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Abstract
In theory, CRDTs seem like a natural fit for open P2P networks, however there are obstacles to over­
come. Many proposed CRDTs are grow­only because CRDTs may track deletions in permanent tomb­
stone values or they may gather permanent information on every peer in the system. As such, CRDTs
are not well adapted to open P2P networks. Many peers may come and go over time and having ac­
curate information about all peers is infeasible. Also, some types of CRDT (mainly op­based CmRDT)
require causal message delivery which is hard in open P2P networks. Lastly, CRDTs are typically built
around the thought that all peers need all information and thus all data is fully replicated, even though
a client may only be interested in a small subset.

A new state based CvRDT is proposed: BloomCRDT, which is a variation on the OR­set that re­
places the standard 𝑅 g­set with Bloom filters. It does not need knowledge of other peers, or their
state, and avoids tombstones. This makes BloomCRDT compatible with open P2P networks. The
grow­only aspect is vastly reduced compared to the standard OR­set. However, the BloomCRDT itself
does not scale the number of contained items well enough to accommodate demanding applications.
To address this, multiple BloomCRDTs can be combined to form a Conflict Free R­Tree (CFRT). Each
node of the R­Tree is represented by a BloomCRDT. Concurrent tree modifications are allowed and,
due to the characteristics of the R­tree, this does not result in an inconsistent data structure. A periodic
optimization algorithm can be used to re­normalize the R­Tree, thus maintaining efficiency.
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1
Introduction

TODO: Introduction here, invoking emotions and reasons to keep reading

1.1. Local­First Software
The concept of Local­First Software[29] describes the perils of modern cloud based software develop­
ment. The main argument against the use of such online collaborative services is the question of data
ownership. Not so much in the legal sense (it’s nothing [17]) but rather in terms of the users agency,
the ability of the user to excersise control over digital artifacts. When using online collaborative ser­
vices the user only has a local cache copy at best, not an authorative or complete copy. This devalues
the data stored locally and leads to a continued reliance on the online service and thus the continued
existence of said service. If Big Tech decides to discontinue the service the contents is read­only at
best or moved to /dev/null at worst. The end result being the same, the users work stalls. Local­first
Software proposes to steer software development clear of this danger by striving for the ”seven ideals
for local­first software”.

1. Responsiveness and Availability, by having a local authorative copy of the user’s data, applica­
tions do not have to wait for round trip calls to remote resources.

2. Data mobility, by not locking data in apps or on a specific device.

3. Optional network connectivity. Applications that rely on network connections loose their useful­
ness if the device is disconnected. Or put another way, global network coverage should not be
an assumption.

4. Seamless collaboration, by not generating (version) conflicts during collaborative work.

5. Preservation, having all software locally enables users to access digital artifacts long after devel­
opment stopped.

6. Security and Privacy, by using end­to­end encryption and keeping all private data on machines
owned by the users.

7. User Agency, such that no other entity can decide what users can and cannot do in their creative
process.

A narrative that is not yet described in the context of Local­First Software is that it allows the open
source community to stand on equal footing with BigTech, not through bulk resources but through smart
software. The trends towards cloud and SaaS invokes images of data centers, global networking and
massive processing power, something most open source projects could not hope to finance, deploy and
maintain. A good example is LibreOffice [18], it used to compete with MS Office (with varying levels
of success) but with the increasing use of Google Docs, MS Office has evolved into Office360, but

1



2 1. Introduction

LibreOffice is in danger of missing the boat when it comes to online collaboration. Applying the Local­
First ideals can move open source forwards to enable the online collaboration features and workflows
that many users are becomming accustomed to.

Chapter 2 introduces CRDTs and the relevant distributed systems bits to understand them in the
context of this work. Next, chapter 3 identifies the exact problems with implementing CRDTs in open
peer­to­peer systems. Then chapter 4 proposes a design that resolves the previously identified prob­
lems. Chapter 5 evaluates the design in several (adverse) circumstances, and explores the limits of
the design. Lastly chapter 6 summarizes the work, discusses the contributions and examines possible
ideas for further research.



2
Background & State­of­the­Art

A Conflict­free Replicated Data Type (CRDT) is an appealing primitive to use in designing scalable and
decentralized applications. To this end, section 2.2 introduces the distributed systems concepts neces­
sary to understand CRDTs. Section 2.3 explains CRDTs, their formal definitions and some examples.
Section 2.4 lists and discusses some basic and advanced implementations of CRDTs. Lastly, section
2.5 discusses further research done on CRDTs and related research.

2.1. Terminology
TODO: find a nice/consise way to explain the exact use of these terms in this paper. The following
terms (should) have an exact meaning in this work:

• node. from graphs import node. A node as used in graph theory, and in particular nodes of a tree
structure.

• merge. The act of combining two tree nodes. Note that this is distinct from join, which deals with
CRDT states.

• split. The act of splitting a tree node into two nodes.

• entry. A key­value pair stored in a node. In the case of interior nodes, the value may also be a
pointer/edge to a child node.

• replica. A (local) copy of a CRDT.

• join. The function or act of combining 2 CvRDT (state based CRDT) replicas, leading to a new
replica that contains all information in both input states. Or in other words, the resultant replica
must order greater than both input states on the CvRDT’s join­semilattice.

2.2. Distributed Systems and Consistency
In order to sufficiently comprehend the mechanisms and workings of CRDTs, some understanding of
elementary Distributed Systems concepts is needed. Readers already versed in the core concepts of
the CAP theorem and strong eventual consistency could skip ahead to 2.3.

2.2.1. Central Components and Decentralized systems
Some distributed systems rely on centralized components (such as central servers) to perform some
critical function. These centralized components are a weak point for a distributed system. An example
would be HTTPweb pages. Through links it is an interconnected distributed system, it uses web servers
as a central component and such servers are not able to perform their critical function when they are
offline or disconnected.

The use of central components is often a design compromise. It’s relatively straightforward to design
a system with a central authorative truth or process executing in a controlled and trusted environment.

3



4 2. Background & State­of­the­Art

This can simplify designs greatly. A good example of this is MMO gaming, a distributed system where
the actual game simulation happens in a controlled environment on a central server cluster. However
distributed gaming without a central component has yet to be perfected, so for some distributed system
designs a central component might be the only practical choice.

Centralized components have three aspects that make them fundamentally undesirable in a dis­
tributed system. Firstly from a technical point of view central components are a single point of failure,
so the distributed system cannot function (fully) if a centralized component is unreachable or unre­
sponsive. A second weakness is organisational: each instance of a central component is inevitably
controlled by a single entity and, any entity is influencable by private and government action. Finally,
central components also have a financial aspect: there is a real world cost associated with central
components and the distributed system’s user community has to provide for this in some way.

Distributed systems that, by design, contain no central components are called decentralized sys­
tems. In decentralized systems there is no central component to wield authority and make decisions.
This makes all nodes in the distributed system equal peers and forming what is known as a peer­to­
peer (P2P) system. In contrast to distributed systems containing a central component, peer­to­peer
systems are already close to the Local­first Software ideals. At least they could be easily adapted to
work that way. By necessity, a peer in a peer­to­peer system will be programmed with a local based
world view in mind. Since a peer cannot depend on a central authority, it has to be its own authority,
leading to a local world view.

2.2.2. The CAP theorem
Within distributed systems there is a well known theorem that bounds the capabilities of any distributed
system: the CAP theorem[19]. The CAP theorem asserts that a distributed system cannot achieve
Consistency, Availability and Partition tolerance at the same time. In this case Consistency should be
taken to mean that the system should behave as if it where a single database 1. Availability means
that (user) operations don’t block or wait until certain conditions are met, so the system should always
be available for work. Partition tolerance means systems can recover from network interruptions. It is
possible for a distributed system to achieve two of these conditions at any time, but not all three. An
example of a system that gives up Consistency is the Domain Name System (DNS). DNS uses timers
and caches when distributing data and thus achieves Availability and Partition tolerance. However it
is possible that different results are returned to users depending on copies in intermediate caches. So
the DNS system does not have strong consistency. Giving up Availability is exemplified by distributed
locking, making some shared resources unavailable to prevent a lapse in Consistency. In addition,
forfeiting Partition tolerance is a trade­off made by classical databases: they cannot recover from a
loss of communication and, if networked, will typically be restricted to redundant locally networked
clusters.

The author in [47] make some interesting observations about distributed systems that operate at
internet scale. First off it is impossible to prevent partitions: links will need maintenance, smartphones
will roam out of coverage, WiFi will be congested in urban areas, etc. So the system must absolutely
be able to recover from partitions. Second, users nowadays have come to expect that systems are al­
ways Available, implying that Consistency should always be forfeited. While the argument for selecting
Partition tolerance is certainly compelling, the argument for selecting either Consistency or Availability
depends more on the application. Banks might well prefer Consistency over Availability in order to be
safe from financial risks that could occur due to inconsistencies.

2.2.3. Strong Eventual Consistency
The CAP Theorem deals with the concept of strong consistency, where all identical queries to the
distributed system as a whole return the same result. This can be thought of as all nodes in the system
having an equivalent state. However if, in the context of the CAP Theorem, strong consistency is
forfeited it can be replaced with a lesser consistency. Usually this takes the form of eventual consistency
[47]: a delay is accepted that allows the consistency to propagate through the distributed system. If
all updates or modifications to the distributed system were stopped, then after some time every node
of the distributed system should respond with the same result. The DNS system is a good example.
After updates have stopped, and all caches expire, each identical request should result in the same

1An ACID [23] database that is.



2.3. Conflict­free Replicated Data Types 5

records being returned. Note however that this is not because all nodes of the DNS system have
reached an equivalent internal state. Unfortunately the definition of eventual consistency is somewhat
imprecise and varies among authors. There are many more classes of consistency, interested readers
are referred to [47].

A variation on eventual consistency is that of strong eventual consistency [42]. This definition starts
with a weak form of eventual consistency where all nodes in a distributed system are informed about
all updates, eventually. In addition to that the Strong aspect requires that all nodes apply all updates in
such a way that the final internal state of the nodes is equivalent. Note that this is indeed stronger than
the previous definition of eventual consistency since that placed no restrictions on the internal state of
the nodes.

2.3. Conflict­free Replicated Data Types
In attempts to mitigate the results of selecting both Availability and Partition tolerance from the CAP
theorem some solutions have been proposed. A recent paradigm is that of Conflict­free Replicated
Data Type (CRDT) as described in [42]. The idea of a CRDT is to achieve strong eventual consistency
of a replicated data structure by structuring data and updates in such a way that no conflicts can arise
when combining different versions. This then allows automatic merging of different versions or updates
of the data structure. In terms of the CAP theorem this provides Availability and Partition tolerance, but
with a strong formal guarantee that strong consistency will be reached eventually.

Proponents of Local­First Software envision a central role for Conflict­free Replicated Data Types
(CRDTs) in applications that strive for the Local­First ideals. This is because CRDTs naturally embody
the ideals of Local­First Software. It allows users to directly collaborate, without a centralized infras­
tructure and where any conflict introduced by concurrent updates of users can always be resolved later.
To aid adoption of the Local­First ideals several projects have developed CRDT implementations for
browser environments [28][21][30].

The description of CRDT in [42] provides two formal models for reasoning about CRDTs: the state­
based Convergent Replicated Data Type (CvRDT) and Op­based Commutative Replicated Data Type
(CmRDT). The two models are equivalent in expressive power but CvRDTs are more convenient for
mathematical reasoning and CmRDTs are easier to implement. The following subsections present the
two CRDT types in more detail.

2.3.1. State­based CRDT
A Convergent Replicated Data Type (CvRDT), often called a State­based CRDT, exchanges the full
CRDT state between replicas. The CvRDT model is based on a join­semilattice, in this case it means
a partial ordering on the set of all states held by all replicas, and a function (known as ’join’ or ’least
upper bound’) for pairs in the set. The join function produces a state that orders strictly greater than its
two inputs and is commutative, idempotent and associative. This implies that as long as states can be
ordered they can always be joined, and the result monotonically proceeds up the partial ordering chain.
It must therefore converge to a maximal element in the partial ordering, one where all initial states have
been joined, and because of the state equivalence relation of strong eventual consistency any maximal
element will do. Although in practice the maximal element could well be singular, the greatest element
of the partial ordering. The CvRDT definition of a CRDT permits testing of a data type to determine if
it is a CvRDT, but it leaves a lot to the imagination when it comes to designing and implementing one.

To construct an implementation of a CvRDT, nodes send out a copy of their local replica state to
other nodes. These other nodes then check the partial ordering and join states that contain ”new”
information. An example of a CvRDT is shown in Figure 2.1. This figure shows the operation of a
CvRDT that contains a grow­only set. There are three replica nodes each with an initial empty state.
Nodes then send their state to other nodes after an update, in this example nodes take the union of
their local state and a received state. In this way all nodes have reached strong eventual consistency
as defined by the CvRDT definition.

Note that ”taking an union” is a good example of why CvRDTs allow easy mathematical reasoning,
but are not necessarily easy to implement. This requires comparing of two states to determine any
differences and subsequently integrating those differences. Also, sending the entire state can be very
inefficient: if the CvRDT state is large many bytes might be sent needlessly. These problems gave rise
to a variation of the CvRDT, the 𝛿­CRDT [1], where only a difference of state is communicated between
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Figure 2.1: CvRDT operation. Replicas send full state messages to each other

replicas. An example of a 𝛿­CRDT is TrustChain [35]. In this case a nodes state is the database of
blocks that it knows about and new blocks are deltas on this state. Each node only needs to merge
blocks it does not yet know about to advance its state towards a complete global state, so there is an
ordering on states. Blocks can always be merged into the database independent of others, so the state
of two nodes can always be merged. If all blocks where to be communicated to all other nodes, each
node would end up with an equivalent (global) state.

2.3.2. Operation­based CRDT
The Operation­based style of CRDT known as a Commutative Replicated Data Type (CmRDT) is based
around communicating the operations performed on the CRDT and having each replica apply these
operations on their local state. The CmRDT model assumes a reliable causally ordered broadcast
communication protocol and uses that to deliver a sequence of operations to all replicas. To each
operation is bound a side­effect free precondition test that determines if an operation may be applied
to the CmRDT’s state. If at a replica two operations are pending, i.e. their preconditions are satisfied,
applying either operation may not invalidate the preconditions of the other. This allows operations to
be applied in any order once their preconditions are met, or put another way: all concurrent operations
must be commutative. This ensures that operations can always be applied eventually, and thus lead to
an equivalent state at each replica. An example of a CmRDT is shown in Figure 2.2. This is similar to
the CvRDT example but instead of sending a full state to other nodes, the operations are sent. Each
node then applies the operations on its local state. This is also distinct from a 𝛿­CRDT which transports
the change in state, that might not reflect the operation that was applied.

The CmRDT model is more suited to actual implementations since operations (e.g.: add, update,
remove) on data occur naturally in programming and thus allow an easy transfer of theoretical concept
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Figure 2.2: CmRDT operation. Replicas send update operations to each other

to practical implementation. This is a sharp contrast with the CvRDT model where the whole state of a
replica arrives at another node, which then has to be ”merged”.

2.4. Known CRDTs and implementation designs
CRDTs have attracted interest from both the academic community and from software projects. De­
scribed in section 2.4.1 are some of the academic designs, and similarly section 2.4.2 presents the
work done on applying CRDTs to practical situations.

2.4.1. Basic CRDT Types
There are several known data structures that meet the definition of a CRDT: such as a vector clock,
monotonic counters and add­only sets. Compositions of these basic data structures develops more
advanced data structures. For example using two monotonic counters P and N it is possible to create a
non­monotonic counter by computing P ­ N. But more complex compositions allow for sets, dictionaries
and directed graphs. Some of the basic CRDT data types are summarized in table 2.1.

In table 2.1 there are 4 common design elements that are used frequently when constructing CRDT
data types. Firstly, there are monotonic operations, where the data only has one direction, such as the
G­Counter, G­Set and monotonic DAG. Data only goes towards infinity and is never ”decreased”. This
sidesteps combinations of concurrent add and remove operations that are not commutative. Secondly
there is a frequent use of tombstones, special markers that indicate something used to be there but
should be considered gone. This is frequently used in sets and ordered lists where concurrent updates
could conflict. For example a remove and addAfter operation on the same element would conflict
if the remove is processed first since the addAfter would then reference an invalid item. However
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Name Description Ref.
G­Counter A monotonic increasing counter. [43]

PN­Counter Two G­Counters, one for positive, one for negative. The
value of the PN counter is calculated as P ­ N. [43]

G­Set A grow­only set. [43]

2P­Set

Two phase set, akin to the PN­counter this set uses two
G­Sets, one for items added and one for items removed
(the tombstone set). The contents of the 2P­Set are the
elements in the add set that are not also in the tombstone
set

[43]

U­Set
A set that only adds and removes unique items. Com­
bined with causally ordered messaging, this is enough to
ensure no conflicts can arise.

[43]

LWW­element­Set A set where the Last Write Wins in case of conflict. [43]

PN­Set

A set where each element is paired with a PN­counter.
Adding increments the counter, removing decreases the
counter. An element is in the set if it associated counter
value is greater than 0.

[43]

Observed­Remove
Set

A set where elements are paired with a unique identifier.
Before a remove can be issued the identifier needs to be
observed, thus no concurrent add­remove conflicts can
happen.

[43]

2P2P­Graph A graph made up of vertices in a 2P set, and edges in
another 2P set. [43]

Add­only Monotonic
DAG

An add­only graph that uses a simple edge direction fol­
lowing rule such that a DAG is formed. [43]

Add­Remove Partial
Order

A DAG graph that uses a 2P­Set with tombstones for ver­
tices and a G­Set for edges. This combination ensures a
new edge can always be found between two vertices if an
intermediate vertex is removed.

[43]

Replicated Growable
Array (RGA)

List based on linked list. Allows updates to the elements
in the list. Clocks that allow tombstone garbage collec­
tion.

[39] [43]

WOOT List with unique identified elements. Tombstone set to
filter out deletes. [34]

Logoot

List with unique identified elements, insertion by gener­
ating identifier between two others. No tombstones but
potentially unbounded identifier length. Claims that prac­
tical use sees no such unboundedness.

[48]

TreeDoc

List/document based on prefix Trie for element identifiers.
Trie may become unbalanced and requires rebalancing,
which uses 2­phase commit involving all replica’s. Uses
tombstones.

[37]

Table 2.1: An overview of basic CRDT types

if the remove operation leaves a tombstone in the place of the element, the addAfter can still be
processed. A third commonality is pairing list or set elements with unique or random identifiers. This
can be an alternative to the use of tombstones in some cases. The principle is that removes must be
causally ordered with respect to adds, since the paired identifier has to be observed first, before the
remove of that particular element can be issued (see OR­set). Conversely a concurrent add of the
same element produces two elements in the CRDT, each paired with an unique identifier. The fourth
and last common design element is the use of clocks to mitigate the unbounded growth of tombstones
in CRDTs. Often a vector clock is used since that allows a node to deduce if all other nodes have seen
a particular tombstone and if so, discard such a tombstone from the CRDT.
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2.4.2. Applied CRDTs
In addition to research on basic CRDT structures, some software projects have also applied CRDTs
to real world situations. Table 2.2 lists some of them. Two types of application are typical among the
applied uses of CRDTs. One is no­sql or key­value store databases, and the second is collaborative
editing.

Name Description Ref.

Redis Redis is an in­memory key­value store that can use
CRDTs to implement multi master replication. [38] [49]

Riak Eventual consistent key­value store based on CRDTs. [4] [12]

Roshi
SoundCloud uses Roshi, a CRDT that uses LWW­set in
combination with garbage collection. Based in part on
Redis.

[44]

Akka Actor based programming language which uses CRDTs
for its replicated data types. [24]

Scalable XML Collab­
orative Editing with
Undo

Applies CRDTs to XML document editing in a collabora­
tive setting. Garbage collection using vector clocks. [30]

Conflict­Free Repli­
cated Relations for
Multi­Synchronous
Database Manage­
ment at Edge

Applies CRDT to traditional RDBMs’. [50]

Designing a Planetary­
Scale IMAP Service
with Conflict­free
Replicated Data Types

Replicated maildirs over IMAP using CRDT to sync geo
replicas. Uses a CRDT map/dictionary internally. [25]

A Study of CRDTs that
do Computations

CRDTs that result in a computation being performed in
the CRDT state. Comparable to the join step in parallel
processing.

[33]

Table 2.2: An overview of CRDT applied uses

2.5. Other work related to CRDTs
There are many interesting works that further explore CRDTs, their limits and ways in which they could
be improved. Such as [6] which aims to ”Constraining the Eventual in Eventual Consistency”. In order
to achieve this leases are added to CRDTs such that operations can timeout and be canceled. This
provides the same consistency but with a bound on the “eventual” part of the consistency, at the cost
that some operations might eventually produce an error. There are also dead ends in CRDT research
as explained in [27]. This work examines a common problem in collaborative editors, moving a range
of characters. This operation turns out to be particularly difficult to capture in CRDTs since some
combinations of concurrent operations are non commutative. In [5] the authors examine the problem of
ever growingmetadata in CRDTs, particularly unbounded growth of tombstones and operation histories.

The field of CRDTs is closely related to the much older field of Operational Transformation (OT).
In OT as proposed by [16], concurrent operations on a replica are serialized to a predictable order,
and then applied to the state sequentially. After an operation is executed, all pending operations are
adjusted to ensure they reflect an operation against the current state. In other words, the pending
operations are transformed to work against an updated version of the state. The difficult part in the OT
scheme is deciding the order of operations. Popular products that use OT such as Google Docs use
a centralized component, a server in this case, to decide the order of operations. This ensures that all
clients reach the same state. When the internal state is designed properly it is even possible to create
a hybrid OT/CRDT system [31], thus allowing choice about the mechanism to use.

Also closely related to CRDTs are Cloud Types [13]. These are based on a similar idea of always
allowing divergent versions of a value to be be recombined without much conflict. In the case a conflict
does arise Cloud Types defer to a centralized replica (in the cloud somewhere) to handle arbitration.
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In contrast to CRDTs the use of a centralized component allows Cloud Types to use non­commutative
concurrent operations. On the other hand this means that the replicas held outside of this master copy
are not authorative. Cloud Types also use a variation of a vector clock to ensure values cannot be
recombined to older versions of themselves. In short, Cloud Types are aimed at enterprise scenarios
with centralized components, which is exactly what Local First Software tries to avoid.

Another slightly more generic branch of research that is closely related is research on anti­entropy
algorithms. The main idea here is to use an algorithm to synchronize peers, and thus reduce entropy
in the distributed system. Conflicts are resolved using Last­Writer­Wins rules or are left unresolved
as multiple versions of a value. The DottedDB[20] is a distributed key­value database that uses a
double clock mechanism to garbage collect causality information that is no longer usefull. To avoid
unbounded grow DottedDB introduces a watermark set, a method for detecting what other peers know
and discarding information is accepted by a quorem. This scheme is tolerant of peer churn, but use of
a quorem indicates the peers are a limited set that are well connected.

Lastly there are CRDT designs Vegvisir[26] and Merkle­CRDT[40] which apply to low power IoT
devices and IPFS respectively. Both build on the idea of using a Directed Acyclic Graph (DAG). Each
operation on a CRDT is represented by a node in the DAG, and each such node has an edge directed
at one or more previous operation­nodes. The edges of the DAG thus encode the causal relation of
the updates and are sufficient to allow CRDTs to work on this.

2.6. CRDTs embedded in Merkle Trees
Merkle Trees are data structures that can be used to efficiently find differences in large sets of elements.
The idea begins with hashing each element, then a certain number of these hashes are concatenated
and hashed again forming the leaves of a tree structure where each level towards the root repeats the
concatenation and hashing (as depicted in figure 2.3a). The root of a Merkle Tree is a single hash that
identifies this particular tree. With this scheme any change in an element produces a different hash for
all its parents, up to and including the root. This way a hash can compare subtrees or indeed a whole
tree with one message exchange. Many practical applications use Merkle Trees including ZFS, bitcoin,
git and Riak to name a few. While a Merkle Trees can detect detect differences in large element sets,
it does not provide direction over a key space, a Merkle Tree is not an indexing structure.

The Merkle Search Tree (MST, [3]) aims to unify Merkle Trees and indexing structures. Since a
Merkle Tree is indifferent to exactly how the children of each node are selected, the MST can exploit
this freedom and proposes to compose elements into a tree structure similar to a B­Tree[8] (see figure
2.3b). It starts by ordering all elements and hashing them. Each element is then assigned a level (height
or distance from leaf layer) based on the number of leading zeros in its hash. This height combined
with the ordering results in a tree structure, to which the Merkle Tree concept can be applied (see figure
2.3c). Replicas of the MST can be compared using the techniques developed for Merkle Trees, in this
case gossiping of the current root hash and subsequent rounds of obtaining missing nodes/hashes.
Of special note is that the MST is formed deterministically from the set of elements. Given the same
set of elements, each replica will form an identical tree. This ensures there is no infinite varaiation on
hash due to different causal paths, leading to a converging state and an eventually consistent MST.
The MST proposes using key/value pairs as entries and using CRDTs in the leaf values to resolve
concurrent updates, much like Riak and Redis. The paper presenting the MST hints at, but is not clear
on, the mechanism of removing elements from an MST. After inquiry with the first author[2] it is clear
that the MST supports deletes in a limited cappacity. Any local delete would be considered a missing
value in any subsequent gossiping round and be restored. Thus the best the MST can offer is a special
tombstone value in the key/value pair, making it a grow­only structure.



2.6. CRDTs embedded in Merkle Trees 11

n5
16 38 37

n6
42

n7
72 65 76

n8
92 11 17

n4
2 5 40

h(n4) h(n5) h(n6)

n2
h(n7) h(n8)

n3

h(n2) h(n3)

n1

h(n1)

(a) Example of a Merkle Tree. Concatenating node contents and
hashing repeatedly to create a tree. Terminating in a single root hash.
Note that the leaf nodes do not need any specific ordering to construct
an Merkle Tree. In practice however it is usually favourable to have an
ordering since the Merkle Tree expresses a permutaion of elements
and ordering reduces that to a combination of elements.
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(b) A B­Tree[8] is a generalization of a binary search tree that allows
more than one value in each node. Entries are added to leaf nodes
that split when they become full. Because splits propagate up from
the leaf layer and creates only sibblings, the tree is kept balanced.
Adding a new layer at the root when needed.
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(c) The Merkle Search Tree combines the Merkle Tree with the B­Tree and allows searching, but also efficient com­
parison of (sub)trees.

Figure 2.3: The Merkle Search Tree combines the concepts of a Merkle Tree with those of a regular indexing structure. 𝑛𝑥
indicates a tree node and ℎ(𝑛𝑥) indicates the hash of a node’s contents and pointers.





3
Problem Description

The previous chapter describes the model of a CRDT, and its properties. The sections on applications
show there is no significant use of CRDTs in open P2P systems. Most applications are collaborative
editors for users and key/value data stores. These are controlled situations with a limited number of
replicas where new replicas need permission to join and all replicas are informed about each other.
This in contrast to open P2P systems and hinders the ideals of Local First software. This chapter
describes the problems that arise when applying CRDTs to open P2P systems. Section 3.1 describes
these problems in three subsections. Next, section 3.2 describes how these problems impact a real
world application.

3.1. Limits and Problems of current CRDTs
Explained in the next sections three inherently limiting issues are explained that, at minimum, hinder
a wider adoption of CRDTs in open P2P systems. This section uses Git[14] as an example since this
software is very familiar to most readers and displays many characteristics of CRDTs1.

3.1.1. Data structure Scalability
In theory, the basic definition of a CRDT does not place any hard limits on state size. However, when
applying theory to practice there will always be real world considerations. Authors have found that the
size of the CRDT’s state was a topic for future research [5][28], as it is a fundamental limitation on CRDT
applicability and adoption. In Git an example would be many or large binaries being added which leads
to a large working copy. In many CRDTs a similar issue occurs with grow­only structures, and more
specifically tombstones inflating the CRDTs state. In Git it suffices to delete the binaries to reduce the
size of the working copy. However, the grow only nature of many CRDTs means it is not possible to
simply remove tombstones without introducing conflicts. So CRDTs that rely on tombstones require
other solutions to keep their state manageable. One solution is to ignore the problem if the CRDT is
of an ephemeral nature. Since the current applications of CRDTs are in collaborative software, it is
reasonable to assume the collaboration will cease eventually. If the CRDT’s state has not grown so
much that it becomes impractical then there is no problem to solve in practice.

If the CRDT is not ephemeral but of a more persistent nature, ignoring a grow­only state or the
state size in general is a strategy that will fail eventually. One solution that has been suggested is a
distributed garbage collection scheme to remove tombstones that no longer serve a purpose. As briefly
discussed in section 2.4.1, the go­to solution is to use a vector clock and attach a timestamp to each
tombstone. This allows each node to reason about the causality at other nodes. Once it can be inferred
that all replicas have seen the tombstone, it can be removed safely. The problem with a vector clock is
that it:

1In fact Git could be considered a CRDT itself. It has states that can be merged towards eventual consistency. However in
such a view of Git the join function is a human that resolves conflicts. Git itself is not aimed at being conflict free, just being
able to resolve the conflicts that happen. Furthermore, the use of a human to do something that pure mathematics can not is
questionable. In essence the join function is an oracle machine; useful for mathematical reasoning but not very practical.

13
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1. Requires knowledge about the existence of other replicas. When replicas are not know to each
other, they are not included in the vector clocks. This prevents replicas from correct causal rea­
soning about operations.

2. Limits the number of replicas in practice. If many replicas join, then a vector clock becomes
unwieldy and timestamps grow in size. A simple calculation shows that a standard Ethernet
frame would overflow with just 188 replicas, assuming 64­bit counters being used.

3. Grows as replicas come and go. Since it is impossible to tell what replicas are partitioned from
the network and what replicas have left the network, the only safe option is to assume a partition
has happened and thus save all required metadata (see also section 3.1.2).

To demonstrate how infeasible the standard vector clock is in an open P2P setting consider trying to
impose a vector clock on the Linux kernel git repository. The first step would be to discover, world
wide, all replicas of the Linux kernel repository. If there are many, then the clock state will become
large and require special consideration in software. If all replicas have been found, the clock must
keep track of the clock states of all replicas, even of replicas that have been removed. Since removal
of replicas is indistinguishable from a network partitioning and there is no limit on the duration of the
network partitioning, their clock states should be held indefinitely. As such a vector clock on the Linux
kernel Git repository would become a grow­only data structure. Recurs to section 3.1.1 to read about
the problems of grow­only data structures.

The problems the vector clock encounters in the above scenario stem from the openness of Git:
anyone can come along and decide to create a replica without being forced to register this replica.
Previous works on CRDTs have either been theoretical, or have applied CRDTs to controlled settings
where the participants in the distributed system are known, reasonably limited in number and no churn
occurs. This means that CRDTs have not found their way into P2P distributed systems, even though
CRDTs would seem to be a natural fit for P2P networks at first glance (some notable exceptions being
Vegvisir[26] and Merkle­CRDT[40]).

3.1.2. Metadata Scalability
CRDTs consist of two types of data: application state is used by the application built on top of the CRDT,
and metadata is needed to make the CRDT function but has no direct value to the using application.
Git also clearly shows this distinction: the working copy can be considered an application state while
the commit history is metadata kept by Git to make the users workflow possible. Just as unbounded
growth of the application state is problematic, so is unbounded growth of a CRDT’s metadata. Op­
based CRDT implementations are a prime example of this unbounded metadata growth because they
require that all operation messages contain causality information. This is not a problem by itself but
usually this causality information is only informative in the context of the complete history of operations
on the op­based CRDT. In other words, operations refer to the operations that came before them. Also,
keeping the full history of a CRDT ensures that a replica recovering from a network partition can be
supplied with the operations it still has to perform.

At first glance state­based CRDTs should not have the issue of grow­only metadata, since state­
based CRDTs do not require a causal ordering. However, implementations may require this anyway
in order to determine the join of two states. The state­based CRDT needs to determine what state is
newer, or has components that have not yet been observed. In terms of Git an example would be a
merge (or rebase), that requires a common ancestor state to determine how two states have diverged.
Changes since such a common ancestor state can then be compared and a joined state emerges. The
definition of the state­based CRDT is much looser than this Git example would suggest. Nonetheless,
it highlights that even state­based CRDTs can be reliant on persisting metadata of previous states.

3.1.3. Forced Convergence Assumption
A fundamental assumption of many CRDT implementations is that they aim for an active full state syn­
chronization among peers. For the small and closed communities that most CRDTs target this works
well. However, there is no requirement in the definition of CRDTs that replicas are forced to converge.
Put another way, the delay after which eventual consistency is reached could be at infinity. CRDTs
where initially designed for applications with the assumption that it is desirable to actively converge all
replicas to a globally equivalent state. This is what many projects have implemented and indeed this
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has so far proven a good fit for collaborative editor applications and key­value databases. However,
this forced convergence assumption has some disadvantages. Most importantly, a replica might not
need the complete data structure in order to function. This is a key design insight that allows for ex­
ample ConTrib[15] 2 to function efficiently. ConTrib expressly avoids globally distributing block chains.
Secondly, CRDT applications that aim for an actively converged state assume that all replicas are
known. This allows CRDT implementations to push new states or operations to other replicas, forcing
them to converge towards a globally equivalent state. However, as with vector clocks in section 3.1.1,
keeping track of all replicas is not trivial. Lastly, the active convergence assumption does not consider
replicas on heterogeneous hardware. If a receiving replica is low­powered, then new updates that are
pushed towards this replica force it to use a lot of power to keep up. That is, if the low­powered device
is capable of keeping up at all. Especially in the case where only a small fraction of the whole data
structure is needed, the burden on this replica might be disproportional compared to the benefit for the
user.

3.2. Applying CRDTs to open P2P systems
The previous section describes several problems that CRDTs must overcome to successfully work in
open P2P systems. This section describes a specific practical application that would benefit from a
CRDT that is capable of working in such an open P2P system. This practical application concerns
the Channels feature of Tribler. Tribler[36] is a BitTorrent client created by the Distributed Systems
department of the TU Delft. Tribler has been downloaded by over 1.8 million users. For over a decade
Tribler has enabled researchers to investigate a variety of P2P topics including distributed content
indexing and searching, video streaming and anonymous downloading. What makes Tribler unique as
a research vehicle is the fact that it is used by thousands of real world end users. New features get put
to the test in the real world, not just academic benchmarks.

One of the distinguishing features of Tribler is the ability for users to create and manage their own
channels with content. Users can subscribe to channels and after doing so Tribler will start collecting all
torrents in the subscribed channel. Figure 3.1 shows a client with channel subscriptions. Each torrent
consists of a.o. a name, magnet link, tracker info, thumbnail(s) and other metadata. In the current
deployment only the user that created a channel can add or remove content torrents. This situation
seems perfectly suited for a CRDT. In essence Tribler’s Channels are collaborative adds and removes
on a set. However, Tribler is an open P2P system and as such naive CRDT implementations would
suffer from the problems discussed in section 3.1.

Since the release of Tribler’s Channels feature some channels have grown beyond amillion torrents.
Assuming 2.1KB per torrent, an estimate for the application state size of a CRDT supporting such a
channel would be over 2.1GB. On top of that any add/remove would leave a tombstone, and since the
channels are more permanent than ephemeral, the tombstones would eventually dominate the CRDT.
It could be argued that the size of the CRDT would become impractically large to handle as a single
CRDT. In addition to that, such a huge CRDT would need to be either an op­based or a 𝛿­CRDT,
since sending the full state between replicas for each update is not a sustainable approach in terms
of network usage. Both models of CRDT keep a full history of operations or deltas, causing a further
metadata scalability problem over time. Lastly, it is hard to imagine that any user would have a need for
every single torrent in such a channel. Downloading all the torrents and consuming all content would
be infeasible. Therefore, its reasonable to assume each user is only interested in a small subset of the
full channel. Thus if such a large channel would be implemented as a CRDT, the forced convergence
assumption would not only force nodes to know and track all the other nodes, but would also force
users to acquire the full application state and metadata of the CRDT and to keep up with any changes.
This is a heavy burden for a user that is only interested in a small subset of the full state. Since all of
the problems described in section 3.1 apply, it is clear that applying a CRDT to the Tribler open P2P
network is not trivial and warrants further research.

2The ConTrib structure can be interpreted as a 𝛿­CRDT, on the condition that all nodes behave correctly. The state of a replica in
this case is the local database of blocks that a replica holds. There is only one update function: addBlock. Which translates to
a 𝛿­state message containing the new block. This message is distributed to other replicas andmerged into the state (persisted in
the database). Themerge operation always produces a consistent new state that is further along the path to global convergence.
Thus it has all the attributes of a state­based CRDT and is an example of a CRDT that does not force convergence of replicas.
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Figure 3.1: Tribler client subscribed to 3 channels

3.3. Requirements of solution
TODO: fill

• Must keep crdt property of commutative updates (or state merges).

• Must not show unbounded growth in CRDT or history (in practice. Logoot shows theoretical
unbounded growth does not need to materialize)

• Must pull updates, not push them to avoid overwhelming nodes. (Must converge to full crdt state
when nodes decide to pull everything) (push can be allowed as optimization, but nodes must be
allowed to discard and pull again when they are ready)

• Must not require full knowlege of all replicas

• Must not require impractical clock protocol.



4
The Conflict Free R­Tree

Two concepts are presented that overcome the problems described in the previous chapter. First,
BloomCRDT an innovation on the standard OR­set that vastly reduces the unbounded growth and op­
erates in an open P2P environment. Second, the Conflict Free R­Tree is a composition of BloomCRDTs
into an index data structure that scales far beyond what a single BloomCRDT could practically contain.

4.1. System model and assumptions
The previous chapter describes the problems faced by CRDTs in open P2P systems. These problems
are modeled by the following assumptions:

• Message delivery is imperfect, messages may arrive out of order or not at all.

• Peers and network links may fail. This could even lead to network partitions.

• Over time, large numbers of peers may join and leave the network and interact with a BloomCRDT
or CFRT instance.

Moreover, there are several basic communication features on which BloomCRDT and CFRT are
based. It is assumed that there exists a communication library such that:

• Messages are checked for tampering using cryptographic signatures. For example a system
where a peer’s identity is a public key which is used uses to verify messages.

• Groups can be resolved from global identifiers. For CFRT it is necessary to form identifiable
groups of peers that exchange messages. Knowing the ID of a group should allow a new peer to
join that group.

• Each peer can message a (small) subset of other peers in joined groups.

4.2. BloomCRDT
Presented here is BloomCRDT, a novel CRDT that provides set semantics in an open P2P environment.
BloomCRDT is a state­based CRDT that behaves like a set and is based on the traditional OR­set[43].
BloomCRDT does not rely on causal message delivery nor does it need knowledge of other peers or
their state, and finally does not show unbounded growth over time in practice. There appears to be no
CRDT described in related work that matches these characteristics.

4.2.1. The Observed­Remove Set
BloomCRDT is a modification of the Observed­Remove set (OR­set), which should be explained before
presenting the modified version. An OR­set tags each added element with a random number or tag,
this effectively makes each element unique and unpredictable. Internally, the OR­set consists of a
grow­only set of inserted elements (denoted 𝐼) and a grow­only set of removed elements (𝑅). The
contents of the OR­set from the user’s perspective is the relative complement 𝐼 ⧵ 𝑅. New elements (𝑒)

17
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are paired with a tag (𝑡) and added to 𝐼. To remove an element, the (𝑒, 𝑡) pair is added to 𝑅. Since 𝑡 is
unpredictable a replica must first observe a (𝑒, 𝑡) pair in 𝐼 before the pair can be added to 𝑅 to remove it
from the OR­set, hence the name Observed­Remove set. The required observation step ensures any
remove must causally follow the add.
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(a) Traditional set demonstrating the overtaking delete problem.
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(b) OR­set solution to the overtaking delete problem

Figure 4.1: The overtaking delete problem

To emphasize the problem that the OR­set solves, consider the 𝑎𝑑𝑑() and 𝑑𝑒𝑙𝑒𝑡𝑒() operations on
a traditional set. In the case of state­based CRDTs that have non­causal message delivery, messages
can get reordered as demonstrated in figure 4.1. So the message that signals the deleted state might
arrive before the message that carries the added state. This is known as the overtaking delete problem
[32]. In this case Replica C observes the delete of an item before it observes the add. As shown in sub
figure 4.1a a traditional set is not guaranteed to be eventually consistent. Sub figure 4.1b shows how
the OR­set solves the problem of an overtaking delete. In the last step at Replica C, the 𝑅 set reveals
that the element was already deleted.

Some research has been done to improve upon the OR­set, mostly to address its grow­only nature.
The Optimized Conflict­free Replicated Set[9] proposes the OptORSet, a modified OR­set that includes
information about the state of other peers. This allows reasoning about what state has been propagated
globally and thus what state can be discarded. To do this the OptORSet uses causal message delivery
and keeps a per peer state. These concepts are not suited to an open P2P environment. The Optimized
OR­set Without Ordering Constraints[32] improves on this because it does not require causal message
ordering and makes a compelling argument for its interval version vectors. However, this solution also
uses per peer state. In the open P2P environment this will show unbounded growth over time.

4.2.2. Structure of the BloomCRDT
In an OR­set, 𝐼 does not actually need to be a grow­only set. Once a (𝑒, 𝑡) pair is in 𝑅 it can be removed
from 𝐼. The relative complement 𝐼⧵𝑅 will still compute theOR­set contents. However there is no obvious
way to remove the grow­only aspect of 𝑅. In a more theoretical sense, 𝑅 provides information for the
join function such that the result state is ordered greater on the join­semilattice than either input state.
Or viewed another way, 𝑅 encodes the history of an OR­set such that a join function can move forward
and will not regress. In 𝑅 it is especially the unique tags 𝑡 that are of interest, since those are what
make the elements unique and force the observed relationship. If only there where a space efficient
method to encode set membership of many elements without having to persist the members.

Luckily Bloom filters[10] can encode set membership without having to persist the members and
are a suitable replacement of the 𝑅 set in an OR­set. Bloom filters start as a list of bits, each set to 0.
When an element is added to the Bloom filter a number of hashes is computed on the added element,
and each hash function produces an index in the Bloom filter’s bits. At the calculated indices the bit is
set to 1. To test if an element is in the Bloom filter a queried element is hashed with the hash functions
and if the bit at any of the computed indices is zero, then the queried element is not in the Bloom filter.
Else it most likely in the Bloom filter, however it could also be a false positive if other elements flipped
the relevant bits. The idea is to choose the number of bits and number of hash functions in such a way
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that the probability of a false­positive is small enough for the application.

I
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B2

Bn ...
...

B1

(e1, t1) ...

Figure 4.2: Structure of a BloomCRDT. Each entry is tagged with a unique tag. One or more Bloom filters of increasing size are
added as needed.

Using a Bloom filter, it is possible to change the OR­set into a BloomCRDT. To do this 𝑅 is replaced
with a Bloom filter, and coupled with the previous observation that 𝐼 need not be grow­only, the Bloom­
CRDT is constructed (see figure 4.2). While this is the basic premise of the BloomCRDT, there are
some details that require further explanation.

• Bloom Filter alternatives Instead of a Bloom filter there are more recent alternatives to consider
such as Cuckoo filters and XOR filters. However there are specific conditions that the 𝑅 replace­
ment must handle. For example, Cuckoo filters require storing fingerprints of elements in the set
which would not amount to a net savings since the 𝑡 tags are similar to the required fingerprints.
The 𝑅 replacement should result use less space compared to the size of 𝑅 as a grow­only set.
The more recent XOR filters are built from all elements prior to filtering and are not updatable. But
𝑅 is not something that can be computed a priori, it updates over time. This covers the two most
frequent reasons other techniques cannot be used. In addition to this, the 𝑅 replacement must
be able to join efficiently as will be explained in 4.2.3. In the end, Bloom filters are very simple
and can show a net space saving over 𝑅 after adding just a few entries.

• False Positives A major problem for Bloom filters is their probabilistic nature: there can be no
false negatives but there is a chance of a false positive. When applied as a replacement of 𝑅,
this means there is a chance that an element is falsely considered as removed. This is only a
problem in exceptional circumstances1. Moreover Bloom filters allow the implementer to select
the probability of false positives which should be customized to fit the risk of the application. The
specific conditions required for a false positive to adversely effect the BloomCRDT coupled with
the low probability of actually creating a false positive in the first place, means this event can
reasonably be excluded during further discussion.

• Parameter selection The only further consideration for Bloom filters is that they require an a priori
estimation of the number of elements that will be added in order to guarantee the probabilistic
bounds. This presents a problem for long lived BloomCRDTs, the number of elements added
to the Bloom filter cannot be fixed in advance. To address this, BloomCRDT actually uses a
list of Bloom filters (𝐵𝑖 where 𝑖 is the index in the list of Bloom filters). When it is estimated
that a Bloom filter is nearing saturation, a larger Bloom filter is added to the list of Bloom filters.
This unfortunately reintroduces an unbounded growth in the theoretical sense, albeit with a much

1Elements are only checked against the Removed Bloom filter during a join, and only if they are only in one of the two input
states. Thus it requires a removal in one replica that creates an update in the Bloom filter that collides with a concurrent addition
that is still propagating among replicas.
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reduced magnitude. Section 4.3.3 discusses the composition of BloomCRDTs into a CFRT and
includes a mitigation strategy for this potentially unbounded growth.

4.2.3. Joining two BloomCRDTs
The traditional OR­set has a simple algorithm for the CRDT join function, but for BloomCRDT this is
slightly more complicated. Assume that a join function has two inputs named 𝑙 and 𝑟, and an output
state named 𝑗. The traditional OR­set calculates its new states as 𝐼𝑗 = 𝐼𝑙 ∪ 𝐼𝑟 and 𝑅𝑗 = 𝑅𝑙 ∪ 𝑅𝑟. The
BloomCRDT join is slightly more complex and must consider joining the Bloom filters and a correct
handling of the difference in 𝐼𝑙 and 𝐼𝑟. The Bloom filters of 𝑗 can be computed as 𝐵𝑛,𝑗 = 𝐵𝑛,𝑙 | 𝐵𝑛,𝑟 where
𝐵𝑛,. is considered as all zeros if the index is undefined. Since Bloom filters only change their bits from
0 to 1, a bit wise­or suffices to combine them. Initially 𝐼𝑗 = 𝐼𝑙 ∩ 𝐼𝑟, and each element in 𝐼𝑙 △𝐼𝑟 that has a
tag that is not in 𝐵𝑗 is also added to 𝐼𝑗. The idea is that if a (𝑒, 𝑡) pair is in one of 𝐼𝑙 or 𝐼𝑟, then it is either
a new element or it was removed. Since removed elements should be present in 𝐵𝑗, they are omitted
from 𝐼𝑗. The bit wise­or of two Bloom filters implies the condition that both Bloom filters are based on
identical parameters. So when growing the list of Bloom filters, there should be a deterministic process
to set the parameters of the next Bloom filter. This ensures that when two or more replicas concurrently
add a new Bloom filter, the new Bloom filters are compatible for merging. A simple strategy could be
to double the capacity compared to the last Bloom Filter.
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Figure 4.3: Example of joining two BloomCRDT states.

An example of a BloomCRDT join is shown in figure 4.3. Here BloomCRDTs 𝑙 and 𝑟 are joined and
result in BloomCRDT 𝑗. The symmetric difference 𝐼𝑙 △𝐼𝑟 reveals that (𝑒2, 𝑡2) and (𝑒3, 𝑡3) are not in both
states and should thus be checked against the Bloom filter. In this case (𝑒3, 𝑡3) is a new element since
its tag is not in the Bloom filters and its pair is thus added to 𝐼𝑗. However 𝑡2 is in the Bloom filter, so its
pair is omitted from 𝐼𝑗. The resulting state 𝑗 captures all information in both input states and is thus a
join in the CRDT semi­lattice sense. The state 𝑗 orders greater on the semi­lattice than both 𝑙 and 𝑟.

With the join algorithm as described, there is a complicating factor that need to be considered when
using BloomCRDT. If many deletes are being processed concurrently it is possible that a subsequent
join pushes a Bloom filter over its designated capacity. Thus each BloomCRDT should have a soft limit
on the number of elements in each of the Bloom filters. The soft limit should be the floor of designed
capacity of the Bloom filter minus the global rate of distinct elements removed multiplied by the time
to global convergence. For example, if a Bloom filter is designed to hold 20 elements, the global
removal rate is 0.2Hz and the time to global convergence is 17 seconds, then the soft limit would be
⌊20−0.2 ∗ 17⌋ = 16. When reaching this soft limit a BloomCRDT should stop adding to the Bloom filter
and add a new one, with the idea that the remaining space in the Bloom filter could be filled up by deletes
that are still propagating. Estimations of the variables are obviously implementation dependent, and
could be set at design time or set at run­time dynamically. Moreover exceeding the designed capacity
of a Bloom filter is not automatically a problem it only slightly increases the chance of a false positive.

4.3. The Conflict Free R­Tree
The Conflict Free R­Tree (or CFRT) is a novel data structure that is composed of many BloomCRDTs,
allowing it to scale far beyond what a single BloomCRDT could practically contain. The BloomCRDT
behaves much like a typical set with linear computational complexity on insert, lookup and remove
operations. To support larger datasets a lower complexity is required, which implies ordered elements.
There are several possible directions that could work. For example BloomCRDTs could be composed
to form a DHT, or a skip list. However, when composing BloomCRDTs the most difficult part is correctly



4.3. The Conflict Free R­Tree 21

maintaining the links between the BloomCRDTs. A classic index tree structure provides ordering on
the contained elements and a low number of links compared to other solutions.

4.3.1. The R­Tree
The R­Tree[22] is similar to the well known B­Tree, as used in Merkle Search Tree described in section
2.6, but has different characteristics. The R­Tree is an index on a key space K such that it can efficiently
𝑎𝑑𝑑(𝑘), 𝑙𝑜𝑜𝑘𝑢𝑝(𝑘) and 𝑟𝑒𝑚𝑜𝑣𝑒(𝑘) where 𝑘 ∈ K. The central idea is to build a tree that labels its edges
with a range on K that indicates the range of keys that can be found in the sub tree that the edge
points to. Walking the tree from root towards leaf nodes should result in an ever narrower range. The
R­Tree nodes typically contain many edges towards children, but the fan out factor is implementation
dependent. Figure 4.4 shows an example of a R­Tree.

84 9272 65 7637 40 4216 172 5 11

[72, 76] [84, 92][2, 11] [16, 17] [37, 42]

[2, 42] [72, 92]

root

Figure 4.4: The diagram shows an example R­Tree where each edge is labeled with a range to indicate the range of keys that
are contained in the child .

The R­Tree starts as a single node. Entries get added and at some point the node decides it is too
full and needs to split. So there is a limit on growth after which a node will be considered full. When a
node detects that it is full it splits into two nodes and informs the parent of this change. The parent then
adds an entry to register the new child. This in turn can cause the parent to become too full and split.
This splitting can proceed up the tree all the way to the root node. If the root node splits, it creates a
new node that becomes the new root of the tree and the parent of the old root. The inverse of splitting
can also happen: if a node contains only a few entries, it can be merged with a sibling. A sibling is
selected and the entries are transferred to this sibling. The node is removed and the parent is updated
to remove the corresponding child entry. If the root node has only 1 child, that child becomes the new
tree root and the old root is removed. If enough entries are removed, the tree can collapse all the way
down to a single node.

This scheme is very robust. It does not matter how a node is split, its entries could be randomly
distributed over the old and the new node and the R­Tree will still be consistent. Similarly the sibling
selected for merging does not matter, any sibling is valid and results in a consistent tree. The cost of
this imprecise work is efficiency. The random split and merge strategies result in children overlapping
the range of the parent almost fully. This requires a lookup to visit most of the nodes in the R­Tree,
effectively a complicated scheme for sequential scan. The average fraction of overlap between children
is a well known (and studied) performance characteristic of R­Trees. Any overlap that can be avoided
will improve the efficiency of a lookup.

The mechanic of splitting and merging is all very similar to a regular B­Tree so what justifies the
storage cost of ranges on K as opposed to just elements from K? The R­Tree can, in contrast to the
B­Tree, contain children whose ranges overlap without affecting the consistency of the tree as a whole.
In a B­Tree any key in an interior node serves to direct algorithms that traverse the tree to one of the
children at either side of the key. This implicitly bounds the key space range of children, but cannot
express children with overlapping ranges. The R­tree explicitly tracks the range of children and is thus
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able to express overlapping children, at a cost in storage since each child requires two bounds from K.

4.3.2. Structure of CFRT
After adding a few thousand elements the BloomCRDT becomes very inefficient. By the nature of a
state­based CRDT, the entire state needs to be transferred to communicate even the smallest change.
So a natural idea is to split the elements over multiple BloomCRDTs and link them together. Since the
R­Tree is tolerant of overlapping children, this provides a suitable data structure to organize the linking
of BloomCRDTs. Each node of the Conflict Free R­Tree is backed by a BloomCRDT. It is reminiscent
of the MST, but the MST is not based on a CRDT for the actual tree nodes and is grow­only. Moreover
the MST is modeled after a B­Tree but that is an unsuitable choice in the context of concurrency. If
replicas independently decide to split a tree node then without coordination there is no consensus on
how the elements are divided. Since building consensus is contrary to the idea of CRDTs, the only
other solution is to deal with the conflicting splits that will happen. The B­Tree is not able to express
such conflicting splits, but the R­Tree is uniquely suited to this situation.

In order to use a BloomCRDT for each tree node, there must be a mapping of R­Tree node entries
to BloomCRDT set elements. Entries are be formed as triples of the form 𝑒 = (𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , 𝑣). The 𝑘𝑚𝑖𝑛
and 𝑘𝑚𝑎𝑥 indicate a range in K covered by the entry. When 𝑘𝑚𝑖𝑛 = 𝑘𝑚𝑎𝑥 this indicates a leaf value, and
when 𝑘𝑚𝑖𝑛 ≠ 𝑘𝑚𝑎𝑥 this indicated a child reference. In the case of a leaf value, 𝑣 is the value associated
with the key 𝑘𝑚𝑖𝑛. In the case of a child reference, 𝑣 is a global identifier of another BloomCRDT that
can be resolved to produce a local replica. Furthermore, a special entry is added to each BloomCRDT
of the form 𝑒 = (”𝑝𝑎𝑟𝑒𝑛𝑡”, ”𝑝𝑎𝑟𝑒𝑛𝑡”, 𝑝) where 𝑝 is the global identifier of the node’s parent. Figure 4.5
shows an example of R­Tree entries mapped to BloomCRDT set elements for each node.
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Figure 4.5: Example structure of a CFRT, showing the mapping onto BloomCRDTs

In addition to mapping the R­Tree node entries onto BloomCRDT set elements, the CFRT also
needs a specification for its three basic operations: 𝑎𝑑𝑑(𝑘, 𝑣), 𝑙𝑜𝑜𝑘𝑢𝑝(𝑘) and 𝑟𝑒𝑚𝑜𝑣𝑒(𝑘), and for its
internal operations 𝑠𝑝𝑙𝑖𝑡() and 𝑚𝑒𝑟𝑔𝑒()

• 𝑙𝑜𝑜𝑘𝑢𝑝(𝑘) The lookup function is straightforward. Given a tree node, for each entry (𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , 𝑣)
that satisfies 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥, return 𝑣 if it is a leaf value and otherwise recurs to the BloomCRDT
identified by 𝑣.

• 𝑎𝑑𝑑(𝑘, 𝑣) The add function descends the CFRT identical to the lookup function, but it can run
into the situation that zero or multiple entries satisfy 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥. If zero entries satisfy
the condition the add function could select any child to descend, but to reduce the potential for
overlap and the resulting reduced performance, the child that should be selected has the smallest
increase in range to accommodate 𝑘. If multiple entries satisfy the condition, choose one. When
at a leaf node, add entry (𝑘, 𝑘, 𝑣) to the node. While unwinding the recursion stack, each node
should update its entry in its parent to reflect any changes to the range of the child.

• 𝑟𝑒𝑚𝑜𝑣𝑒(𝑘) The remove function descends the CFRT identical to the lookup function. If in any
node no entry satisfies 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥, then 𝑘 is not in the CFRT. When at a leaf node, remove
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any entry that satisfies the condition. While unwinding the recursion stack, each node should
update its entry in its parent to reflect any changes to the range of the child.

• 𝑠𝑝𝑙𝑖𝑡() To split a node (𝑛), select the median (𝑚) of all 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 values of all entries in
𝑛. For each entry in 𝑛, decide if it orders less or greater than 𝑚. For entries that overlap 𝑚, so
𝑘𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑘𝑚𝑎𝑥, if 𝑚 is closer to 𝑘𝑚𝑖𝑛 than to 𝑘𝑚𝑎𝑥 the entry orders less, otherwise it orders
greater. If the distances are equal, choose less or greater at random. Create a new CFRT node
𝑛′ and add to it all entries that ordered greater than 𝑚. Update the parent of 𝑛 with the range and
id of 𝑛′. Remove from 𝑛 all entries that ordered greater than 𝑚. Update the parent of 𝑛 with the
new range of 𝑛. If the transferred entries where not leaf values, update the parent references of
the nodes identified by those entries from 𝑛 to 𝑛′.

• 𝑚𝑒𝑟𝑔𝑒() To merge two sibling nodes (𝑛 and 𝑛′), add all entries from 𝑛′ to 𝑛. Update the parent
of 𝑛 with the new range of 𝑛. From the parent of 𝑛′ remove entries where 𝑣 identifies 𝑛′.

There is however one caveat with the system outlined above. Assume a node splits (or merges)
and moves a portion of its children to a new node, then the children will need to be informed of their
new parent. However there is no way to atomically update all the replicas of each child node, since
the parent reference is stored in a BloomCRDT entry. In fact, in the case that the parent is split by
multiple nodes concurrently the child’s parent pointer is updated concurrently and points to multiple
new parents. There are two solutions to manage the parent/child relationship: one is to work without
parent pointers at all, and the second is to simply allow multiple parents for each node. When working
without a parent pointer, the parent node would need to observe the child for modifications and update
its entries accordingly. However after a node splits, the parent has no way to discover the newly created
siblings and would thus require sibling pointers on each node to aid in discovery. These sibling pointers
have problems similar to the parent pointer. Also without parent pointers the immediate propagation
of information towards the root is interrupted. Suppose a split would propagate all the way up to the
root, then at each layer it has to pass the propagation has to wait for the parent to observe the split.
The second way to manage the parent/child relationship is to simply allow the child to point to multiple
parents. Both mechanisms result in the child being referred to by multiple parents. This type of R­Tree
is called a R+­tree[41], and even though this forms a Directed Acyclic Graph this does not violate any
R­Tree constraints. This does obviously introduce overlap, since all parents must include the range of
the child.

4.3.3. Checking for optimizations
So far the definition of the CFRT had been straightforward, but the observant reader might have already
wondered, what if two replicas concurrently 𝑠𝑝𝑙𝑖𝑡() a node? The parent will contain three or more
entries that represent overlapping child ranges. This is where the R­tree has a clear advantage over
the B­tree, since it can express overlapping ranges of children while remaining consistent. The flow of
events and the resulting state is exemplified in figure 4.6. A concurrent 𝑎𝑑𝑑() leads to a concurrent
𝑠𝑝𝑙𝑖𝑡(). The adds have introduced entries at different positions in the key space, so the split will not use
the same median. Since the CFRT is composed of BloomCRDTs at each tree node, the BloomCRDTs
will join their states and eventually settle. After the tree nodes have joined their states the CFRT
contains overlapping child ranges in the root node, but the data structure is still consistent.

The CFRT could be left in this state with the hope that adds/removes will, over time, naturally reduce
the overlap. However reduced overlap can also be actively pursued by means of a periodic 𝑐ℎ𝑒𝑐𝑘()
function. This active restructuring of a R­Tree is the principle behind the R*­tree[7] and can result in
improved efficiency. Active restructuring also means that each BloomCRDT is likely to be removed at
some point, thus preventing the infinite growth of its Bloom filters. Furthermore, the 𝑐ℎ𝑒𝑐𝑘() function
can test for some other structural optimizations that can be applied to the CFRT.

• Check parent­child links As explained in section 4.3.2, child nodes can have multiple parents.
After the joining process of BloomCRDTs the parent/child links can become outdated. Removing
superfluous parent and child links helps to reduce the overlap between nodes by shrinking ranges.

• Check merge/split threshold R­Tree nodes in traditional databases have a hard limit on their
size, often aligned to a memory or disk page size. Thus an 𝑎𝑑𝑑() that overflows a node imme­
diately triggers a split. For the CFRT there is no such limit, allowing a decoupling of the decision
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Figure 4.6: Example of CFRT concurrent 𝑠𝑝𝑙𝑖𝑡().

to split/merge from the add/remove logic. The 𝑐ℎ𝑒𝑐𝑘() function is an excellent place to do this
since its periodic execution allows batching additions and removes.

• Check entry in parent A concurrent split can result in multiple entries in a single parent pointing
to the same child node. During the periodic check, a child node should check for and correct this
condition.

• Check (large) overlapping children If there are entries in a node that have an overlapping range
then these could be merged. This is a natural result of a concurrent split of a child node, that will
likely produce multiple siblings that overlap a lot due to duplicate contents. Merging the siblings
that overlap the most removes duplicated entries. There is however also the situation that the
overlap in range is large, but the number of duplicate items is low. In such cases, the merge can
result in a node that is over the split threshold and will split again, with a more favorable split.

As an example of how the 𝑐ℎ𝑒𝑐𝑘() function fixes inconsistencies consider figure 4.7. It starts with
the last state from figure 4.6. This state shows a double reference for node A and shows that ranges
[11, 16] and [13, 16] overlap. The only reason that the splits are not identical is that the two concurrent
adds affected the selection of the median. In practical implementations a node contains more than
three entries, where as in this example entries 2 and 16 represent larger sequences of entries. So in
practice, the overlap resulting from concurrent updates would be far more dramatic. The check function
fixes the double pointer andmerges node D into node E. The result is an optimized CFRTwhere overlap
is avoided.

4.3.4. CFRT compared to DHT
CFRT performs roughly the same as a DHT (also a distributed index). So what justifies the CFRT
compared to it?

• It does not require obfusticating the key space with a hash. This is because it is a balanced tree,
it doesn’t need to spread keys uniformly.
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Figure 4.7: Example of CFRT 𝑐ℎ𝑒𝑐𝑘() function correcting overlap in the ranges spanned by its entries.

• Load is distributed because the (path to) popular keys has a correspondingly higher number of
replicas that share the load.

• It natively supports multidimensional keys, the DHT would need to do a linearization step, with
assorted problems.





5
Evaluation

This chapter provides empirical evidence that confirm the claimed properties of BloomCRDT and the
CFRT.

5.1. Implementation
The system model (see section 4.1) requires the use of a communication middleware that provides
the required features. In this case PyIpv8[46] was selected because it not only provides the required
features but is very flexible and works well with the Gumby[45] experimental framework. Gumby allows
developers to quickly setup and run experiments in distributed environments. This also automatically
means the experiments are programmed in the Python programming language. To shorten develop­
ment time a search was performed for Python compatible CRDT libraries and off­the­shelf components.

• https://github.com/ericmoritz/crdt, up to 2013. Based on python2, where as pyipv8 is python3.
The CRDT base class only offers 2 convenience methods / prototypes for obtaining the ”payload”
state.

• https://github.com/kishore­narendran/crdt­py, up to 2016. Uses CRDTs in Redis as multi valued
registers. This is not the intended application domain of BloomCRDT and CFRT.

• https://github.com/anshulahuja98/python3­crdt, current. Active. No bases classes to inherit for
BloomCRDT and CFRT.

• https://github.com/merchise/xotl.crdt, up to 2020 (dec). Offers a base class that has 3 extra lines
to (un)pickle CRDTs.

All the modules that provide Python CRDT implementations are simple implementations of the
CRDT primitives from the original CRDT tech report: the G­Set, Counter, 2P­Set, 2P2P­graph, etc.
These primitives are not directly usefull for BloomCRDT nor CFRT, any further usefullness is a few
lines of code to (un)pickle CRDT state. Using the investigated modules would add a dependency but
are unlikely to accelerate development.

The python code written for this work consists of several python modules. Figure 5.1 shows the
architecture and relations between these modules.

• CRDT set primitives This part only implements the algorithm for in process use.

– BloomCRDT Including an implementation of the classic Bloom filter. The BloomCRDT al­
gorithm is fairly simple and the expressiveness of python means BloomCRDT uses just 127
Lines­of­Code (LoC), slightly under half of which is the Bloom filter implementation. The
initial implementation was very straightforward but inefficient in computing the hashes for
the Bloom filter. This became a problem during the experimental phase, since BloomCRDT
would become CPU­bound much sooner than other algorithms. After profiling the problem
was identified and a more efficient method of computing hashes was implemented.

27
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BloomCRDT

- entries : set<object>
- bloomFilters : list<BloomFilter>

ORSet

- inserted : set<object>
- removed : set<object>

OptORSet

- entries : set<object>
- intervalVersionVector :
    map<str, list<tuple<int, int>>> 

«interface»
CrdtSet

+ add(object) : None
+ remove(object) : None
+ lookup(object) : boolean
+ join(CrdtSet) : None

BloomFilter

- bits : bytearray
- falsePositiveRate : double
- estimatedElementCount : int

CrdtCommunity

- replica : CrdtSet

+ broadcastState() : None
+ receiveState(CrdtSet) : None

pyipv8.community
1..n 1

CfrtNode

- state : CrdtSet
- threshold : int

+ add(key: str, value: str) : None
+ remove(key: str) : None
+ lookup(key: str) : str
+ check() : None

CrdtGumbyModule

- community : CrdtCommunity

... scenario methods ...

CfrtGumbyModule

- treeNodes : CfrtNode
- community : CrdtCommunity

... scenario methods ...

Experiment Modules

Figure 5.1: Diagram of implementation and experimentation architecture.

– Classic OR­Set as described in [43] just 43 LoC.
– OptOR­Set Or the Optimized OR­Set Without Ordering Constraints as described in [32]. 88

LoC

• CFRT Node Uses one instance of BloomCRDT for each R­Tree node. The implementation is
more complex than BloomCRDT and the CRDT set primitives at 328 LoC. Of particular note are
the separation of 𝑐ℎ𝑒𝑐𝑘() and the randomized split/merge thresholds. The 𝑐ℎ𝑒𝑐𝑘() method is
only directly executed when absolutely nessecary. Not only because it is not cheap to execute
but also because it offers the chance to coalesce multiple 𝑠𝑝𝑙𝑖𝑡() and 𝑚𝑒𝑟𝑔𝑒() operations. Each
instance of a CFRT node is provided with a randomized threshold for merging and splitting. The
rationale is that this reduces the probabillity that a peer concurrently 𝑠𝑝𝑙𝑖𝑡() or 𝑚𝑒𝑟𝑔𝑒() a node.
While CFRT is tolerant of such an event, it is more efficient to reduce this occurence. The ranges
for the random thresholds are set such that a split produces two nodes that cannot cross the
merge theshold of another peer and vice versa.

• CRDT PyIPv8 Community This module is responsible for sending messages to other peers. All
CRDT set implementations (BloomCRDT, OR­Set and OptOR­Set) are state based CRDTs that
expose a common set of methods. This allows the CRDT community to be agnostic as to the
actual type of CRDT being used. The CRDT community thus holds a referrence to an instance of
any of the CRDT set implementation. When requested it will serialize (pickle) this instance and
send it to up to 10 peers. When a message arrives from a peer the CRDT community deserializes
the CRDT set instance contained in the message and provides it as an argument to the 𝑗𝑜𝑖𝑛()
function of the local replica. During experimentation it was immediately obvious that the 64KByte
limit on UDP packets used by PyIPv8 might need to be exceeded. To overcome this limit a
very rudimentary fragmentation scheme was added to the CRDT community. This raises the
message size limit enough to allow the experiments to run. This brings the total LoC for the
CRDT community to 110.

• CRDT Gumby Module manages the CRDT PyIPv8 Community based on Gumby scenario di­
rectives. It exposes several methods to control concurrent tasks in a Gumby scenario, 𝑎𝑑𝑑(),
𝑟𝑒𝑚𝑜𝑣𝑒() and 𝑗𝑜𝑖𝑛(), with configurable parameters to simulate different workloads. Note that it
is the 𝑗𝑜𝑖𝑛() task that ultimately initiates the CRDT Community to broadcast its state. An alterna­
tive would be to have the CRDT Community as an observer of its CRDT set, but this precludes
the option of bunching several updates in a single state broadcast. A final task 𝑠𝑡𝑎𝑡𝑠() outputs
statistics gathered by the CRDT community that are later plotted in graphs. The CRDT Gumby
module also allows switching the type of CRDT set used by the CRDT Community.

• CFRT Gumby module leverages the CRDT PyIPv8 Community to synchronize the BloomCRDT
instances contained in CFRT Nodes. It is very similar to the CRDT Gumby module however; it
tracks different statistics, manages the referrence to the CFRT root node and modifies the CFRT
with key/value pairs as opposed to random elemens like the CRDT Gumby module uses.

The code as used in the experiments is public and can be found at [11]. Unless otherwise noted it is
assumed that BloomCRDT initialized the Bloom filter with 𝑝(𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 1−8 and an expectation
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of 500 elements. The CrdtCommunity aims to maintain 10 connections to other peers for broadcast­
ing replica states. These values are suitable to demonstrate the effectiveness of BloomCRDT in an
experimental setting. Unless otherwise noted all experiments are run on the DAS5[? ] TU Delft cluster.

5.2. BloomCRDT Experiments
Section 4.2 predicts two advantages of the BloomCRDT that should be experimentally confirmed.

• Does BloomCRDT provide a reasonable space complexity when the workload includes 𝑑𝑒𝑙𝑒𝑡𝑒()?
The space complexity is very important since, as with all state­based CRDTs, the whole state
has to be communicated to other peers in order for changes to propagate. Thus a lower space
complexity requires less bandwidth and can reduce the need for message fragementation.

• Does BloomCRDT provide a reasonable space complexity when the network has peer identity
curn? If BloomCRDT is affected by peer identity churn then it could grow over time in a P2P
environment.

To answer these questions BloomCRDT is compared to the OR­Set and the OptOR­Set under various
conditions. The OR­Set was chosen since it is the design that BloomCRDT is derived from. The
OptOR­Set was chosen because; it has set semantics as opposed to the list semantics of many other
CRDTs, it has a state­based CRDT mode of operation, is is the state­of­the­art in OR­Set design, it is
also a derivative of the OR­Set, and as such it shows some algorithmic similarity to BloomCRDT in the
𝑗𝑜𝑖𝑛() function.

5.2.1. BloomCRDT 𝑑𝑒𝑙𝑒𝑡𝑒() workload storage cost
The hypothesis is that BloomCRDT has an acceptable space complexity for a workload that includes
𝑑𝑒𝑙𝑒𝑡𝑒(). Since BloomCRDT does not keep the full elements (nor tags) of deleted elements it should
have a lower space complexity compared to the OR­Set. In fact for the given false positive probability
a Bloom filter should use ≈38.34 bits per element. An OR­Set would need a pointer to each deleted
element, on current hardware this uses 64­bits. This is almost double the bits used by a BloomFilter, and
does include the actual bytes that comprise the element. So the BloomCRDT should be superior, but by
how much? On the other hand the Optimized OR­Sets Without Ordering Constraints[32] (OptOR­Set)
actively works to reduce the size of the state and its space complexity should be constant with respect
to the number of 𝑑𝑒𝑙𝑒𝑡𝑒() opertations performed.

To test the space complexity of BloomCRDT, the standard OR­Set and the OptOR­Set with respect
to the number of 𝑑𝑒𝑙𝑒𝑡𝑒() operations, an experiment is setup as follows. A variable number (𝑛) of peers
is started. Each peer holds one replica of a BloomCRDT, OR­Set or OptOR­Set. All sets are preloaded
with 250 randomly generated elements, in this case 128­bit integers. The sets are allowed to reach
eventual consistency. After that, for 110 seconds, each replica starts two processes to concurrently
add and remove random elements. Every two seconds replicas exchange and 𝑗𝑜𝑖𝑛() their state. After
the add and remove processes have stopped peers have 5 seconds to join their states and reach
eventually consistency again. During the experiment a record is kept of: the number of bytes used to
store a replica, the time taken to 𝑗𝑜𝑖𝑛() exchanged replica states tie time taken for (de)serialization of
the replicas.

The add and remove processes aim to keep the number of elements in each set around 250. This is
to ensure that the size measurement only measures the effect of element churn in each CRDT set type
and not increased or decreased element count. The number of bytes used is measured with python’s
pickle module. This is because it is difficult to have python produce an accurate count of memory bytes
used for a given object graph. The pickle methods are not a perfectly accurate measure of the memory
bytes used for an object graph since pickle will dereferrence pointers and insert back references in
the byte stream if it encounters a pointer to a previously serialized object. Pickle can also eliminate
padding that is used for object member alignment. This means the number of bytes produced by pickle
will likely be less than actual memory bytes used. On the otherhand the pickle methods are also used
to serialize replica state when communicating with other nodes. Thus using the pickle methods gives
an accurate measure of message space complexity in regards to the most limiting factor: message
size.

Figure 5.2 shows the space complexity results of the experiment for various values of 𝑛. Each graph
shows experiment time in seconds progressing on the horizontal axis and the averagemeasured replica
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(b) 𝑛 = 64
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(c) 𝑛 = 256

Figure 5.2: Space complexity of BloomCRDT, OR­Set and OptOR­Set
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(c) 𝑛 = 256

Figure 5.3: Time complexity (Deserialization) of BloomCRDT, OR­Set and OptOR­Set

size in KBytes on the vertical axis. Within each graph a distinction is made between BloomCRDT, the
OR­Set and the OptOR­Set. The results clearly show the expected benefit of BloomCRDT over the
OR­Set. In this case the difference in message complexity is around 1 order of magnitude. However a
practical use of CRDTs might very well use more than 16 bytes of information per element as was used
in this experiment. So this result is indicative of the lower bound on space complexity improvement of
BloomCRDT over the OR­Set. The OptOR­Set shows the expected behaviour and is able to collapse
metadata and maintain a constant space complexity with respect to the number of elements deleted.

In the interval between broadcasting replica states the CRDT Community can expect to receive
one replica state from each peer it is connected to. As decribed this number is set to 10 in these
experiments. The different steps of receiving and joining a CRDT state should be efficient enough to
keep up. Figure 5.2 shows the deserialization time complexity results of the experiment for various
values of 𝑛. Each graph shows experiment time in seconds progressing on the horizontal axis and
the average time in seconds taken for replica deserialization on the vertical axis. Within each graph
a distinction is made between BloomCRDT, the OR­Set and the OptOR­Set. The effect of a reduced
space complexity of BloomCRDT and the OptOR­Set compared to the OR­Set is also apparent in the
time used to deserialize replica states. This is in part due to to simply more bytes to process for the
OR­Set instances, but also the structure of the OR­Set. It consists almost entirely of small entities like
tuples and (random) integers, each such entity will add extra overhead to the deserialization time. In
contrast the BloomCRDT set has a structure where most bytes are in large arrays that can be efficiently
processed. Even though the state is bigger, it still deserializes as fast as the OptOR­Set. Again, the
OptOR­Set is able to collapse its metadata state it is able to keep a very small state. Even though its
state is also composed of many small entities, it is still very efficient when deserializing.

Figure 5.4 shows the time complexity results of the actual merge algorithm for various values of 𝑛.
Each graph shows experiment time in seconds progressing on the horizontal axis and the average time
in seconds taken for the 𝑗𝑜𝑖𝑛() algorithm on the vertical axis. Within each graph a distinction is made
between BloomCRDT, the OR­Set and the OptOR­Set. The OptORSet takes the cake! Clearly the join
of two replica states is more complex to compute for BloomCRDT than for OR­Set and OptOR­Set.
This is because the BloomCRDT has to compute hashes for new elements. The OR­Set also shows
some increase in the time taken to join two states. This is due to the nature of the python 𝑠𝑒𝑡() primitive
which, for each added element, has to check if the element is already a member of the set.

Figure 5.4 shows the sum of figures 5.4 and 5.3 for various values of 𝑛. Both the deserialization
and join have to be performed once for each message received. After examining the steps separately
this graph shows the combined result. Depending on the situation BloomCRDT and OR­Set have a
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(c) 𝑛 = 256

Figure 5.4: Time complexity (Join) of BloomCRDT, OR­Set and OptOR­Set
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(c) 𝑛 = 256

Figure 5.5: Time complexity total for each message in BloomCRDT, OR­Set and OptOR­Set

comparable time complexity, with BloomCRDT being more favourable as more deletes happen over
time.

5.2.2. BloomCRDT P2P tolerance
Given the previous experiment one could conclude that the OptOR­set is a superior solution that per­
forms better than BloomCRDT and theOR­Set. Other solutions like, Redis[38], Riak[4] andDottedDB[20]
would show results similar to the OptOR­Set. All these solutions require either a limited number of
peers, or keep persistent information about other peers in the network. How does BloomCRDT com­
pare to such systems when there is peer churn in a P2P network? Peer (identities) come and go over
time, and keeping track of them all could inflate a replica’s state size. Using the OptOR­Set as an
example of systems that keep per peer state, an experiment was performed to investigate the effect of
peer identities over time on the replica state size. The experimental setup is identical to section 5.2.1
with the only change being an additional process that changes the identity of each replica every second
to simulate peer churn. In this experiment 𝑛 is not varied and fixed at 𝑛 = 64.

Figure 5.6 shows the results of the experiment. As can be seen in figure 5.6a, the OptOR­Set
trades the regular OR­Set’s linear space complexity with respect to the number of deletes for a linear
space complexity with respect to the number of peer identities encountered. In this experiment the
OptOR­Set encounters 7040 identites (1 identity per peer per second ∗ 64 peers ∗ 110 seconds) and
shows a space complexity for this similar to the regular OR­Set. The time complexity of the OptOR­Set
also shows the same trends as the OR­Set. P2P networks can have millions of identities over the
lifetime of the network. So clearly the OptOR­Set is not well suited to a P2P environment. On the other
hand figure 5.6 shows that BloomCRDT is unaffected by the number of encountered peer identities.
So BloomCRDT is suitable for P2P networks with peer churn that require a CRDT with set­semantics
that also supports deletes.

5.3. CFRT Experiments
The motivation for the design of CRFT is the lineair scalability of BloomCRDT. However, BloomCRDT
is atomic and it can only be distributed as an indivisible state. So if, for example, a use­case arises
where an application wants to store a million torrents and magnet links in a BloomCRDT, then this would
work but only in theory. In practice users will probably not want to wait while a gigabyte sized Bloom­
CRDT state is downloaded. However, the CFRT has some storage overhead for each key compared
to BloomCRDT. At what replica size is CFRT a preferable choice over BloomCRDT?
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(b) Deserialization time of CRDTs
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(c) 𝑗𝑜𝑖𝑛() time of CRDTs
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(d) Total time for each CRDT message

Figure 5.6: Experiment comparing BloomCRDT, OR­Set and OptOR­Set with network churn

5.3.1. Practical limits of BloomCRDT and CFRT
This experiment explores the practical limits of BloomCRDT and CFRT. Especially how they function
from the perspective of a new peer joining the network with the aim of adding a specific key/value pair.
To complete the 𝑎𝑑𝑑() the new peer will have to fetch a BloomCRDT or several CFRT nodes. The
number of fetched bytes directly translates to the time it takes to execute the operation. As already
found in experiment 5.2.1 a singleton BloomCRDT should show linear growth. The CFRT, by nature of
any n­ary lookup tree, should show 𝑙𝑜𝑔𝑘 behaviour for fetched bytes where 𝑘 is the fanout factor of the
tree nodes.

The setup of this experiment is as follows. A number (𝑛 = 16) of peers is started. Each peer
starts out with a replica of an empty BloomCRDT and an empty root CFRT node. To be able to test
BloomCRDT in an experiment with CFRT, the BloomCRDT replica is represented by a single CFRT
node with infinite bounds. Since a single CFRT node contains a single BloomCRDT setting the infinite
bounds will keep the CFRT node from splitting while the CFRT code provides the nessesary logic to
allow key/value pair manipulation in a BloomCRDT. For 110 seconds, each replica starts a process
to add random key/value pairs. Every two seconds replicas perform a 𝑐ℎ𝑒𝑐𝑘() on CFRT nodes and
subsequently exchange and 𝑗𝑜𝑖𝑛() all BloomCRDTs. During the experiment a record is kept of: the
number of CFRT nodes created, the number and size of CFRT nodes visited during each 𝑎𝑑𝑑(), the
number of CFRT nodes that required a 𝑐ℎ𝑒𝑐𝑘().

Figure 5.7 shows the results of the experiment. Both figures have the time into experiment in
seconds on the horizontal axis. The first figure, 5.7a shows counts of CFRT nodes. Note that the
y axis of this figure is 𝑙𝑜𝑔10(). The graph shows how many CFRT tree nodes are created during the
experiment. The graph also shows the number of nodes that each 𝑎𝑑𝑑() operation had to fetch and
the number of nodes that required a 𝑐ℎ𝑒𝑐𝑘(). The BloomCRDT is obviously limited to 1 node, no splits
or merges happen. The CFRT shows a lineair growth in the total number of nodes created, as is to
be expected when adding at a constant rate and a limited number of entries per node. The number of
nodes fetched is the number of nodes that a new peer with no prior information would have to retrieve
to add a new value to the data structure. In the case of CFRT it indeed shows a 𝑙𝑜𝑔𝑘 relation to the
number of nodes in the CFRT tree, and by extension to the number of entries in the datastructure. The
number of nodes that are check()ed also seems to show a log relationship to the number of nodes in
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Figure 5.7: Scaling comparison of BloomCRDT to CFRT

the CFRT tree. The second figure 5.7b shows the size of the CFRT nodes fetched and checked. Again
they reflect the log nature of the CFRT, and the linear nature of the BloomCRDT. It is clear that just
after the first split is made, the CFRT is more efficient with bandwidth usage. In the long run it should
be expected that CFRT scales much better than BloomCRDT with respect to the number of entries.

5.3.2. Fault tollerance of CFRT
If the CFRT is to be a practical choice it must show robustness and continue to function inspite of faults.
In distributed systems these faults can take many forms, but the most common is dropped messages
due to network congestion or link failure. The next experiment aims to show that CFRT is indeed robust
against such failures. The experiment starts a number of peers (𝑛 = 10), initiates a CFRT root node
and allows all peers to reach consistency. Then in 10 batches 200 key/values entries are randomized
and added to the CFRT by a single peer. After this the 200 entries are removed from the CFRT in 10
batches by the same peer. During the process of adding and removing CFFT entries all messages
have a uniform probability (𝑝) of being dropped. For each peer a plot is made of the number of entries
reachable in its CFRT replica. The experiment is repeated for different values of 𝑝. The idea is to test
the impulse response of the system, given a unit of change does the systen reach consistency and if
so how long does it take to reach consistency?

Figure 5.8 shows the results of the experiment. The left column shows, for each peer, the number of
CFRT key/value entries reachable from the root. The red line, peer 1, is the peer that adds and removes
CFRT entries. All others should follow this line as closely as possible, this indicates convergence. The
right side column shows the number of messages dropped and passed by the experimental framework.
All figures have the time into experiment in seconds on the horizontal axis. Graphs 5.8a and 5.8b show
the ideal baseline situation when 𝑝 = 0. There are some low dips, this is due to a tree structure change
happening concurrently with counting the number of reachable items. Graphs 5.8c and 5.8d show the
situation for 𝑝 = 0.25. In this case CFRT manages to almost keep ideal performance, although the
time to convergence is noticably longer in some cases. At 𝑝 = 0.5 (graphs 5.8e and 5.8f) some peers
are noticably slower to converge, especially when a split happens that is missed. In these cases the
number of entries in the tree appears to reduce. For practical scenarios the CFRT would still be useable
enough. Even at 𝑝 = 0.75 (graphs 5.8g and 5.8h) the peers roughly converge and would be able to
respond to a vast majority of all user requests. At 𝑝 = 0.9 (graphs 5.8i and 5.8j) the CFRT breaks down
and no longer shows any practical level of convergence.

The breakdown at 𝑝 = 0.9 is mostly due to all ”new” information from peer 1 being blocked. Like
a min­flow max­cut situation, the rest of the peers cannot know more than what peer 1 is able to get
through, and even then dissemination though the network is eratic. Another reason to the breakdown
is how the messaging is setup in the experiments. Only CFRT nodes that changed since, or as a result
of, the last 𝑗𝑜𝑖𝑛() interval are broadcast to other peers. Thus there is little redundancy in the sending
side to overcome faults. However if the messaging of peer 1 is altered to be more redundant such that
the changed state is ignored and the full state sent each 𝑗𝑜𝑖𝑛() interval, then the result is noticably
different.

Graph 5.9 shows that even with 𝑝 = 0.9 the CFRT can be made to work with a different messaging
policy. The cost is more messages being sent, but that is difficult to avoid given the value of 𝑝. The



34 5. Evaluation

messaging policy deserves more investigation in future work. For example by examining the number
of changes comming from another peer

5.4. Open questions
• How to assure availability if everyone leaves a community? (last one to leave has to merge into a
neighbouring state or something? That leaves the last one to leave the whole CRDT with a pretty
large cheque)

• Propagation time. How fast does information travel through the network? The worst case is tied
to graph diameter and the best case is tied to graph radius. Find expression for both from graph
size and make predictions?
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(c) Total number of key/value entries in CFRT (𝑝 = 0.25)
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(d) Average number of messages CFRT (𝑝 = 0.25)
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(e) Total number of key/value entries in CFRT (𝑝 = 0.5)
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(f) Average number of messages CFRT (𝑝 = 0.5)
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(g) Total number of key/value entries in CFRT (𝑝 = 0.75)
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(h) Average number of messages CFRT (𝑝 = 0.75)
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(i) Total number of key/value entries in CFRT (𝑝 = 0.9)
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Figure 5.8: Fault tollerace experiment of CFRT
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(a) Total number of key/value entries in CFRT (𝑝 = 0.9)
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Figure 5.9: Fault tollerace experiment of CFRT with improved messaging policy



6
Conclusion and further work

TODO: leader
TODO: structure of chapter

6.1. summary
TODO: write about what was.

TODO: write about what has been done.
TODO: write about what is.

6.2. Contributions
TODO: write what has been contributed to science

6.3. Ethical dilemmas?
TODO: if any?

6.4. Good engineering
TODO: Did we do good engineering? Does that need verification/justification?

6.5. Further Reserach
TODO: write about future research

Contrary to B­Trees, R­Trees can contain multi­dimensional keys, but does that affect the validity
or use in a CFRT?

Can we refactor the bloom filter list into a tree? That could strongly reduce the chance of a false
positive in the case there are many bloom filters, since the check won’t be against all the filters.
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