
Towards globalconsensus ontrust
Aggregation of temporal
PageRank trust vectors

J. Harms

Contents

1 Introduction 1

2 Problem description 3
2.1 Attacks . 3

2.1.1 Double-spend attack. 3
2.1.2 Sybil attack. 3
2.1.3 Blockwithholding attack . 4
2.1.4 Dishonest behaviour . 4

2.2 Research question . 4
2.2.1 Accounting system . 4
2.2.2 Scalability . 4
2.2.3 Decentralization . 5
2.2.4 Distribution . 5
2.2.5 Correctness . 5
2.2.6 Honest usage. 5

2.3 Limitations and assumptions . 6

3 Relatedwork 7
3.1 Applications of decentralized accounting systems . 7

3.1.1 Cryptocurrencies . 7
3.1.2 Distirubted work systems . 8
3.1.3 Reputation systems . 9

3.2 TrustChain . 9
3.2.1 Data structure . 9
3.2.2 Accounting mechanism . 9
3.2.3 Subjective graph . 9
3.2.4 Consensus . 9

4 Basemodel 11
4.1 Informal model definition . 11
4.2 Formal model definition . 11

5 Attacks 13
5.1 Sybil attack . 13
5.2 Block-withholding . 13
5.3 Double-spend. 13
5.4 Self-promoting . 13
5.5 White-washing . 13
5.6 Collusion attack. 13

6 Information dissemination 15
6.1 Pairwise auditing . 15

6.1.1 Definition . 15
6.1.2 Incentive design . 15
6.1.3 Endorsement . 15

6.2 Accusation . 15
6.2.1 Proof . 15
6.2.2 Untrue accusations . 15

iii

iv Contents

7 Experiments and results 17
7.1 Setup . 17

7.1.1 Dataset. 17
7.1.2 Experiments . 17

7.2 Valid usage . 17
7.3 Sybil attack . 17
7.4 Accusations . 17

8 Discussion 19
8.0.1 Strategy proofness . 19
8.0.2 Attack resistance . 19
8.0.3 Future research . 19

Bibliography 21

1
Introduction

The development of the personal computer and the internet as the digital infrastructure for global connectiv-
ity drastically impacted almost every feature of our lives. Many cannot imagine life without constant global
acccess to knowledge, photos, social contacts and many more things. When Tim Berners-Lee developed the
World Wide Web in the 1980s he imagined it as a globally distributed source of knowledge in form of a net-
work where each node is equal, can both contribute and consume knowledge in order to improve cooperation
and sharing of information. The huge success of the internet proved his idea right but at the same time led
to problems: with global connectivity the openness of the internet’s network invited malicious users. Also
some services offered on the web were highly requested which required a highly advanced infrastructure to
handle such traffic. Reasons such as these led to the centralization of the internet and the monopolization of
services.

A similar trend can be found in many aspects of modern society: global production has replaced local
production, global retailers replaced local retailers and mega cities replace rural villages. The strive for effi-
ciency, growth and success leads to entities combining forces and creating ever stronger super-entities that
improve processes to become more powerful. Mostly centralization has led to widespread welfare through
more jobs, more affordable products and more efficient distribution of goods and services. The same is true
for the internet: facebook has connected more than 2 billion people, google allows you to find information
on anything and youtube is delivering entertainment; all for free, available to anyone willing to create an
account, world wide.

But not everything about centralization is advanatgeous. Companies in powerful monopoly-like mar-
ket positions can misuse their importance to influence politicians to act in their favor. German automobile
manufacturers for example lobby against policies for reducing emissions of cars in European Parliament or
speed-limits on the German Autobahn. In the digital world, Facebook misuses their user’s data and allows
political propaganda to be spread to millions of people. Furthermore, centralized application are prone to
attacks by hackers as the servers are a single point of failure, and one data breach leads to the exposure of
millions or even billions of users. Many such examples have proven in the past that centralized applications
are not safe.

Banks are another example of such centralized systems that have their client’s trust but are proven un-
trustworthy like during the financial crisis. This led to the development of Bitcoin, the first decentralized,
digital currency which works completely without central authorities and is safe against double-spending, an
attack on digital financial systems in which two confilcting transactions are submitted, resulting in spend-
ing some amount of currency twice. Bitcoin uses a single global hash chain of blocks (sets) of transactions.
The hash chain leads to a chronology of transactions which makes double-spending impossible. All nodes
on the Bitcoin network agree on this sequence of transactions using an algorithm called Proof-of-work(PoW)
which solves a hard mathematical problem, expending time and resources. The first to solve the problem
can publish a new block on the chain including a new (confirmed) set of transactions. Bitcoin is very secure,
completely decentralized but it’s Achilles heel is scalability: with a single global chain of transactions and the
current block time of 10 minutes the theoretical throughput is 7 transactions per second.

Since the advent of Bitcoin many other digital currencies have appeard and some have found almost
similar praise as Bitcoin, however the scalability problem still exists with most of the currencies. Vitalik Bu-
terin, co-founder of the second largest digital currency network Ethereum, describes this as a trilemma: of

1

2 1. Introduction

the three desireable properties decentralization, scalability and security, at most two can be attained by one
blockchain system at the same time. But in order to be usable for a global currency or as a global transaction
storage, scalability will be neccessary.

This master thesis is concerned with TrustChain, a blockchain system developed at the Blockchain Lab
at TU Delft. TrustChain has no global consensus on all transactions which removes the bottleneck for trans-
action throughput. Instead of a single blockchain for all transactions each entity on the network has their
own blockchain. We have shown in previous work that this system achieves horizontal scalability, so ad-
ditional nodes on the network lead to additional throughput. The scalability comes at the cost of security
guarantees, most prominently the double spending attack and the sybil attack. The double spending attack
is easy to perform because an agent can simply publish a second conflicting transaction with another node
without sharing the original transaction. An attack is called a Sybil attack when an adversary creates many
fake entities on the network to obtain a large part of the voting power or resources. This attack is usually
prevented through verification of the agent, for example bitcoin verifies nodes by letting them perform work.
Trustchain is built in a way that these attacks are not prevented, which is too costly to be scalable, but in-
stead are detectable. Both transactions of a double-spend attack are stored on the blockchains of the two
exploited agents. By spreading the records of these transactions in the network, eventually a node will have
both versions of the same transaction and will identify the attacking node.

Next to the research on Trustchain the Blockchain Lab is concerned with real-world testing of a deployed
system. The platform for those tests is Tribler, an anonymized onion-routing protected bittorrent client. A
common problem with the bittorrent network is that it is not inherently protected against free-riders as there
is a social dilemma in sharing resources with other agents on the network. Uploading data to other nodes is
costly in terms of bandwidth without any direct reward, but if noone decides to upload nobody can download
and the system breaks. This dilemma is a form of what is known as the Prisoner’s dilemma in classical game
theory. With BarterCast our research group has devleoped a system to prevent free-riding in the bittorrent
network and recently this mechanism has been improved using Trustchain as a tamper-proof way to store
transaction records. This work will also use the Tribler example as context.

Our contribution will be targeted at the dissemination mechanism of transaction records on the Trustchain
network. Because every node has it’s own chain, each node has only a subset of the data. This is different from
blockchain systems with global consensus in which all agents act on the same data. This has considerable
influence on the attack defence and accounting mechanisms. While Trustchain is made in a way that makes
attacks detectable this is only possible if an agent collects data from other agents on the network. Thus, the
dissemination and validation of data is of very high importance for the proper functioning of thu system.
This mechanism has not yet been formerly been defined and it’s implications for security and scalability of
the Trustchain have not been researched in depth. Specifically this work contributes:

• We formally introduce Pairwise endorsements – a dissemination mechanism that records information
exchange and validation on-chain, making information sharing strategy-proof and information tamper-
proof

• We analyze the security, scalability and correctness of the dissemination mechanism

• We provide an implementation and experiment results to show the working of the mechanism.

The rest of this report will be structured as follows. In the next chapter, the problem will be discussed in
more detail.

2
Problem description

In the introduction we make a case for the decentralization of applications that handle private information
or resources and argues that scalability is one of the main problems of the promising blockchain technology
to make such systems a reality. Trustchain is an approach that removes the main bottleneck that restricts the
scalability of the most common blockchain fabrics, namely global consensus. However the lack of agreement
on a single accepted set of transactions has many implications for attack resistance and correctness guar-
antess of the system. This chapter introduces these implications and defines the problem that this work is
supposed to tackle.

2.1. Attacks
2.1.1. Double-spend attack
One of the most challenging attacks that exist in distributed systems is the double-spend attack in which
an adversary creates two conflicting transactions with two different agents without telling each about the
other, effectively using resources twice. In centralized systems this attack is prevented by the central server
which processed transactions in order and realizes that the resources were spent in the first version of the
transaction. Bitcoin was the first decentralized accounting system that solved this problem without a central,
trusted entity. However the mining which creates a single accepted sequence for transactions is costly in
terms of time and resources. Without global consensus Trustchain (discussed in more detail in section 3) is
not able to prevent the double-spend attack. Instead, the double-spend attack will be recorded and therefore
made detectable. The attacker sends two conflicting transactions to two different agents and keeps one, but
both partners write the conflicting blocks on their chains. If those two agents share their blocks with each
other or both share their blocks with a third agent, the attack becomes detectable because the two blocks
are conflicting. The prevention of this attack therefore requires dissemination of transaction data across the
network and constant checking for conflicting transactions by all agents.

2.1.2. Sybil attack
During a sybil attack an adversary takes control over many entities at the same time without making this
known to the network. The attacker can then use those entities to gain influence without any real cost because
the controlled entities can create proof of transactions without actually performing them.

This problem is very hard to detect because controlled entities can look like real agents to external ob-
servers. In centralized systems this is often prevented by requiring multiple authentication steps, for example
scanning an identity card. Also if the creation of new agents has some costs, the adversary needs to evaluate
the possible advantage against the cost of creating multiple agents. In Bitcoin and other proof-of-work based
cryptocurrencies the attack is avoided because the power to create a new block is proportional to computa-
tional power, so whether the computational power is spread over multiple agents or not does not matter to
the voting power in the system.

For other decentralized systems the sybil attack continues to be a challenging problem. Many solutions
have been proposed which analyze the topology of the network. Also an initial negative balance has been
proposed by some. Specifically for the Trustchain two algorithms, namely NetFlow and Temporal PageRank.
Yet, while the two algorithms allow for sybil-resistant calculation of a metric which is related to the balance

3

4 2. Problem description

of agents. Also the accuracy of the algorithms depends on the amount of data that is available, making it
neccessary to share data between agents in order to better be able to estimate the probability of sybils. The
sybil attack will further be discussed in chapter 4.

2.1.3. Blockwithholding attack
In decentralized systems it can be advantageous for agents to not share some information about their trans-
actions that would otherwise render them in a weaker position. This is not possible in centralized systems
because users do not keep their own data which instead is stored on the central server. Thus it is not the user’s
decision to share or not share information with others.

In common blockchain fabrics all information is shared with everyone and only information that is ac-
cepted by everyone is true. By removing the global consensus this guarantee is no longer intact. If user’s own
their data, they can decide to share it or not. Agents can claim that information was lost during transactions
or that a transaction did not take place.

2.1.4. Dishonest behaviour
Some application types may require agents to act according to a specific set of rules. For example in the Tribler
application, if an agent (responder) receives two requests for contribution the agent should contribute to the
one agent that has contributed the most in the past as that agent deserves to be rewarded for those past
contributions. Without global consensus the agent determines the “goodness” of the requesters on the basis
of an unobserved information set, which is a subset of the global network information. However the agent can
also decide to not stick to the rules and contribute to the lesser of the two requesters. Without consensus on
the information set on the basis of which the responder decides, this dishonest behaviour cannot be detected
and punished by other agents.

2.2. Research question
From the above discussion it becomes clear that removing the global consensus from any blockchain farbics
opens the system to many forms of attacks. The missing guarantees on information makes it hard to check
the correct behaviour of other agents. This makes sharing of information and validation of transactions an
essential building block of a blockchain system without global consensus. Yet, the question is how to enforce
dissemination of transaction records without a trusted third party. Also which information is neccessary to
distribute accross the network and how can we make sure that validation of that information is done by all
nodes. Formally we can define the following research question:

How can we design a scalable, decentralized accounting system that ensures the distribution, correctness and
honest usage of transaction records?

The research question entails some requirements for the system that we are trying to develop. In the
following we will explain each of those in more detail.

2.2.1. Accounting system
The system we are trying to build is an accounting system. An accounting system keeps track of transactions
of a resource of value between at least two parties. Accounting systems have many applications; two common
examples are a banking system and a reputation system. Each entity in the accounting system has a unique
identifier and from the history of the transactions recorded in the system a certain balance can be assigned
to each identifier. When a new transaction is issued the balance is increased or decreased and usually some
threshold is put inplace to restrict the infinite spending of resources. This implies that the order of transac-
tions is of importance. As an example consider an entity A with the balance of 5 a minimum threshold of 0
and two transaction spending 4 units and 3 units two parties B and C, respectively. Obviously, it is not possible
that both transactions are accepted. Either, A first spends 4 units on the interaction with B and cannot afford
the transaction with C or the other way around. If entity A tries to submit both transactions at the exact same
time, it is the task of the accounting system to create an order of two transactions and restrict the expenditure
beyond the balance threshold.

2.2.2. Scalability
Accounting systems can exist in many different sizes and contexts, they do not even have to be digital for
some applications. However in this work we are concerned with planet-scale accounting which even enables

2.2. Research question 5

micro-transactions with high frequency. Therefore scalability is one of the main factors. Before the ascent
of internet applications such dimensions were unheard of but in the last decade services such as Facebook,
WeChat or YouTube have shown that an application can grow to have billions of users. Our ambition is to lay
the theoretical and practical basis for future systems that scale to these sizes. In practice that means that the
transaction throughput of the global systems needs to grow with the amount of users and that no global limit
is in place that restricts further growth.

2.2.3. Decentralization
Ownership of all transaction data can, depending on the context, give the owner power, leverage and value.
Furthermore, a central entity creates a target for attackers and with sufficient resources available an adversary
will in the end be able to compromise the system. We see accounting systems as a part of the infrastructure
that enables applications such as banking or reputation systems. No single entity should be owner of such
infrastructure. That is why we are considering a decentralized solution. In the context of an internet appli-
cation a centralized model assumes that one single (central) trusted entity has access to all information and
all users know and connect to that single entity. In a decentralized model, we cannot assume that any other
entity is trustworthy or omniscent. Instead entities are equal and communicate with each other. All users
know about their own transactions and are owner of their data, with full control over whom to share them
with.

2.2.4. Distribution
In a perfectly decentralized system each entity only knows about their own transactions. For an accounting
system that means that each entity needs to check for themselves that they do not exceed the balance thresh-
old. Yet, an entity’s interest could be to spend as much as possbile, which makes the self-control mechanism
ineffective. In the context of reputation systems, an entity’s interest could be to show their good behaviour
to others. In those situations a distribution mechanism needs to be put inplace because in a decentralized
system we can no longer assume that information is simply available from the central entity. Perfect distri-
bution of data would mean that each user is informed about each transaction happening on the accounting
system’s network. However in practice such a situation virtually impossible to uphold, especially when scal-
ing to global high-frequency microtransactions. A balance needs to be found between the distribution of
information, the scalability of the system and the storage and processing capabilities of each entity.

2.2.5. Correctness
In order to ensure the correctness of data multiple aspects need to be considered. First of all data needs to be
stored in a tamper-proof manner, that is, once a transaction is accepted by all parties that transaction should
not be changeable afterwards. Also the order of transactions needs to be definite, the reason for this was
explained in Section 2.2.1. Finally, entities need to be able to validate the correctness of the state of the sys-
tem. The distribution of data informs entities in the system about the behaviour of other agents, but without
validation of that data, missing or wrong information cannot be found. This is another aspect that is often
solved by a central entity that continuously analyzes the information received by users. In a decentralized
system the validation has to be performed by each entity. For example entity A has a balance of 2 units but is
trying to spend 3 units in a transaction to entity B. Without a central entity the only party to prevent A from
transaction is entity B. B is only able to detect the invalid transaction if A has shared all it’s transactions with
B and if B uses some validation precedure before engaging in a new transaction. It is important to realize that
validation is only possible if information is distributed.

2.2.6. Honest usage
Finally, the system should make it possible to ensure the honest behaviour of entities. To show how the
previous two components are not enough to ensure this, we can continue with the example from the previous
section. So even if B knows that the balance of A is insufficient to commit the transaction, both could collude
and still commit the transaction. Afterwards, there is no way of knowing whether B was acting wrong on
purpose or whether A did not share its information correctly.

In order to ensure correct usage of the given information it needs to be possible to distinguish good from
bad behaviour. Without a central entity that knows the truth about every entity it is not straightforward to
know which entity is the responsible one for a wrong transaction.

6 2. Problem description

2.3. Limitations and assumptions

3
Related work

In the previous two chapters we have shown that a need exists for a decentralized accounting system in or-
der to create a global infrastructure for secure, anonymous digital transactions that does not require control
through a trusted third party. This need has been identified before and work has been performed both in the
scientific community as well as the industry. In this chapter we will summarize those efforts, describe the
short-comings of those approaches and define a basis for the work performed in this work.

3.1. Applications of decentralized accounting systems
The general concept of accounting is quite old as it is simply a recording of transactions between two or more
parties. Before the digital age those recordings were simply written text on paper, nowadays those recordings
are stored in databases. We are concerned with another type, namely decentralized accounting systems.
We identified three types of applications for decentralized accounting systems: cryptocurrencies, distributed
work systems and reputation systems.

3.1.1. Cryptocurrencies
In the years 2007 and 2008 the global financial crisis shattered the global economy, lead to many people
loosing house and job and diminished the trust clients had in banks to keep their money safe. Politics dis-
cussed the problem and proposed to regulate the banks more but with little impact. However something else
promised to change the banking world: the first white-paper for a decentralized digital currency without any
need for a trusted third party, Bitcoin, was announced.

Bitcoin. Before the announcement of Bitcoin it was assumed that in order to verify the correctness of trans-
actions between parties and prevent cheating with digital money a bank or credit card company was needed.
Bitcoin proved them wrong by creating a hash-based chain of transaction blocks, a global ledger, that is
shared among all users of the network. The acceptance of transactions is managed by a process called “min-
ing” which ensures that only the majority of CPU power can publish new block. A blocks contains a fixed
number of transactions and the Bitcoin network makes sure that a block is created once every 10 minutes. All
mining node will execute the proof-of-work mechanism: in order to publish a block a value needs to be found
that, when hashed with a certain hashing function like SHA-256, starts with a certain number of zeros. De-
pending on how many CPUs are active on the network the problem can be increased in difficulty by requiring
more zeros at the beginning of the hashed value. Once a new block is published other nodes will validate the
transactions and if they agree, will show their acceptance by working on creating the next block. This system
ensures that as long as a majority of CPU power is owned by honest nodes, they will outpace the rest of the
network in solving the hashing puzzle and creating valid blocks. Nodes will accept the longest chain and the
transactions will be valid.

The Bitcoin approach solved many problems assuming that an honest majority exists: first and foremost
the double-spending of funds is prevented because the Bitcoin blockchain creates one global order of valid
transactions. Also the Sybil-attack is prevented by pairing the voting power to the available CPU power, which
means Sybils can only run on real hardware, removing the advantage of fake identities. But these measures
of attack prevention come at a price of efficiency. The surging price of Bitcoins especially in the year 2017 led

7

8 3. Related work

to a surge in transactions, transaction fees and energy usage. The increasing price of Bitcoins makes mining
them more profitable which means more nodes are joining the mining operation. Therefore the difficulty
for the proof-of-work problem is increased, such that it takes more computing power to find a correct value.
This again increases the amount energy consumed in the whole network. At the same time the number of
transactions processed is a constant of the Bitcoin currency, approximately 7 transactions per second. At
the time of writing the energy conusmption is at least 2.55 GW which makes it comparable to contries such
as Ireland. Summarized Bitcoin was a large step towards decentralized accounting but unsolved scalability
issues still prevent it from being actually useful as an infrastructure such as the one we envision.

Alternative coins and improvement measures. Bitcoin served as a first proof-of-concept for trustless dig-
ital currencies or for our purposes, a “secure” decentralized accounting system, but the shortcomings were
also obvious. Once the populartiy increased, other enthousiasts, startups and incumbent companies started
to create their own spin-off digital currency. Each of these so-called “alternative coins” used blockchains as a
core technology to store transactions but tried to solve the scalability issues using different approaches. The
discussion of all alternative coins goes beyond the scope of this chapter, therefore we will quickly introduce
some of the main differences between the largest systems.

The block time is one parameter to tweak in order to increase transaction throughput. Ethereum, the
second largest cryptocurrencies currently uses a block time of 15 seconds with a proof-of-work consensus.
Also block size is a factor in the throughput rate, but increasing block time and size only creates a constant
factor to the rate of transactions.

Ethereum is currently testing a proof-of-stake mechanism which should replace the energy intesive proof-
of-work. In short this mechanism will require “minders” to put some amount of currency into a wallet in order
to participate in the process. If a miner does not perform the validation of transactions correctly that “stake”
will be lost for the miner. This will solve the energy consumption problem but it will not solve the overall
scalability issue of the system.

Another feature in development in multiple currencies is the “Lightning network”. The lightning network
will allow two parties that expect to conduct multiple transactions with each other to create a “channel”. Both
parties store some funds in the channel and can then interact freely through this channel without needing
to interact with the master network of the currency. Only the opening and netbalance at closing time will be
writting to the chain while all other interactions are only recorded locally. This should increase the possible
throughput significantly but due to the early stages of development the actual implications of large-scale
use are not proven at the time of writing. But considering that Bitcoin has a transaction limit of 200000
transactions a day, it would still take 5000 days or 13.7 years to open one channel each for a billion people.

The IOTA project ...
Sharding ...
Conclusion

3.1.2. Distirubted work systems
In the field of distributed computing many applications include some mechanism in which a node is per-
forming work for other nodes or the network in general. Seuken et al. call these distributed work systems.
Some examples of distributed work systems are peer-to-peer file-sharing network, packet forwarding in mo-
bile ad-hoc networks and volunteer scientific distributed computing. As our research group is mostly con-
cerned with file-sharing networks and the concepts are similar in general we will stick to that example to
discuss the latest developments.

Many different file-sharing networks have been built in the past, the most prominent being Napster,
Gnutella and BitTorrent. In contrast to centralized file-sharing, in peer-to-peer systems there is no server
that contains all data, but instead users share data directly, one peer downloading and one peer uploading.
With no infrastructure needed, no costs and no single point of failure such a systems seems optimal. Talking
in terms of distributed work systems, the act of uploading is equivalent of performing work while the act of
downloading consumes work. There is, however, a social dilemma here: uploading to another node does not
lead to an immediate reward for the uploading node, therefore, if we assume that bandwidth is a precious
resource it is cheaper to not upload, yet if all agents on the network realize this, no agent will upload and thus
no agent is able to download. The agents that do not upload any data are known as free-riders and free-rider
protection in peer-to-peer file-sharing networks is a subject of ongoing research.

Accounting systems pose a possible solution to the free-riding problem. Let’s first imagine a centralized
accounting systems keeping track of all uploading and downloading behavior, uploading data increases the

3.2. TrustChain 9

balance of agents, downloading decreases the balance. Now, the accounting system can enforce that agents
keep their balance around 0, so they upload approximately as much as they download. Therefore, an ac-
counting system can solve the free-riding problem, however as mentioned multiple times, a decentralized
accounting system is hard to implement. Accounting mechanisms have first been related with this subject
in the DropEdge paper, however a lot of work has been done on the very related subject of reputation sys-
tems, which will be discussed in the next section. Seuken et al. define an incentive-compatible accounting
mechanism which removes any advantage for users that misreport their own contributions in the network.
They present their DropEdge algorithm and show that it’s possible to increase the efficiency of BitTorrent
clients using accounting. A negative result of their work is that an accounting mechanism cannot prevent
sybil attacks. Some short-comings of the approach is strategic manipulations of data and dissemination of
data.

3.1.3. Reputation systems
One of the reasons that decentralized accounting systems are hard to create is that agents in peer-to-peer
applications do not have a complete view of the network and thus also not all information of the network,
at least not without a global consensus mechanism. In the file-sharing example from the previous section
agents decide to upload to other agents based on some partial knowledge of the network and contributions
of agents. It can be argued that an accounting mechanism cannot be correct if it acts on partial information
and instead the particular balance of an agent as seen by another agent is rather a reputation. The goal is
then to create trust between users in order to facilitate cooperation. Such a system will be called a reputation
system.

Whether reputation systems can be called an application of accounting systems can be argued about. In
general accounting systems track transactions between accounts, the full history of transactions determines
the state of the network. According the framework of Mui et al. trust is the expectation of reciprocation for
an agent given that agent’s history of behavior. So a reputation system can act on the data of an accounting
system and add additional conclusions. The previous example of agents uploading and downloading helps
to understand this. An accounting system keeps track of the transactions and calculates the balance of an
agent, for example +10MB, for an agent that has uploaded 10MB more than downloaded. Also it is possible
to account the total uploaded and downloaded data, for example 1010MB and 1000MB respectively. A simple
accounting system stops at this point, the system behaves correctly when no error has been done in calcu-
lating the balances and the data is correct. A reputation system adds another layer of interpretation to this
data. The simplest reputation function only checks whether the balance is positive or not, or if the choice
is between multiple agents, whose balance is the most positive. Another reputation function might weight
agents with a 0 balance but 10GB of uploaded (and downloaded) data more trustworthy than an agent with
10MB positive balance but only 100MB uploaded data. Thus we can see a reputation system as a layer on top
of an accounting system.

Describe some reputation systems ...

3.2. TrustChain
TrustChain was built as a system to create trust between two strangers

3.2.1. Data structure
3.2.2. Accounting mechanism
Definition of trust and reputation

3.2.3. Subjective graph
3.2.4. Consensus

4
Base model

In the previous chapter we have discussed the need for a decentralized accounting system and shown that no
existing solution offers all the features needed for a globally scalable, secure system. Before we can describe
the solution developed in this work it is important to first describe the model on the basis of which we can de-
fine our accounting mechanism. This chapter will therefore formally define a general model and its concepts
in order to reason about them in the coming chapters.

4.1. Informal model definition
4.2. Formal model definition
The goal of our model is to record information of transactions between entities that are connected via some
digital network infrastructure like the internet. The system should be application agnostic, thus not special-
ized for a single application context and allow the enforcement of application dependent rules. Therefore for
the general model no assumptions can be made for the type of application but examples of different con-
texts will be given to show the applicability. The model presented in the following description is based on the
definitions by Seuken et al. with some extensions.

Definition 1 (Network state model.) A network state model M = 〈R, A,S〉 consists of two sets and three
functions.

• P , a finite set of agents

• I , a finite set of interactions

• a : I → P ×P , a function mapping each interaction to the agents involved in it.

• w : I ×P →R≤0, a function which describes the contribution of an agent in an interaction

• k : I ×P → {true, false}, a function which describes whether an agent is aware of an interaction or not

The network state model defines the ingredients for a describing the actual state of the network. Almost
any applications with transactions which can be described with a single numerical value and a single type of
actor can be fit into such a model. For example, on the bitcoin network all public keys would make up the set
R, the set of transactions I would contain the full blockchain, namely the transaction action. The function
a obviously maps the bitcoin transactions to the public keys, the function w would map the interactions to
the value of coins transferred. Finally, the function k is an extension of the original model defined by Seuken.
We claim that in order to fully describe the state of the network we need to know for each agents of what
transactions they are aware. In the Bitcoin network, or any network with global consensus mechanisms the
function k always maps to {true}.

From the above definition we can simply extract the state definition of each agent.

11

12 4. Base model

Definition 2 (Agent state.) The state of the agent p can be fully described by the tuple Sp = 〈Ip , ap , wp〉
where:

• Ip , the subset of interactions that agent p is aware of, so Ip = { i ∈ I | k(i , p) = true }

Definition 3 (Network state.)

Definition x (Network state observability.) Fully observable, partially observable (the complete state is the-
oretically observable but would require infinite work), not observable

Definition x (Network state validity.) The correctness of the state

Definition x (Application state validity.)

5
Attacks

5.1. Sybil attack
5.2. Block-withholding
5.3. Double-spend
5.4. Self-promoting
5.5. White-washing
5.6. Collusion attack

13

6
Information dissemination

The strength of a reputation system largely pivots on the availability of data. Reputation is built through a
history of interactions, but only those that know about the history can estimate the true nature of the agent.
Also, unfair actions can only be detected if the information about those actions is widespread. In centralized
reputation systems, this availability in guaranteed, as long as the central server with all data is available and
not manipulated. In decentralized systems this guarantee does not exist, availability of data depends on the
willingness of agents to share their private data.

Therefore our goal is to create a mechanism that gives agents an incentive to share their private data.
More specifically, this dissemination mechanism should make the sharing of private data strategyproof, that
is, sharing all private data should never be less advantageous than not sharing.

6.1. Pairwise auditing
agents group in pairs and assign a score(endorsement) to each other. The endorsement should increase with
more data shared between the two parties. There is a maximum endorsement which can be calculated when
all data is available. The score is used as another factor when determining the trustworthiness of an agent.

6.1.1. Definition
6.1.2. Incentive design
Endorsements without any endorsements, agents are seen as not trustworthy. Therefore agents need to ex-
change data with at least a few agents in order to become trustworthy. Endorsements should not be accepted
by default but rather only be accepted

Strategy-proofness

6.1.3. Endorsement

6.2. Accusation
6.2.1. Proof
6.2.2. Untrue accusations

15

7
Experiments and results

7.1. Setup
7.1.1. Dataset
7.1.2. Experiments

7.2. Valid usage
More data leads to higher score

More audits, leads to higher average trust

7.3. Sybil attack
Sybil vs true agent

Detectability of lying

7.4. Accusations

17

8
Discussion

8.0.1. Strategy proofness
8.0.2. Attack resistance
8.0.3. Future research

19

Bibliography

21

	Introduction
	Problem description
	Attacks
	Double-spend attack
	Sybil attack
	Blockwithholding attack
	Dishonest behaviour

	Research question
	Accounting system
	Scalability
	Decentralization
	Distribution
	Correctness
	Honest usage

	Limitations and assumptions

	Related work
	Applications of decentralized accounting systems
	Cryptocurrencies
	Distirubted work systems
	Reputation systems

	TrustChain
	Data structure
	Accounting mechanism
	Subjective graph
	Consensus

	Base model
	Informal model definition
	Formal model definition

	Attacks
	Sybil attack
	Block-withholding
	Double-spend
	Self-promoting
	White-washing
	Collusion attack

	Information dissemination
	Pairwise auditing
	Definition
	Incentive design
	Endorsement

	Accusation
	Proof
	Untrue accusations

	Experiments and results
	Setup
	Dataset
	Experiments

	Valid usage
	Sybil attack
	Accusations

	Discussion
	Strategy proofness
	Attack resistance
	Future research

	Bibliography

