- Introduction 2. minutes
 - Show news articles on promises
 - Why not here? 'Through of disillusion or technical problems'
- **Background & Problem Description** 10 minutes
 - o Blockchain 101
 - Why the blockchain promise appealed to the masses.
 - Trustless (petrol station example)
 - How would it do this?
 - Blocks chained together
 - Hashes are essentially fingerprints of data.
 - Consensus problem
 - Nakamoto -> Proof of Work
 - o State of the art.

- Hyperledger, Ripple, Algorand, honeybadgerBFT, tendermint.
 - 'Not gonna go in detail, but what do they all have in common' (single ledger)
 - Trustchain
 - Detection vs prevention
- \circ state problem description
 - Global consensus' problems (overkill, unnatural, maybe unnecessary?)
 - Research question
 - *"How to achieve a truly scalable secure distributed ledger without global consensus?"*
 - Breakdown in: 3 types of scalability, security aspect, no global consensus.

• Design & Poc -15 minutes

- Research question -> design goals
 - Scalability: minimal communication and time complexity
 - Security.
 - summarize threat model (failing nodes vs malicious)
 - No global knowledge
 - Explain causal relationship of Trustchain
 - Similarity with Schiper-Eggli-Sandoz algorithm
- FWSP (my solution):
 - Witnesses
 - Random: No node should pick its witness
 - Must be verifiable: easy to check fair play
 - Use hash function
 - Explain the algorithm
 - Witness selection algorithm
 - 2/3 signatures + witness set extension
 - Show: constant witness set size vs network size.
 - Correctness, Liveness, security.
- Proof of Concept
 - Traditional banking vs. new way of banking.
 - Software architecture?
 - Screenshots
- Evaluation 7,5 minutes

- Set up of the experiments
 - DAS-5, Orchestrator, 20 servers -> 16 cores 64GB ram
 - Show figure 5.1 (setup overview)?
 - Show figure 5.2 (experiment flow)?
- Scalability:
 - Throughput vs latency
 - Throughput:
 - Experiment setup + results.
 - Peak performance throughput.
 - "While the main goal was to create the most scalable, not the best performing, still a simple experiment was run, where no waiting in between transactions were implemented."
 - Latency:
 - Experiments setup + results
- Performance under adversarial influence
 - Experiments + results.
 - Explain why latency only.
- Compare to state of the art
 - Blockbench: explain the tests
 - Performance as function of validators
 - Absolute performance
 - Algorand: 750 MiB/h (500.000 users run on 1.000 machines,), this work: 15.8 GiB/h (280 nodes on 20 machines).
 - Summary Table
- Conclusion 5 minutes
 - Link back to research question
 - Liveness, Correctness, and security theoretically shown.
 - Scalability proven experiment
 - EV charging -> Extend to businesses
 - o Demonstration