
DRAFT

A Secure Distributed Ledger Through Fair Witness Selection

Jetse Brouwer1

Abstract— the Fair Witness Selection Protocol is a novel
witness selection scheme that can be used to create a truly scal-
able distributed ledger. The proposed scheme offers an upper-
bound of 0.001% change for fraudulent while only requiring
20 witnesses (if < 1/5th of the network is malicious) while
also guaranteeing liveliness. Because the number of witnesses
required remains constant with respect to the network size, it
opens the door for truly scalable DLT. It does so by relying on
widely available and well understood cryptographic primitives.
This paper provides a mathematical proof on the correctness
and liveliness of the proposed scheme, and suggests values for
the security parameters under different network assumptions.

I. INTRODUCTION

This document is the result of a broader research on
establishing secure distributed ledger technology (DLT) with-
out global consensus. The reasoning for such a distributed
ledger has to do with scalabilty: global consensus requires
agreement by a majority of all nodes. This not only creates
the demand to know about all the transactions, but also
requires total order. By optimizing the network and tweaking
certain parameters high throughput can be achieved, but the
question is how far this tweaking will get us with respect to
the size of the network.

This eventually led to the question: ”How to achieve a
secure distributed ledger without global consensus”. This
papers proposes Fair Witness Selection Protocol (FWSP)
which places a configurable limit on the probability of the
success of a fraudulent transaction.

in section II we discuss the Trustchain data structure
and how this removes the need for total order, related
work, formalization of terminology, and then define a system
model. In section III-A the Fair witness selection protocol
is described. in section IV-C the correctness, liveliness, and
results of the propose protocol are described.

II. DEFINITIONS, FORMALIZATION AND PREVIOUS
WORK

A. Trustchain

Trustchain is a distributed pair-wise ledger developed
at Delft university of Technology. Trustchain distinguishes
itself from traditional DLTs by not having a single ledger
containing all transactions, but having a single ledger for
every unique user. Every block is created by multiple parties,
and the parties involved in the transaction will always be

1J. Brouwer is with Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, 2628 CD Delft, The
Netherlands

Special thanks to Alexander Stannat, master student in mathematics,
for his expertise and guidance regarding the mathematical portions of this
document

among the parties creating the block. This jointly created
block will then be appended to the chain of all involved
parties through a hash. Every block irrevocably entangles
ledgers of all involved parties.

Every block points to a previous block which means that
each block effectively is a record of an happened-before
relation as described by Lamport in [1]. Due to these pointers
and the transitivity of the happened-before relationship each
ledger is self-contained and consistent with respect to the
happened before relation. Since every party involved with the
transaction is required to co-create the block, no transactions
that affect a party that are not recorded on that party’s ledger
can exist.

In figure 1 an example of the happened-before relation is
shown. When thinking of the arrows as beneficial monetary
transaction in the direction of the arrow, it can be easily
reasoned that causal ordering of transactions are already
sufficient for correct execution of these transactions. To
execute transaction j → d only the order i → j, f → i,
e → f , b → e, and a → b is relevant to asses the validity.
The exact timing with respects to c and e, f , g, i, and j
is irrelevant, knowing that c → d and b → c is enough to
assess the current state of P1’s ledger.

Fig. 1. An example of the happened-before relation. The horizontal lines
represent ledgers, and the The events a, c, and h do not involve P1, P2, or
P3 as counter-party so the arrows are omitted for clarity.

Since the Trustchain data structure already is inherently
causally ordered, and a single ledger already describes the
total current state of the corresponding party, the remaining
reason for global consensus is to prevent invalid (poten-
tially malicious) transactions from happening. When global
consensus can be safely dropped as a requirement, the
requirement for a single data structure and a majority vote per
transaction can be dropped. As a result multiple parties (that
do not depend on, or interact with each other) can be transact
concurrently with each other, enabling a highly scalable DLT.

In remaining part of this work we will focus on prevention
of malicious transactions through the Fair Witness Selection

DRAFT

Protocol.

B. Related work

Significant work has been done to increase the throughput
by utilizing and improving existing consensus algorithms.
Tendermint[2], HoneyBadger[3], and Ripple[4] use Byzan-
tine fault-tolerant consensus algorithms to create global
consensus, a problem with Byzantine fault tolerance (BFT)
protocols is that they require a fixed set of servers to be
determined ahead of time; Undermining the decentralized
nature of distributed ledgers and opening the window for
attacks targeting to that specific set of server. Furthermore
BFT protocols do not scale very well.

Algorand [5] uses verifiable random functions to select a
committee which will be responsible for the creation of the
next block. Algorand requires a committee size of 2000 to
achieve a probability of 5×10−9 that a invalid transaction is
passed (under the assumtion that at most 20% of the network
is malicious) where as FWSP achieves the same security
level with only 27 witnesses under the same assumption.

Another branch of research focuses on incrasing through-
put by chainging the underlying data structure. GHOST
[7], SPECTRE [8], and Meshcash [6] are recent proposals
for increasing Bitcoins throughput moving from a chain-
structured ledger towards a tree or directed acyclic graph
(DAG) structures, and resolving conflicts in the forks of these
data structures.

A structural difference between Trustchain and the above
mentioned proposals is the global data structures on which
all the algorithms work. This means that only a single
transaction, or set of transactions can be dealt with at the
time and that they still require global consensus. At the time
of writing no pair-wise ledgers and accompanying consensus
algorithms were known to the authors.

C. Formalization

We begin the description of the systems by defining the
following terms:
• Node A node is a single entity running the Trustchain

network. Every node within the network must be able to
aid in the ratification of transactions (I.e. be a witness).
A node is allowed to engage in a transaction with
another node and propose this to the network.

• Transaction An agreement between two ore more par-
ties, including a publicly verifiable signature from every
party and pointers to the last blocks of the transactors
unique chain,.

• Witnesses A node that is not involved in the transaction,
but is chosen to oversee the the transaction and approve
it in case of a valid transaction.

• Block A block is a data structure containing the transac-
tion, the witness’ IDs and the corresponding signatures,
finalized by a hash.

• Chain A chain is an ordered set of blocks, where each
block contains a pointer to a previous block (except
for the genesis block, which represents the start of a
chain). when talking about the chain of a specific party,

the ordered set of all blocks co-created by that party is
meant.

We use the term nonfaulty to refer to nodes in the network
that behave honestly and without error. A malicious nodes
may deviate from the algorithm (Byzantine errors) randomly
send or refuse to send messages.

D. System model

FWSP makes certain assumptions on the system for it
to work. We assume that all the nodes have a private
and authenticated channel for communication (for example
through the use of public key cryptography). A weak sense of
synchronization is implied trough to use of messaging time-
outs, this is done to overcome the termination impossibility in
asynchronous systems as described by Fischer, Lynch, and
Paterson[9]. We assume that every node node has contact
information, earlier blocks, and the signature verification key
for every node (or means to acquire this); be it through a
predetermined look-up table, or a byzantine-fault tolerant
DHT[10]. As proven in [11] there are no solutions for
consensus algorithms with more than dn3 e − 1 malicious
nodes, therefor we assume this as the upper-bound. It is
assumed that the unique identifiers are in the same domain
as the H().

It is assumed that:
• nonfaulty nodes only propose valid transactions, will

respond timely (i.e. before message time-out) and will
sign every valid transaction.

• All malicious nodes collude, only propose invalid trans-
actions, and will only sign transactions from malicious
nodes.

Refusing to sign any valid transaction simulates a denial-of-
service attack on honest nodes. It assumed that transactions
are agreed uppon and signed by the involved parties before
initiating this protocol.

III. FAIR WITNESS SELECTION PROTOCOL

The core concept of the fair witness selection protocol is
every block will be witnesses by a number of nodes. Only
with enough witness signatures a block will be considered
valid.

Now the question arises, how to pick witnesses in a
random but verifiable way. Random because no party should
be able to manufacture a transaction in such a way he has
control over the selected witnesses. Verifiable as anyone in
the network should be able to verify that the witnesses were
selected according to the algorithm.

The design goals are as following:
• Every valid transaction must be accepted in finite time.
• An invalid transaction will be accepted with a negligible

probability.

A. Definition

Let N be the set of all nodes, w the set of selected
witnesses, M the set of all malicious nodes, H the set of
all honest nodes, and k the minimum required number of

DRAFT

signatures. such that |N | = |H| + |M |, |M | ≤ d |N |3 e − 1,
and k = b 2|W |3 c + 1. We further more specify s to be
the minimum size for the witnesses set, this number vastly
impacts security (see section IV-C for suggested values).
Let V (t) → {true, false} be a deterministic function
that takes transaction t and outputs true if and only if t
is valid. Let H({0, 1}r) → {0, 1}n be a cryptographically
secure, uniformly distributed hash that takes a message of
any lengths with an output of length n.

Let Sign({0, 1}r, sk) → {0, 1}n be a secure signing
function, and V er({0, 1}n, pk) → {true, false} the
corresponding verification function.

The core strength of FWSP lies in the witness selection.
The ith witness is selected through:

wi = sup{z ∈ N : z ≤ H(t||i)} (1)

Due to the uniform distribution of the hash function,
node are effectively selected at random. Furthermore, the
pre-image Resistance of the hash ensures that its difficult
to find a transaction that will result in a given ID. There is
a non-zero possibility that the selected node is malicious,
however the probability that this and every successive
witness is malicious decreases exponentially. A larger
minimal witnesses set result in a higher security parameter.
In section IV-A a mathematical proof of this security
parameter, along with a the minimum witness set for a
variety of assumptions and requirements are given.

A trivial attack against this selection process would be
to keep increasing i until enough malicious witnesses are
found. To combat this also the i used for determining
the witness is posted, along with the the ID and a valid
signature. Since k, the number of required signatures,
grows linearly with the witness the adversary decreases his
probability of succeeding exponentially.

An honest node can create a valid block by selecting his
witness using equation 1 and request those witnesses to sign
the transaction. Again, there is the non-zero possibility that
less than k honest nodes are among the witnesses. however,
since by definitions |H| is at least twice |M | the probability
of an honest majority exponentially increases with every
increment in the witness set.

Block creation: The creation of the block starts by
verifying the validity of the block. if the block is valid the
node calculates the hash for the block with a 0 append, and
selects the node who’s ID is the closest but smaller or equal
to the hash and sends him the chosen ID, transactions and
0. The node repeats this process now with 1, 2 ... up to s,
(the minimum number of required witnesses) instead of 0.

Every time a node receives a ⊥ or a request times-out
it extends the witness group by increasing i by one, and
selecting the witness according to equation 1 once again.
This process continues until the node has acquired enough
(more than k) valid signatures.

From here on the transaction is concatenated with the
signatures, and than finalized by concatenating the hash of
the transaction and signatures to create the final block.

Block signing: On receiving a signature request, the
receiving node first verifies that the transaction is valid and
he indeed is the required witness. If this is not the case,
the node will reply with ⊥, otherwise the node will append
the given i to the transaction and sign it. By appending
the i the node prevents any malicious actor to make false
claims about the number of nodes selected as witnesses by
modifying i after having received the signatures. The node’s
ID concatenated with signatures and i are then send back to
the receiver.

Block verification: Block verification is a non-
interactive process. The verification is straight forward, and
is started by checking the hash of the block is correct, and
the number of valid signatures is equal to or greater than the
minimum required. Next the largest witness set is such that
|validSigantures| ≥ b 2|W |3 c+ 1 still holds, is calculated to
ensure no i larger than maximum allowed witness set. For
each witness it is verified that they were selected according to
protocol, and that the signature is valid. If all of these tests
pass the block is valid, otherwise the block is considered
invalid.

Algorithm 1: createBlock(transaction, s)
t← transaction, validSignatures← ∅
if V (t) then

for i← 0 to s do
w ← sup{z ∈ N : z ≤ H(t||i)}
requestSignature(w, t, i)
W ←W ∪ w

while |validSignatures| < k do
if requestSignature() time-out then

i← i+ 1
w ← sup{z ∈ N : z ≤ H(t||i)}
W ←W ∪ w
send requestSignature(w, t, i)

block ← t
foreach s ∈ validSignatures do

block ← block||s
return block||H(block)

Algorithm 2: on receive requestSignature(t, i)
t← transaction, p← nodeID
w ← sup{z ∈ N : z ≤ H(t||i)}
if V (t) and w = p then

s← Sign(t||p||i, sk)
reply p||s||i

else
reply ⊥

DRAFT

Algorithm 3: verifySignatures(block, s)
t, signatures, hash← interpret(block)
if |signatures| < s ∨ hash 6= H(block) then

return ⊥
wmax ← d|signatures| × 3

2e − 1
if {∃s ∈ signatures : i > wmax} then

return ⊥
foreach e ∈ signatures do

w, Sign, i← interpret(e)
wexpected ← sup{z ∈ N : z ≤ H(t||i)}
if not (w = Wexpected and V er(Sign,wpk) then

return ⊥

IV. CORRECTNESS, LIVELINESS AND SECURITY

A. Correctness

1) Every valid transaction must be accepted in finite
time: If an honest node proposes a block containing a valid
transaction, but less than b 2|W |3 c + 1 nodes reply with a
valid signature (due to malicious behavior or due to faulty
behavior) the node will increase the witness set. It will do
so until it has collected enough valid signatures or until
W = N .

Since |N | = |H|+ |M | and |M | ≤ d |N |3 e−1 it holds that:

|H| ≥ b2|N |
3
c+ 1

A transaction is valid if:

v ≥ b2|W |
3
c+ 1

Where v is the number of valid signatures. By definition
honest nodes always sign valid transactions, which gives:

v = |H|

Therefor a block is valid if

b2|W |
3
c+ 1 ≥ b2|N |

3
c+ 1

When W = N the equation always holds, therefor the block
will always be valid. �

2) An invalid transaction will only be accepted with a
negligible probability: When randomly selecting a node
from the network, the probability of selecting a malicious
node is:

Θ =
|M |
|N |

Let X be a random variable corresponding to the prob-
ability of selecting a malicious node from the witness set,
which is Bernoulli distributed.

X =

{
1, if n ∈M.

0, if n ∈ H.
(2)

We say that X ∼ Ber(Θ) and that X is a Bernoulli distri-
bution with parameter Θ. If X1, ..., Xn are i.i.d Ber(Θ)-
random variables and n = |W |, then Y =

∑n
i=1Xi ∼

Bin(n,Θ) models the number of malicious nodes among
the witnesses.
k is the number of required valid signatures before a block

is considered valid.

k = b2n
3
c+ 1

For a malicious transaction to succeed, at least k malicious
nodes are required in the witness set. Therefore the proba-
bility of succeeding is the probability of having k malicious
nodes in the witness set, which gives:

P (y = k) =

(
n

k

)
Θk(1−Θ)n−k

Not only k signatures will pass an invalid transaction, but
any number greater than k will also succeed. The probability
of a malicious transaction succeed for a given witness set
becomes:

P (y ≥ k) =

n−k∑
i=0

(
n

k + i

)
Θk+i(1−Θ)

n−k+i

Since a node is allowed to increase the witness set if a
transaction did not succeed, the probability becomes:

|N |−n∑
i=0

P (y = k||N | = n+ i)

Since the network size, and therefore the possible sizes
of witness sets increase linearly, but the probability of
succeeding starts at a value smaller than 1 and decreases ex-
ponentially, it resembles a geometric distribution. Therefor it
is assumed that the number of required witnesses for a given
security converges to finite number when the network size
approaches infinity. Through experiments this convergence
is confirmed, the results can be seen in figure 2.

Fig. 2. Minimum number of witnesses as a function of the network size.
The malicious nodes make up 1/3 of the total network. The number of
required witnesses are given for < 1%, < 0.1%, < 0.01%, and < 0.001%
chance of malicious transactions succeeding.

The oscillation seen in figure 2 is a result of the floor
and ceill functions when calculating the number of required
signatures.

DRAFT

B. Liveliness

Since every valid transaction eventually will succeed,
every party involved in a valid transaction will eventually
be able to proceed. Since signing and creating transactions
are two separate procedures that have no dependencies on
each other, transactions can be signed during a transactions,
transactions can be started while signing, and two signature
requests can be fulfilled concurrently.

C. Security

The security of the protocol relies heavily on the minimum
required number of witnesses. If a single witness would be
allowed the probability of a malicious transaction succeeding
is equal to Θ. A larger witness group results in a lower
probability, the exact number of witnesses depends on the
allowable probability of malicious transactions and the num-
ber of malicious nodes in the network.

Fig. 3. Minimum number of witnesses as a function of the malicious
portion of the total network. The number of required witnesses are given for
< 1%, < 0.1%, < 0.01%, and < 0.001% chance of malicious transactions
succeeding.

In figure 3 the minimum number of required witnesses is
given, where X-axis is the portion of the malicious portion
of the network and the y-axis is the minimum number of
required witnesses. In case the required number of witnesses
is larger than the network size, the network size should be
chosen, as this will result in probability of 0 (See section
IV-A for proof).

When assuming a the number of malicious nodes to
be 1/5th of the complete network (Similar to Algorand
[5]) the network only requires 20 witnesses to guarantee
< 0.001% change of malicious transactions. To guarantee
a probability of1 × 10−9 or less 27 witnesses are required,
whereas Algorand requires 2.000 to achieve the same level
of security (for a network of 10.000 nodes).

The security can be further increased when witnesses
are not only required to verify the transaction, but also
the last n blocks. For a node to be able to execute valid
transactions after a malicious one, it has to create at least
n other valid-looking blocks before honest witnesses are

willing to cooperate with it again. Since every block has an
independently selected group of witnesses, the probability
of having n+ 1 consecutive malicious blocks is λn. If λ is
0.00001 (< 0.001%) and n is chosen to be 15, the probability
becomes 0.0000116. If an adversary possesses the power to
brute-force such transactions, he might as well use his power
to break virtually any encryption used since:

0.0000116 <
1

2256

Where 1
2256 is the probability of guessing a private key for

a 256 bits encryption scheme (used in TLS and for financial
and government communication).

V. FUTURE WORK

FWSP can possibly be used as a means to select nodes for
block replication. By using the same underlying principle, the
same guarantees can be gives while preventing block-hiding
and forking attacks.

REFERENCES

[1] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Comm. of the ACM,21:558565,1978

[2] E. Buchman, J. K. and Z. Milosevic. The latest gossip on BFT
consensus. ”https://arxiv.org/abs/1807.04938”, September, 2018.

[3] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The Honey Badger
of BFT protocols. In Proceedings of the23rd ACM Conference on
Computer and Communications Security (CCS), pages 3142, Vienna,
Austria, Oct. 2016

[4] D. Schwartz, N. Youngs, A. Britto. The Ripple Protocol Consensus
Algorithm. ”https://ripple.com/files/ripple consensus whitepaper.pdf,
2014.

[5] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich. Algorand:
Scaling Byzantine Agreementsfor Cryptocurrencies, MIT CSAIL

[6] I. Bentov, P. Hubek, T. Moran, and A. Nadler. Tortoise and hares
consensus: the Meshcash framework for incentive-compatible, scalable
cryptocurrencies. Cryptology ePrint Archive, Report 2017/300, Apr.
2017

[7] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing
in Bitcoin. In Proceedings of the 2015Financial Cryptography and
Data Security Conference, 2015. http://eprint.iacr.org/

[8] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE:A fast and
scalable cryptocurrency protocol. Cryptol-ogy ePrint Archive, Report
2016/1159, 2016. http://eprint.iacr.org/

[9] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM
(JACM) 32.2 (1985): 374-382.

[10] M. Young, A. Kate; I. Goldberg, M. Karsten. Practical Robust Com-
munication in DHTs Tolerating a Byzantine Adversary. Proceedings -
International Conference on Distributed Computing Systems January
2010

[11] L. Lamport, R. Shostak, M. Pease. The Byzantine Generals Problem.
1982

