
Science is a wonderful thing
if one does not have to earn one’s living at it.

Albert Einstein
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1
INTRODUCTION

Todays P2P applications need to be fast in order to be scalable. Blockchain applications
like Ethereum and Bitcoin have a large userbase which puts more pressure on the speed
performances of the applications. The users of the P2P applications find each other on
the internet with discovery mechanisms embedded in an overlay on top of the OSI model
of the internet. Users currently don’t take the performance of other peers or the con-
nection quality towards other peers into account when choosing what peers to work to-
gether with in the distributed application. In this work we try to improve the connection
quality of peers that work together in the P2P applications by embedding a mechanism
in the peer discovery mechanism of the overlay that prefers peers with a low latency. A
low latency towards other peers is especially important in today’s P2P applications.

1.1. THE IMPORTANCE OF LATENCY
Almost all systems have some requirements for latency, defined as the time required for a
system to respond to input. Problem domains like web applications, voice communica-
tions and multiplayer gaming have latency requirements. In distributed systems latency
requirements have become stricter with new applications like trading and anonymity
systems. In this work I investigate methods to reduce the latency in distributed systems.
[1]

1.1.1. LATENCY IN TRADING
A good example of a user application where low latency communication is important is
the trading domain. In the past 30 years, trading has become faster. The time it takes
to process a trade has gone from minutes to seconds to milliseconds. "Low Latency"
would be under 10 milliseconds and "Ultra-Low Latency" as under one millisecond .
It is estimated that 50% of trades in the U.S. are done in high frequency trading with
an "Ultra-low latency". Thus, low latency is a major differentiation factor for exchange
firms. Some firms state that a 1 millisecond advantage can save an exchange firm 100
million U.S. dollars. [2] An individual trader has numerous advantages when using trad-
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ing in a system with low latency: [3]

1. Better decision making: A trader makes trading decisions based on the informa-
tion the trader has from the market. Other traders send the prices and quantities
they offer as orders to other traders. Let’s say these traders maintain these orders
in an order-book. If these orders arrive later, the individual trader is limited in it’s
trading decision making.

2. Competitive advantage towards other traders: When an individual trader can trade
relatively faster than another trader due to low latency it has a competitive advan-
tage. Let’s say a price differentiation takes place, a price suddenly becomes lower.
A trader with a relatively lower latency can act on it earlier than it’s competitors
and take advantage of the lower price before a price correction takes place.

3. Lower latency traders are served with a higher priority. Offering a lower price gives
a trader always a higher priority as other traders would buy a product with a lower
price faster. However, when the price is the same. The offer that arrives first is
served. A trader with a high latency needs to lower its price in order to get a higher
priority. If the high latency trader does not lower its price it is simply not served.
Also, offers at the same price level with a higher priority have less adverse selection.
[4] [5]

Moallemi and Saglam (2013) estimate the latency cost based on cross-sectional data
on volatilities and bid-offer spreads in the U.S. between 1995-2005 from the dataset of
Ait Sahalia and Yu (2009). The median latency cost approximately increased threefold
in the 1995-2005 time period. To obtain the latency cost estimation the data set is used
in a model that under simplifications calculates the latency cost. The model assumes an
individual trader with a fixed latency of 500ms. As time increases, the cost for this latency
also increases. As can be seen later on, the Tribler market has latency’s around 150 ms.
The assumption of a trader with 500ms is realistic in the Tribler context. For details of
the model we refer to the paper of Moallemi and Saglam (2013). [2]

1.1.2. LATENCY IN ANONYMIZATION TECHNIQUES

Anonymization techniques require data to go through different nodes to make it hard
to link the sender and receiver of a message. In one of the early anonymization tech-
niques called mixes by Chaum developed in 1981 latency was a big problem. Messages
are batched at nodes and a new batch is send forward at a node when n message are
received giving a large delay between sending and receiving a single message. [6] In the
TOR anonymization technique a solution to the latency problem is provided by forward-
ing messages in real time between mixes at the cost of the quality of the privacy. With
TOR anonymization sender and receiver can be linked when all messages are sniffed in
the global passive attack. [7] Because anonymization requires multiple nodes to which
data travels a high latency between these nodes is unacceptable for a good working pro-
tocol. Figure 1.1 shows an overview of the anonymization in Tribler.
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Figure 1.1: Anonymization techniques used in Tribler. There are three layers of the TOR protocol that make
anonymous communication between peers.

1.1.3. LATENCY IN PARALLEL ALGORITHMS

In high granularity, fine-grain parallel algorithms one of the primary bottlenecks is com-
munication latency. Only small amounts of computational work is done between com-
munication events and the communication overhead is high because the message needs
to be prepared and there is an electrical delay for signal processing between physical
network links. These parallel algorithm have a wide range of applications in for instance
data mining and knowledge discovery. The algorithms involve decomposing the data
into parts based on available information and knowledge. The decomposition allows to
do a parallel computation on multiple nodes. [8] [9]

1.2. LOW LATENCY OVERLAY

The current P2P discovery mechanism of the overlay needs to be improved to create an
overlay where the peers connect to other peers to who they have a low latency. We call
this new overlay the low latency overlay. In the new overlay, peers should introduce peers
to other peers such that the other peer has a low latency towards the newly introduced
peer and peers should only discover other peers to which the peer has a low latency. A
latency can only be measured after a peer has been discovered thus the latency towards
other peers have to be estimated with an algorithm.
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Figure 1.2: Location space of with peers representing dots in the space. The distance between peers estimates
the latency.

1.2.1. LATENCY ESTIMATION

The central idea in this thesis to estimate latency’s is that peers can be modeled as co-
ordinates in a geolocation space. In 2002 Zhang et al. [10] proposed the GNP system for
estimating latency’s on the internet based on real measured latency data. In the paper
each peer has it’s own coordinates in a space. The latency between peers can be esti-
mated by taking the euclidean distance between coordinates in the space. To show this
general idea Figure 1.2 shows a coordinate graph of the earth. Each dot represents a peer.
The distance between two dots estimates the latency between these two peers. The chal-
lenge is to determine the coordinates of the nodes in the space such that the latency’s are
correctly estimated when calculating the euclidean distance between two coordinates in
the space.

1.2.2. LATENCY AND DISTRIBUTED DENIAL OF SERVICE [DDOS] ATTACKS

When peers only contact a select subgroup of peers as their neighbours based on the
latency toward these peers a DDoS prevention mechanism is provided. DDoS attacks
make use of computers on the internet that have no or poor security. By breaking into
these computers floods of data can be send towards a target, overloading the target such
that the target becomes unavailable. The computers on the internet that are part of a
DDoS attack can be at any location in the world. But, when a peer only is connected to
neighbours that are physically close in the real world and to which the peer has a low
latency the DDoS attack can only come from these computers. This limits the number
of computers that can be used in the DDoS attack and thus provides protection against
DDoS attacks. [11]

1.2.3. THE GNP APPROACH

The GNP algorithm proposed by Zhang et al. (2002) [10] proposes a method to calculate
the coordinates of the peers based on real-measured latency data. The algorithm re-
quires complete information on all the latency’s between peers. It has as input an N xN
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matrix that contains all the latency’s measured between the N peers in the system. The
GNP algorithm will calculate the error of latency estimations and minimize these errors.
The error of one latency estimation is the deviation between the measured latency be-
tween two peers in the real world and the calculated distance in the geolocation space
that estimates the latency between two peers. The GNP algorithm has an objective func-
tion which is the addition of all the errors of all the latency estimations in the system.
The total number of latency estimations and errors is N 2 because there are N peers in
the system. The objective function is minimized using the simplex downhill minimiza-
tion algorithm. In each step of the simplex downhill algorithm the coordinates of the
peers in the geolocation are recalculated and optimized to a lower error. [12]

Only optimizing the objective function is computational complex. A fair amount of
m steps is required in the simplex downhill algorithm to minimize the objective func-
tion. The number of steps m can vary from 50 to 100000 steps. The more steps are
taken, the better the algorithm minimizes the objective function and the lower the error
is. Each step requires multiple calls of the objective function because for each coordi-
nate the algorithm has to decide to increase or decrease the coordinate to get a better
objective function output. One call of the objective function requires N 2 error calcula-
tions for a system with N peers. Thus the total complexity of the algorithm is O(m∗N 2).
The complexity is polynomial but can be too complex in real world situations. With a
large number of peers N the complexity increases squared and the accuracy decreases
by lowering m.

1.3. RESEARCH QUESTIONS
In this thesis work we focus on creating a latency overlay that is computational efficient
and also has a high accuracy in the Tribler P2P application. The following research ques-
tion is answered:

How to create a computational efficient low-latency overlay that increases the quality
of the connections of peers in the P2P network with low-latency connections?

To answer this question, a number of sub-questions are formulated:

1) Which methods to estimate latency’s on the internet have been introduced in the
past?

2) How to create a scalable latency estimation algorithm that can be run on Tribler?

3) How to embed the latency estimation algorithm in the low latency overlay?

4) What is the performance impact and accuracy of the new low latency overlay?





2
RELATED WORK

2.1. TRIBLER
Tribler is a social-based P2P system that is an extension on BitTorrent. It includes social
phenomena such as friendship and the existence of communities of users with similar
tastes or interests that are exploited in order to increase usability and performance. The
social phenomena are used in content discovery, content recommendation and down-
loading. Tribler Vision and Mission is the following:

"Push the boundaries of self-organising systems, robust reputation systems and craft
collaborative systems with millions of active participants under continuous attack from
spammers and other adversarial entities."

Since its foundings 10 to 15 scientists and engineers have been working on it full-time
and added various new features. As of December 2014 Tribler has a build-in version of
a Tor-like anonymity system. It gives superior protection than a VPN, but no protection
against resourceful spying agencies. A reputation system is also included that gives in-
centives for users to upload files instead of just downloading them from the network. A
screenshot of Tribler is given in figure 2.1.

2.1.1. DISPERSY OVERLAY

Dispersy is the current OSI overlay in Tribler and the foundation of Tribler. It includes the
Peer discovery mechanism, how to puncture NAT boxes and distributed database syn-
chronization. Dispersy maintains a neighbourhood of peers for each peer. The neigh-
bours of a peer are the peers the peer has already discovered and has an active connec-
tion with. Dispersy ensures the NAT firewall is punctured of peers in the neighbour-
hood. Every 5 seconds one peer is disconnected and Dispersy tries to discover a new
peer. This keeps the peers in the neighbourhood different over time and prevents against
the eclipse attack. The eclipse attack tries to control peers by controlling its neighbour-
hood and control the data flow to a peer. By refreshing its neighbourhood it is harder to
do an eclipse attack on one peer.

7
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Figure 2.1: A screenshot of the Tribler application. [13]

2.2. INTERNET OVERLAYS

2.2.1. DHASH++
DHash++ is a distributed hash table (DHT) that provides high-throughput and low-latency
network storage. A DHT is a hash table in a distributed fashion which makes the hash
table very scalable because multiple distributed nodes work together. DHash++ uses the
chord lookup algorithm to help it find data and is optimized for low latency. In order to
make the requester contact low latency nodes DHash++ uses the Vivaldi latency estima-
tion algorithm. Vivaldi is a similar algorithm comparable with GNP that uses coordinates
to estimate latency’s. It has the advantage that it is a distributed algorithm where GNP
is used locally. Whenever DHash++ nodes communicate with each other they exchange
coordinates. In this way a requesting node can predict the latency toward other nodes
without having first to communicate with them. [14]

2.2.2. BINNING: TOPOLOGY AWARE OVERLAY CONSTRUCTION

Topological information about relationship in nodes is used to make better routing poli-
cies and reduce latency in overlay networks. Latency is reduced by putting nodes that
are relatively close to each other in the same bin. Thus nodes in the same bin have a low
latency toward each other. The binning strategy is simple, scalable and completely dis-
tributed. However, the scheme requires a set of well-known landmark machines spread
across the internet. An application node connects to these landmarks and measures its
latency and selects a bin based on its measurements. The latency’s measured are divided
into multiple levels that order the latency measurements. The ordering of the different
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Figure 2.2: Part 1 and 2 of GNP algorithm. The left picture shows the first step of the GNP algorithm with
landmark computation. The right picture shows ordinary host computation with ordinary hosts positioning
themselves next to landmarks. [10]

levels to each landmark determines the bin of the node. The method described reduces
the latency and performance in network overlay construction but violates a completely
distributed system because landmarks are being used. [15]

2.2.3. CONSTRUCTING LOW-LATENCY OVERLAY NETWORKS WITH TREE AND

MESH ALGORITHMS

Various Tree and Mesh algorithms that construct overlay networks are compared in this
paper. To measure the performance of a Tree or Mesh the Pair-wise latency’s between all
the peers is taken as a performance metric. Also the diameter, the longest of the paths
in the tree among all the pairs of nodes is taken as a performance metric. Meshes are
created from the trees and compared in a different way. The result is that trees are faster
to construct and save considerable amounts of resources in the network. Meshes, on the
other hand, yield lower pair-wise latency’s and increases the fault tolerance, but at the
expense of increased resource consumption. [16]

2.3. LATENCY ESTIMATION SYSTEMS
Various algorithms and systems have been proposed to estimate latency’s between hosts
in peer-to-peer networks. A lot of these systems are coordinate based approaches with a
number of hosts in a space. Each host has a position in the space, the distance between
hosts represents the latency between these hosts. The coordinate based approach allows
to calculate latency estimations quickly by computing the euclidean distance between
two hosts. This makes coordinate-systems very scalable.

2.3.1. GNP ALGORITHM

The GNP algorithm consists of two steps. In the first step a subset of landmarks L from
all the hosts H are chosen as landmarks for points of reference. Landmarks enable fast
host position calculation in step 2 of the algorithm. Figure 2.2 shows the two steps of the
GNP algorithm in a figure. There are normally around 20 landmarks. The coordinates
are found by minimizing the difference between the real measured latency’s between
the landmarks and the computed distances between the landmarks. The minimization
is done using the simplex downhill algorithm.
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Figure 2.3: The node placement chosen by Vivaldi for the King data set (a) in two dimensions, (b) in three
dimensions, (c) with height vectors projected on the x y plane, and (d) with height vectors rotated to show the
heights. [17]

In the second step the coordinates of the other hosts are determined. The difference
between the measured latency from an ordinary host to a landmark and the computed
distance between an ordinary host and a landmark are calculated for every landmark.
With the simplex downhill algorithm the sum of these differences are minimized. By this
way the position of an ordinary host is determined with relatively low computation.

With a large number of landmarks the algorithm becomes computationally expen-
sive. There is a squared relationship with the number of landmarks in the first step. With
host coordination there is only a linear relationship between the number of landmarks
and computation time. It is likely that with more landmarks the algorithm becomes
more accurate but takes more time to compute. The trade-off between number of land-
marks and accuracy has to be made. Because with small N the computation time of the
first step can be marginalized, the computation time will be almost linearly dependent
on the number of hosts H . [10]

2.3.2. VIVALDI ALGORITHM
Vivaldi is a variant on the coordinate-based systems on estimating latency’s and is sim-
ilar to the GNP algorithm in that it also tries to minimize an error function to find good
coordinates for nodes. Vivaldi does this by conceptually placing a spring between each
pair of nodes with a rest length equal to the measured latency between these nodes.
Every pair of nodes exert a force on both nodes. The force of the first node has the di-
rection towards the second node and vice versa. The strength of the node is equal to the
displacement of the spring from rest. The net force on a single node is the sum of all
forces from other nodes.

In the simple decentralized Vivaldi algorithm each node participating in Vivaldi sim-
ulates its own movements in the spring system. Each node maintains its own coordi-
nates, starting at the origin. When the algorithms starts, the node communicates with
its other nodes to obtain the coordinates of other nodes and measure the latency to other
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nodes.
Each time the node communicates with another node, it moves it self in the direc-

tion of only that node’s spring for a short amount of time δ, reducing only the error to-
wards that particular node. Nodes continually communicate with other nodes so that
the positions eventually converge to a low error. Figure 2.3 shows an example of node
placements based on the King dataset.

Because the algorithm updates itself at every communication it has a bias to more
recent samples or nodes that contacted a lot. A countermeasure to this bias would be
to maintain a list of more recent samples and favor older samples and samples of nodes
that aren’t contacted frequently.

Choosing a right δ value is difficult. Large δ value inclines large steps are used in
each epoch of the algorithm, but the result is often oscillation and convergence does not
happen. Small δ values can lead to convergence but slow.

In order to obtain fast convergence and avoidance of oscillation Vivaldi varies δ de-
pending on how certain the node is about its coordinates. Large δ values will help the
node quickly go to a position with low error, while small δ values allows it to refine itself.
The change in δ setting in Vivaldi also takes into account the error of the opposing node.
When the error of the opposing node is high, the node should not get a lot of weight and
thus δ should be lower. With this approach, there is quick convergence, low oscillation
and nodes with high error have a lower weight. [17]

2.3.3. NPS SYSTEM
The NPS algorithm improves the GNP algorithm by decentralizing it. In the NPS system,
hosts can serve as reference points to other hosts to define its base. This makes land-
marks much less critical and landmarks become less of a bottleneck to the system. The
GNP algorithm calculates node positioning with a centralized component. In GNP, if an
ordinary host wants to calculate its position, it has to probe all landmarks. This makes
the landmark nodes and their network access links a bottleneck to the system. If one
landmark or the connection towards a landmark fails, the system can hardly recover.

In NPS the minimization function of the GNP algorithm is expanded such that each
node computes its own coordinates. This makes the computation of landmarks linearly
at each node. The newly calculated position is shared with other nodes and after 1 sec-
ond of waiting the term is minimized again. The steps repeat until convergence is met
which is achieved if after 3 consecutive iterations a landmark position has not moved by
more than one millisecond in the euclidean space. The approach can embed 20 land-
marks starting from their origin positions in approximately one minute and the resulting
positions are just as accurate as the centralized approach. [18]

2.3.4. PIC: PRACTICAL INTERNET COORDINATES FOR DISTANCE ESTIMA-
TION

PIC provides a decentralized solution that scales well and does not rely on centralized
infrastructure nodes. Any node in the system can act as a landmark if the coordinates
are already calculated. PIC addresses the problem that peers can choose to obstruct the
system by for instance sending wrong information or manipulating its own coordinates.

Each new entering node to the system determines the latency to a set of landmarks.
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Figure 2.4: The figure on the left shows the cumulative distribution of the distance between consoles. The
figure on the right shows the latency’s measured for each distance between two nodes in miles. Both figures
are from the experiments performed on the data from Xbox game consoles by Leet al al, 2008 [20]

The entering node also obtains the coordinates of each landmark. The new node then
computes its coordinate by minimizing the error between the measured distances and
computed distances between the new entering node and the landmarks. The authors
of the paper experimented with several target error functions to minimize, the one that
performed the best was the sum of the squares of the relative errors.

In the PIC algorithm three different strategies have been tested to choose a subset
of landmarks out of all nodes. The PIC algorithm with different strategies were tested in
different environments with a variable amount of routers. The result tells us that choos-
ing some peers close and some peers randomly gives the best performance of the PIC
algorithm in a decentralized setting.

To make PIC more secure a triangle inequality test is introduced. For most of the
node triplets on the Internet, the triangle inequality holds. If an attacker lies about its
coordinates or its distance to a joining node the attacker is likely to violate triangle in-
equality. The security test may also be useful when dealing with congested network links.
When a link is temporarily congested, it will make the distance between the nodes in the
link large and create a triangle violation. Nodes that require links that have congestion
will thus be treated as an attacking node and ignored. [19]

2.3.5. LATENCY PREDICTION WITH GEOLOCATION APPROACHES FROM THE

EARTH

Lee et al, 2008 tried to do latency prediction with geolocation data. Geolocation data
is location data from the earth that is mapped towards IP addresses. The location data
was retrieved from Xbox live game session information for Halo 3. The data set covers
over 126 million latency measurements over 5.6 million IP addresses. Using the com-
mercial MaxMind GeoIP City database from June 2007, the authors were able to provide
the latitude and longitude for over 98% of these IP addresses.

It is hypothesized that the geographic distance between two consoles has a strong
correlation with their measured latency. The great-circle distance algorithm is used to
calculate the distances between two consoles at a different geolocation. The distance
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Figure 2.5: The correlation between the distance and latency. The latency data is the median of the data from
the Halo 3 players database. The distance data is from MaxMind’s IP-to-geo database. There is a clear linear
relation between the distance and the median. The slope of the line is 0.0269 ms/mile and the explained
variance is 97,6% (R2 = 0.976).

between nodes varies between 0 and 12000 miles. Figure 2.4 shows a cumulative dis-
tribution function for the distance between nodes. About 14% of the console pairs tra-
versed over 5000 miles. We have enough samples to examine the correlation between
distance and delay.

In the right graph of figure 2.4 the relation between the distance and delay is shown.
We see a very strong correlation between the geographic distance and the minimum
latency measured between two consoles. Above this minimum there is a lot of noise.
The geography of IP addresses is a useful predictor for filtering out pairs of IP addresses
that are too far apart to have such a low latency. [20]

2.3.6. HTRAE LATENCY PREDICTION SYSTEM

Htrae is a latency prediction method merging both network coordinate systems (NCS)
and earth geo-location approaches. The way this works is by geographic bootstrapping,
initializing NCS coordinates in such a way that they correspond to the locations of the
nodes in actual space. With better initial positions, Internet latency’s can be better pre-
dicted.

Figure 2.5 shows the correlation between the distance in miles and latency’s. The
median is taken at each distance and a linear relation can be seen from figure x. The
least-squares fit line is also drawn in the figure. The explained variance percentage is
97,6% which is high, so there is a strong linear relation.

When a new machine enters the system the Htrae algorithm works as follows. At
first, the IP-address is looked up in the commercial MaxMind’s IP-to-geo database. This
gives an initial geo-location for the NCS. A Vivaldi-like algorithm is then used where a
node moves in the direction of the forces that pull on the new node by nearby coordi-
nates. The Vivaldi algorithm is adapted to use spherical coordinates instead of a linear
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euclidean space to better model the spherical shape of the earth. An uncertainty model
is also added that is used to calculate how strong a force to apply when updating coordi-
nates: the greater a moving node’s uncertainty, the stronger a force will be. Uncertainty
is defined as the difference between the observed and calculated latency’s.

The Htrae system implements additional things to improve the algorithm such as Tri-
angle Inequality Violation (TIV) avoidance and autonomous systems correction. When
updating a nodes coordinate, Htrae will skip the coordinate update if the measured la-
tency exceeds the predicted latency by some number δ to remove TIV’s. A big difference
in the estimated latency and predicted latency is usually caused by inefficient routing
between two nodes. Inefficient routing causes a large delay between two nodes com-
pared to the sum of delays via a more efficient route. [21]

2.4. TRIANGLE INEQUALITY VIOLATIONS
Triangle Inequality Violations (TIVs) have an impact on the performance of neighbour
selection in P2P systems. A TIV exist if a node A is close to a node B and the node B is
close to node C , but node C is very far away from node A. These TIVs make it hard for
latency estimation algorithms to properly estimate latency’s because it makes it hard to
model peers as coordinates in a geometric space. TIVs exist because of routing policies
and the structure of the internet and these are not going to change. Thus TIVs will re-
main in the future. Various studies have reported Triangle Inequality Violations (TIV) in
the Internet delay space. For instance, when taking two peers in real-world datasets as
many as 40% of these peer pairs have a shorter routing path trough an alternative peer
instead of the internet. Next to assymetric routing is common where the upstream and
downstream capacities of a link are not equal. [22]

2.5. OPTIMIZATION FUNCTIONS
Various methods have been published to minimize an objective function. In latency
estimation algorithms minimizing an objective function is often a part of the algorithm.
The performance of the minimization function greatly effects the performance of the
estimation algorithm. In this paragraph we discuss a few minimization functions.

2.5.1. SIMPLEX DOWNHILL ALGORITHM
The simplex downhill algorithm is an applied numerical method used to find the mini-
mum or maximum of an objective function in a multidimensional space. It is applied to
optimization problems for which derivatives are not known. For a n dimensional space
it maintains a set of n+1 test points. The behaviour of the objective function is measured
by changing the test points slightly. The algorithm extrapolates the behaviour of the ob-
jective function for each test point. So, for each test point is decided whether increasing
or decreasing the test point would give a better result for the objective function. The test
points are then replaced by better new test points based on what gives the best solution
for the objective function. The algorithm takes several steps in which it measures the
behaviour of the objective function when test points are changed and updates the test
points in the direction that gives the best solution for the objective function. When the
objective function is converged towards a minimum the algorithm quits. [12]
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2.5.2. L-BFGS-B
The Broyden-Fletcher-Goldfarb Algorithm (BFGS) is an optimization method that tries
to improve on simple optimization functions such as the simplex downhill algorithm
with various mathematical tricks. The basis of the algorithm is similar to other optimiza-
tion techniques in that it tries to optimize a set of test test points. Because derivatives are
not available the Hessian matrix is too complex to be calculated. Instead the algorithm
tries to estimate the inverse Hessian matrix to make decision on how to improve the test
points for the objective function. The L-BFGS algorithm is a version of BFGS that uses
limited memory. Only a few vectors are maintained that represent the approximation
implicitly. This makes L-BFGS particularly suited to problems with very large variables.
For instance more than 1000 variables. The L-BFGS-B algorithm extends L-BFGS algo-
rithm to handle some mathematical constraints. [23] [24]





3
PROBLEM DESCRIPTION

The low latency overlay should be embedded in the current dispersy protocol. Dispersy
currently supports NAT Puncturing and protects against the eclipse attack and NAT-
timeouts. These features need to be maintained when implementing the low latency
overlay. To make good design decisions with regard to the latency overlay we will explain
in this chapter the peer discovery mechanism of dispersy.

3.1. COMPUTATIONAL, MEMORY AND BANDWIDTH EFFICIENT

ALGORITHMS
With a large number of peers N in the P2P network the algorithms should still be com-
putationally and memory efficient. Computing the lowest latency algorithm should be
computationally efficient and accurate. If the computation requirements on the algo-
rithms becomes too high Tribler does not function well anymore. There is extra latency
introduced when an algorithm blocks a node for a certain amount of time. Most algo-
rithms developed rely on a set of centralized landmarks to make computation efficient.
In the decentralized Tribler setting it is not possible to assign certain peers as landmarks
because all other peers should then know who the landmarks are. Tribler works with
a peer discovery mechanism that does not support centralized components. The algo-
rithms developed so far also require a lot of latency information. The GNP algorithm
requires N 2 of measured latency’s for a network with N peers. In P2P systems network
can the number of peers can become millions of peers.

The algorithms should next to computationally efficiency also be memory efficient
and be efficient in bandwidth usage. As peers collect latency’s that are measured by other
peers the number of latency’s stored in memory and send over the internet can become
large. If all peers maintain all the latency information they ever received and send share
all their latency information to other peers the memory usage is N 2 where N is the num-
ber of peers in the network. A choice has to be made what latency’s to send to other
peers to lower bandwidth consumption and what latency’s to store to lower memory us-
age. The choice depends on what effect the information loss has on the performance

17
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of the latency estimation algorithms. In the next chapters we will further evaluate the
design choice and evaluate the effect of the information loss in experiments.

3.2. DECENTRALIZED ALGORITHMS
The algorithms used in the overlay should be completely decentralized and cannot de-
pend on centralized components like is the case in the GNP algorithm. Tribler is a de-
centralized system and does not favour some peers over others. Instead it has a peer
discovery mechanism that determines which peers communicate with each other. Full
decentralization eliminates central components which can be shut down, require more
maintenance, can become bottlenecks and might provide extra security threats. Tribler
is one of the few systems in the world that does provide full decentralization. Other P2P
systems like bit-torrent require web sites to track users in the system. [25]

3.3. SECURITY REQUIREMENTS
The low latency overlay should be a secure system such that the Integrity of the system
remains intact. It should not be possible to tamper the system and let certain peers be-
come favoured over others when selecting neighbours. The messages send over the P2P
network should be encrypted and the origin of the messages should be authenticated.
Next to that the algorithm used in the overlay should be designed in such a way that no
information is send over the network that would make it easy to tamper with the sys-
tem. For instance, if the coordinates of individual peers would be send over the system
it would be easy for a peer to attack the system by sending false coordinate information
to other peers.

3.4. EMBEDDING THE LOW LATENCY OVERLAY IN THE PEER DIS-
COVERY MECHANISM

Peer discovery is constructed in such a way that it allows easy incorporation of a discov-
ery of low latency peers. To show this we will first explain how peer discovery works in
Tribler. In the dispersy implementation of the peer discovery mechanism a request and
response mechanism is build to test the communication between two peers. The result
is a list of peers called the neighbouring list that contains peers to which the peer always
can exchange data. The communication lines between two peers in the neighbouring
list are symmetrical by nature. If peer A has peer B in its neighbouring list, peer B also
has peer A in its neighbouring list. Thus, Both peers A and B assume the role of client
and server in the P2P network. To let the peer discovery mechanism work on the large
scale of the internet, random computers have to be able to communicate to each other
on the internet.

There are four phases in the peer discovery mechanism of Tribler. These four phases
represent one step and multiple steps are a walk. By walking each peer discovers a set of
known peers that are that peers neighbourhood.

1. peer A chooses a peer B from its neighbourhood and it sends to peer B an introduction-
request;
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2. peer B chooses a peer C from its neighbourhood and sends peer A an introduction-
response containing the address of peer C; peer A will add the address of node C to its
candidate list.
3. peer B sends to peer C a puncture-request containing the address of peer A;
4. peer C sends peer A a puncture message to puncture a hole in its own NAT.

Figure 3.1: Overview of peer discovery in Tribler

Candidate lists can be easily manipulated with the well known Sybil attack. By creat-
ing a large number of pseudonyms that are colluding, the attacker can force to populate
the neighbouring lists of victims by only introducing other pseudonyms to the victim.
If a victim accidentally selects an attacker node, the attacker node introduces other at-
tacker nodes which then introduce again other attacker nodes until only attacker nodes
are in the victim neighbouring list. [26]

3.4.1. NAT PUNCTURING

To directly message a peer of a local network the NAT box has to be punctured. The
puncturing is integrated in dispersy in the peer discovery mechanism. Firewalls on the
internet are designed to block communication between two random computers on the
internet for security reasons based on the client-server model and not for P2P networks.
Most firewalls allow all outgoing connections and allow only incoming connections that
are a response to an outgoing connection. This is great for the client-server model: A
client can easily make a connection to a server from an outgoing port and the server
can give a response to an incoming port that the firewall of the client only opens for
this particular connection request from the client to the server. A server simply opens
one incoming port that serves all requests from clients and clients send their requests to
this open port. In P2P networks each client also acts as a server and the firewall should
therefore allow incoming connections from other peers.

Network Address Translation (NAT) is designed for the client-server model and not
suitable for a P2P setting. Figure 3.2 gives an overview of the NAT protocol. 64% of the
computers connected to the internet do Network Address Translation (NAT) to hide the
IP and port combination of computers from a local network to the internet. The ip ad-
dresses and ports of the local peers 1,2 and 3 are hidden from the peer on the internet
with the NAT box. The NAT box has two IP addresses. One is available for the local net-
work and one for the internet. The peer on the internet only communicates with the NAT
box and the NAT box translates the ip,port combination to a peer from the local network.
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Figure 3.2: Network Address Translation (NAT). The NAT box has two ip, port combinations. (i p4, por t4 is
available on the local network and i p5, por t5 is available on the internet.

The peer on the internet cannot distinguish between the three local peers if it wants to
address one of the local peers and send messages to it. Therefore the local peers always
have to act as clients and initiate the connection. The NAT box identifies and remem-
bers the peer that initiated the connection and makes the translation for the peer on the
internet that gives a response to the NAT box. The peer on the internet can never initiate
a connection and is forced in the server-role. [27] [28] [26]

After both node A and C send a message to each other, the NAT firewalls of both
nodes are punctured and the nodes are able to communicate with each other. This is
called NAT puncturing. In the second phase of one step in the peer discovery mechanism
peer A knows the address of peer C and will add peer C to its candidate list. Node C
knows the address of A because it received it in the third phase of the the step from peer
B . Node C then punctures a hole in its own firewall by sending a message to node A in
the fourth phase. This message is blocked by the firewall of A and is never received. This
does not matter because the goal of the puncture message from node C is to puncture a
hole in the NAT firewall of node C . After node C has send the puncture message, node A
is able to connect to node C . Node A has to puncture it’s own NAT firewall by sending an
introduction request message in the next step of the peer discovery mechanism.

3.4.2. ROBUST NODE SELECTION
To prevent against eclipse attacks dispersy has implemented a preventing node selection
policy. In the next paragraph we will furhter explain on the dangers of an eclipse attack.
A dispersy node will divide his candidate list into three categories:

I) Trusted nodes
II) Nodes we have successfully contacted in the past
III) Nodes who have contacted us in the past, either through.

a) Nodes that have sent an introduction-request; or
b) Nodes that have been introduced to another node.

Nodes that have replied to an introduction-request message are put into Category
II, while the node they introduce is put in Category IIIb. Nodes that have send us an
introduction-request are placed in Category IIIa. A special list of predefined nodes, i.e.
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trackers is put in the trusted node category. A node which was introduced to us moved
from Category IIIb to Category II after a successful connection attempt.

When selecting a node, a node will choose from its candidate list with pre-defined
probabilities. The trusted node category has a probability of 1%, 49.5% is determined
by category II and category IIIa and IIIb both get 24.75%. After choosing a category,
the node will select the node by which the node had the most recent interactions with.
This is due to NAT-timeouts. NAT-firewalls will close inactive connections after a certain
timeout. If the NAT-firewall closes the port, any message sent to this node will never
arrive. [26] [28]

Dividing the nodes into the categories described above has a dampening effect on a
possible eclipse attack. If the attacker tries to perform an eclipse attack by introducing
nodes that are controlled by the attacker, the size of Category III will increase. Increas-
ing the size of this category only has a limited effect on the selection probability of this
attacker node. However, if the attacker has a lot of resources he can still eclipse a node.
This is why trusted nodes are also used by dispersy.

Every 100 steps a trusted node is contacted. When this happens the entire neigh-
bourhood list gets cleaned removing any attacking nodes. Trusted nodes by itself are
less susceptible to attacks as they are contacted by a constant stream of honest nodes.
Attackers should ensure that there are more attacking nodes than honest nodes when
contacting it for a successful attack. P2P networks now already have the size of more
than 4 million nodes working concurrently, so attacking a trusted node seems unlikely
to succeed.

Nodes from the neighbouring list after a certain amount of time. The amount of
time is determined by the node timeout data measured by Halkes et al (2011) [27]. In-
troduced nodes are removed after 25 seconds and nodes that are send to or received an
introduction-request from after 55s are also removed. In combination with a step time
of 5 seconds the average node degree becomes around 11 seconds. [28]

3.4.3. ECLIPSE ATTACK

Eclipse attacks have large implications on P2P. In the eclipse attack an attacker can gain
partly or complete control over the data that is received by a victim node. This is achieved
by manipulating the candidate lists of the victim and its neighbours. When selecting a
node it is important to take into consideration that attacker nodes might become part
of the candidate list. If the colluding attackers control a large part of the neighbourhood
of a victim node they can "eclipse" victims by dropping or rerouting messages that at-
tempt to reach them. In the case of complete control over the neighbours of a victim
peer (all neighbours are colluding attackers) the attackers gain full control over all the
traffic toward the victim. [29]

Eclipse attacks have large implications on P2P systems that use block-chain. They
allow the attacker to filter the victim’s view of the block-chain, use computing power of
the victim for its own use or separate the the network into two parts creating allowing the
attacker two create two separate block-chains. (See Figure 3.3). Next to that the eclipse
attack is also a useful building block for other attacks:

1) Engineering block races A block race occurs in a block-chain when two miners
discover blocks at the same time. One of these miners receives mining rewards for that
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block and his block will become part of the block-chain while the other miner will be
ignored and create an "orphan" block. Attackers can forge block races by holding back
mined blocks that are mined by eclipsed miners. Once a non-eclipsed miner discovers
a competing block the block mined by the eclipse miner is released later resulting in an
orphan block for the eclipsed miner.

2) Splitting mining power By eclipsing a large part of the miners from the rest of the
network, the 51 % mining attack becomes easier. The attacker gains control over 51 % of
the mining power in the network which allows to create a separate block-chain (Further
details). To make the reduction in mining power from eclipsed miners less detectable,
miners could be eclipsed gradually or intermittently. Figure 3.3 shows a network where
eclipsed nodes split the network in two. This split could be used to launch the 51 %
attack.

Figure 3.3: Separating a network with the Eclipse attack

3) Selfish mining The attacker can decide to eclipse certain miners to make sure that
other miners that are controlled by the attacker get more mining power. This is realized
by blocking all discovered blocks by eclipsed miners. Later in time the attacker increases
the mining power its own miners by only giving a limited view on the block-chain to
eclipsed miners obstructing the mining of eclipsed miners even more. The fraction of
nodes used to eclipse other miners is denoted as a and the fraction of nodes that is used
for honest mining is denoted as b. When more miners are eclipsed a is increased and b
is decreased. However, with high a mining becomes easier for the fraction b of honest
miners left.

4) 0-confirmation double spend In a 0-confirmation transaction the attacker exploit
systems where a merchant gives a confirmation of the transaction to a customer before
the transaction is verified by the block-chain. This happens sometimes in systems where
it is inappropriate to wait 5-10 minutes before a transaction in a block gets confirmed.
For instance in the retail service system BitPay or in gambling sites like Betcoin. The
coins spend by the customer to the merchant is double spend by the attacker. The at-
tacker first eclipses the merchant. When the merchant wants to confirm transaction T as
payment for the goods of the customer, the attacker double spends the bit-coins in the
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Figure 3.4: The figure shows the number of peers that have been contacted in the past by a peer and have
been in the neighbouring list of that peer as time proceeds. A new peer is added to and removed from the
neighbouring list every 5 seconds. After 120 hours 86400 peers have been added to the neighbouring list.

network with transaction T ′ but sends an confirmation of T to the merchant. Because
the merchant is eclipsed he can never tell the network about T . When the attacker is
the customer he can rewire the money back to himself with T ′ and thus not pay for the
goods. This attack has happened in a real world situation.

5) N-confirmation double spend In a system with an N-confirmation transaction the
attacker can also double spend coins from a merchant with an N-confirmation double-
spending attack. In an N-confirmation transaction the merchant only releases goods
after the transaction is confirmed in a block of depth N - 1 in the block-chain. The attack
requires that not only the merchant is eclipsed, but also a certain fraction of miners.
The attacker receives a transaction T from the eclipsed merchant and send T only to
the eclipsed miners. The eclipsed miners incorporate T into their view of the block-
chain V ′. The confirmation of T from the eclipsed miners is send to the merchant who
releases the goods to the attacker. After this has happened, the block-chain view V of
the non-eclipsed miners is send toward the merchant and the eclipsed miners. Next, the
block-chain view V ′ containing T is orphaned, and the attacker acquired goods without
paying. [30]

3.5. HANDLING CHURN

In the context of P2P systems, churn is the dynamics of peer participation in the network.
The arrival and leaving of peers. [31] Peer selection is designed in such a way that around
every 5 seconds a peer arrives and leaves in the neighbouring list of every peer. A peer
leaving from the neighbourhood list means that the connection between that peer is
broken and the peer cannot be contacted anymore for latency information. The arriving
peer in the neighbourhood list adds latency information to the current peer. he latency
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information could be latency’s measure from the leaving peer toward other peers and
the latency measured from the current peer to the leaving peer. The implication of the
current peer selection mechanism is that new latency information of other peers arrives
every 5 seconds while throughout the run of Tribler the neighbouring list maintains to
be the size of around 11 peers. Figure 3.4 shows the expansion of the numbers of peers
that have been in contacted in the past and in the neighbouring list as time proceeds.
The latency information of peers contacted in the past can be stored and reused again
for the latency estimation algorithm. When storing latency information of peers con-
tacted in the past the latency information could become outdated and less reliable. The
latency overlay should take the measurement date of latency information into account
and delete too old information. Old latency information can also give pressure to the
memory and should at some point be deleted.



4
SYSTEM DESIGN

To make the latency estimation algorithms computationally and memory efficient we
will work with incremental algorithms. In this chapter we will focus on how we designed
the low latency overlay. The overlay will try to get the average latency towards peers in
the neighbourhood of a peer as low as possible. The overlay will have to calculate and
estimate the latency’s between peers to know what peers to introduce to other peers and
what peers to walk to and add to the neighbouring list. The estimation of latency’s is
done with algorithms that are inspired by the GNP algorithm and the other algorithms
described in Chapter 2. A comparison of the different algorithms we propose in this
chapter is done with experiments described in chapter 5. How the new algorithms are
embedded in Tribler such that all design criteria of the previous peer discovery mecha-
nism still hold is also described in this chapter.

4.1. LOW LATENCY NODE SELECTION
The low latency overlay does not always have to perfectly introduce the peer that has the
lowest latency toward the peer that did the introduction-request. As long as the accuracy
of the overall algorithm is still good. The low latency selection also has to be incorporated
in the current node selection process in such a way that there is still protection against
the eclipse attack and NAT-timeouts. In the current node selection, the use of the groups
have a dampening effect on the eclipse attack. Next to that, the oldest node is currently
selected from the groups to prevent NAT-timeouts.

In the new node selection policy for the overlay, the different groups described in
chapter 3 maintain and the node with the lowest latency is selected from each group. Be-
cause the group structure maintains the new overlay still protects against the eclipse at-
tack. Nodes stay for such a short time in the neighbouring list that NAT-timeouts also do
not become a problem. Introduced nodes are removed after 25 seconds and nodes that
are send an introduction-request or where introduction-requests were received from are
removed after 55 seconds from the neighbouring list.

To give a good overview the new node selection policy for an introduction request is
the following. Dispersy node divides a nodes candidate list into three categories:
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I) Trusted nodes
II) Nodes we have successfully contacted in the past
III) Nodes who have contacted us in the past, either through.
a) Nodes that have sent an introduction-request; or
b) Nodes that have been introduced to another node.

When selecting a node to add to the neighbouring list, a node will choose from its
candidate list with pre-defined probabilities. The trusted node category has a probabil-
ity of 1%, 49.5% is determined by category II and category IIIa and IIIb both get 24.75%.
Instead of choosing the node to which the selecting node has had the most recent inter-
action with, a random node from the top 4 lowest latency’s is chosen from each category.
The lowest latency cannot be chosen from each category because this will result in a re-
peated selection of that node once the algorithm is converged. To load balance the node
selection among other low latency peers, one of the peers in the top 4 lowest latency’s of
each category are chosen.

The peer C to introduce to peer A, who sended the introduction request, is simply a
peer from the neighbouring list of peer B to which peer A has the lowest latency. Peer
A,B ,C are the peers from the peer discovery mechanism description in Chapter 3. Only
a peer from the neighbouring list of peer B can be introduced because the NAT firewall
of peer C has to be punctured to let peer A connect to it. Peer B can only send a puncture
request to peer C if peer C is a neighbour because otherwise there wouldn’t be a stable
connection between peer B and peer C .

4.2. RETRIEVING LATENCY INFORMATION WITH DISPERSY MES-
SAGES

Dispersy needs to collect latency information in order for latency algorithms to work. In
addition to that dispersy also crawls latency’s from other peers to retrieve the latency’s
other peers have with each other. The dispersy message cells collect latency information
and stores them into memory blocks in the RAM.

4.2.1. PING TO NEIGHBOURING PEERS

Every peer send all peers in its neighbouring list a ping message every PING TIME IN-
TERVAL seconds. This means the interval time between pinging peers is a fixed ping time
interval setting equal to some constant plus a random variable drawn from a uniformly
distributed distribution between 0 and 3 seconds. The standard setting for PING TIME
INTERVAL is 3 seconds.

For every ping message send toward a neighbouring peer the current time is stored
to compare with the arrival time of the response time and calculate a latency. The ping
payload contains the ip and port of the peer sending the ping message. Also the time
at which the message is send is added to the payload. The payload format for the ping
message is shown in figure 4.1.

After receiving a ping message, the peer checks whether it not already received a ping
message from the ip, port and time combination given in the payload of the received
ping message. If the message is not yet received a pong response is given to the ip and
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Figure 4.1: Ping and Pong payload.

Figure 4.2: The left figure shows what happens when P1 sends a crawl request. The crawl request is forwarded
to its neighbours P2, P3 and P4. These neighbours forward the crawl request to their neighbours to reach a
maximum number of neighbours. In the right figure the latency response message is shown. All peers send
back their latency information to the peer from who they received the crawl request message. These peers
forward the latency response message back until the original crawler P1 is reached. In the example P5, P6 and
P7 send their latency information to P2 who forwards the latency information to P1.

port combination received from the ping message payload. The pong payload contains
the ip and port of the peer that received the ping message and is given a response and
contains the same time as received in the ping message. See figure 4.1 for the payload
byte format of the pong message.

4.2.2. CRAWL FOR LATENCY INFORMATION
A crawling mechanism is active on every peer to collect measured latency’s from other
peers that were collected with ping and pong messages. A crawl message is send repet-
itively in an interval. Every CRAWL TIME INTERVAL seconds a crawl request is send by
each peer to every peer in its neighbouring list. The standard CRAWL TIME INTERVAL
is 15 seconds. Each peer that receives a crawl request message forwards this message
to other peers and send its latency’s back toward the requesting peer with a latency re-
sponse message. By forwarding the latency request message more peers are reached that
send back latency information.

When a peer returns latency information as a reply to a latency request message it
sends this latency information back to the peer who send the request. When the request
message was forwarded the latency response message is also forwarded back to the peer
who send the request until the original crawler is reached. As peers can only contact
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other peers in their neighbouring list the forwarding construction is necessary. Peers
cannot directly send back the latency information to the initiator of the crawl because
there is no reliable connection between these peers and the crawl initiator. A reliable
connection cannot be set up because the NAT firewall should first be punctured with
peer discovery. An overview of the forwarding mechanism is shown in figure 4.2. In a
later paragraph we will explain how the forwarding mechanism is programmed.

An overview of the latency request payload is shown in figure 4.3. The IP address and
port of the peer requesting the crawl is stored in the message. The hop count variable
denotes how many times the message has been forwarded. The peer that sends the first
crawl message sets the hop variable to 0. The relay list contains a list of unique variables
that is used by the response latency message to know to which peer the latency response
should be forwarded back. The hop variable is increased each time the message is for-
warded. If the hop count exceeds the MAXIMUM HOP COUNT variable the message is
not forwarded anymore.

Figure 4.3: Overview of crawl request message.

The latency response message payload is shown in figure 4.4. The IP address and
port contain the address of the peer giving the latency response message. The relay list is
used by the mechanism to forward latency response messages back toward the peer that
originally send the crawler request. The latency’s in the payload are all the latency’s that
are send backward toward the original crawler. The latency’s are stored in a dictionary
with the two addresses of one latency as key and the latency between these two addresses
as the answer to that key. The dictionary is serialized to a string to easily transfer them
in the payload.

Figure 4.4: Overview of latency response message.

THE FORWARDING MECHANISM

We will further explain how the forwarding mechanism works in the code. Crawl mes-
sages are forwarded by peers to reach more peers that can return latency’s. The returned
latency’s are send back to the original requester with the same route as the requests were
send but then backward. Both the crawl request message and latency response message
contain a relay list that is used in the forwarding mechanism.

In the first part of the mechanism the crawl request messages are forwarded to other
peers as can be shown in figure 4.5. Each time the message is forwarded a unique r el ay_i d
is created by the peer and is added to the relay list. When a peer receives a crawl request
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message the address of the sender is saved in the r el ay dictionary that is maintained by
the peer. The last r el ay_i d on the relay list in the message is used as a key in the r el ay s
dictionary. With the r el ay_i d as key the peer can know to which address the latency
response has to be send back in the second part. The unique r el ay_i d is created using
the global time variable in dispersy plus the address of the peer creating the unique id.
The global time variable is a lamport clock used for message ordering inside a dispersy
community. With global time each message used in the community can be uniquely
identified with in combination with the member who send the message and the com-
munity itself. The combination of global time and address thus gives a unique identity
variable. The r el ay_i d has to be unique to make the response always arrive at the right
peer. If r el ay_i d is not unique the key in the r el ay dictionary might be overwritten and
the response message could arrive at another peer.

Figure 4.5: Schematic scheme of peer forwarding. In each communication line the r el ay_l i st is given. Each
peer adds a new relay id to the r el ay_l i st . When a peer receives a message the r el ay s dictionary is updated
with the last added r el ay_i d as key and the peer who send the message as result. The hop count is also
increased at each forward.

In the second part of the mechanism the latency responses are send backward to the
peer that initiated the crawl. An overview of this mechanism is shown in figure 4.6. At
each arrival of a latency response message the last r el ay_i d of the r el ay_l i st in the
message is popped of the list and used as a key in the r el ay dictionary. As can be shown
in figure 4.6 the key gives the address back of the next peer in the forwarding chain to
eventually end at the crawl initiator. The dictionary key is also deleted as the latency
response is forwarded back and the key is of no more use. By deleting the dictionary key
the crawl mechanism stays memory efficient.

Figure 4.6: Schematic scheme of peer forwarding mechanism upon return. When the hop count exceeds the
hop count limit the latency’s are returned. The peer pops the last r el ay_i d from the r el ay_l i st and uses this
id to lookup the peer to backward the latency’s to in the r el ay s dictionary.
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Sometimes the peer to which the latency response has to forwarded back is no more
in the neighbouring list of a peer. In that case the latency response simply cannot be
forwarded anymore and the crawl initiator will never retrieve the latency’s. But, as the
latency crawler is activated in an interval the crawl initiator will eventually maybe re-
trieve the latency’s of the peer that left the neighbouring list.

4.3. INCREMENTAL ALGORITHMS
We focus on online incremental algorithms to predict the latency’s to get a computation-
ally and memory efficient solution. A schematic view of an online incremental algorithm
is given in figure 4.7. An online incremental algorithm does not require the total input of
all the measured latency’s at once but instead the input is given over time. At each new
time point when a new input vector is given to the algorithm new solutions are calcu-
lated. When new information is added to the incremental algorithm a solution is imme-
diately calculated. The new information updates the solution in such a way that when all
information is eventually fed to the algorithm a final solution is calculated. Calculating
a new solution upon new information is called a step in the incremental algorithm and
does not require so much computational power. An online incremental algorithm dif-
fers from a normal incremental algorithm in that there is no knowledge on future input,
while with normal incremental algorithms there is complete knowledge and decisions
can be made with future input knowledge. [32] [33]

Figure 4.7: Overview of an online incremental algorithm. At each step a new input event e is added to the
algorithm. A small computation with O(a) complexity is used to calculate a new solution s. The new solution
is used in the next step of the algorithm.

By taking steps the incremental algorithm chops the problem into pieces that are
easy to compute and do not block the processor of a peer. This is very important in
Tribler because peers cannot block the system. If that happens, the latency’s between
peers will increase because peers will wait for the processor to finish its computation.
However, chopping the computation into pieces can come at the cost of the accuracy
of the latency estimation. At each step future information input cannot be taken into
account in the calculation of the new solution. The relation between the new informa-
tion and future information added to the incremental algorithm can only be analyzed by
looking at information that was added in a past step. Information that was added in the
current step is future information from the perspective of the information added from
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the past. To what extent computational time can be spend at looking at information that
was added in the past to increase the accuracy is explored in the experimental chapter
with various incremental algorithms we will describe in the next paragraph.

4.3.1. EMBEDDING INCREMENTAL ALGORITHMS INTO TRIBLER

A new Incremental Algorithm step is run in a time interval equal to COORDINATE TIME
INTERVAL + uni f or m(0,3) seconds where uni f or m(0,3) is a draw from a uniform dis-
tribution. New information is added to the algorithm when peers enter the neighbour-
hood. To retrieve the new information the new entering peer should first be send a crawl
request to retrieve the new latency information. Once in a time interval neighbours of a
peer are crawled. The incremental algorithm has to wait until this crawl is finished. The
new low latency overlay maintains a list Pnew of peers that entered the neighbourhood
and also maintains whether the peers of Pnew were already crawled. Pnew is used in the
latency estimation algorithms.

4.4. LATENCY ESTIMATION ALGORITHMS
In order to discover what are the best practices for the low latency overlay a number of
algorithms are implemented inspired on the algorithms in the literature.

4.4.1. NAIVE ALGORITHM

The first algorithm is a naive coordinate-based algorithm where an error function is min-
imized that is equal to the difference between the estimated latency’s based on coordi-
nates in a geometric space and real measured latency’s. It assumes that there are N hosts
in the system and it further assumes that hosts H are coordinates in a 2 dimensional ge-
ometric space S. Every host Hn ∈ H has its own coordinate C S

n in S. Because S is geomet-
ric the distance function between two host coordinates d(C S

1 ,C S
2 ) is easily calculated by

taking the euclidean distance between the two hosts H1, H2. The error function requires
that latency’s are measured and collected by hosts. The resulting crawled latency’s give
the measured distance between two hosts. The function md(H1, H2) is equal to the mea-
sured latency between hosts H1 ∈ H and H2 ∈ H .

The following minimization function is calculated to compute the coordinates of
nodes:
fob j (C S

1 , ...,C S
N ) = ∑

Ci ,C j ∈{C1,...,CN },Hi ,H j ∈{H1,...,HN }|i> j
= ε(d(C S

1 ,C S
2 ),md(H1, H2)

where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2

The minimization function used is BFGS. This algorithms allows to minimize to the
error function with less minimization steps while remaining a good performance of min-
imization. The reason this algorithm is chosen is explained in the experimental section.
BFGS can vary in the number of function calls it requires. With more function calls the
BFGS might have a better minimization performance, but the computation becomes
more expensive. The complexity of BFGS is O(m ∗ er r or ) where m is the number of
error function calls and er r or is the complexity of the error function.

The complexity of the error function is O(N 2). Because the number of error function
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calls is negligible the total complexity of the algorithm is O(N 2). Tribler is not able to dis-
tinguish between landmark and non-landmark nodes as in the GNP algorithm. There-
fore, no computational efficiency’s based on central components such as in the GNP al-
gorithm can be applied. Because every pair of coordinates and their representing Hosts
are added in the sum function the complexity of one sum function is O(N 2). There is
a squared relationship between the number of peers N and the efficiency of the algo-
rithm. With large N the algorithm can become too computationally expensive. In large
P2P networks, N can easily become around 100000 nodes. In the experimental section
we explore how fast with increasing N the naive algorithm becomes computationally too
expensive.

4.4.2. SIMPLE INCREMENTAL ALGORITHM

The simple incremental algorithm only updates the coordinates of new entered peers
Pnew to the neighbourhood. In the experimental section we call this algorithm "Inc". It
is similar to the Naive Algorithm in that there is also a 2 dimensional geometric space S
where every host Hn ∈ H has its own coordinate C S

n ∈C . In the text hosts are sometimes
called peers, they have the same meaning. The distance functions are also md(Hz , Hb)
for the measured latency between two hosts a and b and d(C S

a ,C S
n ) for the euclidean dis-

tance between the two coordinates representing hosts a and b. In all other incremental
algorithms described in this section these assumptions apply. The way the coordinates
are calculated is however different in each algorithm.

In the simple incremental algorithm "Inc", only the coordinates C S
a of each peer in

Pnew is updated by minimizing its error function. Peers measure the latency’s toward
their neighbours and remember the latency’s measured toward past neighbours. A sub-
set L from the crawled latency’s is taken that are all the latency’s between peer a and the
neighbours and past neighbours of a. For each latency l ∈ L there are two peers p1 and
p2 which are the peers where the latency l is measured between. The collection of all
these peers minus peer a we call Psub with coordinates Csub . Because the latency’s in L
are all the latency’s measured between peer a and its neighbours and past neighbours,
Csub are therefore all the coordinates of neighbours and past neighbours of peer a. For
each of the peers pn ∈ Psub the coordinate C S

n ∈ Csub is retrieved or created. Whenever
there is a new unknown peer pn ∈ Psub which has not yet have coordinates in Csub its
initial coordinates C S

n ∈C are created randomly by taking two draws from a uniform dis-
tribution function from 0 to 1. All coordinates that are created in the past by the peer
who executes the algorithm are called C . After that the coordinate C S

a ∈ C of the new
entering peer a is calculated by minimizing the following function:

Incob j (C S
a ) = ∑

C S
i ∈Csub

ε(d(C S
a ,C S

i ),md(Ha , Hi ))

where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2

The minimization is done with the BFGS algorithm like as in the naive algorithm. The
complexity of one minimization function call is O(|L|) where |L| is the size of the num-
ber of latency’s measured by one peer. |L| becomes larger as time progresses as peers
have had more neighbours and thus more latency’s measured towards neighbours. The
minimization function is called for each peer in Pnew for one step of the "Inc" algorithm.
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However, the size of Pnew is negligible so the total complexity of one step in the "Inc"
algorithm is O(|L|).

4.4.3. INCREMENTAL ALGORITHM WITH R RANDOM REPEAT

The Incremental algorithm with R random repeat extends the "Inc" algorithm by also
updating the coordinates of other peers than the new entering peers Pnew . We call this
algorithm in other section "RandomRepeat". In each step after the "Inc" algorithm is
run, R random coordinates (C S

1 ,C S
2 ,C j ...S ,C S

R ) ∈C . are updated with a similar minimiza-
tion function as the minimization C S

a in the "Inc" algorithm. All coordinates that are
created in the past by the peer who executes the algorithm are called C . The minimiza-
tion function that is called for each of the R randomly chosen coordinates is equal to the
minimization function of "Inc". The "RandomRepeat" extension is:

for each C S
j ∈ (C S

1 ,C S
2 ,C j ...S ,C S

R ) do

Incob j (C S
j ) = ∑

C S
i ∈C S

jsub

ε(d(C S
j ,C S

i ),md(H j , Hi ))

where ε(.) is the error measurement function:
ε(coor di nate_di st ance, l atenc y_di st ance) = (coor di nate_di st ance−l atenc y_di st ance)2

The subset of coordinates C S
jsub

is calculated in the same way as in the "Inc" algorithm

by taking a subset of latency’s L j from the crawled latency’s. L j is equal to all the latency’s
between peer H j ∈ H and the neighbours and past neighbours of peer H j ∈ H .

The total number of times the minimization function is called is R + 1 times. The
function is called R times extra for the extension and once called for the "Inc" algorithm.
The complexity of the algorithm is thus O((R+1)∗|L|). In the experimental section we will
test with various numbers of R to see its impact on the computation time and accuracy.
It will be most likely that a larger R will increase the accuracy but lower the computation
time. A good design choice for R will depend on the results of these experiments.

4.4.4. INCREMENTAL ALGORITHM WITH R FIXED REPEAT

With a random repeat of node updates some nodes are updated more frequently than
others. A structured repeat of coordinate updates of other nodes is implemented to fur-
ther improve the accuracy of the R random repeat algorithm. We call this algorithm
"Repeat" later in this document. The structured repeat ensures that all coordinates C
are updated once before the same node is updated again. In this way no nodes are left
behind in updating and no nodes are updated more frequently than other nodes. The
"Repeat" algorithm is implemented by numbering each coordinate of C . When C in-
creases the new coordinates are given a new number incrementally. So the first coordi-
nate that was put in C is given the number 1, the second the number 2 and so on. Each
time the "Repeat" algorithm is executed, a new subset of R nodes of C is selected for
updating. Thus the first time the coordinates with a number smaller than R are selected
from C , the second time the coordinates with a number between R and 2R are selected
etc. If after n times nR > |C |, the selection starts again from the beginning at the low
numbers of C . The complexity of this algorithm is the same as the R random repeat ver-
sion because again the coordinates of R nodes are updated with the same minimization
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function. Thus the complexity is O((R +1)∗|L|).

4.4.5. INCREMENTAL ALGORITHM WITH R FIXED REPEAT AND TRIANGLE

INEQUALITY VIOLATION PREVENTION

The Incremental Algorithm with R fixed repeat and Triangle Inequality Violation (TIV)
Prevention is an extension on the "Repeat" algorithm. In further sections we call this al-
gorithm "TIV". The problem of Triangle Inequality Violations is solved by ignoring peers
who are estimated to contribute to a TIV. Ignoring means that the coordinates and la-
tency’s towards these peers are ignored in the minimization functions of both the "Inc"
part of the algorithm and the "Repeat" part of the algorithm. To estimate what latency’s
contributed to TIV’s the "prediction error" is calculated for every latency that is mea-
sured in the past by the peer executing the algorithm. The prediction error is equal to
the euclidean distance between the coordinates of the peer pair in the latency divided
by the latency. So for every latency l ∈ L and peer pair H1, H2 of l the following prediction
error is calculated:

pr edi ct i on_er r or = d(C S
1 ,C S

2 )
md(H1,H2)

The three latency’s with the largest prediction error are ignored and not used in min-
imization calculations. The sorting of the latency’s according to prediction error has as
complexity O(Llog (L)). The total complexity of the algorithm becomes O(L2 ∗ log (L)∗
R).

4.5. HIGH QUALITY OVERLAY
In this section we describe the optimization’s made to the low latency overlay to make
it ready for the real world. The optimization’s provide low computational time and low
bandwidth usage.

Because the low latency overlay has a low latency bias, only peers that are close to the
calculating peer are important and only latency’s toward these peers are remembered.
For every peer in the system only 100 latency’s toward the top 100 closest peers to the cal-
culating peer are remembered. Some algorithms update the coordinates over time and
require that latency information received from other peers is remembered and stored
in the memory of each peer. Only the latency’s toward the closest peers are important
to the algorithm because we are only interested in the closest peers and the coordinate
positions need to be optimized toward the closest peers. There is explicitly chosen for a
top 100 of closest peers because this gives good memory efficiency.

It gives computational advantage that the coordinate of a peer only has to be mini-
mized toward 100 peers. This is the case because only a top 100 of latency’s toward close
peers is stored in the memory.

The repeated coordinate updating in the algorithms is spread in multiple times to
save computational speed. For instance, if 5 coordinates need to be updated before
a new entering peer coordinates are calculated, the minimization function is called 5
times with pauses of non computation. In these pauses Tribler can do other stuff and
the maximum computation is the optimization of only one minimization function and
thus stays the maximum computation time low.



4.5. HIGH QUALITY OVERLAY

4

35

To save bandwidth is the forwarding mechanism and crawling for latency’s disabled
and are latency’s instead piggybacked with the pong message. A peer piggybacks all la-
tency’s known toward other peers in the pong message. Because the ping message is
send frequently and the low latency overlay is built in such a way that new peers are also
added to the neighbouring list, a peer will eventually receive latency’s from many dif-
ferent peers. The new pong message payload with latency’s piggybacked can be seen in
Figure 4.8.

Figure 4.8: Pong payload for high quality overlay with latency’s piggybacked.





5
EXPERIMENTS

In the experimental section we do a local experiment to test the different algorithms
and two experiments in a decentralized Tribler setting with 30 and 500 nodes to test the
algorithms in a real world application.

5.1. INCREMENTAL ALGORITHM
In this section, we describe the performance metrics used to measure the performance
of the incremental algorithm and discuss the experimental results.

5.1.1. PERFORMANCE METRICS

COMPUTATIONAL TIME

The computational time metric shows how much time Tribler is computing something
and is blocked. If the blocking time becomes too high, Tribler does not function any-
more. To fully evaluate the performance of the incremental algorithm the trade-off be-
tween the computational time and the accuracy of the algorithm needs to be explored.
The computation of incremental algorithms is divided over time. Every time a peer ex-
plores a new neighbour peer a new data vector containing the latency’s measured by the
newly explored peer is added to the latency data-set of the exploring peer. The computa-
tional time it takes to process this new data vector can easily be measured by taking the
time difference of the time before and after the computation. The accuracy change after
each incremental step of the algorithm is harder to measure and requires specifically de-
signed metrics. In the experiments in the decentralized Tribler setting the high quality
overlay spreads the computation of the repeated updates of coordinates over time to fur-
ther enhance the quality of the overlay. The code for the repeated update is the same and
is therefore added to the computational time measurement as a separate measurement
in time.

We use two metrics to measure the accuracy performance of the algorithm: ranking
accuracy and relative error.

37



5

38 5. EXPERIMENTS

RANKING ACCURACY

How good the algorithm has neighbours in his neighbourhood that are the peers to
which the latency is the lowest is measured by ranking accuracy. The idea is that after
each incremental step we can calculate the predicted distances between neighbouring
peers and we know the real distances based on the measured latency’s towards neigh-
bours and past neighbours. We then sort the predicted distances and measured dis-
tances towards neighbours and past neighbours to calculate a top closest peers for both
the predicted distances and measured distances. The ranking accuracy is defined as the
percentage of peers that is both in the top list of predicted closest peers and in the top
list of the measured closest peers. If the accuracy is 50% accurate then 50% of the peers
of the predicted closest peers list are also in the top measured closest peers list. The
size of both top lists is equal to 10% of the total number of peers that were neighbours
or past neighbours of the peer. The list size thus increases as new neighbours enter the
neighbourhood of a peer. This is done to give compensation for the increasing number
of latency’s measured.

RELATIVE ERROR

The relative error metric measures how well a predicted distance matches the corre-
sponding measured distance. This metric is also used to measure the performance of
the GNP algorithm [10]. For each predicted distance that can be calculated between two
peers the relative error is defined as follows:

r el ati ve_er r or = |pr edi cteddi st ance−measur eddi st ance|
mi n(pr edi cteddi st ance,measur eddi st ance)

A value of zero implies a perfect prediction as then the predicted distance and mea-
sured distance are equal. A value of one implies the predicted distance is larger by a
factor of two. The relative error metric measures the overall predictive performance of
the algorithm while ranking accuracy is a good metric to evaluate the selective perfor-
mance of low latency peers of the algorithm. Both metrics do not necessarily imply each
other. A good selective performance might have a bad relative error and vice verse.

5.1.2. RESULTS OF LOCAL EXPLORATION OF ALGORITHMS
The algorithms described in section 5 have been implemented and tested on one com-
puter with complete information. The computer runs a dual core 2.8 GHz processor.
With complete information we mean all peers know all latency’s to each other. Thus, if
the swarm size is n peers large, a single peer a knows n−1 latency’s to all the other peers.
With complete information the algorithms should run as optimal as possible.

In the experiment the location based latency estimation algorithms are tested on an
increasing number of peers that are added to the problem. A new peer entering the sys-
tem has the same effect as a new peer entering the neighbourhood of the low latency
overlay. In the beginning of the algorithm there are 0 peers in the system. The first and
second peer entering the system only know the latency toward each other. Every time
a new peer is added to the system an incremental step of the algorithm is taken. It is
assumed that the new entering peer has already measured all latency’s toward all other
peers that have been added to the system in the past. Thus all latency’s towards neigh-
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bours and past neighbours have already been measured. The new entering peer thus has
complete information about the latency’s. In Tribler the peer first has to measure all the
latency’s toward other peers that were added in the past to know this information.

Graphs of the computation time, "Ranking Accuracy" and "Relative error" perfor-
mance metrics are shown in figures 5.1, 5.2 and 5.3. The computational time of the naive
implementation grows exponentially, while the computational time of the incremental
algorithms grow linear. If the computation time becomes larger than 0.5 seconds, the
computation becomes impractical and will block the application. The application will
react later or not react at all to new incoming events reducing user experience and in-
creasing the latency between peers. The incremental algorithms also become imprac-
tical with increasing swarm size, in particular the Repeat20 and RepeatStructured algo-
rithm. The RepeatTIV and Inc algorithms have relatively low computation time with also
large swarm size. This makes them practical to use from computational time perspec-
tive.

The RepeatTIV (or TIV algorithm) algorithm has the best performance while the naive
algorithm has the worst performance. The naive algorithm shows a higher score on the
"Relative Error" performance metric and a lower score on "Ranking accuracy" compared
to the incremental algorithms. This is surprising as it was expected that the naive imple-
mentation gives a more accurate performance as more calculative effort is done to get
a good performance. The performance of the incremental algorithms are close to each
other on both performance metrics. The larger the swarm size the closer the perfor-
mance of the incremental algorithms are to each other. The RepeatTIV algorithm has a
higher "Ranking accuracy" and lower "Relative Error" with a swarm size below 150 peers.
In particular the "Ranking Accuracy" differs and is relatively higher for RepeatTIV. Also
RepeatStructured has a slightly better performance compared to Repeat20 and Naive for
both performance metrics.

5.1.3. EXPLORATION OF DIFFERENT ALGORITHMS IN DECENTRALIZED TRI-
BLER SETTING

The algorithms are tested in two Tribler experiments: one with 30 Tribler instances (nodes)
and another with 500 Tribler instances. With a low number of nodes it is easier for one
node to obtain more latency information of the entire network because the entire net-
work is small.

All decentralized experiments are managed by the Distributed ASCI 5 supercomputer
(DAS5). Gumby is used to calculate and collect performance metric data. Every 5 sec-
onds the performance metrics "Computational time", "Relative error", "Ranking accu-
racy" and the average latency towards peers in the neighbourhood are printed towards
files maintained by each individual Tribler instance. At the end of the experiment, all
metric information is aggregated towards a single file resulting in a collection of perfor-
mance metric data at each individual timestamp every five seconds. The mean, standard
deviation and 95% confidence intervals of the collection of data at each time stamp are
calculated at the end of the experiment and printed on a single graph. To every interval
in the system is a random number of seconds added to distributed the computation and
bandwidth usage over the nodes in the DAS5 supercomputer.

Instead of real measured latency’s, latency’s are extracted from the King Dataset. [34]
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Figure 5.1: Graph of the computation time for every algorithm as the number of peers entering the system
increases.

Figure 5.2: Graph of the relative error development for every algorithm as the number of peers entering the
system increases.
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Figure 5.3: Graph of the ranking accuracy development for every algorithm as the number of peers entering
the system increases.

Each Tribler instance runs the LatencyCommunity which is responsible for the collec-
tion of latency data and the execution of the algorithms. The King Dataset contains a
NxN matrix with latency information between two nodes. For instance, the entry on row
n and column m contains the latency of a ping from node n to m. This latency is dif-
ferent of the latency measured by node m to n which is presented by the entry of row
m and column n. Because the algorithm assumes that there is a single latency between
two peers the latency of n towards m and m towards n is averaged. Each Tribler instance
is given a unique ID by gumby starting from the number one incrementally increasing
upwards. The ID is coupled to the IP, port combination of each tribler instance. A Tri-
bler instance can lookup the ID of another node with the IP, port combination. The ID
is used in the matrix to lookup latency’s. For instance, if a node with ID k wants to know
the latency from itself towards another node with ID l it can lookup the latency in the
matrix at row k −1 and column l −1.

30 NODES EXPERIMENT RESULTS

The goal of the experiment with 30 nodes is to show that the algorithms work in a simple
setting. The high quality overlay is used and the experiment only lasts around 5 minutes.
The accuracy of the different algorithms is measured with the accuracy measurement
variables "Ranking Accuracy" and "Relative Error". The meaning of these variables is
described above. The graphs of these accuracy variables and the computation time for
an experiment with 30 nodes are shown in Figures 5.4, 5.5 and 5.6.

The Ranking Accuracy variable shows a lot of variation in the beginning of the exper-
iment. This behaviour can be explained with the fact that in the beginning no latency’s
have been crawled yet. All the positions of the neighbours are put in random position.
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Figure 5.4: The figure shows the computational time for one step of the incremental algorithm as time in
the experiment progresses. The number of nodes in the experiment are 30. The dots represent the average
computation time over every peer for each different algorithm at a certain point in time. The bar at every dot
represents the size of the variance relative to the mean.

Figure 5.5: The figure shows the ranking accuracy of all peers as time in the experiment progresses. The num-
ber of nodes in the experiment are 30. The dots represents the average ranking accuracy over every peer for
each different algorithm at a certain point in time. The bar at every dot represents the size of the variance
relative to the mean.
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Figure 5.6: The figure shows the relative error of all peers as time in the experiment progresses. The number of
nodes in the experiment are 30. The dots represents the average relative error over every peer for each different
algorithm at a certain point in time. The bar at every dot represents the size of the variance relative to the mean.

The positioning can either end op lucky or not and this gives the large variation in the
ranking accuracy. From around 30 seconds the ranking accuracy increases for all al-
gorithms and the large variation also disappears. The relative error decreases and the
variation is gaining as time progresses. This means that each node shows a different run
of the algorithms in which variation between the different nodes increases over time.

When comparing the different algorithms it can clearly be seen that the TIV algo-
rithm works best, followed by the Repeated algorithm and following last only the Inc
algorithm. The relative error and ranking accuracy of all algorithms decreases but is un-
able to converge in 5 minutes. The Inc algorithm works slower to a better value of the
objective function than the Repeated and TIV algorithm. The TIV and Repeated algo-
rithm have around the same progression towards a better value of the objective func-
tion. After 5 minutes the average ranking accuracy of the TIV and Repeated algorithm is
around 25% while the ranking accuracy of the Inc algorithm is around 18%. The larger
accuracy of TIV can be explained with the fact that peers with large prediction errors are
excluded from the minimization process. The positions of these nodes is not improved
and the distance function remains large. Nodes with a large distance are not often in the
top latency’s and thus the ranking accuracy is higher. The Repeated algorithm performs
better than the Inc version because nodes that were calculated in the past are updated
to get a better performance of the algorithm.

The computational time of all algorithms are below 0,06 seconds. The computational
time is higher for the Repeated Algorithm compared to the Inc algorithm because the
coordinates of more peers are calculated per step. The TIV algorithm has a bit higher
computation because for each peer of which the coordinates are calculated some extra
computation to remove triangle inequality violations. In the beginning of the process
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the computation time for the Repeated and TIV algorithm is lower. When time passes
more latency’s are collected and the computation of the coordinates becomes a bit more
computationally intensive.

When doing a student t -test on the different algorithms on average latency we get
the results as can be seen in the Table below. In all the t-tests used a confidence inter-
val of 0.05 is used with the Welsh t-test. The t-test tests whether the mean difference
between two groups can be attributed to random variation or that there is indeed a sta-
tistical difference between two groups. The Null hypothesis H0 states that the difference
in mean can be attributed to random variation. If there is a difference which cannot be
attributed to random variation the Null hypothesis is rejected. We compare the means of
the latency’s measured slightly after the beginning of the experiment (between 30 and 40
seconds) and the mean of the latency’s measured at the end of the experiment (between
290 and 300 seconds).

All algorithms have only differences that can be attributed to chance. All p-values are
higher than 0.05. When comparing the average latency results of the different algorithms
combinations all p-values are again higher than 0.05 so there is no statistical difference.
The outcomes of the t-test can be seen in the Table below.

Algorithm Mean 30 < t < 40 Mean 290 < t < 300 p H0

Inc 0.06977719 0.06861256 0.4389 True
Repeated 0.07097009 0.06843923 0.1159 True

TIV 0.06678266 0.06848889 0.2594 True

Algorithm Variance 30 < t < 40 Variance 290 < t < 300
Inc 0.0009966341 0.000966647

Repeated 0.001151103 0.001076714
TIV 0.0009966341 0.000966647

Mean 290 < t < 300 Mean 290 < t < 300 p H0

Inc, Repeated 0.06861256 0.06843923 0.8795 True
Inc, TIV 0.06861256 0.06848889 0.9113 True

Repeated, TIV 0.06843923 0.06848889 0.9645 True

500 NODES EXPERIMENT RESULTS

The goal of the experiment with 500 nodes is to let the high quality overlay converge
with a high number of nodes. The experiment with 500 nodes has the same measure-
ment methods as the result with 30 nodes but the results are different. The experiment
is executed over a period 12000 seconds which are 3 hours and 20 minutes. We will look
at each measurement variable in the following paragraphs. The graphs of the perfor-
mance metrics and computation time are shown in Figures 5.7, 5.8 and 5.9. The ranking
accuracy measures the accuracy of the top 10 latency’s in the neighbourhood instead of
the top 10% which would result in a top 50 with 500 nodes. This change is implemented
to let ranking accuracy be a indicator of how good the algorithm estimates the top 10 low
latency neighbours.
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Figure 5.7: The figure shows the computational time for one step of the incremental algorithm as time in
the experiment progresses. The number of nodes in the experiment are 500. The dots represent the average
computation time over every peer for each different algorithm at a certain point in time. The bar at every dot
represents the size of the variance relative to the mean.

Figure 5.8: The figure shows the ranking accuracy of 490 of the 500 peers as time in the experiment progresses.
The number of nodes in the experiment are 500. 10 nodes are added halfway. The dots represents the average
ranking accuracy over every peer for each different algorithm at a certain point in time. The bar at every dot
represents the size of the variance relative to the mean.
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Figure 5.9: The figure shows the ranking accuracy of 490 of the 500 peers as time in the experiment progresses.
The number of nodes in the experiment are 500. 10 nodes are added halfway. The dots represent the aver-
age relative error over every peer for each different algorithm at a certain point in time. The bar at every dot
represents the size of the variance relative to the mean.

The ranking accuracy has the same random period at the beginning of the experi-
ment with a lot of variance. The ranking accuracy converges for the Repeated and TIV
algorithm toward 40 %. The Inc algorithm converges with a lower speed toward 35 %.
The variance of the accuracy becomes higher as time progresses. What can be seen is
that the accuracy still is not converged to its final value while the relative error is for the
TIV and Repeated algorithm.

The relative errors do converge to a final value for all algorithms. The TIV and Re-
peated algorithm have a stronger decline than the INC algorithm. After 3 hours and 20
minutes the TIV and Repeated algorithm have declined toward a relative error of 0.43
with the TIV algorithm a relatively smaller relative error. The INC algorithm decreases
slower towards 0.5 in 3 hours and 20 minutes. At the start of the algorithm the relative
error decreases fast and then has a small period of around 15 minutes in which it is sta-
ble for all algorithms. Then after these 20 minutes all algorithms are decreasing toward
convergence. An explanation for the stable phenomena at the beginning could be that
the algorithms have to wait until more latency’s are measured and coordinate positions
can be updated adequately to increase the error objective function.

All algorithms show good results for computation, with all computation times below
0.1 seconds. The Inc algorithm seems to have a larger computation time in the begin-
ning of the experiment and the computation time decreases as time in the experiment
progresses. Eventually the computation time converges to an average value around 0.03
seconds for all algorithms. In case of the TIV and Repeated algorithm both the time
taken for the original minimization function and the computation time for each repeat
have been added to the measurements. The computation of the Inc algorithm eventually
converges to the same average value of the TIV and Repeated algorithm. An explanation
could be that in the Repeated and TIV algorithms the coordinates are already at a good
position and adding a new coordinate or updating old coordinates takes less computa-
tion time. The coordinates representing the peers are already at a relatively good position
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and require not so much change. This could also explain why the Inc algorithm takes less
time to compute as the accuracy of the algorithm is converged and coordinates are at a
good position.

T-tests are applied to test this the average latency of the neighbourhoods of all the
peers in the experiment. The results can be seen in the Table below. When looking at
the results we see that there is a significant difference between the beginning and end
of the Inc algorithm. The average latency increases from 0.1815305 to 0.1944564. This
is surprising because the latency should be lower. There is no significant result for the
Repeated and TIV algorithms and these algorithms have in every previous experiment
performed better. The variance is around 0.018 for all algorithms.

Algorithm Mean 30 < t < 40 Mean 12490 < t < 12500 p H0

Inc 0.1815305 0.1944564 2.2e-16 False
Repeated 0.1800181 0.1774035 0.08489 True

TIV 0.1825986 0.1810986 0.3001 True

Algorithm Variance 30 < t < 40 Variance 12490 < t < 12500
Inc 0.01823406 0.02514181

Repeated 0.01815356 0.01799468
TIV 0.01816127 0.01699357

When comparing the different algorithms for the end of the experiment with t-tests
the latency differences are statistically different for all algorithms. The results are that
the Repeated and TIV algorithm have a better average result at the end of the experiment
compared to the Inc algorithm. This is no surprise as these algorithms also have a higher
ranking accuracy and lower relative error. There is also a significant difference between
the TIV and Repeated algorithm where the TIV algorithm has a higher average latency.
This is surprising as the TIV algorithm seems to have a little better ranking accuracy and
lower relative error compared to the Repeated algorithm.

Mean 12490 < t < 12500 Mean 12490 < t < 12500 p H0

Inc, Repeated 0.1944564 0.1774035 2.2e-16 False
Inc, TIV 0.1944564 0.1810986 2.2e-16 False

Repeated, TIV 0.1774035 0.1810986 4.702e-06 False

5.1.4. EXTRA NODES ADDED TO THE EXPERIMENT
The behaviour of new entering nodes is explored in this section. In the 500 nodes exper-
iment, 10 nodes were added to the experiment halfway after 1 hour and 40 minutes. The
other 490 nodes are already new convergence with low relative errors and high ranking.
The development of the relative error and ranking accuracy of these two nodes can be
seen in Figure 5.10 and 5.11.

The convergence time appears to be the same for all algorithms, except for a mi-
nor speed enhancement at the beginning. There is no value added in that other nodes
have already calculated the coordinates of peers. There also is no difference between
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Figure 5.10: The figure shows the ranking accuracy of 10 of the 500 peers as time in the experiment progresses.
The number of nodes in the experiment are 500. The 10 nodes in the graph that are added halfway are shown.
The dots represents the average ranking accuracy over every peer for each different algorithm at a certain point
in time. The bar at every dot represents the size of the variance relative to the mean.

Figure 5.11: The figure shows the relative error of 10 of the 500 peers as time in the experiment progresses. The
number of nodes in the experiment are 500. The 10 nodes in the graph that are added halfway are shown. The
dots represent the average relative error over every peer for each different algorithm at a certain point in time.
The bar at every dot represents the size of the variance relative to the mean.
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Figure 5.12: Overview of Cost in Bytes of the low latency overlay over time in a 500 node experiment with an
overlay that uses the forwarding mechanism for crawling.

Figure 5.13: Overview of Cost in Bytes of the low latency overlay over time in a 500 node experiment with a high
quality overlay.
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the different algorithms compared to the normal situation. The Repeated and TIV algo-
rithms convergence a bit faster than the Inc algorithm but it still takes the same amount
of time compared to the normal situation. A difference between the normal situation is
that the behaviour in the beginning differs. There is no stable period in the beginning
where nodes have to wait upon latency collection to further decrease the objective func-
tion. With the extra nodes added the objective continually decreases as time progresses
until convergence is reached. This gives a small speed enhancement in the beginning
compared to the normal situation.

5.1.5. COST IN BYTES
The number of bytes shared in the low-latency overlay increases over time. The low-
latency overlay measures and shares latency’s with other peers. The byte cost of the com-
munication is therefore the same for every algorithm. In a standard dispersy experiment
the total byte cost of the communication is measured for every peer in KiBytes upload.
The byte costs for an experiment with 500 nodes have been measured in the overlay with
crawling and the high quality overlay. The derivatives of both measurements are given
in Figure 5.12 and 5.13. The result is a byte cost increase as time increases for the for-
warding mechanism. The reason of this increase is that every peer has more latency’s
crawled. These latency’s are all shared with other peers. The packet size of one latency
share has increased and thus also the total byte cost derivative increases toward values
over 10000 KiBytes / second. In the high quality overlay the byte cost does not increase
over time and remains around 400 KiBytes / second. Only in the beginning it increases
as then new latency’s are measured over time.
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FUTURE WORK

The current low-latency overlay provides a basic overlay with low computation that uses
incremental algorithms to estimate latency’s between peers. There are some points of
improvement that should be taken into account before P2P applications can rely on the
low-latency overlay. The algorithms haven’t been tested on large networks. Next to that,
triangle inequality violations (TIVs) could be further investigated because the algorithm
that tried to counter triangle inequality violations worked the best. Finding better algo-
rithms to improve on TIVs could further increase the accuracy of the latency estimation
algorithms.

Experiments with the low latency overlay on large networks should be done to make
the low latency overlay applicable in these large networks. It takes several days for a peer
to get 100000 different neighbours to measure the latency with. When such large num-
ber of latency’s have been measured the algorithm should still be computationally and
memory efficient. Next it should be tested whether the latency estimation algorithms
converge towards a result with high accuracy. The algorithm should also be able to han-
dle large latency inputs with more than 100000 latency’s at each step of the incremental
algorithm. It is very important that one incremental step is executed computationally ef-
ficient. If the computation at one step of the incremental algorithm is too much Tribler
could block other processes and therefore increase the latency of the network.

Research on how to counter Triangle Inequality Violations (TIVs) and algorithms that
deal with lack of information can further improve the latency estimation algorithms. The
experiments so far have shown that TIV prevention proofs to be quite useful. Other pos-
sibilities to detect TIVs and prevent them should be further investigated. The accuracy
is affected a lot by lack of latency information. The more latency’s are measured the
better the algorithms performs. The lack of information is especially important in the
decentralized Tribler setting because peers only measure latency’s toward neighbours
and cannot measure latency’s to other peers. A solution could be to create an algorithm
that can handle lack of information more efficiently. Another solution could be to gain
more latency information via other ways. For instance with IMCP ping messages.
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CONCLUSION

Building a low latency overlay is not as easy as it seems. Tribler has a number of limiting
properties that make it impossible to go for a simple implementation of an existing algo-
rithm. The low-latency overlay should be integrated in the current peer discovery mech-
anism of Tribler, because the current peer discovery mechanism has a few properties
that should be maintained. The current peer discovery mechanism adds randomness in
its choices of peer selection to prevent against the eclipse attack. If the new low latency
overlay does not have countermeasures against such an eclipse attack, nodes could be
controlled by adversaries or nodes could receive false information about other peers or
about things from a P2P application.

The integration of the low latency overlay in the current peer discovery mechanism
limits the efficiency of the overlay. Peers are getting in and out of the overlay which limits
the ability to measure latency’s towards peers in the P2P network. Next to that, peers are
divided into groups to prevent against the eclipse attack. If a peer wants to introduce a
peer to another peer or wants to add a peer to its neighbouring list it cannot choose the
peer with the lowest latency, but instead has to choose a peer from one of the groups.

To make good decisions on what peer to introduce to another peer and what peer
to add to the neighbouring list the latency’s between two arbitrary peers in the P2P net-
work have to be estimated. A peer can only measure latency’s toward peers who are
inside the neighbourhood. Therefore, a latency estimation algorithm is implemented
to make good decisions to get a low latency neighbourhood. There are numerous ways
to estimate the latency’s between peers. Some of these algorithms work better than the
other. It is important to take the computational expense of the algorithms into consid-
eration. When the P2P network is large the latency estimation algorithms can become
computational inefficient. Incremental algorithms are used to divide the computation
over time. Next to that it is beneficial to counter peers who cause Triangle Inequality
Violations (TIVs) in the latency estimation algorithm. Algorithms that deal with TIVs
perform better and have a better accuracy, especially in the Tribler environment where
latency information sometimes lacks.
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