
tion of peers.

5

Since the different steps can operate somewhat independently of each other, it is
beneficial to implement them in different layers. This results in multilayered soft-
ware architecture with the benefits that come from such an architecture. In the
higher layers, the implementations of different peers do not have to be identical; it
is possible for different peers in the network to have different policies for judging
and rewarding behavior. This means different peers can make different decisions
based on the same multichain. The layers are however not completely independent,
as some policies in the higher layers might affect the feasibility of certain ways of
cheating.

As mentioned in the previous chapter this thesis will focus on the first two layers.
Previous work exists on the first layer [8], but some issues remain with this work.
On a fundamental level, the protocol as envisioned there is not sufficiently scalable,
leading to problems for busy nodes. Additionally there exist several problems with
the implementation. The second layer has until now remained unexplored in the
context of multichain, and this thesis evaluates different protocols that could per-
form this function.

We first consider the requirements for the record creation layer. The first, most
obvious requirement is that the record creation process is sufficiently accurate. In
order to reward certain behavior, me must first have records faithfully describing
the behavior. A simple record-keeping system would consist of each peer maintain-
ing a list of his own interactions. Other peers could then receive the list, and decide
based on these interactions whether the peer has shown good behavior in the past
and should be rewarded or not. While this approach does in theory provides some
incentives to be cooperative, it is obviously very tempting to cheat by providing a
modified list, that shows fake good behavior. The goal of the multichain is to pre-
vent this kind of cheating by making it infeasible, thus providing a tamper-proof
record keeping system.

Networks generally become more useful when it includes more users. Meltcalfe’s
law even states that the utility is proportional to the square of the users. In a file
sharing network, the availability of files is increased when more users are con-
nected, greatly increasing the chance of a useful interaction being realized. This
means we aim for a large network with a lot of users. This requires all components,
including the multichain to be scalable. This means the performance of the soft-
ware will not degrade when more users join the network. For the multichain this
means that each user cannot have complete information of all users in the network.
However, the partial information must still be useful for judging the behavior of
other peers. This means each user will have to store significant amounts of data
on a large number of peers, and hence the database used for this storage should be
light-weight and efficient.

6

In summary, the record creation layer should create across the network an accurate
record of all interactions that have occurred. In order to fulfill this role, it should
be:

• Accurate in registering the interactions that occur.

• Tamper-proof in the face of malicious users.

• Scalable across millions of users

Record creation is not enough for rewarding good behavior; this behavior must first
be known to other people. This means nodes must be able to discover records of
other peers in the network. The discovery process must be informative; meaning
each peer should have sufficient information regarding the behavior of its relevant
neighbours. Furthermore, the process must be efficient. Since a lot of interactions
occur in the total network over time, discovering all records would be costly in
terms of bandwidth and storage space. It is thus important to communicate as few
records as possible, while still realizing the required informativeness.

An emergent problem in many possible solutions for record discovery is that of
load balancing. Nodes with a high amount of records or nodes that show good be-
havior might be considered important nodes by certain algorithms. If these nodes
are expected to have more informative records, these nodes may be polled for re-
cords very often. In some way this may be desirable behavior, since having a lot
of records shows a high capacity for interactions, which might be an indicator of
a high capacity for handling requests for records. However, when specific nodes
are polled too much, this might lead to capacity problems, disturbing the networks
functioning.

In summary, the record discovery layer should spread the records to nodes for
which they are relevant. In order to fulfill this role, it should be:

• Informative by providing relevant information describing the behavior of rel-
evant peers.

• Efficient in its usage of bandwidth and storage space.

• Load-balancing with regards to differing nodes.

For both layers there are some boundary condition to the design space, designated
by the research context, ethical and practical issues. An important design principle
is the use of a distributed architecture. This means there can be no reliance on cent-
ral servers, and all nodes operate autonomously. This constraint provides a lot of
challenges regarding the availability and trustworthiness of information. Another
principle is the principle of open enrollment; any internet user should be able to
join the network. Furthermore, the system should be churn resilient; as new peers

7

come online and old ones go offline, the system should continue to function. Fur-
thermore, it is not guaranteed that all peers in the network are directly connectable
with all other peers.

8

Chapter 3

Design

3.1 Record creation

The first step consists of creating records of interactions between peers that have
occurred in the network. These interaction between peers are stored in blocks. The
blocks contains the transaction data that is relevant to the behavior that the system
aims to influence. In our use-case this is the amount of bytes that have been up-
loaded, and the amount of bytes that have been downloaded. This transaction data
will be signed by both peers using public-key cryptography, and hence the public
key of each peer is also included. When the transaction is signed by both peers
neither peer can deny that the interaction has occurred while the block is available
for checking. The signed block forms irrefutable proof of the interaction.
While individual blocks can be used to prove that certain interactions have oc-
curred, this does not ensure an accurate representation of the behavior of a peer is
shown by a subset of the blocks. It might be tempting for peers to hide certain inter-
actions that reflect poorly upon them, by not providing the blocks that correspond
to these interactions. To prevent people from hiding some of their blocks, and
thereby their historic behavior, the blocks are chained together to form a block-
chain. This means that for each peer there exists a unique, ordered sequence of
blocks. This order is indicated by a sequence numbers that are included in the
block, one for each peer. The sequence of interaction blocks that form the total
history of a peer is then a chain of blocks. Other peers can request a section of
the chain, indicated by sequence numbers. When a certain block is missing from
the sequence, it is immediately obvious, meaning it is no longer possible to filter
blocks to only show a positive subset. A more advanced strategy to misrepresent
behavior is to replace certain unfavorable blocks in the blockchain with other more
favorable blocks. To prevent peers from doing this, each block contains a hash that
refers to the previous block. This hash is a value that describes the previous block
in such a way that any modification of the block will also result in a change in the
hash. This means that when someone with malicious intentions modifies a block,
the hash will change. However, since the next block will still contain the old hash,

9

the modification is detectable. Hence, to modify a block while maintaining internal
consistency of the chain, all blocks that come after the block in question must also
be modified. This means it is much harder to make changes to previous blocks
without anyone noticing.
The resulting record of interactions should thus form a complete overview of the
behavior of all nodes that can be used as the foundation for an evaluation of repu-
tation.

3.1.1 Protocol

The creation of the multichain blocks is a process that takes place between two
peers. This process takes place after an interaction (or a part of an interaction) has
completed. The protocol to create the blocks is asymmetric meaning both peers
have distinct roles in the protocol. One of the peers will initiate the process, and
this peer then becomes the requester. The requester will create his half of the block
containing information about the transaction, and the public keys of both parties.
In the Tribler use case, the transaction data consists of the amount of bytes that
were up- and downloaded.

self.up = self.down = 0 self.totalup = self.totaldown = 0identityself.publickey =
EMPTYPKself.sequencenumber = GENESISSEQlinkedidentityself.linkpublickey =
EMPTYPKself.linksequencenumber = UNKNOWNSEQvalidationself.previoushash =
GENESISHASHself.signature = EMPTYSIG

3.1.2 Protocol

Data-structure - Datastructure -¿ fields used in database and wire packet

Message sequence - Message sequence

Asynchronicity - Asynchronous for performance: consequences for hashes

3.1.3 Implementation

Tribler community Tribler consists of different communities which share things
among a subsection of peers. Some communities share content based on communal
intrest, but others share functional data. The multichain system is implemented in
Tribler as a community, where the particiapating peers share data about each others
blockchains. The communnity is used as a wraper in which the peers communic-
ated and send requests for new interactions and can check histrocal data. - As a
Tribler Community

Dispersy Like all Tribler communities, the multichain community uses the Dis-
persy software to exchange messages among peers. This means that there exists a
strong entaglement between Dispersy and the multichain. However, the multichain

10

is not fundamentally dependent on Dispersy. It does not use the advanced features
of Dispersy, instead relying on point to point messages. Furthermore, the database
for the multichain block is seperated - Dispersy dependency / independency

SQLite - SQLite

3.1.4 Attacks and defenses

A system that provides rewards to some of its participants is likely to be subjected
to agents that attempt to abuse the system, trying to obtain the rewards without
putting in the efforts desired by the system. For the multichain, it is likely that some
peers will attempt to receive better service from the network without contributing.
If successful, this behavior is seen as unfair, and when it becomes prevalent it can
reduce the faith of the users in the system and the effectiveness of the system.
Therefore, the system should defend against different attacks and be tamper-proof
to be functional. Attacks on the system can be divided in two types; first of all
attacks can be devised against the protocol itself. These attacks consist of abusing
the options that the system offers. A second type consists of attacks against the
implementation of the protocol, and consists of doing things that should not be
possible at all.

The idea is to operate on two levels. First of all, each peer has some reputation
based on its interaction history. Other peers can evaluate this reputation using the
information in the multichain and provide or refuse services based on this repu-
tation. The second level consists of some peers that are lying about their history
using the multichain. When evidence of such lies are aquired, this can be proved
irrefutable by conflicting messages signed by the same peer. (The evidence is irre-
futable assuming that the cryptography used to sign messages can not be broken,
and the private key of the peers remains private.) This proof can then be broadcas-
ted allong the peers in the network. Peers that are found lying should immedatly
be refused any service for which the multichain is used, both because no reputation
can be reliably assertained form the multichain, and to discourage lying in general.

False request - False requests - How does it work? - Solution: check validity

Deny requests - Don’t sign downloads - How does it work? - Solution: don’t
interact with peers that don’t sign

Hiding blocks

Branching - Branching: - How does it work? - Risk of discovery - Solution:
make the reputation layer such that this is not worthwhile

11

Trick into branching - Trick into branching - How does it work? - Solution:
Responder has a responibility to check previous requests

Denial of service

Implementation-based attacks SQL injection Hash collisions

3.2 Record discovery

A commonly employed strategy to explore a graph is that of a random walk [].
Here information is gathered by querying nodes, then traversing one of it edges,
and proceeding to query that node. This process is then repeated for a number of
times, until a new random walk is started. In this way, information is gathered
about the nodes in the vicinity of the node that is walking.

3.2.1 Unconditional Random walk vs reputation-directed walk

This enables a secondary feedback loop
One way to potentially obtain more relevant information is to not pick a next

node to explore at random, but to prefer nodes with a higher reputation from your
perspective. Such a node is more likely to have information regarding other nodes
with high reputation, and thus furthers the general goal of record discovery: obtain-
ing information about the nodes with the highest reputation. A potential downside
of this manner of walking is that it will lead to more requests to nodes that have a
good reputation towards most of the nodes in the network. This could mean that
well-behaving nodes are overloaded by the record discovery system.

Generalized explaination: For any transitive scoring algorithm, the neighbours
of an node with a high ranking have a higher expected ranking than a random node
in the network. It thus makes sense to walk here. However this might cause load
balancing problems, and, if done to strict, result in convergence to a non-optimum
point.

3.2.2 Statefull vs stateless walk

A random walk usually consists of a single path, where each step the next nodes
is contacted. In dispersy however, the exploration is strongly linked to the keeping
alive of other nodes. To achieve this, multiple nodes are considered active, and
each step consists of walking to a new node from one of the active nodes. While it
is convenient to combine these two functions, walking in this manner might have
slightly different properties.

12

3.2.3 Algorithms

The above options result in a total of four possible options. Each is described in
more detail below:

Undirected statefull Most vannila walk, keep alive seperate from walking

Undirected stateless Currently implemented in dispersy

Reputation-directed statefull keep alive seperate from walking

Reputation-directed stateless A personal favorite

13

14

Chapter 4

Evaluation

In order to verify the workings of the protocol, several experiments were run in
a controlled environment were real world situation were simulated. These exper-
iments helped to detect certain bugs and identify improvements to the protocol,
which have since been implemented in the code.

4.1 Record creation

4.1.1 Block creation performance

Experiment 0: Block creation block creation performance graph

4.1.2 Signing policy

Experiment 1: Signing policy Variant A: Every 5 MB: block graph
a shitload of blocks
Variant B: On tunnel close block graph
Fewer blocks = better

4.1.3 Scalability

Experiment 2: Scalability Al lot of nodes block graph
Still works

4.1.4 Deployment

While the experiments in simulated experiments provide some validation of the
protocol, the real test for the protocol consists of it’s deployment in the real world
across Tribler users all over the world. In this setting, all kinds of limitations
and noise factors are present, and this provides a great test to the resilience and
robustness of the software. Since the Tribler software is actively being used by real
people, it is essential not to impede with the working of the software. This means

15

that for the very first phase of the deployment of new features, a lack of correctness
is an acceptable outcome, but under no circumstances may the working of the rest
of the software be affected, for example by crashes. This idea is summarized as the
’do no harm policy’.

- Optional updates - How do we enable useful measurements? - Forced update:
No backwards compatibility

Internal testing The first integrated test was conducted with an early version of
the software among members of the Tribler. Although the number of peers and
the geographical spread was very limited, this for of testing still brought many
problems to light that were not seen when testing in a virtual environment. An
excerpt from the block graph is shown in figure 4.1. A bug is clearly visible here;
each block should have at most two other blocks referring to it, since each peer
involved can have only one next block pointing towards it. However, the graph
clearly shows several nodes that have much more blocks referring back to them.
Since there were no attackers in this scenario it must be the result of a bug. The
experiment helped to detect, identify and resolve the bug, and provided a criterium
to test future graphs against. The chain itself was discarded after the bug was fixed.
This was not a problems since this was only an internal release.

Figure 4.1: An excerpt from an early multichain block graph, highlighting internal
inconsistencies.

The discovery of this bug lead to a series of checks that can be done on every
database to verify its integretity. These checks can be found in table 4.1.4

Release Experiment 3: Real world block graph

interaction graph

16

Metric Actual Value Expected Value
Number of blocks 4823 -
Number of distinct identities 111 -
Reuse of key, sequence number pair 0
Reuse of previous hash 0
Average MB up in a block
Average MB down in a block

Table 4.1: A number of metrics resulting from the internal testing

4.2 Record discovery

The performance of the different algorithms as described in 3.2 and their para-
meters are evaluated by experiments. These experiments consist of a simulation
of these algorithms in a scenario with a number of nodes, which represent real
world users. The multichain records the nodes have are based on the data set that
is obtained through the deployment of the record creating protocol as described
in section 4.1.4. Reputation scoring of multichain peers plays an important role
in the discovery of blocks, both as a metric of the accuracy of the local subset of
blocks as an approximation of the total set, and as an heuristic as to which peers
could provide relevant blocks. The scoring module is therefore included in the
evaluation.

Several aspects are assessed when evaluating the algorithms, as described in the
sections below.

4.2.1 Convergence

The goal of the discovery algorithm is to acquire blocks. The most basic metric
is thus the progression of the acquired blocks over time. However, the total set
of blocks is proportional to the amount of users and the time the system has been
running. This means that on a large network, it is not feasible for most nodes
to obtain the complete set of blocks. The task of the discovery algorithm thus
becomes to discover only the most relevant blocks.

We can define a block as relevant if the addition of the block to the known data
changes the top 20 ranked peers.

Another way to measure the relevancy of blocks is to compare the score of peers
based on the available subset to the score based on the complete set.

for algorithm in algorithms:

create_boxplot_graph(x-as = time, y-as = number_of_blocks_in_database_of_peer/total_blocks)

17

for algorithm in algorithms:

create_box-plot_graph(x-as = time, y-as = average_over_peers (score(from A to B based on available data) - score(from A to B based on complete data)))

4.2.2 Efficiency

for algorithm in algorithms:
write(relevant blocks received / total blocks received)

4.2.3 Load balancing

Algorithms might visit some nodes more often than others, based on their reputa-
tion or their position in the network. While this can lead to efficient discovery of
relevant blocks, this imbalance might cause capacity problems for nodes that are
visited often.

for algorithm in algorithms:
create_distribution_graph(introduction_requests_per_node)

for algorithm in algorithms:
create_distribution_graph(blocks_sent_per_node)

On the other hand, an egalitarian distribution of request might actually not be
the best case scenario, since not every node has the same capacity. If we use the
total amount of MBs recorded in the multichain for that node as a proxy for the
bandwidth capacity of the node, we can normalize the this data to the capacity of
the node.

for algorithm in algorithms:
create_distribution_graph((blocks_sent/bandwidth)_per_node)

In the simulation churn is taken into account by turning some nodes of during
certain times. NAT connectability is taken into account by making some nodes
NAT restricted.

18

Chapter 5

Conclusions and Future Work

BIG TODO: design of churn resilience, ping on live edges
discuss policy: only incoming, outgoing, or mixed?
who to keep contact with?
of past 100+ connections, random 10 strategy
Then BigExitNodeProblem
if you introduce 1 peer for 10 minutes to all visotors, you DDoS that peer !!!! :-)
limited introduction or random peer selection as a solution.
Informativeness and replicas - people start sharing and spreading records of

”near” peers - describe policies, random, 1-hop, top-N, etc. -show that we can
now do superior crawls

todo experiments storage requirements multichain records Processing time to
create and insert sign incoming requests and store

5.1 Conclusions

TODO CONCLUSIONS

5.2 Future Work

TODO FUTURE WORK

19

20

Bibliography

[1] Eytan Adar and Bernardo A Huberman. Free riding on gnutella. First monday, 5(10),
2000.

[2] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of
Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[3] Garrett Hardin. The tragedy of the commons. science, 162(3859):1243–1248, 1968.
[4] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free riding. In

Proceedings of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-peer
Systems, P2PECON ’05, pages 116–121, New York, NY, USA, 2005. ACM.

[5] F. Le Fessant, S. Handurukande, A. M. Kermarrec, and L. Massoulié. Clustering in
peer-to-peer file sharing workloads. In Proceedings of the Third International Confer-
ence on Peer-to-Peer Systems, IPTPS’04, pages 217–226, Berlin, Heidelberg, 2004.
Springer-Verlag.

[6] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips. Bartercast: A prac-
tical approach to prevent lazy freeriding in p2p networks. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–8, May
2009.

[7] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
[8] S D Norberhuis. Multichain: A cybercurrency for cooperation. MSc thesis, Delft

University of Technology, 12 2015.
[9] Mao Yang, Zheng Zhang, Xiaoming Li, and Yafei Dai. An empirical study of free-

riding behavior in the maze p2p file-sharing system. In Peer-to-Peer Systems IV, pages
182–192. Springer, 2005.

21

