
Title page

Voorwoord
Stuff.

Inhoud
<auto generated>

Introduction
The the internet revolution has liberated information sharing from the clutches of economic scarcity. The cost of
information sharing has dropped to almost nothing. However executive and legislative government aswell as
private actors are working hard to force the internet to conform to their real world dogmas and capitalist models.
All over the internet we see paywalls, digital content restrictions and closed hardware platforms. However for
those free thinking revolutionaries that wish to restore the internet to its full glory... Rejoice! For there is hope.

Distributed and in particular peer-to-peer systems are working examples of the true essence of the internet, peers
interacting on a basis of equality. Not only are these systems usefull to overcome virtual restrictions, but due to
annonimization they can be of great practical help to journalists, dissidents, whistle blowers and uncensoring
political opposition. Peer to peer systems are not only still relevant, they will be a dire necessity in the future.

However many peer to peer systems are subject to the tragedy of the commons where people consume resources
based on their individual need, as opposed to consuming resources based on what is sustainable <lit>.
Thankfully the human nature is not that depressing and there are many examples of communities that
successfully and sustainably maintain a shared resource. In the case of open-access resources, it is invariably the
peers which hold each other accountable that form the basis for a sustainable use of the resource.

Of particular interrest is the BitTorrent peer to peer protocol, currently the dominant file sharing protocol. It’s
tit-for-tat mechanism ensures that, atleast for a single download-swarm, the system is sustainable. However it
does not weed out habitual free-riders. Tribler, the TU Delft BitTorrent client, was recently enhanced with
multichain which promises to fill the gaps in the tit-for-tat mechanism, weed out the habitual free-riders and thus
ensure a more sustainable peer to peer system. All without relying on centralized components like other solutions
do.

Background

Distributed Systems and Central Components
Distributed systems refer to a network of computers where each computer does a part of the work
(computing/storage/communication/etc.) in service to the network such to have the network achieve some end
goal. Many examples exist in the world with http (the world wide web) being a prime example and the domain
name system (DNS) another. However these distributed systems rely on centralized components (such as central
servers), and such centralized components are a weak points for a distributed system.

First of al they are a single point of failure, so part of the network service cannot be provided if they are
unreachable. Seconly, they are inevitably controlled by a single entity, and any entity is influencable by private
actors and governments. The worst case being manipulation of the network service provided by the central
component. This is generally impossible to detect by other peers and can severely affect the functioning of a
distributed system. Thirdly, central components also have a hosting cost associated with them, and the
distributed system has to provide for this in some way.

BT
t4t

Tribler
long-term research goal of self-reinforcing trust, prototyping self-regulating market in 12 weeks[]

Blockchain Technology

MultiChain

Problem Description
Eco-system for sustained cooperation, which is beyond tit-for-tat, <voor inspiratie zie
http://resolver.tudelft.nl/uuid:d2a72d3f-d28b-4d9d-998a-b030c2f28aed, ch 2>

Multichain deploy & crawl, prototype code → production code (software engineering metrics and practices)

Ask Ratio

Parity for contributions, seeding & relaying

Sharing ratio (tracking, enforcement)

When downloading in a BitTorrent (BT) swarm the tit-for-tat mechanism ensures that every peer has to
participate. This simplistic method has proven effective in practical situations, however there are still
opportunities for free-riding in a swarm. The only practical real world solution so far is the centralized tracking
of a peer sharing ratio that happens in private communities. This is too high a barrier of entry for the average
user. So there is a need for a mechanic that promotes sustained cooperation that is not bound by tit-for-tat’s
limitations.

Similar to BT’s swarm free riders, there are also free-riders in the annonimization layer of Tribler. To
annonymize P2P-traffic the Tribler network needs peers that relay traffic, but there is currently no strong
incentive for peers to provide this service apart from the intrinsic reciprocity. The Tor network has a similar
situation and its throughput is limited because it lacks an incentive for peers to proxy connections. <lit> All of
the proposed solutions for Tor <lit here> include a centralized component.

Looking at the bigger picture, it is not possible, in a fully decentralized setting, to track a peer’s participation
across multiple BT swarms and the annonimization layer. Therefor habitual free-riders are not shunned becase
they are not identified. The recently introduced MultiChain system can be used to track a peer’s sharing ratio
over it’s lifetime, so this can potentially be used to weed out the free-riders. With MultiChain, peers
cryptographically sign transaction blocks, which in the case of Tribler contain lifetime sharing ratios. After a
successful interaction and MultiChain block creation peers will be more likely to interact again. Such repeated
interactions leads to a local self-reinforcing trust between peers.

The MultiChain also creates a limited transitive trust between peers that have never interacted, they trust one
another because they trust the peers that connect them. In the case of Tribler this means that peers have a
limited faith that interaction with an unknown peer will be successful. That is assuming there is at least one
path along the MultiChain connecting the nodes. The MultiChain induces an ordering on the known peers, and
thus a basis for deciding who to provide service to.

To annonymize P2P-traffic the Tribler network needs nodes that relay traffic, but there is currently no strong
motivation for nodes to provide this service apart from the intrinsic reciprocity. The Tor network has a similar
situation and its throughput is limited because it lacks a motivation for proxy nodes. <lit> To remedy this
situation, the recently developed MultiChain should help communities to detect and shun non-cooperating nodes.
In order to incentivize proxy nodes, multiple schemes can be considered based on the MultiChain double

http://resolver.tudelft.nl/uuid:d2a72d3f-d28b-4d9d-998a-b030c2f28aed

signature primitive. Moreover the application of MultiChain to a real life problem also provides insights into
further refinements of the MultiChain model itself.

Background & Literature
- "KARMA : A Secure Economic Framework for Peer-to-Peer Resource Sharing"

https://www.cs.cornell.edu/people/egs/papers/karma.pdf

- Papers about Tor incentivizing

- Norberhuis

- Pim V

- Pim O

- Delayed payment processing

Terminology
^ if I need this , it's wrong

A proxy node relays traffic.

Up and down a tunnel, the path from one end of the annonymization process to the other end, with one to many
proxy nodes in between.

To “pay” with multichain. A mutation of up & down counters, the inverse of which is applied to the peer's
multichain.

https://www.cs.cornell.edu/people/egs/papers/karma.pdf

Architecture and Protocol Design

True Halves
The implementation of multichain as created by Norberhuis[cite] relies on a
synchronized interaction between two nodes. The requester sends a request
that contains the identity of the last transaction of the requester (as in Figure
1). The identity is the hash of the response to the last transaction. After the
requester sends a signed request, it has to wait for the responder to answer
since it depends on the response to create its next block. This blocking wait is
undesirable since it limits the transaction rate, which is contrary to the stated
design goal of multichain to be scalable in nodes and transaction volume.

Velduizen[cite] revised the design of multichain to rely on half blocks as a default. In this scheme, a block has two
identities. First a hash of the request part of the block and second a hash of the full block as produced by the
responder. By allowing transactions to be based on either of these identities, the requester does not have to wait
for a block request to complete before it can continue making requests. The downside of this revised multichain is
that blocks have multiple identities. As depected in Figure 2, the structure
becomes asymmetric. So even though the requester and responder execute
almost exactly the same steps to produce a block, the resulting datastructure
is asymmetric. Moreover, when the responder has signed, every node with
knowledge of the requesters multichain will require an update to complete the
block that is now signed. This datastructure is not immutable or easly
cachable in a distributed system. The major contribution of Veldhuizen was
to default to halfsigned blocks in order to eliminate the chain locking
behaviour of the previous version. However this insight was only partly
utilized and resulted in an asymmetric and mutating datastructure.

Code cleanup through ego-centric viewpoint.

When using half-signed blocks as default a node is infact saying “I claim
that ...”. The other party can either affirm this by adding its signature, or it
can reject the claim by ignoring it. The key difference is that it is no longer a
“Can you sign this?” style question with request-response mechanic. It is a
statement that once made allows a node to immediately continue making
other claims. Notice that the responder makes a claim too. Thus the design of
multichain can be brought closer to true

Multichain can be revised to eliminate these defects by making the responder
use a half-block claim to “sign” a request. This makes the datastructure
symmetric, reduces messaging to only a single type of packet and since blocks
are immutable they can be cached and distributed without limit.

Figure 2: Veldhuizen Multichain
is asymmetric

Figure 1: Norberhuis Multichain

Figure 3: Symmetric Multichain

- All attacks described by Norberhuis reduce to detecting double signed sequence numbers from the requester, or
double countersigns of the same request block.

HOBBY HORSE: How hard is it to "hide" a fraudulent MultiChain block?

Say that node M has comitted fraud, it split its chain and thus it must have double signed a sequence number
M.seq'. Because of the previous hash pointers in multichain blocks, this split is propagated to all further
sequence numbers. This means ongoing fraud if M wishes to advance both branches of the split multichain, since
it would need to double sign any sequence number after M.seq', once for each branch. So M will want to make
the branch as short as possible, spread one of the blocks far and wide as its “true” chain, and limit the spread of
the branched block that would expose its fraud.

A simple detection scheme could be to obtain the last x multichain blocks of any node that gets introduced and
check them for fraud against what is known locally.

Assume M wishes to conduct further business and has to select a node (A) to interact with. Node A will obtain a
copy of the last x multichain blocks that M has signed. This ofcouse includes M's public copy of the fraude block
and not the block it wishes to keep private. Suppose M made the split in it's chain such that only node B has
obtained the private fraud block of M. Then M must select A in such a way as to minimize the chance that A
has interacted with B in the time from M's fraud upto x transactions later on the multichain of B. If A did
interactwith B within this timeframe, A will have the block that M wishes to keep private as part of obtaining x
transactions from B. To completely hide the fraud from the simple scheme, M will have to successfully have x of
these transactions. After those, even the x nodes that interacted with B immediately after the fraud will no
longer obtain the public fraud block from M.

Thus in this scheme there are 2 variables affecting the chance of discovering fraud.

- The selection probability s, the chance that a node gets selected for interaction. Worst case this is uniform over
the whole community and thus depends on the number of nodes in the network. In the best case, some locality or
random walking will give nodes closer to M a higher probability to be selected. In such a scheme nodes further
from M will rank M as an almost new node and are thus not likely to provide M with service.

- The crawlback distance x, increasing this value leads to nodes keeping an almost complete global state, while
lower values make it far easier to hide fraud. The higher value will also force M to have more successfully
interactions after the fraud, before the fraud is really hidden.

<do math modeling to make it into a formula/predictions>

A problem with this simple scheme is that M can have x sybils sign some fake interaction on it's public
multichain to hide the fraud on its public chain. Next interactions will then not go back further than x and are
thus not in a position to detect fraud. Thus a hardcoded x will not work.

<further plans to investigate, x with a geometric distribution starting at 200. Or keep the full multichain of a
few select nodes? Keeping them moving is another option, see section “moving blocks”>

Local Flooding
Would it be usefull to broadcast/flood a sucessfull transaction?

A limited dispersal of each sucessfull transaction would make it harder if not very hard for a node to claim what
their "head" of the chain is. This would be another way of mitigating the attacks currently possible on
multichain. An attacker would have to wait out the expiry/TTL on their last announced transaction before they
could branch again, or do any other interaction. This would slow an attack down to the point of it being
infeasable. If there are hetrogenous expiry/ttl values, the wait time between attack steps becomes even higher.

Money or Rank
An important aspect of multichain is its semantic interpretation. Is it money (or credits) that can be used to
“buy” things for a price? Or is it more usefull because it induces a total ordering over the community (i.e. nodes
can rank each other for service)? It is easy to slip into the money category since it is familiar. When viewed as a
currency, multichain expresses a physically limited resource, namely bandwidth used. This is also a problem since
total network bandwith is ever increasing and real world bandwith growth is probably super linear. This leads to
an inflating economy and devaluation of any built up credit. Thus I will not view multichain as a credit system,
but as a ranking system.

Payout & proxy incentivation
A strong incentive to relay traffic means that a node can prove to any member of the community that it has
relayed. MultiChain is a cryptographic counting system that can be used to provide such proof.

A naïve scheme could be to compensate relays for their bandwith usage, both up and down where the
downloader at the end of the proxy chain has to provide this compensation. Such a scheme is doomed to fail for
the following reasons.

First of all, because of the annonymization process a seeder can always pretend to be just another proxy relaying
for another ultimate seeder. As such it can request payment for one or more proxy steps and thus request more
than what it is entitled to. This is an inherent seeder fraud incentive. Moreover, even if seeds are honest, they are
then exposed as seeders because they request a payment very close to the circuit total. So that is a second seeder
fraud incentive.

Secondly, the direct linear payment scheme requires that the seeder initiates the payment process and then each
proxy in turn adds to the total for the downloader. Everyone has to wait for the payment request to eventually
reach the downloader and for the payment to propagate back along the circuit. Again because of the
annonymization process, proxies cannot initiate the payment process since they don't know their place along the
circuit, and thus do not know what factor to multiply the circuit total with. The result is that the payment
process depends on a faultless, honest and timely operation of all nodes along the circuit. A rather precarious
assumption to have to make.

Thirdly, the downloader pays for the annonimity decision of the seeder. This is because the seeder controlls the

number of proxies it uses for its part of the circuit. And thus the seeder can enjoy annonimity at the expense of
the downloader, who will only discover the cost after the bandwidth has been consumed.

One could consider the payment scheme with payment factor of <1, where the downloader initiates payment of
the consumed amount and each node gets a percentage of what trickles down the chain. However this suffers
from the same afflictions, but now the downloader is exposed and incentivized to pretend it is just a proxy and
pay less than it should. It does however solve the waiting problem partly, since the dowloader initiates payment.
And the seeder now gets payed less when the downloader has a long circuit part. It also incentivizes relaying over
seeding since the payout is higher.

There are a few opportunities to mittigate the issues with these payment schemes. For example if the proxy
nodes know their place on the circuit, then they can calculate the amount to request from the next node. This
also solves the waiting problem. However this is directly contrairy to the design of the annonimity system that
relies on not knowing the difference between a seeder starting a circuit or a proxy extending a circuit. Thus it
also leaks the identity of the seeder and downloader.

Obviously any linear payment scheme (where payment factor >1 or <1) is not feasable nor elegant and leaks the
identity of the seeder and downloader if they are honest. However setting the payment factor = 1 has some
attractive qualities. Foremost, the payments become transparent and independent. Since all the nodes in the
circuit know how much the cost will be, without knowing their place in the circuit, they can request payment
independently. They do not have to wait for the payment to propagate back and forth. Secondly there is no
increase of risk along the payment path. Thirdly the annonymous path length is no longer a factor in the cost.

It is not obvious how setting payment factor = 1 would incentivize relays, since nodes get paid equal for seeding
or relaying. This is however a feature, since both are needed to keep the community healthy. It is expected that a
large enough supply of seeders will provide enough seed capacity to meet the download demand. Once that
demand is saturated, nodes will spend more bandwidth to relay since that is the only avenue to increase their
ranking. On the other hand, relaying also has a lower barrier of entry than seeding. Seeding requires knowledge
of a torrent, it's swarm and having a portion of the content, where as relaying is possible without any knowledge.
All in all, an equal valuation of seeding and relaying might be exactly what is needed.

Another though might be to add a “relay” metric to multichain, so in addition to the total up/down there would
be a total relay up/down counter set. Notice that this scheme also runs into problems because of the
annonymization process. By design it would leak the identity of the seeder and downloader. These would in turn
be forced to pretend to be a relay since that keeps their role hidden. Everything would then be counted on the
“relay” counter, effectively degrading this scheme to using a single counter.

In conclusion, to incentivize relays they would need to be identified, which implicitly leaks the identity of the
seeder and downloader. The only recourse therefor, is to depend on the absolute value of the upload metric as
ranking, since this counts the total contribution to the community, either as a seed or as a relay. If the
download/upload ratio is larger than 1 (plus a bit for smudge), then that node should be shunned from obtaining
services at all since it is about to start free riding.

Hidden multichain
- The tunnel initiator spawns new random multichain identities like the XYZ identity at a certain interval (which
can itself be random).

- Each identity has a lifetime (by either a despawn probability every time tick or expiry time).

- At the end of an identities lifetime it starts to sign over it's positive standing to newer identities. So the tunnel
initiator ends up with a set of identities that collectively contain its multichain standing.

- After each crypto setup step in tunnel extension, the tunnel initiator sends a message along the lines of “this
tunnel will be payed by multichain identity ABC”

- At the end of each circuit, the tunnel initiator can pay each proxy along the way, through the tunnel.

This allows multichain transactions through (hidden) tunnels. The achillies heel being the signing over of
multichain “value”, this is not directly possible in multichain, and at some point these transactions would be very
large relative to a regular tunnel session. So they would stand out eventually, burning the expiring identity but
also the next identity.

Hidden payments
With the True Halves, we don't need to have the full counter party public key, a hash of that key suffices. Doing
this saves some bytes but also it obfusticates the counterparty. Only when the other party counter signs is its
identity revealed.

Fraud Rollbacks
If there exists a cryptographic fraud proof, then any node in possesion of this proof can rollback the effects of the
fraudulent node on it's multichain.

Non countersigning
We can suspend interaction with a node until it counter signs our request. But if nodes do not persist counters
(disk full, crash before flush, etc) it will never counter sign our interaction. Should the interaction suspension
time out after some time? (Relative to the size of the risk absorbed?)

Moving blocks
Nodes can decide what their history is. Since we ask them nicely for their chain. The current attacks (except
sybil) are possible because a node can make it's own claims about what it's chain is composed of. However if the
network where to store the chain (for example in a DHT), then this would no longer be possible. The sybil attack
would be slightly mitigated because the nodes need to actually exist in some way. A pair of blocks that confirm
an instance of fraud will continue to move through the network because of node churn and eventually both fraud

blocks will end up on the same node. As such a node storing blocks can detect fraud and report it. This does
depend on the network storage not forgetting about blocks, and guarding against active purging of fraudulent
records.

Risk Management
How much traffic should a node be altruistic about (Alt_size)? It is a risk management problem <look for lit on
this> and also a security issue. It is an important parameter with large influences on the resulting system. It is
especially important for “new” hosts, that have not been interacted with before. My thoughts on this:

- We could try to get it constant-ish over the whole network. (Requires estimation of network size)

- There is something to be said for differentiation, raise the limit for nodes which we have successfully interacted
with. (up to some max?)

- Change it to the time domain. How long to wait before wanting a signature.

- Make it randomized within certain bounds, get signatures when you want but also obfusticate interactions.

Maximum signing cap
Are transfer-all style trasactions usefull or harmfull?

Do my alterations preserve security & annonimity?

Make sure my stuff doesn't leak or cock-up in any security way.

Implementation
- True half blocks, symmetrical data structure, immutable messages & blocks are usefull for dispersy. Improved
efficiency. Simplified code (almost halved), esp. database code.

- Improved gumby framework to control multiple communities during experiments

- (Local) Validator, check blocks with respect to what is already known.

- Crawler improvements, crawl in batches to reduce messaging overhead.

- (Relay incentivizing)

Impl. TODO:

- Walker
- Actively sample multichain blocks from other nodes

- Fraud detection (and exposure if detected)

- Base “service request? Yes/No” decisions on multichain status.

Experiments

Analysis?

Conclusion

