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1
INTRODUCTION

In the field of distributed systems new uprising applications appear such as cryptocur-
rencies and multiplayer gaming where computers are required to work together fast and
without interruption. A distributed system is a system where computers work together
and coordinate with each other by passing messages to each other. In recent years new
advancements in the research on cryptocurrencies have shown new promising applica-
tions such as identity systems and online contracts. The applications make use of the
internet, a international network between computers. On top of the internet an over-
lay is build called a peer-to-peer (P2P) network that connects computers on the internet
together by introducing and connecting them to each other in a smart way. The comput-
ers in these P2P networks are called peers or nodes and there is no central element in the
P2P networks that connects computers to each other. Instead computers are introduced
to each other based on some pre-defined criteria. If the communication between the
nodes are efficient in the P2P network, all the applications that make use of the P2P net-
work called P2P applications can benefit from these efficiency’s. In this thesis work we
try to improve the efficiency between nodes in a P2P network to let all P2P applications
benefit by improving the response time of nodes between each other. The response time
between two nodes in a P2P network is called the latency between these two nodes.

1.1. THE IMPORTANCE OF LATENCY
Almost all systems have some requirements for latency, web applications, voice com-
munication applications and multiplayer gaming applications all have latency require-
ments. In recent years latency requirements have increased with new applications such
as trading in cryptocurrencies and systems that feature anonymous communication. We
will discuss the latency requirements for some of these applications in further detail to
show that a low latency between nodes in a P2P network can benefit these applications.
[1]
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LATENCY IN TRADING

A good example of an application where low latency communication is important is the
trading in cryptocurrencies. Low latency communication means communication with
a low response time. In the past 30 years, trading on the internet has become faster.
The time it takes to process a trade has gone from minutes to seconds to milliseconds.
"Low Latency" would be under 10 milliseconds and "Ultra-Low Latency" as under one
millisecond . It is estimated that 50% of trades in the U.S. are done in high frequency
trading with an "Ultra-low latency". Thus, low latency is a major differentiation factor for
exchange firms. Some firms state that a 1 millisecond advantage can save an exchange
firm 100 million U.S. dollars. [2] An individual trader has the following advantages when
trading in a system with low latency: [3]

1. Better decision making: A trader makes trading decisions based on the informa-
tion the trader has from the market. Other traders send the prices and quantities
they offer as orders to other traders. Let’s say these traders maintain these orders
in an order-book. If these orders arrive later, the individual trader is limited in it’s
trading decision making.

2. Competitive advantage towards other traders: When an individual trader can trade
relatively faster than another trader due to low latency it has a competitive advan-
tage. Let’s say a price differentiation takes place, a price suddenly becomes lower.
A trader with a relatively lower latency can act on it earlier than it’s competitors
and take advantage of the lower price before a price correction takes place.

3. Lower latency traders are served with a higher priority. Offering a lower price gives
a trader always a higher priority as other traders would buy a product with a lower
price faster. However, when the price is the same. The offer that arrives first is
served. A trader with a high latency needs to lower its price in order to get a higher
priority. If the high latency trader does not lower its price it is simply not served.
Also, offers at the same price level with a higher priority have less adverse selection.
[4] [5]

LATENCY IN ANONYMIZATION TECHNIQUES

Anonymization techniques require data to go through different nodes to make it hard
to link the sender and receiver of a message. In one of the early anonymization tech-
niques called mixes by Chaum developed in 1981 latency was a big problem. Messages
are batched at nodes and a new batch is send forward at a node when n message are
received giving a large delay between sending and receiving a single message. [6] In the
TOR anonymization technique a solution to the latency problem is provided by forward-
ing messages in real time between mixes at the cost of the quality of the privacy. With
TOR anonymization sender and receiver can be linked when all messages are sniffed in
the global passive attack. [7] Because anonymization requires multiple nodes to which
data travels a high latency between these nodes is unacceptable for a good working pro-
tocol. Figure 1.1 shows an overview of the anonymization in Tribler.
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Figure 1.1: Anonymization techniques used in Tribler. There are three layers of the TOR protocol that make
anonymous communication between peers.

LATENCY IN PARALLEL ALGORITHMS

In parallel algorithms one of the primary bottlenecks is the communication latency. The
primary reason for this is the large amount of communication between nodes required
in these algorithms. Only small amounts of computation work is done between commu-
nication events but the overall amount of communication is large. Parallel algorithms
are used in a wide range of applications in for instance data mining and knowledge dis-
covery. [8] [9]

1.2. LOW LATENCY OVERLAY
A new P2P overlay needs to be constructed to create an overlay in such a way that peers
connect to other peers such that the latency between these peers is low. Peers to which a
peer has a low latency with are called the low latency peers of that peer. The new overlay
is called the low-latency overlay. In most existing P2P overlays a peer discovery mech-
anism is set up where peers introduce peers to each other based on some pre-defined
set of rules. The introduced peers toward a peer are called the neighbours of that peer.
The introduction mechanism allows the system to remain decentralized, e.a. the system
is without a central authority that connects peers. In the new low latency overlay, peers
should introduce low latency peers to other peers. This mechanism is called low latency
introduction. A peer has to analyze and estimate what would be the low latency peers
for another peer in the P2P network to provide low latency introductions

The central idea in this thesis is to estimate latency’s between peers in a P2P network
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Figure 1.2: Location space of with peers representing dots in the space. The distance between peers estimates
the latency.

to make low latency introduction possible. There are already existing latency estimation
algorithms available that estimate latency’s between computers in a network based on
latency measurements. In 2002 Zhang et al. [10] proposed the GNP system for estimat-
ing latency’s on the internet based on real measured latency data. In the paper each peer
has it’s own coordinates in a space. The latency between peers can be estimated by tak-
ing the euclidean distance between coordinates in the space. To show this general idea,
Figure 1.2 shows a coordinate graph of the earth. Each dot represents a peer. The dis-
tance between two dots estimates the latency between these two peers. The challenge
is to determine the coordinates of the nodes in the space such that the latency’s are cor-
rectly estimated when calculating the euclidean distance between two coordinates in
the space. Determining the coordinates can be computationally expensive and need to
be done well in order to achieve a high level of accuracy in estimating latency’s. Since
2002 other latency estimation algorithms were proposed for computationally efficient
and accurate latency estimation on the internet resulting in more than fifteen years of
research. These algorithms are discussed in a later chapter.

1.3. RESEARCH QUESTIONS
In this thesis work we focus on creating a latency overlay that is computational efficient
and provides peers with low latency neighbours. The low latency overlay will be imple-
mented in a real world P2P network. The following research question is answered:

How to create a computational efficient low-latency overlay that decreases the latency
between connected peers in the P2P network?

To answer this question, a number of sub-questions are formulated:

1) Which methods to estimate latency’s on the internet have been introduced in the
past?
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2) How to create a scalable latency estimation algorithm that can be run in a real
world P2P network?

3) What is the computational performance and accuracy of the new low latency over-
lay?





2
RELATED WORK

In the past 15 years several methods have been proposed to estimate latency’s between
computers on the internet. These methods could be used in combination with current
P2P technology to create the low latency overlay. This chapter describes Tribler as a state
of the art P2P system that is used as a basis for the low latency overlay in section 2.1.
Section 2.2 and 2.3 describe the latency estimation algorithms developed so far and the
optimization functions that are used by the latency estimation algorithms. At last are
some previously designed overlay systems described. 2.4

2.1. TRIBLER
The current state of the art peer-to-peer systems include social phenomena such as
friendship and the existence of communities of users with similar tastes or interests. Tri-
bler is such a social-based P2P system and is an extension on BitTorrent. The social phe-
nomena are exploited in content discovery, content recommendation and downloading
to increase usability and performance. The Vision and Mission of Tribler is the following:

"Push the boundaries of self-organising systems, robust reputation systems and craft
collaborative systems with millions of active participants under continuous attack from
spammers and other adversarial entities."

Since its founding 10 to 15 scientists and engineers have been working on it full-time
and added various new features. As of December 2014 Tribler has a build-in version of
a Tor-like anonymity system. It gives superior protection than a VPN, but no protection
against resourceful spying agencies. A reputation system is also included that gives in-
centives for users to upload files instead of just downloading them from the network. A
screenshot of Tribler is given in figure 2.1.

DISPERSY OVERLAY

Tribler is built upon Dispersy, the current internet overlay in Tribler. It is designed to
send messages around in groups of peers in a decentralized P2P network. The groups of
peers in the network are grouped together in communities where each community has

7
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Figure 2.1: A screenshot of the Tribler application. [11]

its own purpose and design requirements. There are communities developed for P2P
file sharing, TOR anonymity tunnels and market exchanges. Dispersy not only enables
communities to exchange messages between peers in the network but also automati-
cally connects peers to other peers in the network. There is a peer discovery mechanism
that automatically introduces peers to other peers and makes connections to newly in-
troduced peers by puncturing their firewall.

2.2. OPTIMIZATION FUNCTIONS
Optimization functions are often part of the latency estimation algorithms and need to
be discussed first before latency estimation algorithms can be fully understood. In this
paragraph we discuss the Simplex Downhill algorithm and the L-BFGS-B optimization
algorithm as two important algorithms used in the overlay. The optimization functions
are algorithms that minimize an objective function in an efficient way.

SIMPLEX DOWNHILL ALGORITHM

The most used optimization function in the literature is the simplex downhill algorithm.
It is an applied numerical method used to find the minimum or maximum of an objec-
tive function with a multidimensional input space. It is applied to optimization prob-
lems for which derivatives of the objective function are not known. When optimizing an
objective function with a n dimensional input space it maintains a set of n+1 test points
where each test point reflects an input variable plus one extra test point. The algorithm
takes several steps in which it measures the behaviour of the objective function when
test points are changed and updates the test points in such a way that they give a better
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Figure 2.2: Part 1 and 2 of GNP algorithm. The left picture shows the first step of the GNP algorithm with
landmark computation. The right picture shows ordinary host computation with ordinary hosts positioning
themselves next to landmarks. [10]

solution for the objective function. When the objective function is converged towards a
minimum the algorithm quits. For each test point is in each step decided whether in-
creasing or decreasing the test point would give a better result for the objective function.
If increasing a test point gives a better result of the objective function the test point is
increased, if decreasing gives a better result the test point is decreased. Eventually the
objective function is minimized and changing the test points does not give better results.
When that happens the algorithm quits. [12]

L-BFGS-B
The Broyden-Fletcher-Goldfarb Algorithm (BFGS) is an optimization method that tries
to improve on simple optimization functions such as the simplex downhill algorithm
with various mathematical tricks. The basis of the algorithm is similar to other optimiza-
tion techniques in that it tries to optimize a set of test test points. Because derivatives
of the input space are not available the algorithm tries to estimate the inverse Hessian
matrix to make decisions on how to improve the test points for the objective function.
The L-BFGS algorithm is particularly suited for problems with large amount of input
variables. For instance more than 1000 variables. [13] [14]

2.3. LATENCY ESTIMATION ALGORITHMS
The latency estimation algorithms that are described in this section are coordinate-based
latency estimation algorithms. Each host is represented by a position with coordinates
in a space. The distance between the hosts in the space represents the two-directional
estimated latency between these two hosts. Once the coordinates of the hosts in the
space are determined the latency between two arbitrary hosts can be quickly estimated
by taking the euclidean distance between the two positions that represents the hosts in
the space.

GNP ALGORITHM

The first algorithm published is the GNP latency estimation algorithm published in 2002
and consists of two steps. In the first step a subset of landmarks L from all the hosts
H are chosen as landmarks for points of reference. The landmarks of step 1 enable fast
host position calculation in step 2 of the algorithm. Figure 2.2 shows the two steps of the
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GNP algorithm in a figure. There are normally around 20 landmarks. The coordinates
are found by minimizing the difference between the real measured latency’s between
the landmarks and the computed distances between the landmarks. The minimization
is done with the simplex downhill algorithm.

In the second step the coordinates of the ordinary hosts that are not landmarks are
determined. This is again done with a minimization of an objective function. The objec-
tive function is the sum of the differences between the measured and estimated latency
from an ordinary host to all landmarks. With the simplex downhill minimization algo-
rithm the objective function is minimized. Because the number of landmarks is low the
position of an ordinary host is determined with relatively low computation.

With a low number of landmarks the computation time is only linearly dependent on
the number of hosts H . However, with a large number of landmarks the algorithm be-
comes computationally expensive. There is a squared relationship between the amount
of computation in the first step and the number of landmarks. In the second step there is
only a linear relationship between the number of ordinary hosts and computation time.
It is likely that with more landmarks the algorithm becomes more accurate but takes
more time to compute. Therefore a trade-off between the number of landmarks and ac-
curacy has to be made. In most applications of the GNP algorithm the number of land-
marks is low and only around 20 landmarks and thus the computation time of the first
step can be marginalized. [10]

NPS ALGORITHM

The NPS latency estimation algorithm is shortly published after the GNP algorithm in
2004 and improves it by decentralizing it. In the NPS system, hosts can serve as reference
points to other hosts to define its base. This makes landmarks much less critical and
landmarks become less of a bottleneck to the system. The GNP algorithm calculates
node positioning with a centralized component. In GNP, if an ordinary host wants to
calculate its position, it has to probe all landmarks. This makes the landmark nodes and
their network access links a bottleneck to the system. If one landmark or the connection
towards a landmark fails, the system can hardly recover.

In NPS the minimization function of the GNP algorithm is expanded such that each
node computes its own coordinates. This makes the computation of landmarks linearly
at each node. The newly calculated position is shared with other nodes and after 1 sec-
ond of waiting the term is minimized again. The steps repeat until convergence is met
which is achieved if after 3 consecutive iterations a landmark position has not moved by
more than one millisecond in the euclidean space. The approach can embed 20 land-
marks starting from their origin positions in approximately one minute and the resulting
positions are just as accurate as the centralized approach. [15]

VIVALDI ALGORITHM

Vivaldi is also published shortly after the GNP algorithm in 2004 and it conceptually dif-
fers from GNP in that it places a spring between each pair of nodes with a a rest length
equal to the measured latency between the nodes. It is a variant to the GNP algorithm in
that it also tries to minimize an error function to find good coordinates for nodes. Every
pair of nodes exert a force on both nodes. The force of the first node has the direction
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Figure 2.3: The node placement chosen by Vivaldi for the King data set (a) in two dimensions, (b) in three
dimensions, (c) with height vectors projected on the x y plane, and (d) with height vectors rotated to show the
heights. [16]

towards the second node and vice verse. The strength of the node is equal to the dis-
placement of the spring from rest. The net force on a single node is the sum of all forces
from other nodes.

In the simple decentralized Vivaldi algorithm each node participating in Vivaldi sim-
ulates its own movements in the spring system. Each node maintains its own coordi-
nates, starting at the origin. When the algorithms starts, the node communicates with
its other nodes to obtain the coordinates of other nodes and measure the latency to other
nodes.

Each time the node communicates with another node, it moves it self in the direc-
tion of only that node’s spring for a short amount of time δ, reducing only the error to-
wards that particular node. Nodes continually communicate with other nodes so that
the positions eventually converge to a low error. Figure 2.3 shows an example of node
placements based on the King dataset.

Because the algorithm updates itself at every communication it has a bias to more
recent samples or nodes that contacted a lot. A countermeasure to this bias would be
to maintain a list of more recent samples and favor older samples and samples of nodes
that aren’t contacted frequently.

Choosing a right δ value is difficult. Large δ value inclines large steps are used in
each epoch of the algorithm, but the result is often oscillation and convergence does not
happen. Small δ values can lead to convergence but slow.

In order to obtain fast convergence and avoidance of oscillation Vivaldi varies δ de-
pending on how certain the node is about its coordinates. Large δ values will help the
node quickly go to a position with low error, while small δ values allows it to refine itself.
The change in δ setting in Vivaldi also takes into account the error of the opposing node.
When the error of the opposing node is high, the node should not get a lot of weight and
thus δ should be lower. With this approach, there is quick convergence, low oscillation
and nodes with high error have a lower weight. [16]
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Figure 2.4: The figure on the left shows the cumulative distribution of the distance between consoles. The
figure on the right shows the latency’s measured for each distance between two nodes in miles. Both figures
are from the experiments performed on the data from Xbox game consoles by Leet al al, 2008 [18]

PIC
The Practical Internet Coordinates for Distance Estimation (PIC) is another variant on
the GNP algorithm published in 2004 that provides a decentralized solution that scales
well and does not rely on centralized infrastructure nodes. Any node in the system can
act as a landmark if the coordinates are already calculated. PIC addresses the problem
that peers can choose to obstruct the system by for instance sending wrong information
or manipulating its own coordinates.

Each new entering node to the system determines the latency to a set of landmarks.
The entering node also obtains the coordinates of each landmark. The new node then
computes its coordinate by minimizing the error between the measured distances and
computed distances between the new entering node and the landmarks. The authors
of the paper experimented with several target error functions to minimize, the one that
performed the best was the sum of the squares of the relative errors.

In the PIC algorithm three different strategies have been tested to choose a subset
of landmarks out of all nodes. The PIC algorithm with different strategies were tested in
different environments with a variable amount of routers. The result tells us that choos-
ing some peers close and some peers randomly gives the best performance of the PIC
algorithm in a decentralized setting.

To make PIC more secure a triangle inequality test is introduced. For most of the
node triplets on the Internet, the triangle inequality holds. If an attacker lies about its
coordinates or its distance to a joining node the attacker is likely to violate triangle in-
equality. The security test may also be useful when dealing with congested network links.
When a link is temporarily congested, it will make the distance between the nodes in the
link large and create a triangle violation. Nodes that require links that have congestion
will thus be treated as an attacking node and ignored. [17]

LATENCY ESTIMATION WITH GEO-LOCATION

Lee et al tried to do latency estimation with geolocation data in a publication in 2008.
Geolocation data is location data from the earth that is mapped towards IP addresses.
The location data was retrieved from Xbox live game session information for Halo 3. The
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Figure 2.5: The correlation between the distance and latency. The latency data is the median of the data from
the Halo 3 players database. The distance data is from MaxMind’s IP-to-geo database. There is a clear linear
relation between the distance and the median. The slope of the line is 0.0269 ms/mile and the explained
variance is 97,6% (R2 = 0.976).

data set covers over 126 million latency measurements over 5.6 million IP addresses.
Using the commercial MaxMind GeoIP City database from June 2007, the authors were
able to provide the latitude and longitude for over 98% of these IP addresses.

It is hypothesized that the geographic distance between two consoles has a strong
correlation with their measured latency. The great-circle distance algorithm is used to
calculate the distances between two consoles at a different geolocation. The distance
between nodes varies between 0 and 12000 miles. Figure 2.4 shows a cumulative dis-
tribution function for the distance between nodes. About 14% of the console pairs tra-
versed over 5000 miles. We have enough samples to examine the correlation between
distance and delay.

In the right graph of figure 2.4 the relation between the distance and delay is shown.
We see a very strong correlation between the geographic distance and the minimum
latency measured between two consoles. Above this minimum there is a lot of noise.
The geography of IP addresses is a useful predictor for filtering out pairs of IP addresses
that are too far apart to have such a low latency. [18]

HTRAE LATENCY ESTIMATION SYSTEM

Htrae is a latency prediction method published by Microsoft in 2012 merging both net-
work coordinate systems (NCS) and earth geo-location approaches. It is one of the most
advanced latency estimation algorithms so far. The way this works is by geographic boot-
strapping, initializing NCS coordinates in such a way that they correspond to the loca-
tions of the nodes in actual space. With better initial positions, Internet latency’s can be
better predicted.

Figure 2.5 shows the correlation between the distance in miles and latency’s. The
median is taken at each distance and a linear relation can be seen from figure x. The
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least-squares fit line is also drawn in the figure. The explained variance percentage is
97,6% which is high, so there is a strong linear relation.

When a new machine enters the system the Htrae algorithm works as follows. At
first, the IP-address is looked up in the commercial MaxMind’s IP-to-geo database. This
gives an initial geo-location for the NCS. A Vivaldi-like algorithm is then used where a
node moves in the direction of the forces that pull on the new node by nearby coordi-
nates. The Vivaldi algorithm is adapted to use spherical coordinates instead of a linear
euclidean space to better model the spherical shape of the earth. An uncertainty model
is also added that is used to calculate how strong a force to apply when updating coordi-
nates: the greater a moving node’s uncertainty, the stronger a force will be. Uncertainty
is defined as the difference between the observed and calculated latency’s.

The Htrae system implements additional things to improve the algorithm such as
Triangle Inequality Violation (TIV) avoidance and autonomous systems correction. Tri-
angle Inequality Violations (TIVs) have an impact on the performance of neighbour se-
lection in P2P systems. A TIV exist if a node A is close to a node B and the node B is
close to node C , but node C is very far away from node A. These TIVs make it hard for
latency estimation algorithms to properly estimate latency’s because it makes it hard to
model peers as coordinates in a geometric space. TIVs exist because of routing policies
and the structure of the internet that are not going to change. Thus TIVs will remain in
the future. Various studies have reported Triangle Inequality Violations (TIV) in the in-
ternet delay space. For instance, when taking two peers in real-world data-sets as many
as 40% of these peer pairs have a shorter routing path trough an alternative peer instead
of the internet. Next to asymmetric routing is common where the upstream and down-
stream capacities of a link are not equal. [19] When updating a nodes coordinate, Htrae
will skip the coordinate update if the measured latency exceeds the predicted latency by
some number δ to remove TIVs. A big difference in the estimated latency and predicted
latency is usually caused by inefficient routing between two nodes. Inefficient routing
causes a large delay between two nodes compared to the sum of delays via a more effi-
cient route. [20]

2.4. INTERNET OVERLAYS
In this section we describe two internet overlays as examples of systems that are build
on top of the internet and try to improve themselves with low latency’s. The literature
provides theoretically concepts but publications with implemented applications are lim-
ited.

DHASH++
DHash++ is a distributed hash table (DHT) overlay that provides low-latency network
storage. A DHT is a hash table in a distributed environment which makes the hash ta-
ble very scalable because multiple distributed nodes work together. DHash++ uses the
chord lookup algorithm to help it find data and is optimized for low latency. In order to
make the requester contact low latency nodes DHash++ uses the Vivaldi latency estima-
tion algorithm. Vivaldi is a similar algorithm to the GNP algorithm and uses coordinates
to estimate latency’s. However Vivaldi is a distributed algorithm where GNP can only be
used locally. Whenever DHash++ nodes communicate with each other they exchange
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coordinates. By this way a requesting node can predict the latency toward other nodes
without having to communicate with them first. [21]

BINNING: TOPOLOGY AWARE OVERLAY CONSTRUCTION

Binning uses topological information about the relationship in nodes to make better
routing policies and reduce latency in overlay networks. Nodes are grouped together
in bins. The latency is reduced by putting nodes that are relatively close to each other
in the same bin. The binning strategy is simple, scalable and completely distributed.
However, the scheme requires a set of well-known landmark machines spread across the
internet. An application node connects to these landmarks and measures its latency and
selects a bin based on its measurements. The latency’s measured are divided into mul-
tiple levels that order the latency measurements. The ordering of the different levels to
each landmark determines the bin of the node. The method described reduces the la-
tency and performance in network overlay construction but results not in a completely
decentralized system because landmarks are being used. [22]





3
PROBLEM DESCRIPTION

The main problem that is faced when creating the low-latency overlay in a real world P2P
network is to make efficient latency estimation algorithms. Each peer in the low-latency
overlay should be able to estimate the latency’s between other peers such that the peers
in the overlay can give introductions with low latency peers toward each other. Next to
that, the low latency overlay should not be able to be taken down easily and be able to
function if though some nodes might go down. At last, the low latency overlay should be
resilient against certain attacks like the eclipse attack and Sybil attack.

3.1. PERFORMANCE OF LATENCY ESTIMATION ALGORITHMS
The first requirement of the low latency overlay is that with a large number of peers N in
the P2P network the latency estimation algorithms should still be computationally and
memory efficient. If the algorithm computation takes too long, the computation can
block a node in the P2P network. The node is then waiting for the algorithm computation
to finish and does not respond on communication. When this happens, the latency of
a random peer toward the blocking node increases and this cannot happen in the low
latency overlay. Thus computational efficiency becomes a very important requirement
for the system.

The algorithms should next to computationally efficient also be memory efficient
and efficient in bandwidth usage. As peers collect latency’s that are measured by other
peers the number of latency’s stored in memory and send over the internet can become
large. If all peers maintain all the latency information they ever received and share all
their latency information to other peers the memory usage is N 2 where N is the number
of peers in the network. The algorithms developed so far require that such amounts of
latency information is stored. For instance, the GNP algorithm requires N 2 of measured
latency’s for a network with N peers.

The algorithm in the overlay should be able to deal with these large amount of mea-
sured latency’s because in normal P2P networks the number of peers in the network can
become millions. A choice has to be made in the algorithm about what latency’s to send
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to other peers to lower bandwidth consumption and what latency’s to store in a peers
memory to lower memory usage. The drop in latency information implies an informa-
tion loss that could decrease the performance of the latency estimation algorithms. In
the next chapters we will further evaluate the design choice and we will evaluate the ef-
fect of the information loss in the experimental section.

3.2. PEER DISCOVERY
A second requirement is that peers should be able to communicate with each other even
though some peers are behind a NAT box. In the next paragraph is explained what a NAT
box is. The communication is enabled in a peer discovery mechanism where peers are
introduced to each other. It is impossible for the peer discovery mechanism to have a
central authority as this will imply a central point that can be taken down and therefore
let the whole system collapse. With a central authority in the overlay the system will
become harder to maintain, could easily become the bottleneck of the performance of
the system and would give some extra security threats. The code of the central authority
would become different from the other peers and would require separate updating and
monitoring which would increase the cost of maintenance of the entire system signifi-
cantly. With no central authority the overlay can only be shut down if the entire internet
is shutdown.

Figure 3.1: Network Address Translation (NAT). The NAT box has two IP, port combinations. (i p4, por t4 is
available on the local network and i p5, por t5 is available on the internet.

NAT BOXES

Many computers lack a direct internet connection and are forced to take the initiative
in communication. Computers on the internet are 64% of times connected to a NAT
box in a local network that connects the computers in the local network to the inter-
net. Figure 3.1 gives an overview of such a local network with a NAT box. A peer in a
local network cannot be directly messaged by peers on the internet because the NAT box
blocks incoming communication. Network Address Translation (NAT) is designed for
the client-server model and not for a P2P network. 64% of the computers connected to
the internet do Network Address Translation (NAT) to hide the IP and port combination
of computers from a local network to the internet. [23] In figure 3.1 are the IP addresses
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and ports of the local peers 1,2 and 3 hidden from the peer on the internet with the NAT
box. The NAT box has two IP addresses. One is available for the local network and one
for the internet. The peer on the internet only communicates with the NAT box with the
address available for the internet and the NAT box translates the IP, port combination
to an IP, port combination of a peer from the local network. The peer on the internet
cannot distinguish between the three local peers if it wants to address one of the local
peers and send messages to it. Therefore the peers in the local network always have to
act as clients and initiate the connection. The NAT box identifies and remembers the
peer that initiated the connection and makes the translation for the peer on the internet
when a response is given to the NAT box. The peer on the internet can never initiate a
connection and is forced in the server-role. [24] [25]

3.3. SECURITY REQUIREMENTS
SYBIL ATTACK

In the Sybil attack an adversary creates multiple pseudonym peers in the P2P network
that flood or spam the network with false information. It is hard to solve the sybil at-
tack in a decentralized P2P network because there is no central authority that can verify
the identity of peers and distinguish between pseudonym peers and non-pseudonym
peers. An adversary is able to take peers down with Distributed Denial of Service [DDoS]
attacks by pseudonym peers. For instance, if an adversary wants to take down a tar-
get peer it could send a lot of peer introduction requests to a target peer with multiple
pseudonyms. The target peer would be unable to respond to all introduction requests
send by the pseudonyms and will be completely occupied with handling the requests
from the pseudonyms. When this happens the target peer is taken down because it is
unable to respond to messages received from normal non-pseudonym peers and is also
unable to send messages toward other non-pseudonym peers. is able to subvert features
of the P2P network such as a reputation system that maintains a reputation of peers. [26]

With multiple pseudonym peers an adversary could also manipulate certain features
of a P2P application like for instance the reputation system of P2P networks. By letting
pseudonyms collude with each other, the pseudonyms could gain a false high reputa-
tion. In a lot of P2P applications reputation systems are important to let the application
function well. For instance, P2P file sharing applications make use of reputation sys-
tems to incentivize peers to not only use the P2P application but also contribute to the
P2P network by sharing files with other peers. In P2P file sharing applications the repu-
tation of a peer is often defined as the amount of data shared with other peers. Another
example is the TrustChain online currency that also uses a reputation system to incen-
tivize contribution to the application. If the reputation of a peer is low the peer will be
denied service. [27] [28]

ECLIPSE ATTACK

Eclipse attacks have large implications on P2P networks. In the eclipse attack an attacker
can gain partly or complete control over the data that is received by a victim node. This
is achieved by manipulating the candidate lists of the victim and its neighbours. When
selecting a node it is important to take into consideration that attacker nodes might be-
come part of the candidate list. If the colluding attackers control a large part of the neigh-
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bourhood of a victim node they can "eclipse" victims by dropping or rerouting messages
that attempt to reach them. In the case of complete control over the neighbours of a vic-
tim peer (all neighbours are colluding attackers) the attackers gain full control over all
the traffic toward the victim. [29]

The eclipse attack is a very powerful and generic attack. We will provide several ex-
amples in the world of cryptocurrencies where eclipse attacks are used and have direct
financial consequences. In most cryptocurrency systems a decentralized blockchain is
used where transactions of the cryptocurrency are stored. Eclipse attacks are a powerful
building block for the following attacks on cryptocurrencies.

1) Engineering block races A block race occurs in a block-chain when two miners
discover blocks at the same time. One of these miners receives mining rewards for that
block and his block will become part of the block-chain while the other miner will be
ignored and create an "orphan" block. Attackers can forge block races by holding back
mined blocks that are mined by eclipsed miners. Once a non-eclipsed miner discovers
a competing block the block mined by the eclipse miner is released later resulting in an
orphan block for the eclipsed miner.

2) Splitting mining power By eclipsing a large part of the miners from the rest of the
network, the 51 % mining attack becomes easier. The attacker gains control over 51 % of
the mining power in the network which allows to create a separate block-chain (Further
details). To make the reduction in mining power from eclipsed miners less detectable,
miners could be eclipsed gradually or intermittently. Figure 3.2 shows a network where
eclipsed nodes split the network in two. This split could be used to launch the 51 %
attack.

Figure 3.2: Separating a network with the Eclipse attack

3) Selfish mining The attacker can decide to eclipse certain miners to make sure that
other miners that are controlled by the attacker get more mining power. This is realized
by blocking all discovered blocks by eclipsed miners. Later in time the attacker increases
the mining power its own miners by only giving a limited view on the block-chain to
eclipsed miners obstructing the mining of eclipsed miners even more. The fraction of
nodes used to eclipse other miners is denoted as a and the fraction of nodes that is used
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for honest mining is denoted as b. When more miners are eclipsed a is increased and b
is decreased. However, with high a mining becomes easier for the fraction b of honest
miners left.

4) 0-confirmation double spend In a 0-confirmation transaction the attacker exploit
systems where a merchant gives a confirmation of the transaction to a customer before
the transaction is verified by the block-chain. This happens sometimes in systems where
it is inappropriate to wait 5-10 minutes before a transaction in a block gets confirmed.
For instance in the retail service system BitPay or in gambling sites like Betcoin. The
coins spend by the customer to the merchant is double spend by the attacker. The at-
tacker first eclipses the merchant. When the merchant wants to confirm transaction T as
payment for the goods of the customer, the attacker double spends the bit-coins in the
network with transaction T ′ but sends an confirmation of T to the merchant. Because
the merchant is eclipsed he can never tell the network about T . When the attacker is
the customer he can rewire the money back to himself with T ′ and thus not pay for the
goods. This attack has happened in a real world situation.

5) N-confirmation double spend In a system with an N-confirmation transaction the
attacker can also double spend coins from a merchant with an N-confirmation double-
spending attack. In an N-confirmation transaction the merchant only releases goods
after the transaction is confirmed in a block of depth N - 1 in the block-chain. The attack
requires that not only the merchant is eclipsed, but also a certain fraction of miners.
The attacker receives a transaction T from the eclipsed merchant and send T only to
the eclipsed miners. The eclipsed miners incorporate T into their view of the block-
chain V ′. The confirmation of T from the eclipsed miners is send to the merchant who
releases the goods to the attacker. After this has happened, the block-chain view V of
the non-eclipsed miners is send toward the merchant and the eclipsed miners. Next, the
block-chain view V ′ containing T is orphaned, and the attacker acquired goods without
paying. [30]





4
OVERLAY DESIGN

In this chapter we will focus on how the low latency overlay is designed. First the la-
tency estimation algorithms are described that estimate latency’s between peers to en-
able good introductions. A good introduction is a introduction of a peer with a low la-
tency toward the peer receiving the introduction. Incremental algorithms are used to
make the latency estimation algorithms computationally and memory efficient. In the
first section a description of incremental algorithms and the latency estimation algo-
rithms is given. In the second section is described how the low latency overlay is de-
signed into Tribler. The low latency overlay measures and obtains latency information
from peers and saves this information memory efficient. The measured latency infor-
mation is used by the latency estimation algorithms to give good introductions. At last is
discussed how the introductions are given in the low latency overlay.

4.1. LATENCY ESTIMATION ALGORITHMS
We focus on online incremental algorithms to predict the latency’s to get a computation-
ally and memory efficient solution. A schematic view of an online incremental algorithm
is given in figure 4.1. An online incremental algorithm does not require the total input
of all the measured latency’s at once but instead the input is given over time. At each
new time point when new input is given to the algorithm a new intermediate solution is
immediately calculated. The new information updates the solution in such a way that
when new information is fed to the algorithm the algorithm will eventually converge to
a final solution. Calculating a new solution when new information added is called a step
in the incremental algorithm and should not require much computational power. [31]
[32]

The 5 latency estimation algorithms are explained in the following paragraphs. Each
algorithm is given a unique name to distinguish it later in the experiment Chapter. Us-
ing incremental algorithms gives a computational benefit, but chopping the computa-
tion into pieces could give a worse accuracy of the latency estimation algorithms. The
incremental algorithm chops the problem into pieces that are easy to compute and do
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Figure 4.1: Overview of an online incremental algorithm. At each step a new input event e is added to the
algorithm. A small computation with O(a) complexity is used to calculate a new solution s. The new solution
is used in the next step of the algorithm.

not block the processor of a peer. This is very important because if a peer blocks due to
large computations, Tribler will wait for the processor to finish its computation. When
waiting Tribler cannot respond to or send messages and thus will the latency between
peers increase. Incremental algorithms give an accuracy cost because there is incom-
plete information because future latency measurements cannot be taken into account
in a normal step. To mitigate the accuracy cost of this information loss the relation be-
tween past added and newly added information has to be analyzed. The latency estima-
tion algorithm could look back at information added in a past step at a normal step to
increase accuracy. To what extent computation time should be spend by the algorithms
at looking to information that was added in the past to increase the accuracy is explored
in the experimental chapter. The incremental algorithms that look back in the past are
called RepeatStructured and RepeatTIV.

NAIVE ALGORITHM

The first algorithm is a naive coordinate-based algorithm where an error function is min-
imized that is equal to the difference between the estimated latency’s based on coordi-
nates in a geometric space and real measured latency’s. It assumes that there are N hosts
in the system and it further assumes that hosts H are coordinates in a 2 dimensional ge-
ometric space S. Every host Hn ∈ H has its own coordinate C S

n in S. Because S is geomet-
ric the distance function between two host coordinates d(C S

1 ,C S
2 ) is easily calculated by

taking the euclidean distance between the two hosts H1, H2. The error function requires
that latency’s are measured and collected by hosts. The resulting crawled latency’s give
the measured distance between two hosts. The function md(H1, H2) is equal to the mea-
sured latency between hosts H1 ∈ H and H2 ∈ H .

The following minimization function is calculated to compute the coordinates of
nodes:
fob j (C S

1 , ...,C S
N ) = ∑

Ci ,C j ∈{C1,...,CN },Hi ,H j ∈{H1,...,HN }|i> j
= ε(d(C S

1 ,C S
2 ),md(H1, H2)

where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2
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The minimization function used is BFGS. This algorithms allows to minimize to the
error function with less minimization steps while remaining a good performance of min-
imization. The reason this algorithm is chosen is explained in the experimental section.
BFGS can vary in the number of function calls it requires. With more function calls the
BFGS might have a better minimization performance, but the computation becomes
more expensive. The complexity of BFGS is O(m ∗ er r or ) where m is the number of
error function calls and er r or is the complexity of the error function.

The complexity of the error function is O(N 2). Because the number of error function
calls is negligible the total complexity of the algorithm is O(N 2). Tribler is not able to dis-
tinguish between landmark and non-landmark nodes as in the GNP algorithm. There-
fore, no computational efficiency’s based on central components such as in the GNP al-
gorithm can be applied. Because every pair of coordinates and their representing Hosts
are added in the sum function the complexity of one sum function is O(N 2). There is
a squared relationship between the number of peers N and the efficiency of the algo-
rithm. With large N the algorithm can become too computationally expensive. In large
P2P networks, N can easily become around 100000 nodes. In the experimental section
we explore how fast with increasing N the naive algorithm becomes computationally too
expensive.

SIMPLE INCREMENTAL ALGORITHM

The simple incremental algorithm only updates the coordinates of new entered peers
Pnew to the neighbourhood. In the experimental section we call this algorithm "Inc". It
is similar to the Naive Algorithm in that there is also a 2 dimensional geometric space S
where every host Hn ∈ H has its own coordinate C S

n ∈C . In the text hosts are sometimes
called peers, they have the same meaning. The distance functions are also md(Hz , Hb)
for the measured latency between two hosts a and b and d(C S

a ,C S
n ) for the euclidean dis-

tance between the two coordinates representing hosts a and b. In all other incremental
algorithms described in this section these assumptions apply. The way the coordinates
are calculated is however different in each algorithm.

In the simple incremental algorithm "Inc", only the coordinates C S
a of each peer in

Pnew is updated by minimizing its error function. Peers measure the latency’s toward
their neighbours and remember the latency’s measured toward past neighbours. A sub-
set L from the crawled latency’s is taken that are all the latency’s between peer a and the
neighbours and past neighbours of a. For each latency l ∈ L there are two peers p1 and
p2 which are the peers where the latency l is measured between. The collection of all
these peers minus peer a we call Psub with coordinates Csub . Because the latency’s in L
are all the latency’s measured between peer a and its neighbours and past neighbours,
Csub are therefore all the coordinates of neighbours and past neighbours of peer a. For
each of the peers pn ∈ Psub the coordinate C S

n ∈ Csub is retrieved or created. Whenever
there is a new unknown peer pn ∈ Psub which has not yet have coordinates in Csub its
initial coordinates C S

n ∈C are created randomly by taking two draws from a uniform dis-
tribution function from 0 to 1. All coordinates that are created in the past by the peer
who executes the algorithm are called C . After that the coordinate C S

a ∈ C of the new
entering peer a is calculated by minimizing the following function:

Incob j (C S
a ) = ∑

C S
i ∈Csub

ε(d(C S
a ,C S

i ),md(Ha , Hi ))
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where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2

The minimization is done with the BFGS algorithm like as in the naive algorithm. The
complexity of one minimization function call is O(|L|) where |L| is the size of the num-
ber of latency’s measured by one peer. |L| becomes larger as time progresses as peers
have had more neighbours and thus more latency’s measured towards neighbours. The
minimization function is called for each peer in Pnew for one step of the "Inc" algorithm.
However, the size of Pnew is negligible so the total complexity of one step in the "Inc"
algorithm is O(|L|).

INCREMENTAL ALGORITHM WITH R RANDOM REPEAT

The Incremental algorithm with R random repeat extends the "Inc" algorithm by also
updating the coordinates of other peers than the new entering peers Pnew . We call this
algorithm in other section "RandomRepeat". In each step after the "Inc" algorithm is
run, R random coordinates (C S

1 ,C S
2 ,C j ...S ,C S

R ) ∈C . are updated with a similar minimiza-
tion function as the minimization C S

a in the "Inc" algorithm. All coordinates that are
created in the past by the peer who executes the algorithm are called C . The minimiza-
tion function that is called for each of the R randomly chosen coordinates is equal to the
minimization function of "Inc". The "RandomRepeat" extension is:

for each C S
j ∈ (C S

1 ,C S
2 ,C j ...S ,C S

R ) do

Incob j (C S
j ) = ∑

C S
i ∈C S

jsub

ε(d(C S
j ,C S

i ),md(H j , Hi ))

where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2

The subset of coordinates C S
jsub

is calculated in the same way as in the "Inc" algorithm

by taking a subset of latency’s L j from the crawled latency’s. L j is equal to all the latency’s
between peer H j ∈ H and the neighbours and past neighbours of peer H j ∈ H .

The total number of times the minimization function is called is R + 1 times. The
function is called R times extra for the extension and once called for the "Inc" algorithm.
The complexity of the algorithm is thus O((R+1)∗|L|). In the experimental section we will
test with various numbers of R to see its impact on the computation time and accuracy.
It will be most likely that a larger R will increase the accuracy but lower the computation
time. A good design choice for R will depend on the results of these experiments.

INCREMENTAL ALGORITHM WITH R FIXED REPEAT

With a random repeat of node updates some nodes are updated more frequently than
others. A structured repeat of coordinate updates of other nodes is implemented to fur-
ther improve the accuracy of the R random repeat algorithm. We call this algorithm
"RepeatStructured" or "Repeat" later in this document. The structured repeat ensures
that all coordinates C are updated once before the same node is updated again. In this
way no nodes are left behind in updating and no nodes are updated more frequently
than other nodes. The "Repeat" algorithm is implemented by numbering each coordi-
nate of C . When C increases the new coordinates are given a new number incrementally.
So the first coordinate that was put in C is given the number 1, the second the number
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2 and so on. Each time the "Repeat" algorithm is executed, a new subset of R nodes of
C is selected for updating. Thus the first time the coordinates with a number smaller
than R are selected from C , the second time the coordinates with a number between R
and 2R are selected etc. If after n times nR > |C |, the selection starts again from the be-
ginning at the low numbers of C . The complexity of this algorithm is the same as the R
random repeat version because again the coordinates of R nodes are updated with the
same minimization function. Thus the complexity is O((R +1)∗|L|).

INCREMENTAL ALGORITHM WITH R FIXED REPEAT AND TRIANGLE INEQUALITY VIOLATION

PREVENTION

The Incremental Algorithm with R fixed repeat and Triangle Inequality Violation (TIV)
Prevention is an extension on the "RepeatStructured" algorithm. In further sections we
call this algorithm "RepeatTIV" or "TIV". The problem of Triangle Inequality Violations
is solved by ignoring peers who are estimated to contribute to a TIV. Ignoring means that
the coordinates and latency’s towards these peers are ignored in the minimization func-
tions of both the "Inc" part of the algorithm and the "Repeat" part of the algorithm. To
estimate what latency’s contributed to TIV’s the "prediction error" is calculated for every
latency that is measured in the past by the peer executing the algorithm. The prediction
error is equal to the euclidean distance between the coordinates of the peer pair in the
latency divided by the latency. So for every latency l ∈ L and peer pair H1, H2 of l the
following prediction error is calculated:

pr edi ct i on_er r or = d(C S
1 ,C S

2 )
md(H1,H2)

The three latency’s with the largest prediction error are ignored and not used in min-
imization calculations. The sorting of the latency’s according to prediction error has as
complexity O(Llog (L)). The total complexity of the algorithm becomes O(L2 ∗ l og (L)∗
R).

4.2. IMPLEMENTATION INTO TRIBLER
In this section is described how the low latency overlay is implemented into Tribler. First
is described how the peer discovery mechanism work. Next is described how the low
latency overlay obtains latency information. At last is described how the low latency
overlay introduces peers to other peers. An overview of the settings of the overlay can
be viewed at the end of the section in table 4.1. The goal of the low latency overlay is
to give low latency peer introductions to other peers. A low latency peer introduction
is an introduction of a peer A to another peer B such that the latency between peer A
and peer B is low. In order to achieve this the latency between peer A and peer B has
to be estimated with one of the latency estimation algorithms described in the previous
paragraph. The latency estimation algorithm requires measured latency’s between peers
that are obtained by the overlay. The low latency overlay is build on top of dispersy and
Tribler. The overlay consists of 1200 lines of code and can be downloaded open source
from Github from https://github.com/basvijzendoorn/tribler/. Two test suits are writ-
ten to test the code development, one for unit-tests and one for integration tests. The
unit-tests have a test coverage of 68% and the integration tests have a test coverage of
70%.
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PEER DISCOVERY AND NAT PUNCTURING

To explain what changes to the peer discovery are made to implement the low latency
overlay the design of the current peer discovery mechanism of dispersy is first explained.
In the current implementation of the peer discovery mechanism a peer introduction re-
quest and response mechanism is build. This mechanism requests another peer for an
introduction and the other peer gives a response. The result is a list of peers that each
peer maintains called the candidate list or neighbourhood of a peer. The peers in the
candidate list are called the neighbours of a peer. A peer can always exchange data be-
tween two peers in the candidate list. The communication between two peers in the
candidate list are always symmetrical. This means both peer A and peer B can send
messages toward and receive messages from each other. If peer A has peer B in its can-
didate list then peer B also has peer A in its candidate list. The symmetrical property
implies that both peers A and B assume the role of client and server in the P2P network
and therefore the NAT firewall of one of the peers has to be punctured. This happens
also in the peer discovery mechanism.

There are four phases in the current peer discovery mechanism. These four phases
represent one step in a walk toward peers. A new step is taken in an interval every
TAKE_STEP_INTERVAL seconds. Multiple steps are called a walk toward peers and by
walking toward new peers each peer discovers a set of peers called its neighbourhood.
In the dispersy mechanism the TAKE_STEP_INTERVAL is chosen to be 5 seconds by de-
fault. The four phases are also shown in an overview in figure 4.2.

1. peer A chooses a peer B from its neighbourhood and it sends to peer B an introduction-
request;
2. peer B chooses a peer C from its neighbourhood to introduce to peer A and sends peer
A an introduction-response containing the address of peer C; peer A will add the address
of node C to its neighbourhood.
3. peer B sends to peer C a puncture-request containing the address of peer A;
4. peer C sends peer A a puncture message to puncture a hole in its own NAT.

Figure 4.2: Overview of peer discovery in Tribler

The NAT puncturing mechanism is integrated in the peer discovery mechanism and
works by sending puncture messages to other peers to puncture a hole in the NAT of the
sender. In the third step of a peer discovery step peer B asks peer C to puncture a hole in
its NAT for peer A. Peer C does this by sending a message toward peer A and therefore
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opening a port in its own firewall such that peer A can send a response. The two-way
communication is complete if peer C sends another message to peer A to puncture a
hole in the NAT of peer C to enable peer A to send messages to peer C . Because both
peer C and peer A send messages that punctured their NAT firewall the peers can com-
municate with each other without having to worry about the NAT firewalls.

NODE SELECTION

To prevent against eclipse attacks a node selection policy is implemented by dispersy
to choose a node to send an introduction request to. The candidate list is divided into
4 categories and Nodes are selected with pre-defined rules from these categories. The
categories are:

I) Trusted nodes
II) Nodes we have successfully contacted in the past
III) Nodes who have contacted us in the past, either through.

a) Nodes that have sent an introduction-request; or
b) Nodes that have been introduced by another node.

Nodes are divided into the 4 categories according to the phases of the peer discovery
mechanism. A node who responded to an introduction request is put in category II. The
introduced node that was included in the introduction response is put in category IIIb.
Whenever a node receives an introduction request the sender of the introduction request
is put in category IIIa. The trusted nodes category consists of a special list of pre-defined
nodes.

When selecting a node to send an introduction request to in a step, a choice is made
from the 4 categories with pre-defined probabilities. The trusted node category I is cho-
sen with a probability of 1%, category II is chosen 49.5% of times and category IIIa and
IIIb are both chosen 24.75% of times. After a category is chosen, the node with the most
recent interactions is selected from the selected category. Because some firewalls close
inactive connections after a certain timeout the node with the most recent interactions
is chosen. A closed connection is useless as then both nodes cannot communicate with
each other anymore. [24] [25]

To ensure communication between nodes in the neighbourhood nodes are removed
from the neighbourhood if the probability of a closed punctured hole is high. Punctured
holes for peers in the NAT box can be closed after around 60 seconds due to NAT time-
outs. Most NAT boxes close punctured holes after communication does not occur any-
more through the punctured hole. In practice this means that peers in category II and
IIIa are removed from the neighbourhood after 55 seconds and introduced nodes from
category IIIb are removed after 25 seconds. In the low latency overlay low latency peers
could be removed from the neighbourhood due to NAT timeouts and countermeasures
should be taken to keep the lowest latency peers in the neighbourhood.

Dividing the nodes into the categories as described above has a dampening effect
on an eclipse attack. If the attacker tries to perform an eclipse attack by introducing
adversary nodes to a target node, the adversary nodes are only added to category III and
not to category II. Because category II has a 49,5% selection probability when selecting
a node for a step the adversary nodes will not always be selected. The node selection
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policy only mitigates an eclipse attack, it is still possible to do an eclipse attack with a lot
of resources. To give extra protection the trusted node group is added. Whenever a node
selects the trusted node group with a probability of 1% the candidate list is completely
reset and all adversary nodes in the candidate list are automatically removed.

4.2.1. OBTAINING LATENCY INFORMATION

In this section are the mechanisms explained to measure and obtain latency information
between peers. There are two mechanisms in the low latency overlay to obtain latency
information: the ping-pong mechanism and the crawling mechanism. The ping-pong
mechanism has a double purpose. The first and most important purpose is to measure
the latency’s toward peers in the neighbourhood. The second purpose is to share previ-
ously measured latency’s with other peers at the same time when latency’s are measured.
The crawling mechanism is an extra feature added to the overlay to quickly share latency
information between peers. In contrast to the ping-pong mechanism is the crawling
mechanism bandwidth inefficient. Therefore is the crawling mechanism not enabled by
default in the low latency overlay.

To make the low latency overlay more memory and computationally efficient, only
the latency’s from one peer toward the top R closest peers are stored and remembered at
every peer. Only latency’s between peers that have a low latency toward each other are
important and only these latency’s are remembered. The top R closest peers are updated
when new latency’s are obtained. They are the R peers that have the lowest latency to the
peer receiving the latency’s estimated by the latency estimation algorithm. The value of
R can be set in the REMEMBER LATENCIES setting variable.

PING-PONG MECHANISM

The ping-pong mechanism has two purposes. At first , the latency between peers is mea-
sured. Secondly, previously measured latency’s maintained by the Tribler instance are
shared to other peers. The ping-pong mechanism is started every PING TIME INTER-
VAL seconds by every peer in the P2P network. By default the value of the PING TIME
INTERVAL is set to 2 seconds to frequently update the latency information of peers but
to let the ping-pong mechanism do not consume too much bandwidth. It is important
to frequently update the latency information between a peer and its neighbours for two
reasons. At first, the latency to newly entered peers in the neighbourhood should quickly
be measured to use this information in the incremental latency estimation algorithm.
Secondly, the latency between peers can change over time. Nonetheless, the latency in-
formation cannot be updated too frequently because this will increase the bandwidth
cost and processing time of the low latency overlay too much.

When the ping mechanism is activated every peer sends all peers in its candidate list
a ping message. The peers who receive the ping message return a pong message. The
time when the ping message was send is stored by the peer to compare later with the
return time of the pong response message. Upon arrival of the pong message the dif-
ference between the send and return time is calculated to obtain the latency toward the
neighbour. The payload format of the ping message is shown in figure 4.3. The ping
message contains the IP and port of the peer sending the ping message, the time and
10 previously measured latency’s. The low latency overlay always sends a new batch of
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10 previously measured latency’s toward the other peer that have not been send before.
This means that with a ping time interval of 2 seconds, 50 measured latency’s are send to-
ward the other peer in 10 seconds with 5 ping messages. When all measured latency’s are
already send toward the peer the ping-pong mechanism will repetitively send measured
latency’s who were already send before. Thus, the ping-pong mechanism will first send
the first 10 measured latency’s, then the second 10 messages etc. When all measured la-
tency’s are send the ping-pong mechanism will start again from the beginning and send
the first 10 measured latency’s, followed by the second 10 measured latency’s etc. The
10 measured latency’s are always latency’s from the peer who activates the ping-pong
mechanism toward another peer, not latency’s between two arbitrary peers.

The ping-pong mechanism can also share latency’s between two arbitrary peers in
the P2P network that were previously obtained with an extra setting. These latency’s are
added to the 10 previously measured latency’s by the peer who activates the ping-pong
mechanism. By this way the peer who receives the ping message receives latency’s be-
tween various different peers and not only latency’s between one peer and another. Tri-
bler maintains a list of latency’s previously obtained between arbitrary peers in the P2P
network. From these arbitrary peers shar e_p peers are randomly chosen and shar e_l
latency’s are randomly chosen to send for each chosen peer. Thus in total shar e_p
times shar e_l additional latency’s are send with the ping-pong mechanism. By de-
fault shar e_p is equal to 2 peers and shar e_l is equal to 10 latency’s. By this way not
too much latency’s are send to save bandwidth but a significant amount of latency’s is
still send over long periods when the ping-pong mechanism is activated multiple times.
These variables can be set to different values to share more or less latency’s in the ping
message.

Figure 4.3: Ping payload.

After receiving a ping message a pong response is given to the IP and port combi-
nation received from the ping message payload. The pong payload contains the IP and
port of the peer that received the ping message and is given a response and contains the
same time as received in the ping message. Figure 4.4 shows the payload format of the
pong message.

Figure 4.4: Pong payload.

CRAWLING LATENCY INFORMATION

By default the crawling mechanism is not active on every peer to collect measured la-
tency’s from other peers that were collected with ping and pong messages. Every CRAWL
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Figure 4.5: The left figure shows what happens when P1 sends a crawl request. The crawl request is forwarded
to its neighbours P2, P3 and P4. These neighbours forward the crawl request to their neighbours to reach a
maximum number of neighbours. In the right figure the latency response message is shown. All peers send
back their latency information to the peer from who they received the crawl request message. These peers
forward the latency response message back until the original crawler P1 is reached. In the example P5, P6 and
P7 send their latency information to P2 who forwards the latency information to P1.

TIME INTERVAL seconds a crawl request is send by each peer to every peer in its candi-
date list. The standard CRAWL TIME INTERVAL is 15 seconds. Each peer that receives a
crawl request message forwards this message to other peers and send its latency’s back
toward the requesting peer with a latency response message. By forwarding the latency
request message more peers are reached that send back latency information.

When a peer returns latency information as a reply to a latency request message it
sends this latency information back to the peer who send the request. When the request
message was forwarded the latency response message is also forwarded back to the peer
who send the request until the original crawler is reached. As peers can only contact
other peers in their candidate list the forwarding construction is necessary. Peers cannot
directly send back the latency information to the initiator of the crawl because there is
no reliable connection between these peers and the crawl initiator. A reliable connection
cannot be set up because the NAT firewall should first be punctured with peer discovery.
An overview of the forwarding mechanism is shown in figure 4.5. In a later paragraph we
will explain how the forwarding mechanism is programmed.

An overview of the latency request payload is shown in figure 4.6. The IP address and
port of the peer requesting the crawl is stored in the message. The hop count variable
denotes how many times the message has been forwarded. The peer that sends the first
crawl message sets the hop variable to 0. The relay list contains a list of unique variables
that is used by the response latency message to know to which peer the latency response
should be forwarded back. The hop variable is increased each time the message is for-
warded. If the hop count exceeds the MAXIMUM HOP COUNT variable the message is
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not forwarded anymore.

Figure 4.6: Overview of crawl request message.

The latency response message payload is shown in figure 4.7. The IP address and
port contain the address of the peer giving the latency response message. The relay list is
used by the mechanism to forward latency response messages back toward the peer that
originally send the crawler request. The latency’s in the payload are all the latency’s that
are send backward toward the original crawler. The latency’s are stored in a dictionary
with the two addresses of one latency as key and the latency between these two addresses
as the answer to that key. The dictionary is serialized to a string to easily transfer them
in the payload.

Figure 4.7: Overview of latency response message.

THE FORWARDING MECHANISM

We will further explain how the forwarding mechanism is implemented. Crawl messages
are forwarded by peers to reach more peers that can return latency’s. The returned la-
tency’s are send back to the original requester with the same route as the requests were
send but then backward. Both the crawl request message and latency response message
contain a relay list that is used in the forwarding mechanism.

In the first part of the mechanism the crawl request messages are forwarded to other
peers as can be shown in figure 4.8. Each time the message is forwarded a unique r el ay_i d
is created by the peer and is added to the relay list. When a peer receives a crawl request
message the address of the sender is saved in the r el ay dictionary that is maintained by
the peer. The last r el ay_i d on the relay list in the message is used as a key in the r el ay s
dictionary. With the r el ay_i d as key the peer can know to which address the latency
response has to be send back in the second part. The unique r el ay_i d is created using
the global time variable in dispersy plus the address of the peer creating the unique id.
The global time variable is a lamport clock used for message ordering inside a dispersy
community. With global time each message used in the community can be uniquely
identified with in combination with the member who send the message and the com-
munity itself. The combination of global time and address thus gives a unique identity
variable. The r el ay_i d has to be unique to make the response always arrive at the right
peer. If r el ay_i d is not unique the key in the r el ay dictionary might be overwritten and
the response message could arrive at another peer.

In the second part of the mechanism the latency responses are send backward to the
peer that initiated the crawl. An overview of this mechanism is shown in figure 4.9. At
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Figure 4.8: Schematic scheme of peer forwarding. In each communication line the r el ay_l i st is given. Each
peer adds a new relay id to the r el ay_l i st . When a peer receives a message the r el ay s dictionary is updated
with the last added r el ay_i d as key and the peer who send the message as result. The hop count is also
increased at each forward.

each arrival of a latency response message the last r el ay_i d of the r el ay_l i st in the
message is popped of the list and used as a key in the r el ay dictionary. As can be shown
in figure 4.9 the key gives the address back of the next peer in the forwarding chain to
eventually end at the crawl initiator. The dictionary key is also deleted as the latency
response is forwarded back and the key is of no more use. By deleting the dictionary key
the crawl mechanism stays memory efficient.

Figure 4.9: Schematic scheme of peer forwarding mechanism upon return. When the hop count exceeds the
hop count limit the latency’s are returned. The peer pops the last r el ay_i d from the r el ay_l i st and uses this
id to lookup the peer to backward the latency’s to in the r el ay s dictionary.

Sometimes the peer to which the latency response has to forwarded back is no more
in the candidate list of a peer. In that case the latency response simply cannot be for-
warded anymore and the crawl initiator will never retrieve the latency’s. But, as the la-
tency crawler is activated in an interval the crawl initiator will eventually maybe retrieve
the latency’s of the peer that left the candidate list.

4.2.2. LOW LATENCY OVERLAY
A few changes are made in the peer discovery mechanism to enable low latency intro-
ductions. The peer introduction and walking mechanism is changed and the latency
estimation algorithm is run in the background. In the second phase of a step the intro-
duction peer C is chosen from the neighbourhood of peer B to introduce to peer A in
such a way that the latency between peer A and the introduction peer C is low. Peer B
uses the latency estimation algorithm to know what peers in the neighbourhood of peer
B have a low latency with peer A. Peer B can simply calculate the distances between
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the peers in the neighbourhood to peer A in the map that was constructed by the la-
tency estimation algorithm to estimate the latency’s between peer A and the peers in the
neighbourhood of peer B . To avoid that the same peer is introduced multiple times one
of the top BALANCE INTRODUCTIONS peers with the lowest estimated latency toward
peer A is chosen from the neighbourhood of peer B . By default the BALANCE INTRO-
DUCTIONS variable is equal to 3. When the overlay always introduces the same peer
toward peer A, the introduction has no extra value and the introduction request could
become meaningless.

Peers are removed from the neighbourhood due to NAT timeouts and this has a large
implication on the quality of introductions. With a limited neighbourhood size there
are less available peers that can be introduced and available peers that the overlay can
walk towards. The low latency overlay cannot always introduce the lowest estimated la-
tency toward other peers because only peers that have been recently introduced and are
available in the neighbourhood and can be introduced. Secondly, to keep peers with
a low latency in the neighbourhood these peers should continually be walked toward
or reintroduced to prevent NAT-timeouts. This gives high requirements on peers in the
neighbourhood. The overlay should continually walk toward peers already in the neigh-
bourhood with a low latency to maintain low latency peers in the neighbourhood. At
the same time should the overlay should introduce low latency peers toward other peers
that do not necessarily have a low latency toward the peer doing the introduction. It is
not possible to introduce peers that are not in the neighbourhood because a puncture
request needs to be send toward the introduced peer.

The peer discovery mechanism is changed to always prefer to take steps toward one
of the top 10 lowest latency peers in the neighbourhood to prevent these peers from
leaving the neighbourhood. The top 10 lowest latency peers are estimated with the la-
tency estimation algorithm. The lowest latency peers will be kept in the neighbourhood
by continually taking steps toward these lowest latency peers from the neighbourhood.
NAT-timeouts do not occur because there is still communication between the lowest la-
tency peers and thus will the lowest latency peers be kept in the neighbourhood. In ad-
dition to walking, the TAKE STEP INTERVAL value is decreased towards one step every
second in default settings to further incentivize taking steps toward the top 10 lowest la-
tency peers. When the overlay always selects the peer that has the lowest latency toward
the peer taking the step the top 10 lowest latency peers are not kept in the neighbour-
hood but only the peer with the lowest latency. To prevent this a peer from the top 10
peers with the lowest latency toward the peer taking the step is chosen randomly. A set-
ting can be set in the low latency overlay to walk toward a combination of the old mech-
anism and a new mechanism that prefers the lowest latency peers. In this setting 50%
of node selections the old mechanism is used and in the other 50% of node selections a
peer with a low latency toward the selecting peer is chosen.

Peers that are grouped close together in the map of the latency estimation algorithm
and are also in each others neighbourhood are more likely to introduce peers from the
group to other peers in the group. Peers in the group are more likely to walk towards
peers in the group because these peers are in the neighbourhood and have a low latency
toward each other. After an introduction request is send to a peer in the group the re-
sponding peer is more likely to introduce other members of the group because these
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Figure 4.10: Schematic overview of the grouping effect with a map result of the latency estimation algorithm.
Peers A, B, C and D are grouped close together and have each other in their neighbourhood. Peers A, B, C, D
will introduce each other to each other and peer E is less likely to be introduced because peer E is further away
from peers A, B, C and D and does not belong to the top 10 lowest latency peers of peers A, B, C or D.

peers are close together to each other. We call this effect the grouping effect and figure
4.10 gives a schematic overview of the effect. The grouping effect increases the qual-
ity of introductions if peers already know their lowest latency peers and could mitigate
the effects of the limited available peers in the neighbourhood to introduce due to NAT
timeouts.

The incremental latency estimation algorithm is run in the background of the peer
discovery mechanism to update the results of the latency estimation algorithm contin-
ually. The algorithm is run by calling a number of functions in intervals. At first, a new
step in the latency estimation incremental algorithm is run every COORDINATE TIME
INTERVAL seconds. By default COORDINATE TIME INTERVAL is chosen to be 3 sec-
onds to update the latency estimation frequently but also to give the low latency over-
lay enough time to walk to other peers and obtain new latency information from other
peers. Secondly, when the "RepeatStructured" and "TIV" algorithms are used, the repet-
itive updating of previously calculated coordinates is also run in the background to save
computational time. Every second NUMBER OF REPEATS previously calculated coordi-
nates are updated by the latency estimation algorithm. By default NUMBER OF REPEATS
is set to 1 coordinate because the repetition is done every second. So with default set-
tings 10 coordinates are updated after 10 seconds. Third, newly introduced peers Pnew

are remembered by the low latency overlay to use them as new input to the incremental
latency estimation algorithm. With default walking times a new dispersy step is done ev-
ery 5 seconds. This means every 5 seconds a new peer gets introduced and a new peer is
added to Pnew . Nonetheless, the incremental algorithm can only benefit from the newly
introduced peer if first latency information is obtained from that peer. Thus, the low la-
tency overlay is designed that the incremental algorithm only uses the peers from Pnew

as input after latency information is obtained from Pnew . The latency information of a
newly introduced peer of Pnew can be obtained with the ping-pong mechanism or the
crawling mechanism after introduction. At last, in the default setting latency informa-
tion is obtained every two seconds with the ping-pong mechanism from every peer in
the neighbourhood. This means that in the worst case scenario the latency information
of peers of Pnew is obtained two seconds second after the peers of Pnew were introduced.
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Name Description Options Default
setting

Latency estimation
algorithm

The latency estimation algorithm
used in the overlay.

Inc, Re-
peat,
TIV

TIV

COORDINATE TIME
INTERVAL

Interval time at which a new incre-
mental step in the latency estima-
tion algorithm is taken.

Integer
(seconds)

3

NUMBER OF RE-
PEATS

Number of coordinates that are
updated every second for the
"TIV" and "Repeat" algorithms.

Integer
(coordi-
nates)

1

Remember latency’s Number of latency’s to remember
for one peer after new latency’s are
obtained.

Integer
(latency’s)

100

Ping-pong mecha-
nism

Mechanism to measure and share
latency’s.

On/off On

Share extra latency’s
in ping-pong mech-
anism

Share extra latency’s obtained
from other peers in ping-pong
mechanism

On/off On

PING TIME INTER-
VAL

Interval at which the ping-pong
mechanism is activated

Integer
(seconds)

2

Crawling mecha-
nism

Mechanism to obtain latency’s
from other peers.

On/Off Off

CRAWL TIME IN-
TERVAL

Interval at which the crawling
mechanism is activated

Integer
(seconds)

15

MAXIMUM HOP
COUNT

Maximum number of times
crawler request is forwarded

Integer 1

BALANCE INTRO-
DUCTIONS

Number of peers to load balance
in introductions.

Integer 3

Step toward low la-
tency peers

If on, alawys take steps toward
the top 10 low latency peers in
the neighbourhood. If off 50% of
times the normal dispersy mecha-
nism is used.

On/Off On

Table 4.1: Overview of low latency overlay settings.
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EXPERIMENTS

In this chapter we describe the experiments that have been done to test the low latency
overlay. We will first describe the performance metrics for the experiment. After that
a description of a local experiment is given to test the performance of the different al-
gorithms quickly with complete information. Next a description is given of two exper-
iments in a decentralized Tribler setting with a P2P network consisting of 30 and 500
nodes to test the algorithms in a real world P2P network.

In most experiments, latency’s are not measured in real time but are extracted from
the King Dataset. The King Dataset is a latency data-set with latency’s measured be-
tween computers in the real world. By using the King data-set the experiments use data
input from the real world and thus are the results of the experiment applicable to the real
world. The King Dataset is a NxN matrix with latency’s measured between a set of 1740
DNS servers. [33]. The entry on row n and column m contains the latency measurement
from DNS server n to m. This latency measurement is different of the latency measured
the other way around from DNS server m to n. This latency measurement is represented
by the entry of row m and column n. Because the algorithms described in the previous
chapter assume that there is a single latency between two peers in the P2P network the
latency of DNS server n towards DNS server m and the latency of DNS server m towards
DNS server n are averaged and used for both latency measurements. In the experiments
each node in the P2P network is given a unique ID. Whenever a node wants to lookup
the latency measurement between two nodes with ID a and b it instead retrieves the la-
tency measurement between DNS Server a and DNS Server b in the King Dataset. This
provides the node with measured latency’s from the real world.

5.1. PERFORMANCE METRICS

COMPUTATION TIME

The computation time performance metric measures how much time Tribler is blocked
and computing something. It is an important performance metric because when a Tri-
bler instance is blocked it cannot respond to communication and this increases the la-

39
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tency of that Tribler instance. The computation time performance metric is calculated
by taking the maximum amount of time a Tribler instance is computing something con-
secutively computation time of each incremental step of the incremental algorithm. This
computation time can easily be calculated by taking the time difference of the time be-
fore and after the computation. When the computation of one incremental step is fur-
ther spread in some algorithms like for instance in the Repeated algorithm each compu-
tational part that requires a separate calculation also blocks the Tribler instance and is
counted as part of the computation time metric.

RELATIVE ERROR

The relative error metric measures how well an estimated latency matches the corre-
sponding measured latency in the latency estimation algorithms. It measures the overall
estimation performance of the algorithm. We will explain the relative error in a mathe-
matical formula. In all latency estimation algorithms proposed in the previous chapter
the latency estimation between two peers a and b in the P2P network is equal to the
euclidean distance between two points in a geometric space. We call this distance the
estimated distance or estimated latency. The measured latency is equal to the real world
latency measurement between two DNS servers who represent peer a and peer b in the
King data-set. For each estimated latency that can be calculated by the latency estima-
tion algorithm between two peers a and b in the P2P network the relative error is defined
as follows:

r el ati ve_er r or = |est i matedl atenc y−measur edl atenc y |
mi n(est i matedl atenc y,measur edl atenc y)

A value of zero implies a perfect prediction as then the estimated latency and mea-
sured latency are equal and a value of one would imply that the estimated latency is
larger by a factor of two.

RANKING ACCURACY

The ranking accuracy measures the quality of the latency estimation algorithms by com-
paring the lowest estimated latency’s of the latency estimation algorithms with the low-
est real measured latency’s from the king data-set. Because the ranking accuracy mea-
sures how well the lowest latency’s are estimated it is a good metric to evaluate the selec-
tive performance of the latency estimation algorithm. In other words, how good can the
latency estimation algorithm make predictions on what peers have a low latency toward
another peer. The ranking accuracy can be calculated at any point in time. The way this
is done is as follows. Suppose we have a network with a set of P peers in the network.
The latency estimation algorithm is run on every peer and can only estimate latency’s
between a limited set of peers Ba from the perspective of a peer a ∈ P . The set of peers
Ba are all the peers that were introduced before the run of the algorithm to peer a ∈ P .
The set of peers Ba becomes larger over time as more peers are introduced to peer a ∈ P .
For each peer a ∈ P the set of peer Ba is retrieved and the latency’s toward all peers in
Ba are estimated with the latency estimation algorithm and sorted in an ascending list of
estimated latency’s Ea . The list of estimated latency’s Ea is a list of tuples (p,e) where p is
the peer toward the latency is estimated from peer a and e is the estimated latency from
peer a to peer p. The tuples in Ea are sorted in ascending order by the estimated latency



5.2. CENTRAL VALIDATION EXPERIMENT

5

41

e in each tuple element (p,e). For the same peers in Ba the measured latency’s of the
king data-set are also sorted in a list Ka with a tuple structure (p,m) where p is the peer
toward the latency is measured from peer a and m is the measured latency from peer
a to peer p. From both sorted lists Ea and Ka we only compare the top 10% of lowest
latency’s in the list because we are only interested in the accuracy of the lowest latency’s.
Thus only the top 10% of the tuples of Ea and Ka with the lowest latency are saved to the
lists E10a and K 10a and the other 90% of tuples are deleted. The local ranking accuracy
of peer a is defined as the percentage of peers that is both in the tuples of the lists E10a

and K 10a . We call the peers in E10a the top 10% lowest estimated peers of peer a and
we call the peers in K 10a the top 10% lowest measured peers of peer a. The local rank-
ing accuracy is thus what percentage of peers is both in the top 10% of lowest estimated
peers and in the top 10% of lowest measured peers of peer a. The ranking accuracy of
the whole network is the average of the local ranking accuracy’s for every peer a ∈ P .

TOP 10 LOWEST LATENCY PEERS

The top 10 lowest latency peers metric measures how well a peer knows the top 10 of
peers in the P2P network with the lowest latency toward itself in the neighbourhood.
The metric is the percentage of peers that is both in the top 10 lowest latency’s in the
neighbourhood of peer a and in the top 10 of lowest latency’s toward peer a in the P2P
network. To explain how the metric is calculated an example is given of how to calculate
the metric for a random peer a in the P2P network. The top 10 lowest latency peers of
peer a are the 10 peers in the P2P network with the lowest latency toward peer a. These
peers can be calculated from the king data-set. Each row in the king data-set contains
the latency’s from one peer to all other peers in the P2P network. By sorting the row that
contains all the latency’s toward peer a the top 10 lowest latency peers toward peer a in
the P2P network are calculated.

QUALITY OF INTRODUCTIONS

The quality of introductions metric measures how well introductions provide low latency
peers for the peer receiving the introduction. The calculation of the metric is explained
with an example where peer a introduces a peer b to peer c and the metric is calculated
by peer c where peer a,b and c are random peers in the P2P network. The row in the king
data-set that contains all the latency’s toward peer c is sorted by the latency in ascending
order. The metric is equal to the position of the latency in the sorted list that corresponds
to the latency from peer b to peer c.

5.2. CENTRAL VALIDATION EXPERIMENT
The 4 algorithms described in chapter 5 have been implemented and are validated in
this experiment in a central setting. The algorithms were run on a computer with a dual
core 2.8 GHz processor. The experiment tries to mimic the peer discovery mechanism
by incrementally adding peers to the network. In the beginning of the experiment there
are 0 peers in the network. Every time a new peer is added to the network an incremen-
tal step of the algorithm is taken and the new peer is given complete information over
all the latency’s toward all other peers in the system so far. After every incremental step
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Figure 5.1: Graph of the computation time metric for latency estimation algorithms in a centralized setting.
The x-axis are the number of peers that enter the system.

of the relative error metric for latency estimation algorithms in a centralized setting.
The x-axis are the number of peers that enter the system.
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Figure 5.2: Graph of the ranking accuracy metric for latency estimation algorithms in a centralized setting. The
x-axis are the number of peers that enter the system..

the computation time, ranking accuracy and relative error performance metrics are cal-
culated. The computation time is the time to compute one incremental step and the
ranking accuracy and relative error are measured of the whole P2P network.

The results of the computation time of the 4 algorithms can be seen in the graph of
figure 5.1. The computation time of the naive algorithm grows exponentially, while the
computation time of the other algorithms grow linearly larger as the number of peers en-
tering the network increases. The computation times of the RepeatTIV and RepeatStruc-
tured algorithm eventually become larger than 0.5 seconds after 1000 peers are added
to the network. Such a large computation time becomes problematic in networks with
a large number of peers. For instance, in networks with millions of peers the Repeat-
Structured and RepeatTIV algorithm will block the application for a significant amount
of time such that the latency toward a computing peer increases. This seems not to be
a problem with the Inc algorithm because the linear growth of that algorithm is smaller.
After 1000 incremental steps the computation time of the Inc algorithm is still smaller
than 0.1 seconds. This suggests there will be less problems when scaling the Inc algo-
rithm to larger networks with millions of peers.

The ranking accuracy and relative error performance results of the 4 algorithms are
shown in the graphs of figures 5.1 and 5.2. When looking at the ranking accuracy and
relative error performance metrics the RepeatTIV and RepeatStructured have the best
performance and the Inc algorithm has the worst performance. The performance of the
naive algorithm fluctuates between the Inc algorithm and the RepeatTIV and Repeat-
Structured algorithms. The Inc, RepeatStructured and RepeatTIV algorithms appear to
have a warm up period when the first peers enter the network and the performance met-
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Figure 5.3: The figure shows the ranking accuracy metric calculated every 10 seconds in a decentralized ex-
periment with 500 nodes and complete information on a synthetic data-set. Each line represents the average
ranking accuracy over every peer for a different algorithm at a certain point in time.

rics converge to a constant value as the number of peers entering the network increases.
The repetitive updating of already calculated coordinates in the RepeatTIV and Repeat-
Structured algorithms seems to be beneficial because the RepeatTIV and RepeatStruc-
tured algorithms converge faster and have a better overall performance in both perfor-
mance metrics compared to the Inc algorithm. The overall performance of the repetitive
updating algorithms is better because when the algorithms are converged the Inc algo-
rithm has a ranking accuracy between 40% and 50% and a relative error around "0.35".
The RepeatTIV and RepeatStructured algorithms have a higher performance with a rank-
ing accuracy between 50% and 60% and a lower relative error around "0.30".

5.3. DECENTRAL VALIDATION EXPERIMENT WITH COMPLETE IN-
FORMATION

The goal of this experiment is to validate the correct implementation of the low latency
overlay in a decentralized setting with a 100% accurate data-set and complete informa-
tion. The algorithms "TIV", "Repeat" and "Inc" are run with a synthetic data-set con-
structed with 500 random chosen points in a 2 dimensional area. A point has a randomly
chosen x and y coordinates from 0 to 1. The data-set consists of a similar matrix like the
King Dataset where each entry in the matrix represents a measurements between two
points. In this data-set the measurements are the distances between the points and thus
perfect with 100% accuracy. It is expected that the latency estimation algorithms should
also predict the distances between the points with 100% accuracy. Because only the cor-
rect implementation of the code is validated in this experiment complete information is
assumed. This means each Tribler instance has access to all measured latency’s between
the data points and has complete information. To quicken the convergence toward a
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Figure 5.4: The figure shows the relative error metric calculated every 10 seconds in a decentralized experiment
with 500 nodes and complete information on a synthetic data-set. Each line represents the average relative
error over every peer for a different algorithm at a certain point in time.

Figure 5.5: The figure shows the quality of introductions metric calculated every 10 seconds in a decentralized
experiment with 500 nodes and complete information on a synthetic data-set. Each line represents the average
quality of introductions over every peer for each different algorithm at a certain point in time.
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Figure 5.6: The figure shows the top 10 lowest latency peers metric calculated every 10 seconds in a decentral-
ized experiment with 500 nodes and complete information on a synthetic data-set. Each line represents the
average top 10 lowest latency peers metric over every peer for each different algorithm at a certain point in
time.

good result 3 previously calculated points are updated every second in the "Repeat" and
"TIV" algorithms. This should give the latency estimation algorithm enough updates to
quickly converge toward a 100% accurate solution. Other overlay settings are set to de-
fault. Multiple Tribler instances are run on the DAS5 supercomputer and managed by
Gumby to collect data. The graphs of the performance metrics can be seen in figures 5.3,
5.4, 5.5 and 5.6.

The latency estimation algorithms are correctly implemented in the low latency over-
lay because after 600 seconds the ranking accuracy is close to 100% and the relative error
is close to 0 for both the "TIV" and "Repeat" algorithms. The "Inc" algorithm has a low
ranking accuracy and high relative error throughout the experiment and does not con-
verge to a perfect performance. This suggests that the "Inc" algorithm is a bad predictor
for latency’s with complete information. It appears that the low latency overlay should
receptively update previously calculated points to converge to a good performance of
the latency estimation algorithm.

Earlier than the latency estimation algorithms do the quality of introductions and
the top 10 low latency peers in the neighbourhood converge. After 200 seconds all algo-
rithms have an average of 8 out of 10 of the top 10 lowest latency peers in the neighbour-
hood and the introduction quality also converges to a value of around 110 after around
200 seconds. The "Inc" algorithm converges a little bit faster than the "TIV" and "Repeat"
algorithms with the top 10 lowest latency peers performance metric. The only explana-
tion is that the computation for the repetitive updating of the "TIV" and "Repeat" algo-
rithms has some impact on the walking mechanism. This effect is marginal because the
overall convergence is good and comparable to the "Inc" algorithm. Because the interval
time of taking a step is set to 1 second, potentially 40% of peers in the P2P network could
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Figure 5.7: The figure shows the computation time metric in the decentralized experiment with 500 nodes with
incomplete information. The x-axis is the elapsed time of the experiment. Each line represent the average
computation time over every peer for each different algorithm at a certain point in time.

be introduced to a peer after 200 seconds. Therefore a peer quickly knows its top 10 low-
est latency peers and is able to keep the peers in the neighbourhood after convergence.
If the top 10 lowest latency peers are in the neighbourhood the quality of introductions
also becomes high because peers that have a low latency toward each other are grouped
together and introduce each other to each other with the grouping effect.

5.4. ACCURACY EXPERIMENT WITH INCOMPLETE INFORMATION
The goal of the experiment is to measure the performance of the low latency overlay
and the latency estimation algorithms in a setting with incomplete information. The
same measurement methods as with the validation experiment in decentralized setting
are used. The experiment is executed six times with different settings for the overlay
over a period 1600 seconds which is 26 minutes and 40 seconds. The three different
algorithms "TIV", "Repeat" and "Inc" are run with further default settings. Next to that
is the "TIV" algorithm run three additional times with different overlay settings. In the
"TIV20Repeat" experiment run, previously calculated coordinates are updated 20 times
a second instead of just one time a second with default settings. This should cost more
computation time but could give better accuracy results. The "TIVSlowWalk" runs the
overlay with a slower interval time of 5 seconds between peer discovery steps. With this
setting it should be harder for the overlay to maintain the top 10 latency peers because
communication between these peers is scarcer. With the "TIVOldMethod" setting the
overlay uses 50% of times the old node selection method when taking a step. The results
are shown in the graphs figures 5.7, 5.8, 5.9, 5.10 and 5.11 with performance metrics
relative error, ranking accuracy, quality of introductions, top 10 lowest latency peers in
neighbourhood and computation time.

We will first explain the results for the default settings with different latency estima-
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Figure 5.8: The figure shows the ranking accuracy metric calculated every 10 seconds in the decentralized
experiment with 500 nodes with incomplete information. Each line represents the average ranking accuracy
over every peer for each different algorithm at a certain point in time.

Figure 5.9: The figure shows the relative error metric calculated every 10 seconds in the decentralized experi-
ment with 500 nodes with incomplete information. Each line represents the average relative error over every
peer for each different algorithm at a certain point in time.
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Figure 5.10: The figure shows the quality of introductions metric calculated every 10 seconds in the decentral-
ized experiment with 500 nodes with incomplete information. Each line represents the average relative error
over every peer for each different algorithm at a certain point in time.

Figure 5.11: The figure shows the top 10 lowest latency peers in neighbourhood metric calculated every 10
seconds in the decentralized experiment with 500 nodes with incomplete information. Each line represents
the average relative error over every peer for each different algorithm at a certain point in time.
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tion algorithms used. It matters what kind of algorithm is used. All experiment runs
show good results for the computation time, with all computation times below 0.1 sec-
onds. The "Inc" algorithm has a lower computation time because there is no repetition
of previously calculated coordinates. The accuracy performance metrics give good re-
sults for the "Repeat" and "TIV" algorithms but the convergence time is slow. After 1600
seconds the "TIV" and "Repeat" algorithms are converged to a ranking accuracy around
45% error and the relative error is around 0.35. The "Inc" algorithm does not converge
for the ranking accuracy and relative error but keeps decreasing as time in the exper-
iment elapses. With the quality of introductions and the top 10 low latency peers in
the neighbourhood metric both the "Repeat" and "TIV" algorithm show about the same
behaviour. The top 10 lowest latency peers converge to an average value around 4.5 af-
ter 1600 seconds for the "TIV" and "Repeat" algorithms. The "Inc" algorithm performs
worse and converges to a value around 3.1 for the top 10 lowest latency peers. The qual-
ity of introductions start at a value around 250 which is a random introduction. As time
elapses the quality of introductions improves and becomes less random but the results
are worse than expected. A quality of introductions around 10 would give perfect in-
troductions. However, despite the grouping effect the "TIV" and "Repeat" algorithms
eventually converge to a value way higher than expected around 150 for the quality of
introductions. Peers are removed from the neighbouring list due to NAT timeouts and
therefore a peer can never introduce all peers to another peer but only a subset of all
the peers in the P2P network. The latency estimation algorithm can be very good but
the overlay has limited peers to choose from to introduce and thus becomes the quality
of introductions low. It still matters what kind of latency estimation algorithm is used
because the performance for the quality of introductions and the top 10 lowest latency
peers metrics is worse for the "Inc" algorithm compared to the "Repeat" and "TIV" algo-
rithms.

When more computation power is added to further repetitively update past calcu-
lated coordinates with the "TIV20Repeat" run the convergence occurs faster and the
performance metrics do sometimes converge to a better value. The cost for the better
performance is a computation time that rises and converges to a value above 0.5 seconds
after around 500 seconds. Until the end of the run at 1600 seconds the computation time
keeps rising to a value slightly below 0.6 seconds. Such long computations could block
the Tribler instance and decrease the latency. After 600 seconds the ranking accuracy is
converged to a value slightly above 50%, higher than any other experiment run. The rel-
ative error converges slightly faster after around 400 seconds to a value slightly above 0.3
and the quality of introductions also converges to a value around 150 after 400 seconds.
After 500 seconds the top 10 low latency peers in the neighbourhood is also converged
to a value around 4.5. The relative error, ranking accuracy and quality of introductions
has the best performance with the "TIV20Repeat" run.

A slower walker time in the "TIVSlowWalk" run has a performance impact on the
overlay. It is harder for the overlay to keep track of the top 10 latency peers in the neigh-
bourhood because these peers are removed due to NAT timeouts. In 1600 seconds the
top 10 lowest latency peers in the neighbourhood rise to the lowest value compared
to other runs of around 1.0. Due to the grouping effect the quality of introductions is
also the worst of all the experiment runs with a convergence toward a value around 190.
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Figure 5.12: The figure shows the quality of introductions metric of the 10 new entering peers in the bootstrap
experiment. Each line represent the average quality of introductions metric.

There is no healthy neighbourhood with peers grouped close together in the map of the
latency estimation algorithm such that the peer can introduce low latency peers to other
peers close by. Even tough the quality of introductions and neighbourhood is low the la-
tency estimation algorithm performance converges to around the same value as with the
"TIV" and "Repeat" algorithm in default settings after 1600 seconds. The convergence is
however slightly slower. There is no better computation time compared to default set-
tings with a slower walker.

Using a combination of the old dispersy node selection mechanism when taking a
step vs the new mechanism where one of the top 10 lowest latency peers is chosen in
the "TIVOldMethod" experiment run gives a slight advance over the default setting. The
ranking accuracy and relative error show a small performance increase compared to the
default "TIV" run. The randomness created with the old method gives a slightly faster
and better convergence for the top 10 lowest latency peers in the neighbourhood metric
and slightly better quality of introductions. Surprisingly the addition of the old node se-
lection mechanism gives a higher performance for the top 10 lowest latency peers metric
even tough there is not always walked toward the lowest latency peers. Adding the ran-
domness with the old mechanism results in more variation in the neighbourhood and
thus other peers of the top 10 lowest latency peers can be introduced.

5.5. BOOTSTRAP EXPERIMENT

The goal of the bootstrap experiment is to measure how well the low latency overlay
reacts to new entering peers in the P2P network. It is expected that the 10 added nodes
quickly know their top 10 latency peers and should receive high quality introductions
quickly. In the experiment the low latency overlay is executed on 500 nodes and after the
algorithms are converged the data is measured by Gumby. The same runs are done as
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Figure 5.13: The figure shows the top 10 lowest latency peers metric of the 10 new entering peers in the boot-
strap experiment. Each line represent the average of the top 10 lowest latency peers metric.

Figure 5.14: The figure shows the total upload and download for the 10 new entering peers in the bootstrap
experiment. The solid line represent the upload and the dotted line the download speed. The bar represents
the size of the variance of the total upload or download relative to the mean.
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with the accuracy experiment.
The results of the experiment are worse than expected. It takes more time than ex-

pected before the new entering peers receive high quality introductions and before the
new entering peers know their top 10 lowest latency peers. With limited knowledge on
latency’s toward new entering peers the latency estimation algorithm of other peers can-
not estimate latency’s correctly. Whenever a new entering peer enters the P2P network it
has not yet measured any latency toward another peer. Therefore it is impossible for the
other peers to calculate the geo-location of the new entering peer just after entry with
high accuracy. The latency estimation algorithm can only guess where the geo-location
of the new entering peer is. As more latency’s are measured between the new entering
peers and other peers in the P2P network can calculate the geo-location of the new en-
tering peer with higher accuracy. New latency’s are measured immediately after a new
peer is discovered by the new entering peers. For all runs it takes about 400 seconds be-
fore the quality of introductions is converged toward a value of around 150. The top 10
lowest latency peers converges after about 300 seconds to a value between 4 and 5 for
all runs except the "Inc" algorithm run and the "TIVSlowWalk" run. The "Inc" algorithm
run converges toward an average value of 3 and the "TIVSlowWalk" converges toward an
average value of 1 for the top 10 lowest latency peers metric. This behaviour is the same
as with the accuracy experiment.

The bandwidth usage of the new entering peers is as low as expected. Figure 5.14
shows the bandwidth usage in bytes for the 10 new entering peers in a run of the exper-
iment. Every run has the same byte cost so only one run is shown in the graph. The
upload and download speed are throughout the experiment about the same and show
a linear growth with a slower growth in the beginning of the experiment. The slower
growth in the beginning is normal because when the peers just entered no latency’s are
yet measured and less than 30 latency’s are send in the ping message and thus is the mes-
sage size smaller. After 600 seconds the total byte usage is around 76Mbyte, 38Mbyte up-
load and 38Mbyte download. 1 KByte is assumed to be 1024 bytes. The average upload
and download speed throughout the experiment is around 65 KByte per second. The
expected bandwidth usage is the addition of the byte cost of the ping-pong mechanism
and the peer discovery mechanism. Every 2 seconds ping messages are send to each
peer in the neighbourhood and every second a new step is taken with the peer discovery
mechanism. In 600 seconds 300 ping and pong messages are send to the entire neigh-
bourhood of each peer and 600 steps are of the peer discovery mechanism are taken by
each peer.
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FUTURE WORK

Finding better algorithms to solve the convergence problems and provide latency esti-
mation with higher accuracy should have the highest priority for future work. The la-
tency estimation algorithms need to be of high quality to let the low-latency overlay fully
rely on them. The current low-latency overlay takes a long time to converge and when
new peers enter the P2P network the overlay does not provide them with low latency
peers fast. On the positive side does the low-latency overlay converge at some point and
are incremental algorithms used with a low computation cost. Algorithms that handle
lack of information well and Triangle inequality violations (TIVs) could be further in-
vestigated to improve the accuracy because the algorithm that tried to counter triangle
inequality violations worked the best.

Experiments with the low latency overlay on large networks should be done to test
and develop a low latency overlay suitable for large networks. It takes several days for a
peer to get 100000 different neighbours to measure the latency with. When such large
number of latency’s have been measured the algorithm should still be computationally
and memory efficient. It should be tested whether the latency estimation algorithms
converge towards a result with high accuracy in a large P2P network. The algorithm
should also be able to handle large latency inputs with more than 100000 latency’s at
each step of the incremental algorithm. One incremental step should be executed com-
putationally efficient. If the computation at one step of the incremental algorithm is
too much Tribler could block other processes and therefore increase the latency of the
network.

Research on algorithms that deal with lack of information and how to counter Tri-
angle Inequality Violations (TIVs) can further improve the accuracy and convergence of
the latency estimation algorithms. The experiments so far have shown that algorithms
with TIV prevention and algorithms that repeat past calculated coordinates are useful.
Accuracy of latency estimation algorithms is affected a lot by lack of latency informa-
tion. The more latency’s are measured the better the algorithms performs. The lack of
information is especially important in the decentralized Tribler setting because peers
only measure latency’s toward neighbours and cannot measure latency’s to other peers.
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An algorithm could be created that handles lack of information more efficiently or more
latency information could be gained via other ways with for instance ICMP messages.
Other possibilities to detect TIVs and prevent them could be further investigated to im-
prove the accuracy of the overlay.



7
CONCLUSION

Building a low latency overlay to give low latency connections between peers is a hard
problem. To make good decisions on what peer to introduce to another peer the la-
tency’s between two arbitrary peers in the P2P network have to be estimated. Finding
good algorithms that estimate latency’s between peers computationally and memory ef-
ficient is hard. The current state of the art latency estimation algorithms provide enough
accuracy to build a low latency overlay but are limited because of the peer introduc-
tion mechanism. Incremental algorithms are used to divide the computation over time
but methods that use more computational power create a more accurate latency over-
lay. These methods require a very frequent updating of previously estimated latency’s.
It is beneficial to counter peers who cause Triangle Inequality Violations (TIVs) in the
latency estimation algorithm because algorithms that deal with TIVs perform better and
have a better accuracy. The low latency connections between peers has various benefits
to various applications. It provides faster trading and faster onion routing.

Low latency peers cannot be introduced to other peers if there is no peer discovery
mechanism that traverses the NAT boxes which enable peers to connect to the internet.
A NAT traversal mechanism is required because most computers used by peers are not
directly connected to the internet but behind a NAT box in a local network. In the overlay
NAT boxes are punctured by previously discovered peers to enable good connections
between peers.

Eclipse attacks are a very generic attack and powerful attack on the low latency over-
lay and is countered in the design of the overlay. The peer discovery mechanism adds
randomness in its choices of peer selection to prevent against the eclipse attack. If the
new low latency overlay does not have countermeasures against the eclipse attack, nodes
could be controlled by adversaries or nodes could receive false information about other
peers or about things from a P2P application. This gives very powerful attacks on cryp-
tocurrency applications with direct financial consequences and thus are eclipse attack
prevention methods important.
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