
Credit Mining: An Incentive and Boosting System
in P2P File-sharing Network

Bohao Zhang

Credit Mining: An Incentive and Boosting System
in P2P File-sharing Network

Master’s Thesis in Embedded Systems

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Bohao Zhang

9th July 2018

Author
Bohao Zhang

Title
Credit Mining: An Incentive and Boosting System in P2P File-sharing Network

MSc presentation
30th June 2018

Graduation Committee
Dr. Ir. Johan Pouwelse Delft University of Technology
TODO GRADUATION COMMITTEE Delft University of Technology
TODO GRADUATION COMMITTEE Delft University of Technology

Abstract

From the dawn of BitTorrent technology, free-riding has always been a critical
issue restricting the performance and availability of the BitTorrent network. To
solve this problem, nearly every private tracker implements some kind of credit
system to eliminate the free-riders and award the good-behaving users. However,
due to these factors, the community scale of the private trackers are not even close
to comparable with those famous public trackers[11]. The average users have to
put a lot of effort to maintain a good credit record, thus make the experience less
enjoyable. Moreover, there exists the a majority group of light users who do not
bother, not have the capable knowledge or not aware of the importance to seed for
the community. Even worse, the hardcore seeders still need to manually download
a lot of contents and waste much resource on over-seeded torrents[17].
In this thesis, based on the prototype first proposed by Mihai CapotÄČ[10], we

improve, implement and evaluate a boosting subsystemnamelyCreditMining inside
Tribler[6]. Credit Mining involves a private tracker-like incentive mechanismwhile
remaining good accessibility for every user. This thesis is a piece of the puzzle
towards the long-term goal of Tribler, "a trustful blockchain-based token economy
to prevent bandwidth free-riding"[5].

iv

Preface

TODO ACKNOWLEDGEMENTS

Bohao Zhang

Delft, The Netherlands
9th July 2018

v

vi

Contents

Preface v

1 Introduction 1

2 PROBLEM DESCRIPTION 3
2.1 Related Works . 3

2.1.1 BitTorrent . 3
2.1.2 Tribler . 5
2.1.3 Trustworthy Micro-economy for Bandwidth Tokens 6

2.2 Free Riding Phenomenon . 7
2.2.1 Choking of BitTorrent 8
2.2.2 Private Trackers . 9

2.3 Design Goal . 10

3 SYSTEM DESIGN 11
3.1 Credit Mining Revisit . 11

3.1.1 Data structure . 12
3.1.2 Pre-download . 12

3.2 Work Flow of the System . 13
3.3 Supply of the Swarms . 14
3.4 Selection of the Swarms . 14

3.4.1 Vitality Policy . 15
3.4.2 Switching between Normal Download and Credit Mining . 15

4 IMPLEMENTATION 17
4.1 Software Engineering Work . 17
4.2 Graphical User Interface . 18
4.3 "Hot Swapping" and Garbage Collection 18

5 Experiments and Performance Analysis 21
5.1 Setup of the Test Environment 21
5.2 Functional Validation . 22
5.3 Controlled Environment Validation 22
5.4 Real World Experiment . 25

vii

6 Conclusions and Future Work 29
6.1 Conclusions . 29
6.2 Future Work . 29

viii

Chapter 1

Introduction

Prior to P2P file sharing systems, most contents on the Internet are disturbed through
centralized servers. Centralized systems suffer a great scalability problem. Since
all clients leech data directly from a same server/cluster, requirement of bandwidth,
processing power and electricity will increase linearly with the number of clients.
Centralized servers are not cost efficient especially when the data-flow to the server
is not so constant. The server needs either to prepare enough hardware for peak
period, which will cost much but become idle and waste when off-peak, or to lower
the service quality during peak period. This did not only deny the possibility of
independent content creators to provide high-quality download service, and also
made it not very cost efficient for huge companies to do so. It used to be a common
sense that more popular the content was, the slower it was to download it.
The popularization of the P2P file sharing systems, such as BitTorrent protocol

has greatly changed the way contents are disturbed across the Internet. In BitTorrent
protocol, centralized servers are only used as trackers to provide peer information
to every client. It could also work in a "trackerless" mode, where no centralized
server is needed and distributed hash table (DHT) is used instead to provide peer
information. After nearly 20 years’ development, a large number of individuals
and organizations are using BitTorrent to distribute their contents. For example,
gaming industry is widely using BitTorrent protocol in game upgraders, such as
Battle.net by Blizzard Entertainment, Wargaming.net by Wargaming, Eve Online
by CCP Games. Many major open source and free software projects, like Ubuntu,
provide BitTorrent as an option, to improved availability and reduce load on their
own servers. Facebook and Twitter even use BitTorrent to distribute updates onto
their their own servers.
However, BitTorrent is a typical tragedy of the commons. To archive the col-

lective optimization, each peer is expected to contribute upload bandwidth as much
as possible to the community. This is against the self-interest of the peer itself.
Assuming all other peers are acting honestly, one can archive more interest by lim-
iting upload time/bandwidth or only upload to limit amount of other peers which
it has interest in. There is no universal credit record in the community. Each

1

peer keeps a credit record of all other peers it is acknowledged locally. "Swarms"
are established per content. Credit can only be tracked within each swarm but
not across the whole BitTorrent community. As a result, selfish peers can always
archive more interest than honest peers without any negative consequence, before
everyone becomes selfish and the whole community corrupts.
Currently, the most efficient way to overcome this problem is by using "private

trackers". A private tracker is a membership-based centralized server which is
responsible for keeping a credit record for all registered users, and only allows the
users with a good credit record to access its tracker. To avoid selfish users register
new accounts to void the negative credit record, private trackers always come with
a lot of rules, regulations, and difficulties, which greatly limit the user base of their
services.
In this thesis, we are to provide a solution to this problem. Our solution is based

on an existing P2P system named Tribler. By enabling the ability to automatically
join swarms to gain more credit, our system can provide a private-tracker-like
credit system publicly to all Tribler users with convenient user experience and low
requirement.
We begin with problem description in Chapter 2. In this chapter we introduce

the related works, the problems we are facing, as well as our design purpose. In
Chapter 3, we present the design of Credit Mining in detail. Next, we explain
the noticeable details during our implementation in Chapter 4. The experiment
and evaluation are discussed in Chapter 5. Finally, we conclude in Chapter 6 and
propose the future work of this project.

2

Chapter 2

PROBLEM DESCRIPTION

Ever since the popularization of P2P file sharing systems, people have always been
fighting a war against the free-riders. In this chapter we will introduce BitTorrent
and Tribler, the two core technologies this thesis is related to, in Section 2.1. Then
in Section 2.2 we will introduce what is free-riding, several existing mechanisms
against free-riding, as well as their limitations. Then we will propose the design
requirement in Section 2.3

2.1 Related Works

2.1.1 BitTorrent

Peer-to-peer(P2P) networks has been used in many application domains since the
dawn of Internet. ARPANET, the technical foundation of Internet used a P2P
structure itself. P2P finally became popularized among the public since 1999, with
the release of Napster, a P2P file sharing Internet service that emphasized sharing
digital audio files.
BitTorrent was first released in 2001 by BramCohen and soon started to dominate

P2P file sharing till today. Unlike some of its precursors like Napster or Gnutella,
Bittorrent protocol does not limit to a specified type of service, but provides a
universal solution to P2P file sharing.
BitTorrent was not invented as a "fully" distributed system. There are 2 different

types of peers in the BitTorrent networks, downloaders and trackers. Trackers
centralized servers responsible for helping[12] downloaders find each other. To
start a BitTorrent deployment, a static file with the extension .torrent containing
information about the file, its length, name, and hashing information, and the URL
of a tracker, needs to be created by the content provider and disturbed among other
downloaders. Since these .torrent files usually need to be published in centralized
website, this further lower the degree of decentralization of BitTorrent networks.
Later on May 2, 2005, Azureus version 2.3.0 was released and added another

decentralized layer upon BitTorrent protocol[1]. This layer uses Distributed Hash

3

Tables (DHT) to support trackerless peer discovery. This feature was later adopted
by most of other BitTorrent clients and improved the decentralization of BitTorrent
Networks.
BitTorrent has been widely used and dominated a significant share of the global

Internet traffic. Though BitTorrent has suffered a decline in traffic share from the
uprising of file storage applications like Google Drive and video services from
Netflix and Amazon in recent years, it still holds the largest bandwidth share
in uploading in most part of the world, and a noticeable share in downloading.
According to research done by SANDIVE, shown in Figure 2.1, 2.2, 2.3 and 2.4,
BitTorrent has already been a donating the upstreambandwidth, and has a noticeable
share in downstream.

Figure 2.1: Top 10 applications in Internet usage through fixed access in Asia
Pacific in 2015

Figure 2.2: Top 10 applications in Internet usage through fixed access in Europe in
2015

4

Figure 2.3: Top 10 applications in Internet usage through fixed access in North
America in 2016

Figure 2.4: Top 10 applications in Internet usage through fixed access in Latin
America in 2016

2.1.2 Tribler

Tribler is a decentralized alternative to Youtube based on Bittorrent protocol, an
overlay for P2P communication across NAT/firewalls. It is designed to protect
user’s privacy, be attack-resilient, as well as reward content creators and bandwidth
donors directly. The current destination of Tribler is to build a programmable
micro-economy without banks, government or any centralized agencies.[2][5][19]
In Tribler, each individual user, differed by its own private key, can create his

own channel. The channel can be uploaded with the metadata of Bittorrent swarms,
known as torrents. Data is transfered within communities. A Tribler community
is similar to a network overlay: users can generate/join/leave a community and

5

exchange messages over it. For each community, the type of messages that can be
sent over it can be defined. Currently there are 6 main types of communities and
another noticeable community under development. The roles of these communities
are described in Table 2.1.

Channel Name Description
AllChannel The communitieswhich all Tribler users automatically join. As

the name suggests, metadata of all the channels are transferred
through this community.

Channel The community that represents a single channel. A users will
join this community when he subscribes to the corresponding
channel. The content of this this channel is transferred through
this community.

Market The community for converting Tribler bandwidth tokens to
other Cryptocurrencies.

Search The community for remote keyword search and torrent collec-
tion.

TriblerChain Community for tracking the reputation of peers using Trust-
Chain, an utilization of Blockchain Technology.

TriblerTunnel Community that enables anonymity when downloading con-
tent from Tribler network by routing through other Tribler
peers using a Tor-like protocol.

SwarmSize Still under development. It is planned to be used for peers
to share the status of Bittorrent swarms in each Channel and
estimate the content popularity.

Table 2.1: Function of major channels in Tribler

2.1.3 Trustworthy Micro-economy for Bandwidth Tokens

"A blockchain-based token economy to prevent bandwidth free-riding" is the on-
going high-priority long-term project in Tribler. The basic idea is to create a micro-
economy within the Tribler platform for earning, spending and trading bandwidth
tokens. This brings together various research topics, including blockchain-powered
decentralized market, anonymous downloading and hidden seeding. Trustworthy
behavior and participation should be rewarded while cheating should be punished.
A basic policy should prevent users from selfishly consuming bandwidth without
making any contribution. This directly addresses the tragedy-of-the-commons
phenomena.

The initial release is to provide basic primitives to earn, trade and spend tokens. It
could be extended with more sophisticated techniques like TrustChain record mix-
ing, multiple identities, a robust reputation mechanism for tunnel selection, global
consensus and verifiable public proofs (proof-of-bandwidth/proof-of-relay).[7]

6

The high-level overview and architecture diagram are shown in figure 2.5 and 2.6.
This thesis in position as "token miner" in both diagrams.

7
Delft Blockchain Lab

Trustworthy micro-economy for bandwidth tokens

tokens
 Tor-like

 proxy

seed

token

miner

Android

device

tokens

Android

device

streaming

decentral

market

“Deftpack: A Robust Piece-Picking Algorithm for
Scalable Video Coding in P2P Systems”, 2011

Paying the Guard: An Entry-Guard-Based
Payment System for Tor, 2015

Decentralized credit mining in
P2P systems, 2015

Towards a Peer-to-Peer Bandwidth
Marketplace, 2014

TrustChain: A Sybil-resistant scalable
blockchain, 2017

Figure 2.5: High-level overview of trustworthy micro-economy for bandwidth
tokens

Figure 2.6: Initial architecture diagram of trustworthy micro-economy for band-
width tokens

2.2 Free Riding Phenomenon

Free riding is defined as the user behave only on its own interest, consuming
resources without contribute any or sufficient amount to the community. With
only few uploaders available, a peer-to-peer network will become more and more
centralized, degrade the performance, reliability and robustness of the network.
The free riding phenomenon is a common challenge among nearly all peer-to-

peer file-sharing system. Even before BitTorrent came to being, Gnutella, one of

7

the most popular P2P applications at the time had already suffered critical free
riding problem. In 2000, a group of researchers found out that the that nearly 70%
of Gnutella users shared no files, and nearly 50% of all responses were returned
by the top 1% of sharing hosts. They argued that free riding led to degradation of
the system performance and added vulnerability to the system. These researchers
suggested free-riding was even more critical to the system comparing to copyright
issue[9]. What is more, in 2005, another group of researchers indicated that 85
percent of peers share no files and that 86 percent share 10 or fewer files, which
was significantly worse since then[15].
There are two major methods taken by BitTorrent protocol. Their principle and

limitation are described in detail in Section 2.2.1 and 2.2.2.

2.2.1 Choking of BitTorrent

Fully awarded of the free riding phenomenon on Gnutella, BitTorrent file distribu-
tion system was implemented with tit-for-tat to pursue Pareto efficiency.
BitTorrent protocol does no do central resource allocation. Trackers are not

responsible for allocating resource, but only provide information of peers. Each
peer is responsible to archive its own maximum download rate by downloading
from whoever they can and upload to peers decided by a tit-for-tat algorithm.
New connections are by default labeled as "choked" and do not get uploaded to.

Each BitTorrent peer always unchokes a fixed number, by default 4, of other peers.
This decision of which peers to unchoke is based strictly on current download rate.
The connections where this client get most benefit get unchoked. The unchoked
peers are changed every 20 seconds[12] at Bittorrent’s initial launch and later
changed to every 10 seconds[8]. There is also a place for "optimistic unchoking".
At any time, there is one connection unchoked regardless its upload rate. The
optimistically unchoked peer is rotated every 30 seconds. New connections are
three times more likely to be selected as the current optimistic unchoke as any other
peer in the rotation.
If the client does not receive anything from a certain connection, this connection

will be labeled as "snubbed". The client will not upload anything to the "snubbed"
peer, unless it is selected as the optimistic unchoke.[8][12]
However, the tit-for-tat algorithm is far from enough for BitTorrent to survive

from the free-riders. The Achilles’ heel of BitTorrent is that it does not provide a
traceable credit record relating to a certain user. A selfish user in one swarm can
not be identified in another swarm. Moreover, it is too easy to get a new identity in
BitTorrent network and replace the infamous one, making credit less useful even in
a single swarm.
There are a lot of ways that one can act dishonestly in BitTorrent network without

getting appropriate punishment. Some examples are listed below:

1. A selfish user can immediately turn off the client or remove/stop the download
once it is finished to avoid further upload to other peer.

8

2. Similar to the previous trick, some BitTorrent clients provide the function to
remove/stop the download or shutdown the computer automatically after the
download is finished to save bandwidth.

3. A selfish user can upload only to the peers he is "interested" in, to gain more
credit only from them.

4. A selfish user can upload nothing or little while downloading, and then rejoin
the swarm with new identity after choked by other peers.

5. Similar to the previous trick, some BitTorrent clients provide the ability to
automatically change identity after being choked. Some of them can create
multiple identity to cheat for more bandwidth. This policy would archive
local optimization, with a cost of harming the community as a whole.

6. Some clients can create a separate swarm specially for peers with the same
client, and only upload to these peers. This will archive local optimization
for the users in this client, harming the rest of the community. This can cause
"Bad client drives out the good". Users of the "cheating" client will always
outperform the "honest" clients, thus attract more users, making the "honest"
clients harder and harder to survive.

2.2.2 Private Trackers

Private tracker is an approach to avoid free riding by involving membership. Typ-
ically, a "private tracker" includes both an torrent-discovery website and a affiliated
BitTorrent tracker. Membership is required to use either of the services. Regis-
tration is usually not open. New member needs the "invitation" from an existing
member. Usually invitation can only be provided by veteran members. Sometimes
it also require a huge amount of credit to purchase such an invitation.

Private trackers usually use strict rules tomaintain the good behavior ofmembers.
Users gain credit from uploading, and lose credit when downloading. There is also
Sharing Ratio Enforcement(SRE), which is a rule for maintaining a certain amount
of share ratio. There can be periodic check on SRE. Users who run out of token
or do not meet the SRE requirement will be blocked from most, if not all, of the
contents.
Due to the pressure of SRE, most users need to seed for long time to improve

their share ratio. In research [11], this is called "uploading starvation". Every
peer is forced to upload more to maintain a good reputation in the communities.
Since the demand of contents is not infinite, the more uploaders there are, the less
time/energy efficient for them to get real upload.
New members normally have huge limitation in downloading. This can further

avoid selfish users camouflage themselves as new member. However, this also
create a huge barrier for the new comers. A fresh member first need to find an
innovation from a insider. Then he would need to learn the rules of the private

9

tracker and how to configure the BitTorrent client. Then since he starts as a new
member with no credit, he needs to download and seed some "free"(do not require
credit for downloading) content to gain some credits. After gathering enough credit,
he can finally start to download the content he originally targeted for.
In conclusion, a private tracker is an closed elite community. It providing high-

quality service to law-abiding members. As the cost, the rules are strict and it
requires much effort to maintain the credit in the community. Thus the size of
the community is limited. Researches [11] have show that private tracker are not
comparable to public trackers in number of either torrents or registered users.

2.3 Design Goal

There are two goals driving this thesis. One goal is to provide a efficient way
for Tribler users to mine as many "bandwidth tokens" as possible by donating as
much bandwidth to the community as possible. The other is to solve the free riding
problem in Tribler network.
By combining these two, our design goal of the subsystem in Tribler namely

Credit Mining is as follows:

1. Users can archive bandwidth tokens as fast as possible by enabling Credit
Mining.

2. Archive Pareto efficiency in improving the health of Tribler swarms while
enabled.

3. Require minimal interaction from the user.

4. Have the potential to handle huge amount of swarms in Tribler network.

5. Maintainable for further changes that will occur in Tribler.

10

Chapter 3

SYSTEM DESIGN

In this thesis, we are introducing a framework namely "Credit Mining", which is
an automatic framework to investigate multiple swarms and dynamically join or
quit swarms according to their profit potentials. By joining the swarms, a user can
contribute his bandwidth to maintain the availability and improve the performance
of these swarms, while getting bandwidth token in reward. Credit Mining aims
to maximize the tokens one user can earn. With a properly designed economy
system, this could also mean maximizing the contribution this user could offer
to the whole community. Credit Mining also needs to provide a friendly enough
user experience to avoid the high barrier for new users similar to private tracker
discussed in Section 2.2.2.
Only in this thesis, since the micro-economy system is yet to be constructed. We

simplify the model from the following dimensions:

1. The number of tokens awarded to the user is linearly related to the total
amount of his upload to the community.

2. Downloading does not require any token within Credit Mining.

3. There are far fewer miners, aka peers with Credit Mining system in the
swarm than the normal peers, thus the competition with other miners are not
considered.

Firstly, the decisions and technical debts of Mihai’s[10] and Ardhi’s[14] works
since 2013 are revisited in Section 3.1. Then the design of this system will be
introduced in Section 3.2, Section 3.3 and Section 3.4.

3.1 Credit Mining Revisit

According to Github Wiki of Tribler[6], Credit Mining first entered early Beta
in 2013. It was later published in 2015 by Mihai[10] and improved by Ardhi in
2017[14]. However, due to this discontinuous develop process, there are noticeable

11

number of less optimized development decisions and technical debts. In this section
they are to be discussed in detail.

3.1.1 Data structure

Data structure is notmentioned in any of previousCreditMining relatedworks[10][14].
We recovered the design decisions by analyzing the source code and unit test
code[3].
The complete list of swarms is stored in a hash table. The key is the info

hash of the corresponding swarm and the value is another a extremely messy hash
table storing different type of data related to this swarm, including the reference to
download handle object, reference to swarm basic definition object, reference to the
swarm current state information, another hash table of extracted state information,
another hash table of the extracted information of all the known peers in the swarm
and the flags of its states in Credit Mining. Moreover, the whole hash table is poorly
maintained. There are hash table nested in another hash table which is also nested
in another. And no comment or document introduce how this complex hash table is
structured. Elements are not initialized unifiedly but added to the table when they
are generated.
The state of a swarm in Credit Mining was stored in one of the sub-hash-table

mentioned above. When querying for subset of the swarms, such as all the enabled
swarm, Credit Mining would traverse through all the elements in the swarm pool.
The resource and time consumption is linearly related to the number of swarms,
which is not efficient in real life scenario where the swarm pool is huge.

3.1.2 Pre-download

Pre-download, or speculative download, used to be a core feature of Credit Mining.
It is the sub-module assists predicting the potential of the swarms. The prediction
methods discussed in previous works[10][14] are all based on the characteristics of
the swarm that are available to all peers. Since this data is only provided after the
client establish the download, this sub-module is designed to download a minimal
amount of content from the swarm and fetch the swarm size information.
However, this sub-module does not work well in reality. Firstly, it consumesmore

than acceptable amount of resource to work. To quick iterate through the whole
swarm pool, it needs to rapidly create download handle, start download, periodically
check the download progress with a short interval. Once the progress hit a certain
threshold, characteristics of this swarm will be recorded and download will be
removed. It was implemented without good scheduling. All the swarms are rushed
to be added to the this sub-module. It immediately caused lagging and maximum
CPU fan noise upon starting Credit Mining experiment on our high-performance
test machine.
In Ardhi’s improvement[14], there is also a mechanism to download the rarest

pieces of the content first to get better acknowledged of the swarm. This operation

12

consumes much more resources by periodically traverse every piece of the content
in every swarm. The complexity is O(m ∗ n), where m and n are the number of
pieces in one swarm and the amount of swarm. Considering the number of swarms
Credit Mining is expected to handle in real world, this is not effective. Moreover,
in libtorrent manual[18], the piece picker is already described as "optimized for
quickly finding the rarest pieces". So this part of resource is wasted for no reason.
It basically not only repeats what libtorrent is already doing, but also in a inefficient
way.
Scheduling the pre-download tasks and limit the maximum swarms being spec-

ulated in parallel can lower the CPU usage effectively. However, by observing the
time it takes in average to get the characteristics of a swarm is relatively high and
highly unpredictable. The evaluation of previous works[10][14] was done on very
limited amount of swarms. It will take considerable long time to traverse all the
swarms in even a single channel in real world. For example, the most popular chan-
nel on Tribler has more than 10 thousand swarms. Even if all the swarms can be
eventually speculated after long time, the characteristics of the swarms speculated
earlier will not be reliable any more due to the large time difference.
When considering DHT, where Tribler is now moving on, this problem is even

more critical. There is no longer a centralized tracker who knows the complete
picture of this swarm. This will increase the time to speculate a swarm and make
it become even more unpredictable.
According to all the reasons above, We finally decide to drop this feature com-

pletely since it is unpractical to be implemented at this stage. There is no easy
way to efficiently determine content popularity in community with large number of
swarms.
In addition, there is another sub-project on-going in Tribler project trying to

solve this problem[4] by disturbing the task to all the peers in the community, then
each peer will only need to investigate a limited number of peers and get the rest
gossiped by other peers. This could be a powerful aid to Credit Mining after its
implementation.

3.2 Work Flow of the System

Credit Mining is fed on the swarms provided by Tribler channels. There are two
main loops in the system. One loop periodically checks the selected channels
to maintain the swarm pool accordingly, adding or removing swarms. From this
swarm pool, the other loop periodically investigates and determines a subset of
swarms with the best potential to earn the most tokens for its user. Then Credit
Mining examine the difference of this subset and the subset which are currently
being mined, replace the swarms currently being mined but having worse actual
performance with swarms not being mined but having better potential performance.
The high-level workflow of Credit Mining with Vitality Policy which will be

introduced in Section 3.4.1 is as shown in figure 3.1.

13

3.3 Supply of the Swarms

As a built-in module of Tribler, swarms in Credit Mining is supplied by Tribler
channel communities. In Tribler, swarms are organized in channels. All channels
can be found in Tribler AllChannel community. A channel is identified by a 40-
digit hexadecimal string. This digit is also unique to each Tribler user’s public key.
Every Tribler can create one and only one channel of their own. User can maintain
a torrent list in his own channel. The channel is automatically broadcast to other
peers in Tribler network along with the all the metadata of the torrents. If a user
subscribes to a channel, he will be notified when the channel is edited. Moreover,
all the matadata of his subscribed channels will be automatically downloaded and
saved into local Tribler database.
By specifying channel identifiers, it is possible for the users to enable a blacklist

or whitelist. Credit Mining will automatically continuously try to find and join
channels in Tribler AllChannel community. Once a channel is joined, Tribler will
start to download the metadata of torrents in this channel. Credit Mining gets
notified once a piece of metadata is downloaded to the local database. Then a
mining handle for this swarm will be be built and added to the Credit Mining
mining pool.

3.4 Selection of the Swarms

The section mechanism in Credit Mining is called policy. Credit Mining provides
a standardized interface to make the system more modular. Limited by the inform-
ation Credit Mining currently has access to, the policy we implemented might not
be the most optimized policy in the future. It is easy to embed other policies in
Credit Mining in the future iterations.
Policy is defined as a filter that is given a full table of candidate swarms and

swarms that are already being mined on, and returns a set of swarms that should be
joined and and a set of swarms should be left. Policy is periodically applied once
Credit Mining is enabled.
In previous works, multiple policies are introduced and evaluated in detail. The

policy that always select the torrents with higher leecher/seeder ratio is proved to
be effective. However as explained before in Section 3.1.2, this policy only works
fine in lab environment when the size of swarm pool is not too large to traverse
and getting the information of every single swarm is realistic. But as the size
of swarm pool grows in real world, the policies fulling relying on the knowledge
of the swarms are no longer practical due the reason that Tribler is leak of the
function to effectively fetch the content popularity of its swarms. This situation
might be change after another project called "swarm size" is completed[4]. The
knowledge-based polities might be brought back at that moment.

14

3.4.1 Vitality Policy

In this thesis, we purpose a simplified policy to filter huge number of swarms called
Vitality Policy. This policy is inspired by the "optimistic unchoking" mechanism in
BitTorrent as described in Section 2.1.1. Likewise, we select a certain of amount of
swarms to investigate according their prior performance and several other swarms
randomly to constantly keep the vitality of Credit Mining.

Start

Select channels
On torrent

discovered

Swarm pool

Channel pool

Torrent from a

channel in the

pool?

Add the

represented swarm

to the swarm pool

Yes

Add/remove

Channel

Add/remove all

swarms from the

channel

added/removed

Delay

Select top m

swarms from the

pool

Swarms being

mined

Select n other

random swarms

from the pool

On external

downnload started

Swarm being

mined?

Yes

Remove the swarm

from list without

deleting the

download

Delay

Figure 3.1: Workflow of Credit Mining under Vitality Policy

The workflow of Credit Mining under Vitality Policy is as described in figure 3.1.
When the policy is applied for the first time, it randomly pick a number of swarms
that equals to the maximum swarms can be mined in parallel in configuration
(configured by the user, related to the bandwidth he is willing to share). From
then on, every time the policy is applied, it first sort all the swarms according to
the upload amount during last interval. A fixed percentage of the least performing
swarms will then be put into the "to stop" list. Since there is a high percentage of
dead swarms in real world, the swarms whose upload is below a certain threshold
are regarded as "dead" and also put into the "to stop" list. The Policy then randomly
select the same amount of swarms which are not enabled in this moment to fill in
the slots left by the swarms to be stopped. These swarms are put to a "to start" list
and return to Credit Mining along with "to stop" list.

3.4.2 Switching between Normal Download and Credit Mining

Since Credit Mining was never formally released in [10][14], two phenomenons
was never considered. The user could happen to have interest in the content in
a swarm which is currently being mining by Credit Mining. Or Credit Mining
happens to select a torrent which is being downloaded by the user. In these cases a
DuplicateDownloadException will be raised.

15

To solve these phenomenons, we add extra logic both when selecting swarms
in Credit Mining and before starting a download outside Credit Mining in Tribler.
When selecting swarms in Credit Mining, instead of select from all the all swarms
we filter out all the infohash which are already being downloaded outside Credit
Mining in Tribler. Before start a download in Tribler, if Credit Mining is enabled,
Tribler will check whether the swarm associated with this infohash is already being
mined on in Credit Mining. If so, Tribler will remove its record and configuration
from Credit Mining, without stopping it. Then it will be regarded as a normal
download task in Tribler. The empty slot left in Credit Mining will be filled with
another random swarm in the next periodical investment.

16

Chapter 4

IMPLEMENTATION

Our implementation started from the branch containing the latest code of Credit
Mining. However, due to the lack of documentation, overcomplicated callbacks,
massive looping calls and all existing technical debts mentioned in Chapter 3.1, we
decide to redo the implementation from scratch.
In this chapter, we introduce some key features of the implementation of Credit

Mining in Tribler, python torrent client that was built at the Delft University of
Technology.

4.1 Software Engineering Work

Our work started from recovering the code left from previous works. Similar to
the technical debts in other subsystems in Tribler mentioned in de Vos, M.A.’s
research[13], Credit Mining prototype also contains countless architectural im-
purity and incomplete testing framework problems. Moreover, there leaks proper
documentation or comment of the implementation details, making it hard for main-
tenance.
When we first took over the code, neither Credit Mining nor its so-called "unit-

test" cases was functional. It then became an "pulling ourself up by the bootstraps"
problem. Since neither the code nor the test were trust-worth, when an error was
raised, there was no way to determine what is the cause of the error. It could either
be caused by the code, the test case, or both.
Since the last work related to Credit Mining[14] gave quite detailed measurement

of Credit Mining, we expected to only do minor maintenance to the code. This was
later proved to be over-optimistic and we should have rebuild Credit Mining from
scratch.
We started from fixing "unit-test" cases. Many of the test cases were not tech-

nically unit-tests since they use real torrent files and contact external servers within
the test. This make the test result unreliable. Bad connection, timing out, or the
availability problem instead of real implementation mistakes could also raise errors
in the tests. What is worse, the initial code coverage was less than 50%. A lot of

17

code are implemented without test cases or even wrong test case.
We rewrote the unit test cases nearly from beginning. We wrote test cases

for function by function while recovering, guessing and testing the use of those
function. Eventually we reached 100% code coverage rate. All communications to
the Internet are patched with mock object to eliminate noise from real world.
Credit Mining code is also debugged alternately at the same time. During this

procedure, a great number of mistakes are detected. The mistakes did not only
come from architectural impurity. There are several hidden logical mistake that
would not stop Credit Mining from working but make it work with wrong logic.
This could be the reason that they remained unfixed when we took over.
After both the code and test cases were fixed and working as expected. We

detected serious architectural impurity as mentioned in Chapter 3.1 which would
take even more time than starting over. We implement the whole module again
from scratch and used the code we fixed as a reference.
The following chapters introduce the two other noticeable features we changed

during the re-implementation.

4.2 Graphical User Interface

In Ardhi’s thesis, a Graphical User Interface(GUI) was implement for Tribler 6.x
with wxPython GUI framework. However Tribler has fully moved onward to 7.x
version, in which wxPython has been totally abandoned and PyQt 5 is used instead.
Since our target is to simplify user operations, we decide to remove the indicator or

channel selection panel existing in previous Credit Mining implementation shown
in Figure 4.1. Credit Mining should be selecting channels for the users in the
background, and is moving towards the final destination that all channels and their
swarms are handled as a whole. Less options is better for users to hand on the
system.
In our implementation, we only provide a check box to enable/disable Credit

Mining and another check box to show/hide Credit Mining downloads in Tribler
setting page, as shown in Figure 4.2.

4.3 "Hot Swapping" and Garbage Collection

Though never mentioned in the previous reports[10][14], Credit Mining was never
able to be dynamically turned on and off, or "hot swapped". This is considered as
a part of technical debt. According to our observation that Credit Mining is leak
of proper unit test and was out-dated seriously from the main branch of Tribler, we
speculate that Credit Mining was rushed during the finalization phase. Leak of hot
swapping feature is also the result of the rush.
Credit Mining was not hot swapping capable since it is only initialized during the

startup of Tribler. When enabling or disabling Credit Mining in setting pages, only
configuration is recorded, Credit Mining is not actually initialized or destroyed.

18

Figure 4.1: Credit Mining GUI in previous implementation[14]

Thus a full restart of the whole Tribler is always required. We modified the Tribler
setting page and have it executed extra code when Credit Mining configuration is
changed. If Credit Mining is toggled to "enabled", Credit Mining will immediately
start to initialize, like the way it is initialized during the startup of Tribler.

If Credit Mining is disabled, the function to shutdown Credit Mining before
Tribler is called. However, this function has memory leak problem. Since Credit
Mining only needed to be destroyed before shutting down Tribler, it will not cause
any trouble if garbage is not recycled completely. But if Credit Mining can be
toggled multiple times, the amount of non-collectible garbage will increase and
lead to memory leak. Python only deallocate an object when its reference count
becomes zero, thus it cannot handle reference cycles[16]. We clean up all the
reference in Credit Mining manager, channels and swarms. All reference to Credit
Mining objects or from Credit Mining objects are cleared before Credit Mining
reference is finally removed from Tribler.

19

Figure 4.2: Credit Mining GUI in our implementation

20

Chapter 5

Experiments and Performance
Analysis

This chapterwill present the experiments and performance analysis ofCreditMining
embedded in Tribler. The experiments are implemented step by step, from the basic
functional validation of the in Chapter 5.2, to the validation in a small controllable
test environment in Chapter 5.3, to the evaluation on real world torrents in Chapter
5.4.
Tribler uses a fully P2P database to store all the channel information and torrent

information, thus makes it not possible to determine the time to fetch certain
information from other peers. To eliminate the influence from this problem, instead
of testing on remote existing channel, we create a test channel on the test device
dumped with all the candidate torrents and run Credit Mining on this channel. From
the perspective of Tribler, there is no difference in fetching data from a channel,
regardless whether the user has the ownership of this channel. So mining on one’s
own channel is functionally equivalent to mining on other channels.

5.1 Setup of the Test Environment

In this chapter, tests are done on 2 different devices according to the need. The
first and second experiment are done on the local machine with the following
specifications:

• CPU: Intel Core i7-7820HK Processor(8M Cache, 2.9GHz to 3.90 GHz)

• RAM: 32GB, DDR4 2400MHz

• SSD: Crucial MX200 M.2 80mm 500GB

• OS: Ubuntu 17.10

The third experiment is done on a remote which with following specifications:

21

• CPU: Intel Xeon Processor E3-1230 v2 (8M Cache, 3.30 GHz to 3.70 GHz)

• RAM: 16GB

• SSD: 120GB

• Kernel Version: Linux 4.4.83-1-pve #1 SMP PVE 4.4.83-96

5.2 Functional Validation

Figure 5.1: Timeline of Credit Mining

The first experiment aims to verify the system is functional. We add single
torrent of a 800MB file with is randomly generated to our channel and use another
BitTorrent client instance to seed it. This experiment is done several times to get
more accurate result.
We generate a 800MB random file to mimic the content distributed through

Tribler in real world. We monitor the time consumption from the creating a torrent
from the test file from the content creator’s end, to start seeding content and mining
bandwidth token on the Credit Miner’s end. The simplified timeline is shown in
figure 5.1. We notice that themost time consuming processes are torrent generation.
Swarm selection can also consume much time if the size of swarm pool is large
enough since it is O(n) time complexity where n is the size of the swarm pool.
Since this is a local test, the time for broadcasting is almost 0. But since the torrents
are distributed in the normal way though Tribler Channel, the time it reaches the
Credit Miner is not predictable.

5.3 Controlled Environment Validation

The second experiment targets to validate the policy mechanism of Credit Mining.
The second experiment is taken in a test Tribler channel created locally on the
test machine. The channel contains 10 different swarms with various setups. The

22

content of each swarm is a 800MB randomly generated binary file. Peers are are
represented by 6 individual libtorrent sessions running locally. Each session take
a different port from 6881 to 6886, and is award of the existence of other peers.
The sessions are configured to communicate to localhost, all external IP addresses
are filtered. allow_multiple_connections_per_ip option in libtorrent session is
switched on to make it possible for the sessions to communicate to each other.
The upload and download speed limit of each torrent in each session are set to

100KB/s and 200KB/s respectively, to counter the problem that local test sessions
do not suffer the same bottle neck as real world session. The upload and download
speed is almost the read and write speed of hard disk. If no limit is configured, the
whole test will be done in seconds, and the result will be fully random, since the
"lucky" session which first established connections will consume most bandwidth
of CPU and hard disk, choking the rest session and make the test result unreliable.
What’s more, without speed limition, as long as there is uploader, the download
speed will always be maximum, choking only by the computation capability but
not the network, making the number of sessions in a swarm hard has any impact on
the test result.
The swarms are assigned with different numbers mock seeders and leechers to

reflect different swarm pattern in real world. Swarm 1 and swarm 2 represent
the balanced swarms, with 3 seeders and 3 leechers each. Swarm 3 to swarm 5
represents the swarms which are over-seeded, with 3 seeders and 1 leecher each.
Swarm 6 to swarm 8 represents swarms under-seeded, and have 1 seeders and
3 leechers each. Swarm 9 and swarm 10 have 1 leecher each, and no seeder,
representing dead swarms on the Internet.

Figure 5.2: Total time being mined of each swarm

Figure 5.2 shows the how Credit Mining select swarms during the 30-minute
experiment, exclude the swarms randomly selected, and Figure 5.3 show how it

23

0 5 10 15 20 25 30
time(minute)

0

5

10

15

20

25

30
tim

es
 jo

in
ed

swarm_1 swarm_2

swarm_3
swarm_4

swarm_5

swarm_6

swarm_7
swarm_8

swarm_9
swarm_10

swarm_1
swarm_2
swarm_3
swarm_4
swarm_5
swarm_6
swarm_7
swarm_8
swarm_9
swarm_10

Figure 5.3: Total time being mined of each swarm

joins swarms, include the swarms randomly selected. Note that this experiment
is to verify whether the system can differ the performance of each swarm. Since
size of swarm pool is relatively small compare to the active swarms within each
iteration, Figure 5.3 can not properly show the difference in the joined times for
each swarm. With the size of swarm pool enlarges, the proportion of joined times
between the swarms with good and bad potential will also be enlarged.
By comparing Figure 5.2 and Figure 5.3, we observe that swarm 5, 6, 7, 8 and

9 are randomly selected in the first iteration of Credit Mining. After this iteration,
swarm 8 and 9 was dropped due to their bad performance. Swarm 1, 2 and 3 was
then randomly selected to replace them in the second iteration. After this iteration,
swarm 1, 2 and 6 are selected to carry on and swarm 3, 5 and 7 are dropped. From
then on, swarm 1, 2 and 6 are always selected in every iteration till the end, and
other swarms are randomly picked to compare but dropped at the end of iteration
since they have lower performance than swarm 1, 2 and 6.
The result in Figure 5.2 was against our assumption. In Mihai’s work[10],

seeder/leechers ratio is proved to be an efficient approach to rate a swarm. Basing
on this conclusion, we were expecting Credit Mining would constantly select swarm
6, 7 and 8 after few intervals. The result turned out to be that Credit Mining
constantly select swarm 1 and 2 instead. In this experiment, it also select swarm 6,
which is an interesting phenomenon. We assume that swarm 1 and 2 have the best
performance and swarm 6, 7 and 8 are next to them. The selection of swarm 6 is
actually coincident. Due to the fact that we have very limited amount of seeder and
leechers in total and swarm 6, 7 and 8 are underseeded. If Credit Mining cannot
join the swarm before all other leecher peer establish the connection with the seeder,
it cannot have enough share of bandwidth from the seeder, thus makes it have less
content to upload.

24

0 200 400 600 800 1000 1200
time(minute)

−0.04

−0.02

0.00

0.02

0.04

CP
U
us
ag

e(
%
)

(a) CPU usage during the experiment

0 200 400 600 800 1000 1200
time(minute)

3

4

5

6

7

8

9

10

RA
M
 u
sa
ge

(%
)

(b) RAM usage during the experiment

Figure 5.4: System resource usage during the experiment

To verify the assumption, We then repeated this experiement several times. The
result was similar to the experiment shown in Figure 5.2 and Figure 5.3. Swarm
1 and swarm 2 are always be the major choice of Credit Mining once investigated.
There is always a third swarm being selected just like swarm 6 in Figurer 5.2.
Through our experiments, this swarm could be either swarm 6, swarm 7 or swarm
8.
This basically proved our assumption that swarm 1 and 2 actually have better

performance than swarm 6, 7 and 8, which is against Mihai’s conclusion.

5.4 Real World Experiment

Real World Experiment focus to analysis how much resources Credit Mining will
use in real world scenario and its performance. This experiment is done on the test
channel with all 25 torrents from a real tracker from the Internet.
The experiment was done for roughly 20 hours. The system resources usage is

displayed in Figure5.4. Note that Since the since the CPU usage rounds to 0.1%,
it appears like Credit Mining along with Tribler does not consume much CPU
generally. Memory usage is always under 100MB. However, We observed that the
There are several unusual slight stepping in RAM usage during the experiment.
This cannot be explained from Credit Mining’s mechanism or the experimenter’s
log file. It might be caused by some undetected memory leaking problem in Tribler
core.
Performance-wise, the total payload upload and total download curve is shown

in figure 5.5. Credit Mining seeded 300GB during the whole experiment. The
upload speed keeps increasing during the first hours Credit Mining is turned on.
This is due to the feature that Credit Mining start with random swarm, and then
replace them with better performing ones. From figure 5.6 speed slowed down after
seeding for 7 hours. We assume the reason is that the demand from these swarms
are mostly fulfilled already. If Credit Mining is running with a larger and dynamic
mining pool, the speed will increase after Credit Mining find the better performing

25

ones to replace the mostly fulfilled ones.

0 200 400 600 800 1000 1200
time(minute)

0

50

100

150

200

250

300

da
ta
 v
ol
um

e(
GB

)

upload
download

Figure 5.5: The payload upload and download performance with real world swarms

26

0 200 400 600 800 1000 1200
time(minute)

0

50

100

150

200

250

300

350

da
ta
 v
ol
um

e(
GB

)

total
payload

Figure 5.6: The payload upload performance comparing to total upload with real
world swarms

27

28

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis is to design and implement amodule in Tribler to improve the availability
of the contexts in Tribler community, and provide a solution in token mining in
Tribler.

6.2 Future Work

Currently, the most optimized policy is yet to be find. The currently policy is
theoretically guaranteed to find the torrents with the best potentials. But the cost
is too high. It must be running in the community where there are a reasonable
percentage of active under-seeded swarms. If not, current policy will waste tooo
long time in traversing across the swarms before it finds the demanded one. Also,
if CMS is restarted, it will also be time consuming to get it back to the best working
condition.
One possible solution is by developing a model based on the accessible swarm

information. Our plan was to get a database of download performance and swarm
information, and train the model on this database. However, there is no such
database known to be existing, and we do not have enough resource and time to
construct such a database in this thesis. Moreover, even after we got a model for
estimation, we still need a decentralized swarm information sharing system[4] to
make it work. Thus we decide to leave this to the future, after the completion of
this sub-system.
Another problem is that CMS currently regards all other peers in every swarm as

normal peers. There is situation that there are multiple users in CMS investigating
the same swarm. In that case, transferring data between the miners are not as
beneficial to the swarm. Also if too many miners investigating the same swarm, it
might have a possibility to become a trap for new miners. This problem needs to be
further researched. The solution might be an approach for the miners to announce
themselves to other miners and cooperate based on the swarm information.

29

The current Tribler system does not provide the resilience against Sybil attack.
Selfish users can always create as many fake account as needed to clear up any
negative credit record. In this way they can still escape the punishment of free-
riding. Our plan is to establish a naive proof-of-contribution mechanism only
targeting the new users. Upon a new user with limited credit record join the
community, he will be given very limited access speed compared to a honest user.
Only after a certain amount of contribution is done to the community, the new user
can be issued a normal. This will make is less efficient to selfishly fake accounts to
leech the community than to honestly mine in the community to earn more tokens.
The last problem is that current policy only focus on the total upload amount of

the swarms. The miners should be also be rewarded for keeping the availability of
the dying swarms. This can be archived by changing the sorting key function once
such rewarding function is specified.

30

Bibliography

[1] Azureus2 changelog - vuzewiki. http://wiki.vuze.com/w/Azureus2_
changelog#2.3.0.0_-_May_2.2C_2005. (Accessed on 05/13/2018).

[2] blockchain-regulated markets. https://github.com/Tribler/tribler/
issues/2559. (Accessed on 05/07/2018).

[3] Github - tribler/tribler: Privacy enhanced bittorrent client with p2p content discovery.
https://github.com/Tribler/tribler. (Accessed on 02/25/2018).

[4] Swarm size community: content popularityÂů issue #2783Âů tribler/tribler. https:
//github.com/Tribler/tribler/issues/2783. (Accessed on 02/24/2018).

[5] Towards global consensus on trust. https://github.com/Tribler/tribler/
issues/3357. (Accessed on 05/07/2018).

[6] Tribler: an attack-resilient micro-economy for media. https://github.com/
Tribler/tribler/wiki. (Accessed on 05/07/2018).

[7] A trustful blockchain-based token economy to prevent bandwidth free-riding. https:
//github.com/Tribler/tribler/issues/3337. (Accessed on 06/09/2018).

[8] The bittorrent protocol specification. http://www.bittorrent.org/beps/bep_
0003.html, February 2017. (Accessed on 05/16/2018).

[9] Eytan Adar and Bernardo Huberman. Free riding on gnutella. 5, 04 2001.
[10] M. CapotÄĚ, J. Pouwelse, andD. Epema. Decentralized credit mining in p2p systems.

In 2015 IFIP Networking Conference (IFIP Networking), pages 1–9, May 2015.
[11] X. Chen, Y. Jiang, and X. Chu. Measurements, analysis and modeling of private

trackers. In 2010 IEEE Tenth International Conference on Peer-to-Peer Computing
(P2P), pages 1–10, Aug 2010.

[12] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics
of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[13] M.A. de Vos. Identifying and managing technical debt in com-
plex distributed systems. MSc thesis, Delft University of Tech-
nology, https://repository.tudelft.nl/islandora/object/uuid:e5a817a4-ce0a-4dd3-afd4-
d70660b63d16?collection=education, August 2016.

[14] Ardhi Putra Pratama Hartono. Credits in bittorrent: designing prospect-
ing and investment functions. MSc thesis, Delft University of Techno-
logy, https://repository.tudelft.nl/islandora/object/uuid:809eaec7-883c-47b0-9d57-
8e605eaaaed1/datastream/OBJ/download, March 2017.

[15] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on gnutella revisited: the bell
tolls? IEEE Distributed Systems Online, 6(6), June 2005.

[16] Digi International Inc. Python garbage collection. https://www.digi.com/
resources/documentation/digidocs/90001537/references/r_python_
garbage_coll.htm, September 2017. (Accessed on 03/06/2018).

[17] Adele Lu Jia, Xiaowei Chen, Xiaowen Chu, Johan A. Pouwelse, and Dick H. J.
Epema. How to survive and thrive in a private bittorrent community. In Davide Frey,

31

Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar, and Prasun Sinha,
editors, Distributed Computing and Networking, pages 270–284, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[18] Arvid Norberg. libtorrent manual. https://www.libtorrent.org/features.
html. (Accessed on 02/24/2018).

[19] Dr. J.A. Pouwelse. Delft blockchain lab: Roadmap 2030. https:
//d1rkab7tlqy5f1.cloudfront.net/EWI/Delft%20Blockchain%20Lab/
Presentaties%20Kickoff/PDF/johan_goed.pdf. (Accessed on 05/07/2018).

32

