14-th IEEE International Conference on Peer-to-Peer Computing

4P: Performant Private Peer-to-Peer File Sharing

Niels Zeilemaker, Johan Pouwelse, and Henk Sips
Delft University of Technology, The Netherlands
niels@zeilemaker.nl

Abstract—In recent years fully decentralized file sharing sys-
tems were developed aimed at improving anonymity among their
users. These systems provide typical file sharing features such as
searching for and downloading files. However, elaborate schemes
originally aimed at improving anonymity cause partial keyword
matching to be virtually impossible, or introduce a substantial
bandwidth overhead.

In this paper we introduce 4P, a system that provides users
with anonymous search on top of a semantic overlay. The seman-
tic overlay allows users to efficiently locate files using partial
keyword matching, without having to resort to an expensive
flooding operation. Included into 4P are a number of privacy
enhancing features such as probabilistic query forwarding, path
uncertainty, caching, and encrypted links. Moreover, we integrate
a content retrieval channel into our protocol allowing users
to start downloading a file from multiple sources immediately
without requiring all intermediate nodes to cache a complete

copy.
Using a trace-based dataset, we mimic a real-world query
workload and show the cost and performance of search using six
overlay configurations, comparing random, semantic, Gnutella,
RetroShare, and OneSwarm to 4P. The state-of-the-art flooding
based alternatives required approximately 10,000 messages to be
sent per query, in contrast 4P only required 313. Showing that
while flooding can achieve a high recall (more than 85% in our
experiments) it is prohibitively expensive. With 4P we achieve a
recall of 76% at a considerable reduction in messages sent.

I. INTRODUCTION

In recent years, a number of fully decentralized file shar-
ing systems were developed aimed at providing users with
improved anonymity while searching and downloading files.
Examples of such systems are Freenet [6] and Gnunet [5]
which were released in the early 2000s, while RetroShare [13]
and OneSwarm [9] are more recent solutions. These systems
rely heavily on encryption techniques in order to provide users
with the best possible preservation of publisher, sender, and
receiver anonymity.

However, the increase in complexity of these solutions has
given rise to substantial drawbacks, either due to their P2P
overlay structure or the approach used to search for files. E.g.
in order to route search queries both Gnunet and Freenet hash
the keywords, thereby unintentionally prohibiting partial key-
word matching. Similarly, flooding induced search overhead
found in Gnunet, RetroShare, and OneSwarm prohibits those
systems to scale as their costs rise exponentially compared to
the network size.

In 4P, we build upon a semantic overlay which has shown to
yield a high recall at a fraction of the cost [18]. Additionally,
we combine the semantic overlay with privacy enhancing fea-
tures which protect publisher, sender, and receiver anonymity

978-1-4799-6201-3/14/31.00©2014/ EEE

from collaborating peers.
Contributions In this paper we present 4P, a fully decentral-
ized private file sharing system which introduces a trade-off
between overhead and recall. 4P requires substantially fewer
messages to be sent per query compared to flooding based
alternatives, at a marginally lower recall rate.

Our main contributions in this paper are:

1) Leveraging semantic similarity among users, to query for
files without resorting to flooding.

2) We introduce a method which is able to negotiate a
session-key between two peers without the need of a PKI,
while still being able to overcome a man-in-the-middle.

3) Employing probabilistic query forwarding, path uncer-
tainty, caching, and encrypted links we preserve pub-
lisher, sender, and receiver anonymity from collaborating
peers.

4) Finally, we present the design, implementation, and eval-
uation of 4P using a trace-based dataset mimicking a real-
world query workload.

4P is built on top of previous work [21] which allows us to
construct a semantic overlay in a privacy preserving manner.
By employing homomorphic encryption techniques, peers in
our network exchange preferences and compute their overlap
in the encrypted domain. This results in both peers knowing
how many preferences overlap, without actually knowing
which. Moreover, a peer replying to a request to compute
the overlap cannot guess the contents of the request, and
therefore cannot fake similarity. After finding and connecting
to semantically similar peers, 4P uses the semantic overlay
to achieve a high recall while incurring a low overhead. Our
experiments show that peers achieve an average recall of 76%
while requiring only 313 messages to be sent, substantially
less than the approximately 10,000 messages sent by current
systems.

Additionally, as 4P is not hashing or encrypting keywords
during search, we can implement true fuzzy search. This alle-
viates users from determining beforehand by which keywords
their files need to be found, a requirement in both Freenet
and Gnunet. Moreover, partial keyword matching allows us to
implement content based search.

II. RELATED WORK

Searching in a Peer-to-Peer (P2P) network without the use
of centralized components has been widely researched over
the last decade. However, it remains a very difficult problem
to this day. Adding privacy preserving features to the mix has
increased the complexity of the proposed systems, while at

14-th IEEE International Conference on Peer-to-Peer Computing

the same time substantially decreased their efficiency. In this
section we will describe the current state-of-the-art in privacy
preserving P2P file sharing.

One of the first fully decentralized and unstructured P2P
network providing search is Gnutella. In the Gnutella net-
work [1], [15], peers connect to each other in an unstructured
manner. At the same time no single peer is more important
than another one. Search is implemented by creating a query
message, which a peer sends to all of its neighbors. This query
message includes a time to live (TTL) value, which prevents
a single query from being forwarded more than TTL times.
Upon receiving a query message a peer reduces the TTL value
by 1, and forwards it to all its neighbors while the updated TTL
is greater than 0. Sending messages in this manner is called
flooding and causes all peers within TTL hops to receive the
query.

Freenet, introduced in 1999, aims at being a more privacy
oriented alternative to then existing filesharing systems [6]. It
uses an unstructured network in which every peer and every
file is assigned to a key. Files can be found by generating
a key, using one of three different key-schemes. The key-
schemes provide peers with increasingly more features, such
as claiming their own keyspace, and storing files in encrypted
form. However, they also make finding files increasingly more
difficult as peers need to know public keys and or passwords
beforehand.

In Freenet, peers forward a query to a single neighbor based
on the XOR distance between the keyword hash and the keys
of its neighbors. If a peer exhausts its neighbors and cannot
forward a query, it will send a request-failed message telling
the previous peer to forward the message to another peer. If a
file was found, a SendData message is sent to the peer which
claimed to be issuing the query. However, as any peer in the
search-path (the chain of peers a query traverses over) can
probabilistically rewrite the source identifier of the requesting
peer, the SendData message will be forwarded over some
hops. At each hop, the content of the SendData message is
cached locally. This causes popular content to be cached in
the network while unpopular content is dropped.

Sending a query in Freenet using a property called depth to
record how many times a query is forwarded. However, this
depth value is not initialized at 0, but is set probabilistically to
a small value. Hence, the first peer receiving the query cannot
automatically assume that the peer it received the message
from is the initiator of the query. In contrast, in Gnutella a peer
receiving a message with TTL set to 6 can immediately deduce
that the predecessor created the query [19]. Additionally,
instead of sending a reply, a peer will forward a query with
a TTL value of 1 with a finite probability, extending the path
and obscuring the total path-length from all peers.

Gnunet aims at providing users with a reliable anonymous
backup system [5]. However, in contrast to Freenet, Gnunet
uses a flooding-variant similar to Gnutella. In their protocol,
the initiator of a query has to specify a priority and TTL value,
together with a triple hashed keyword using the RIPE160
hash algorithm. When receiving a query, a peer will use the

priority value to charge for the service of handling the query
by subtracting the priority from the credit of the sender. If
a query is received with a priority value of 0, no charge for
the service can be applied and thus the query should only be
honored if a peer has excess bandwidth. Content that matches
the hashed keyword will be sent back in a reply. If a peer
does not have matching content, it will forward the query to
n neighbors selected at random if the TTL value is higher than
0. The priority value for each of the forwarded messages is
reduced to nLjrl. The number of neighbors selected (n) depends
on the system load.

A query in Gnunet contains a triple hashed keyword, data
is stored at a double hashed keyword. This makes it is less
likely that a peer can reply to a query without having the actual
data, as the properties of the chosen hash function makes
it computationally intractable to deduce the double hashed
keyword from the triple hashed keyword.

Files in Gnunet are split into pieces, which can be down-
loaded by traversing a tree. A reply to a query consists of
a 1Kbyte root-node containing a pointer to the actual data
(the root of the tree), a description, a CRC checksum, and
a optional pseudonym and signature. For each keyword by
which a file should be able to be found, a root-node is created.
Using the associated keyword, every root-node is encrypted,
thus preventing a peer storing a root-node from knowing what
it is storing.

RetroShare is a friend-to-friend (F2F) network which aims
at providing users with a private social network [13]. On
top of this social network, in which users have to manually
exchange their public keys in order to become friends, features
such as instant messaging, group chat, voice over IP, and file
sharing are built. Users can find and download files using
the TurtleRouter [14]. This component of RetroShare provides
users with anonymous multi-hop file transfer, performed over
encrypted tunnels.

Searching for a file is called digging for a tunnel, and
peers dig a tunnel by sending a tunnel request to all their
neighbors. This tunnel request message contains a file hash, a
depth (comparable to the inverse of a TTL value), a randomly
generated ID, and a half-tunnel ID. Requests are forwarded
to all neighbors while the depth field is lower than 6, but
cycles are avoided. After locating a file, an encrypted tunnel
is established using the hash of the file hash, source peer ID,
and destination peer ID.

In 2010, OneSwarm [9] took an approach similar to Ret-
roShare and extended BitTorrent with a F2F network. In
OneSwarm, peers can decide locally what data is shared with
whom. Using a combination of private and public files, they
achieve a higher download speed compared to Tor and Freenet.
Exchanging public keys with friends is somewhat easier in
OneSwarm, as they piggy-back on existing social networks.

All traffic between peers is encrypted using SSLv3. Search-
ing for files uses flooding, which does not have a TTL value
and hence is unconstrained. Only a Bloom filter prevents peers
from forwarding a single query more than once. If a peer has
found enough sources, it may cancel a query by sending a

14-th IEEE International Conference on Peer-to-Peer Computing

Initial Fanout Successive Fanout

Successive forwarding
propeny failed

Search-Message Search-Message

~

Response-Message Response-Message

Fig. 1. Query being forwarded across a search-path, highlighting the search
properties.

cancel-message. OneSwarm delays forwarding a query for 150
ms at each hop, to allow for the cancel-message to catch up if
necessary. Messages forwarded to untrusted peers are delayed
with an additional 150-300 ms to obfuscate the path-length.
After a file is found, a BitTorrent transfer can be initiated over
the same path as the search. To allow for this search results
include a path-id variable.

III. COST AND LIMITATIONS OF CURRENT SYSTEMS

All five related works implement a file sharing system
on top of an unstructured network. In order to compare the
approaches used, we show a generalization of their search
properties in Figure 1. The initial fanout and successive
fanout properties determine how many neighbors the query is
send/forwarded to. The successive forwarding property defines
when a message should stop being forwarded. Table I shows
the search approaches of the previously mentioned systems
using the properties introduced in Figure 1.

A. Bandwidth Cost

We can distinguish between two different approaches to
search in an unstructured network. First, a P2P network can
employ routing to find the peer which is the most likely
to have matching files. This approach is implemented by
Freenet, but is more commonly found in DHTs. Second, a
P2P network can employ (constrained) flooding. Here each
peer forwards a query until the forwarding condition is not
satisfied anymore. This approach is implemented by Gnutella,
Gnunet, RetroShare, and OneSwarm.

A big drawback of routing approaches is that partial key-
word matching becomes almost impossible to implement. A
search query is routed to a particular peer based on the hash
of the keyword, therefore partial keyword matching requires
multiple queries as they must be routed to different peers.
Moreover, for each keyword (or partial keyword), a peer
inserting a file must announce its availability. These announces
often consume large amounts of bandwidth in DHTSs, as they
have to be repeated frequently due to churn [17]. Churn
denotes the frequent leaving and joining of new peers in the
overlay, which causes information stored in the DHT to be
stale. In Freenet, the situation is worse as complete files have
to be stored at the peer which is responsible for a keyword,
e.g. in order to implement partial keyword matching multiple
copies of a single file have to be stored in the network.

However, flooding a network can cause even greater band-
width usage. In 2000, Gnutella used a default TTL value of

— Search Query Hop 1 causes CT -~ Hop 2 causes CT - - Hop 3 causes CT

Arrived at Hop
O=MNWAUTON®OOWO

1 U 1 U 1 U
0 500 1000 1500 2000 2500 3000
Time since intial request (ms)

Fig. 2. OneSwarm cancel mechanism, if a peer in hop 2 causes the CT, the
cancel message catches up with the query at the 6™ hop.

7 for queries, causing 95% of the peers in the network to
receive each query message. Ripeanu et al. [16] discovered
that flooding the network with query messages caused Gnutella
to consume roughly 330 TBytes per month excluding file-
transfers in a relatively small network consisting of 50,000
peers. Using a similar flooding approach to Gnutella, Ret-
roShare employs a TTL of 6 when digging for a tunnel, leading
us to believe that it has comparable bandwidth usage.

OneSwarm constrains its flooding in a different manner. It
does not incorporate a TTL value, but delays query messages
at each hop, allowing cancel messages sent by the issuing peer
to catch up with the flood and stop it after enough sources are
found. Peers cancel their query after 10 sources have been
found. For simplicity, we call the peer which sends this 10
reply the cancel trigger (CT).

Figure 2 shows the time it takes for a query and cancel
message to arrive at a certain hop, depending on which hop
sends the CT. From the figure we can see that if hop 2 causes
the CT, the reply will arrive at the initial peer after 750 ms
(using 150 ms for RTT, and delaying 150 ms at each hop
before forwarding). When the issuing peer then immediately
sends the cancel message, it catches up with the flood at the
6th hop (1650 ms after the initial query). This is similar to
using a TTL of 6 and hence not a scalable solution. ' 2

Out of all of the introduced related works, Gnunet has
constrained its flooding the most; reducing the number of
neighbors contacted based on load, charging peers for for-
warding a query, and using a TTL value to limit the number of
times a query is forwarded. However, Gnunet requires many
queries to be performed in order to download a file, as it
needs to traverse the tree. The actual number of request can
be computed using the following equation wherein P equals
the number of initial pieces (filesize divided by 1024 bytes),
as described in [5].

[logs1 (P)]

> s

=0

RequiredQueries = P +

IPlease note that a higher RTT will increase the time it takes for the cancel
message to catch up, and a lower RTT will the reduce it.

2Both the number of sources required to cancel a search, and
forward delay are specified in the OneSwarm paper [9]. However in
the current implementation, the number of sources required to cancel a
search is increased to 40 https:/github.com/CSEMike/OneSwarm/blob/
88556421a7572565¢882c6fcc7c5858ct55eabed/oneswarm_az_mods/mods_
constants/org/gudy/azureus2/core3/config/impl/ConfigurationDefaults.java
(f2f_search_max_paths).

14-th IEEE International Conference on Peer-to-Peer Computing

TABLE I
SEARCH APPROACHES IMPLEMENTED BY CURRENT SYSTEMS
Approach Keywords Initial Successive Initial Fwd Successive Fwd ~ Fwd

fanout fanout property property remarks

Freenet Routing Hashed 1 1 TTL =18 - small ran- TTL > 0 Probabilistically
dom value extend TTL =1

Gnutella Flooding Plaintext 10 10 TTL =7 TTL > 0 -
RetroShare Flooding Plaintext 10 10 TTL =6 TTL > 0 -
OneSwarm Flooding Plaintext 0.5 * #Friends + 0.5 * #Friends + - Not seen yet -

System load System load
Gnunet Flooding Hashed System load System load TTL =7 TTL > 0 -

If a peer wants to download a 1 GByte file, it is required
to perform 1,000,052 queries. In order to have an estimate
of the bandwidth required to perform this many queries, we
assume that a single query requires 28 bytes to be send
over the network (20 bytes hash, and two integers: TTL and
priority). If we additionally assume that, by constraining its
flooding, Gnunet manages to send a query to only 5% of all
peers, sending 1,000,052 queries would require 65 GBytes
of overhead traffic in a network consisting of 50,000 peers.
In “version 2.0” of their protocol, Gnunet uses 32 Kbyte
pieces resulting in 32,770 queries and 2 GBytes of overhead
traffic [4].

B. Limitations

Besides bandwidth cost, both Gnunet and Freenet are un-
able to provide partial keyword matching. Gnunet uses triple
hashed keywords in order to prevent intermediate nodes from
being able to decipher the query. Thereby making it impossible
to perform partial keyword matching, as partial hashes cannot
be constructed.

Moreover, all three key-schemes implemented by Freenet
suffer from the same problem, but two of those schemes (SSK
and CSK) additionally require users to know both the public
key of the user inserting a file and its keywords before being
able to locate them. Although this solves the spam problem
which renders the KSK scheme useless, it also causes locating
files to be virtually impossible without an additional index.

IV. 4P DESIGN

Another approach to search in an unstructured network is
to cluster peers according to their preferences. Preferences
can be defined as the files a user downloaded, ratings for
movies, etc. A network which is clustering peers according to
their preferences is called a semantic network or overlay, and
previous work [18] has shown that by organising peers in such
a manner, recall can be high without flooding the network.
Typical values for a semantic overlay include an initial fanout
of 10 and a successive fanout of 0. Therefore in a semantic
overlay, as opposed to routing or flooding, a peer searching for
a file sends a query to its similar neighbors which then reply,
i.e. a query is not forwarded limiting the privacy exposure of
a peer. However, similar to Gnutella, neighbors in a semantic
overlay still know from which peer the query originated.

4P improves upon a traditional semantic overlay by im-
plementing three features which allow us to preserve the

anonymity of both the sender and the receiver of a query.
Using a similar approach as Freenet, peers probabilistically
forward query messages. Initially, a TTL value is specified by
the initiator of the query. This TTL value is decremented at
each hop, and when it reaches 0 a reply message is sent back.
Additionally, the TTL value of a message is used to determine
to how many peers the message is forwarded. If a peer receives
a message with a TTL value of 5, it decrements it to 4 and then
forwards it to 4 peers. We define the max/initial TTL value as
the agreed TTL value used by all peers when creating a new
query message.

Moreover, a peer can probabilistically decide not to decre-
ment the TTL of a message with the agreed upon max/initial
TTL value. This prevents peers receiving a message with the
max/initial TTL value from knowing if the previous peer has
created or forwarded the query. We define this probability as
the initial extension probability or I EP. Finally, a peer can
probabilistically decide to keep forwarding a query with a TTL
value of 1, preventing an attacker from being able to query a
single peer. We define this probability as the final extension
probability or FEP.

To protect the privacy of the peers replying to a query we
use caching. When receiving a reply-message from another
peer all results within it are cached locally. This achieves two
goals, first the cache of a peer now contains not only its own
data, but also cached results from others. Consequently, if after
enabling caching, an attacker tries to determine the contents of
a peer’s local cache he will not be able to distinguish between
cached and local results. Second, as we have built 4P on top
of a semantic overlay the cached results will likely be relevant
to a peer and its neighbors, thus improving overall recall of
the system.

However, in contrast to Freenet, peers in 4P do not cache
complete files by default. In 4P, we split searching for and
downloading files into two separate actions. First, the peer
issuing a query will receive a message containing all meta-
data found by peers on the search-path. Second, after deciding
upon which content to download, a peer can use the established
content-path to start downloading it. The content-path is a
tunnel from the initiator of a query to a peer which has the
content. A content-path is constructed for each result a peer
back-propagates to the original query initiator. During the
search, each peer in the search-path will rewrite the source IP
protecting the identity of the peer it received the query from,

14-th IEEE International Conference on Peer-to-Peer Computing

and hence a tunnel is required to download a file. While a
content-path is active, the metadata associated to it is cached.
Content-paths are kept active by sending ping/pong messages
to the next hop. As long as this peer replies, the content-path is
marked as active. An active content-path, allows peers to use
the locally cached metadata while replying to other queries.
If a content-path breaks, a peer removes the metadata from
its cache as it is unable to provide other peers with the actual
contents of the file.

V. 4P IMPLEMENTATION

Based on our design, we need to build three components in
order to implement 4P. First, we provide a method which is
able to construct a semantic overlay in a privacy preserving
manner. Second, we define the messages used when sending
a query. Third, we describe how a peer can download files
after finding them. In this section we elaborate on the actual
implementation of these components.

A. Semantic Overlay

In order to construct a semantic overlay in a privacy
preserving manner we have modified our earlier work [21].
In this protocol, peers are able to discover and connect to
similar peers without having to reveal their preferences/items.
By applying homomorphic encryption, two peers can compute
the overlap between their preferences sets without disclosing
which preferences do overlap, and which don’t. Our extension
in this work is a method which allows Bob to reply with a
session-key which can be used to encrypt the link without
being vulnerable to a man-in-the-middle attack.

For convenience we list the basic steps of the protocol
below:

1) Alice builds a polynomial having roots in each of the
items contained in her set Z4. That is, she computes the
n + 1 coefficients «y, ..., a, of the polynomial

f(x) =+ a1z + sz + ... 4+ a2 (D

for which f(Z4,;) = 0 for any item in her set.

2) Next, Alice encrypts the coefficients and sends them to
Bob, e.g. sending &Epp, (f (2)).

3) Bob uses the homomorphic properties of the encryption
scheme to evaluate the polynomial for each item in his set
I" . He multiplies each result by a fresh random number
ri, and adds a session-key generated for Alice obtaining
Epien (ri - f(IBi) +Sa,B)-

4) Bob adds all evaluated polynomials to a list, permutes
the order, and sends it back to Alice.

5) After receiving the list of evaluated polynomials from
Bob, Alice decrypts each ciphertext. The ciphertexts
decrypt to S4 p in case of an item in the intersection
ZaNZIpg, ortoarandom value otherwise.

Alice can detect Sy, p, if more than one item overlap
between her and Bob. Moreover, it is very likely that the
random values are larger than the 128 bit key we’re using
for S, 5. Hence, if Alice finds a single 128 bit value in Bob’s

decrypted list, she assumes it is the session key. By counting
the occurrences of the session-key, Alice can compute sim 4,

The session-key generated by Bob cannot be intercepted
by any man-in-the-middle, as its encrypted with the key
of Alice. Moreover, it is intractable to decrypt either the
encrypted coefficients of the polynomial, or the encrypted
evaluated polynomials, as they are encrypted using the Paillier
scheme [11].

In step 4, Bob permutes the order of the list to hide the index
of the items which are overlapping. Without this permutation,
the index of the overlapping items can reveal information on
when Bob added this particular item to his preference list, or
even worse if his preference list is sorted it could reveal the
distribution of the values in the list.

Furthermore, please note that Bob cannot simply reply with
all preferences, as the list of possible preferences is very big
(in our implementation we use a hash function to limit the
size to 2%0), and Alice can easily detect this as Bob will reply
with many evaluated polynomials.

Finally, in order to prevent an attack in which Alice will
attempt to discover the preferences of Bob by repeatedly run-
ning the protocol with only one preference, Alice is required
to append a proof-of-work to each request. This proof-of-
work can only be used once, and requires Alice to spend a
considerable amount of time for each request. An example of
such a proof-of-work is HashCash [2], wherein a user sending
an email is required to compute a hash based on the current
time, destination address, and a random seed. This hash needs
to start with at least 20 zero’s, and can only be computed brute
forcing different random seeds.

B. Search Messages

In the semantic overlay, peers use two messages while
searching for files. Initially, a peer sends a Search-Message
consisting of 3 fields. First an identifier, this is a randomly
chosen 2 byte unsigned short. The identifier is used to detect
cycles in the search-path. Next, a 1 byte unsigned TTL
value used by peers to determine if this message needs to
be forwarded. Finally, the message contains the keywords
specified by the user, represented as a string with a dynamic
size of at most 256 characters.

Upon receiving a Search-Message, a peer updates the TTL
value. If the TTL value is greater than O, the peer creates a
new Search-Message using the same identifier and the updated
TTL. This message is then forwarded to the next TTL peers,
which are randomly chosen from the list of most similar peers.

If the updated TTL value equals 0, a peer replies with a
Response-Message instead. To create this message, a peer will
perform a local search and constructs a Response-Message
with the same identifier. We only include the metadata of
each result, e.g. the name of the file, a description, the size,
etc. to reduce the size of the Response-Message. Additionally,
each result has a unique identifier used by peers in order to
download it.

Upon receiving a Response-Message, each peer in the
search-path appends its local results and creates a new

14-th IEEE International Conference on Peer-to-Peer Computing

Response-Message which it sends back to the peer it originally
received the Search-Message from. This will eventually cause
the Response-Message to back propagate to the initiating
peer?.

Moreover, each peer in the search-path sorts the results after
appending its local results using the same relevance-ranking
and only includes the Top-K most relevant results in the
Response-Message. This aims to prevent peers from guessing
the length of the search-path by counting the number of results.
Choosing a K value is application dependent, setting it low
will make guessing the path-length harder but also reduces the
number of results per query.

If a peer receives a Search-Message with an identifier it has
seen before (indicating a cycle), it still forwards the Search-
Message. However, a peer will make sure that it does not
forward a Search-Message with the same identifier to the same
neighbor twice. When a peer exhausts all possible neighbors
for a particular identifier, it aborts the search-path and replies
with a Response-Message.

C. Downloading Content

As searching for and downloading a file are two separate
actions, a peer has to be able to request to download a file after
receiving a Response-Message. However, as described in the
previous section, a Search-Message is sent to a random peer at
each hop. Therefore, in order to satisfy a download request, the
path to the peer which has the content has to be kept open, as
attempting to send a request for the file will probably not end
up at the source. This content-path is established by keeping
open a connection to the peer it received the result from when
back-propagating a Response-Message. When the initiating
peer attempts to download the file its request is forwarded
along this content-path, and the data is back-propagated.

In order to support downloading files from multiple sources
we have modified the Peer-to-Peer Streaming Peer protocol
(PPSP) [3]. At its core, PPSP can be compared to BitTorrent.
It splits data into smaller pieces which then can be downloaded
in parallel from multiple sources. However, in contrast to
BitTorrent it uses UDP, a Merkle tree to both identify and
verify pieces of the data, and multiplexes parallel downloads
over a single socket. We modify PPSP such that intermediate
nodes in the content-path will forward/back-propagate all
PPSP messages. This tunnel allows the PPSP protocol to
operate as normal. If a peer requires more sources for a
download, it can perform an exact search using his remaining
similar neighbors. If a hit is found, the new content-path is
added to the PPSP download.

Moreover, the content-path of a file does not necessarily
have to overlap with the search-path. If a peer has cached
metadata from another request, then this cached metadata
is kept while the content-path is active. Cached metadata is
used while replying to queries, and hence successive searches

3Note that only the initiating peer knows that it was the initiator, all other
peers cannot tell whether they are sending the Response-Message back to a
forwarding peer or the initiator of the query.

DataSource

Previously
established
—_————

~
i i ~
Search-Path @ @
-— ~
-—
-————

Content-Path Content-Path

Fig. 3. Example of a search-path and an content-path. Note, that the
DataSource is not actually queried during the search.

matching cached metadata are used to boost recall. Addition-
ally, because we are using PPSP, we can keep multiple content-
paths alive without incurring high costs as PPSP multiplexes
traffic over a single socket (re-uses), and thus only one open
socket is required for each of our similar neighbors.

Figure 3 gives an example of a search-path and the estab-
lished content-path. While performing this search, the Data-
Source of the matched file did not actually receive the query.
However, a peer caching the metadata of the file used the
previously established content-path in a reply.

Downloading a file in this manner causes each peer in the
path to download/upload part of a file. This is clear drawback,
but it will preserve the privacy of both the downloader and
uploader. If privacy is less of a concern, then by enabling peer
exchange (PEX) in the PPSP protocol a peer can decide to
(partially) collapse the path and thereby reducing the number
of hops between it and the DataSource. Not rewriting the
source address is implemented in both Freenet and Gnunet.
However it has been shown to be exploitable by a shortcut
attack in Gnunet allowing an attacker to determine the initiator
of a download request [10].

D. Choosing the initial TTL, IEP, and FEP

Searching for files in 4P, resembles very much (constrained)
flooding. As flooding is something we definitely want to avoid,
the initial TTL, IEP, and F'EP need to be chosen carefully
as they might cause 4P to behave similar to flooding, i.e. a
combination of these values needs to be found which limits
the number of messages sent.

Please note that we can constrain the flooding much more
because of the semantic overlay we’re searching on top of, the
semantic overlay does not need many messages to be sent as
the peers which have the best results are nearby.

Whether 4P will flood the network is determined by the
combination of /EP and the chosen initial TTL. These two
variables determine the probability that one of the peers
extended the initial path. If this probability is too high,
larger than 0.5, the initial path extension is unlikely to stop.
Hence causing flooding of the network. We can compute the
probability of at least one peer extending the path (PIFE) as
follows:

PIE=1-(1— IEP)initial TTL

Empirically we found that if we choose the initial TTL and
IEP such that the PIE stays below 0.5, then no flooding
occurs. However, by lowering the I E'P, and thereby being able
to increase the initial TTL, the initial path extension is reduced.

14-th IEEE International Conference on Peer-to-Peer Computing

TABLE I
ANONYMITY EVALUATION

Attacker Sender Anonymity Receiver Anonymity

Local eavesdropper
Collaborating peers

Provably exposed
Probably innocent

Provably exposed
Probably innocent

Causing less uncertainty on whether or not the previous peer
created the query. The expected value of the initial extension
can be computed using:

IEV = Y ix PIE'
i=1
In our experiments, we have set the initial TTL to 4, ITEP
to 0.15, and the F'EP to 0.5. This results in a PIE of 0.45,
and a ITEV of 1.5.

VI. SECURITY

In this section we briefly discuss possible attacks, and
the extend to which 4P protects the anonymity of peers.
In the original Freenet paper [6], the authors evaluate their
protocol by considering sender and receiver anonymity. Sender
anonymity defines the extent to which the identity of an
initiator of a query is protected, receiver anonymity as the
extent to which the identity of a peer which replied to a
query is protected. The levels of protecting anonymity were
described in a paper by Reiter et. al. [12], and range from
absolute privacy in which communication cannot be observed
to provably exposed in which an adversary can prove that a
peer was the initiator. Please note that being able to prove
that a peer was the initiator does not necessarily mean that
the attacker can read the query.

The anonymity of both sender and receiver is exposed
in Freenet, when attacked by either a local eavesdropper or
collaborating peers. However, sender anonymity is preserved
beyond suspicion for collaborating peers.

Table II shows a summary of the anonymity of 4P. Against
a local eavesdropper 4P cannot provide any anonymity. We
defined a local eavesdropper, as an ISP which can observe all
communication in which the computer of a peer participates.
Therefore, it can detect that a peer has created a new query, as
it can observe that no query was sent to the peer beforehand,
and detect that a peer replied to a query, as it might be able to
observe new results in a Response-Message due to the increase
in size. Encrypting, padding, and combining messages can
improve anonymity while dealing with a local eavesdropper
as it can prevent the eavesdropper from detecting new queries
Or New responses.

Against collaborating peers, 4P is better equipped. The
sender anonymity of a peer is protected as a query with the
initial TTL value is probabilistically forwarded. Additionally,
receiver anonymity is protected as every peer in the search-
path will always forward a query until TTL = 0. Therefore, no
peer can determine if a reply originated from the peer it just
received the Response-Message from or if it originated from
a peer higher up the path. Moreover, as peers may forward
a query with TTL = 1, an attacker is not able to use TTL =

1 queries in order to determine the actual files being shared
by a peer. Finally, all links are encrypted using the session-
keys peers exchanged during the construction of the semantic
overlay, ensuring that no man-in-the-middle can listen-in on
the queries/message sent by a peer.

VII. EXPERIMENTS

In order to evaluate the performance of 4P, we have designed
several experiments which compare the recall performance and
associated cost to several other overlay configurations and their
search approach. In the following subsections we describe the
dataset, emulation setup, and the metrics we used during the
evaluation.

A. Dataset

During the experiments we used a dataset extracted from a
deployed semantic overlay network [20]. In this P2P network
peers create a semantic overlay by exchanging plaintext mes-
sages containing all preferences of a peer. By comparing the
preferences of it and other peers, a peer is able to compute
which other peers are similar to it. By deploying instrumented
clients into the semantic overlay we have created dataset
consisting of the preferences of more than 75,000 peers.

From this dataset, we selected 1000 peers at random and
made sure that each peer has at least 10 preferences. Addi-
tionally, we require that each item was preferred by more than
one peer (all other items were removed from the dataset). Next,
we have split the preferences of each peer in a training/testing
set using a 80%-20% split. Dividing a dataset in this manner
allows each peer to use its training set to find similar peers,
and then use the testing set to check if those peers are similar
enough to provide it with search results. E.g. we issue a
query for each item in the testset, and see if we can find
it using the search algorithm being tested. A 80%-20% split
of training and testing set is common practice in collaborative
filtering and used to asses the quality of the discovered similar
neighbors [7], [8]. Finally, we computed the 10 most similar
peers for each peer using its training set.

B. Emulation setup

In order to emulate the semantic overlay we implemented
the protocol as described in Section V-A on top of ANON [22].
ANON is a P2P data replication platform which implements
a semi-random peer selection algorithm, NAT-traversal, and
fully decentralized permissions. Building the overlay on top of
ANON allows us to easily deploy and test the system both on
our supercomputer and in the future, deploy it to the Internet.

We create a process for each peer and configure it with
its own separate database containing its own training and
testing set, and the 10 most similar peers it must connect to.
In each scenario we deploy 1000 peers onto 10 nodes of a
supercomputer, and force them to connect to their most similar

14-th IEEE International Conference on Peer-to-Peer Computing

TABLE III
SEARCH STRATEGIES, AS EVALUATED

Overlay Initial Successive Forwarding
fanout fanout condition
Random Random 10 0 -
Semantic Semantic 10 0 -
Gnutella Random 10 10 TTL > 0
RetroShare ~ Semantic 10 10 TTL > 0
OneSwarm Semantic 0.5 x #Friends 0.5 x #Friends Not seen yet
4p Semantic TTL TTL TTL > 0
peers*. Next, 200 peers use their test set (20% of their data)

to send queries. Using the random identifiers of all queries
we track to which peers a query is sent, how many peers in
total receive a query, at what point in time they receive it,
and when the initial peer receives a reply. If two peers during
the experiment use the same identifier we remove all data
regarding those queries, to prevent possible misinterpretation
of the results.

During the experiments each peer writes its recall to a
file, allowing us to compute the overall mean recall of those
peers and thus the search-performance. Recall is computed as

follows: found i
Recall — +# oun' items
#queries sent

C. Evaluated strategies

In order to compare the performance of 4P, we implemented
and evaluated several other strategies derived from the related
work as shown in Table III. We have chosen to evaluate
a random strategy to show the gain of using a semantic
overlay. Furthermore, we implemented the flooding strategy
of Gnutella, in order to show the performance gain and higher
bandwidth cost of such an approach. Note that we actually
limit the flooding scenario as we “only” forward a query to
10 neighbors.

Finally, we compare the approaches of RetroShare and
OneSwarm to 4P using the same semantic overlay (i.e. each
peer connects to its 10 most similar neighbors). RetroShare
floods the network similar to Gnutella, however it uses a
slightly lower TTL. For OneSwarm, we converted their latest
published Java code to Python and integrated it into our
experiment setup. Moreover, we used all their defaults in order
to constrain the flooding of the network. We configured 4P
using the values as described in Section V-D.

D. Results

Figure 4 shows the mean recall of the evaluated strategies.
From the figure it is clear that having a semantic overlay
greatly improves recall over simply using a random overlay. A
random overlay only obtains a recall of 9%, clustering peers

4By doing this we achieve a performance which does not reflect the actual
performance when deployed, as the speed of discovering similar peers, dealing
with churn, etc. are not taken into account. However, these factors influence
all systems we compare negatively, and both RetroShare and OneSwarm
additionally rely on specific friends being online to provide a peer with search
results (not depending only on those peers which have a similar preferences).

1.00 -

0.75 -

0.50 -

||edoay

0.25 -

om- _

13379

10316
10000 - 9108
N I
20 20
0-

T
Random

Mean messages sent per query
(note the Iogarithmlc scale)

puas sabessapy

{
Semantic Retroshare Gnutella OneSwarm

Strategy used

Fig. 4. Recall and Messages send of evaluated strategies

according to their preferences results in 40% recall. However,
we note that building and maintaining a semantic overlay is not
free. During our experiment a single handshake (used to find
your most similar peers) using our Paillier-based algorithm
costs roughly 79.5 Kbytes on average.

Next, using 4P improves recall to 76%. This improvement
can be explained by the increased number of messages being
sent due to fowarding the request. We believe that the combi-
nation of a semantic overlay and our very transparent method
for caching yields the increase in performance.

The flooding strategies of RetroShare, Gnutella, and
OneSwarm show that indeed if only recall is considered,
flooding a network results in the best performance. RetroShare
achieves a recall of 86%, Gnutella 98% and even more
impressive OneSwarm achieves a recall of 99%. Altough this
is somewhat expected as OneSwarm does not incorporate any
constraints on the depth of the flooding.

However, if we look at the number of messages send we
can see that flooding has one very significant drawback: it
requires many messages to be sent in order to achieve the
recall performance. During the experiment, all three flooding
strategies required roughly 10,000 messages to be sent. Ret-
roShare requires less messages than Gnutella (due to having a
TTL of 6, instead of 7), but not less than OneSwarm. Although
OneSwarm does not use a TTL value to constrain the flooding,
it does manage to require less messages per query. We believe
this is mostly caused by a peer forwarding a query to only half
of its friends, and the limit on outgoing searches (max 300 per
minute). We note that in this configuration, OneSwarm never
cancels its requests as a peer does not receive enough replies.
After we lowered the number of replies received to 1, the
number of messages sent was reduced to 6,200.

4P requires only 313 messages to be sent. These numbers
include the replies of all peers, hence only 157 Search-
Messages are sent. We do not expect more messages to be sent
whenever the size and/or topology of the network changes.
This is because the number of messages sent is influenced by
the initial TTL value, the /E'P and the F'E P, and not by the

14-th IEEE International Conference on Peer-to-Peer Computing

40004
30004
]
a
20004 3
g
B8 1000
g 310
3 48 45
2 0
E
£ 4000 3811
€ 5
= 3000 2
@
Qo
2
2000 - &
1597 1455 |g
2
3
1000 -
48
o -
Random Semantlc Re1roShare Gnutel\a OneSwarm
Strategy used
Fig. 5. First response received, and last request forwarded during a search.

size of the network. In contrast, highly connected friends in the
RetroShare and OneSwarm networks influence to how many
peers a query will be forwarded, as they both do not limit the
number of friends a request is forwarded to (but limit it to 0.5
of friends). The semantic strategies only require 20 messages
to be sent (10 requests and 10 replies).

If we consider both the recall and bandwidth cost of the
evaluated strategies, we believe that 4P clearly improves upon
current state of the art flooding based private file sharing
systems.

Figure 5 shows the time it takes for the initial peer to
receive the first result, and when its Search-Message was last
forwarded. Please note that the RTT of our supercomputer
is very low, hence we get very low response times for all
protocols and searches for which we do not get a response are
not used when computing the mean.

Considering the first received result random, semantic, and
OneSwarm average below 50 ms, which for the first two is not
surprising. Those strategies consist of a single request/reply
which should be very quick. However, the performance of
OneSwarm is surprising as we expected it to perform equal to
RetroShare. As these protocols reply immediately whenever
a result is found, and both run on top of the same semantic
overlay. We believe that the difference is caused by the larger
fanout of RetroShare, resulting in a higher load on the nodes as
they receive more messages in a smaller time frame. Looking
at the CPU consumption of both protocols during these runs
seem to be consistent with this, RetroShare requiring roughly
twice as much CPU-time than OneSwarm. The CPU-time
required by Gnutella is even higher (almost three times as
much as OneSwarm) and hence is causing the first result to
arrive after 310 ms. 4P performs the worst, but this is due to
all peers waiting for a reply of their neighbors before back-
propagating all results to the initial peer.

Considering the last request forwarded durations, 4P per-
forms as expected. Peers only add their replies when back-
propagating a request, and hence slightly lower numbers for
when the last request was forwarded are expected. Further-

more, both random and semantic perform as expected showing
roughly the same numbers as when the first reply was received.

For the flooding approaches, all three strategies continue to
forward a request even after the first reply has arrived. This is
as expected, however RetroShare is on average still forwarding
a request almost 4 seconds after the initial peer created it.
We expect that this is caused by two factors: first the higher
fanout is overloading the nodes, second due to the semantic
overlay some peers get much more requests than others. These
nodes are similar to many peers (due to downloading popular
files) and hence get more requests compared to other peers do
not download these. Overloading the popular peers creates a
back-log which slows down the forwarding process. Although
Gnutella causes an even higher average CPU load, its random
overlay does not cause some peers to be overloaded (as we
expect all peers to have a similar in-degree), and hence the last
request is forwarded after 1.6 seconds. OneSwarm performs
similarly to Gnutella, and is helped by the fact that it causes
a lower CPU load. Moreover, OneSwarm has a lower fanout
which reduces the load on the popular peers and hence does
not overload them as we have seen in RetroShare.

VIII. CONCLUSION

In this paper we have shown that it is possible to create a
privacy preserving and performant file sharing system which in
contrast to current systems does not flood the entire network.
Moreover, since we do not hash keywords, peers in the
network can perform partial keyword matching, a feature that
does not exists current private file sharing system such as
Freenet and Gnunet.

After issuing a query, we provide peers with a list of results
from which they can decide which file to download. Using the
pre-established tunnels to one or more datasources of a file,
downloading does not require new queries to be sent. If more
than one datasource, or multiple paths to a single datasource
are found then those paths can be used in parallel. This reduces
the load imposed on intermediate nodes which otherwise are
required transfer a complete file. Moreover, multiple paths to
datasources help us bypass possible bottlenecks in the network,
and thus improve overall download performance.

Thanks to extensive experimental evidence we have shown
that 4P requires substantially fewer messages to be sent
compared to a (constrained) flooding approach, while still
achieving a mean recall of 76%. Moreover, in contrast to
flooding the number of messages used by 4P during search
is constant and does not scale exponentially with the network
size.

REFERENCES

[1] Gnutella Protocol Specification 0.6: http://rfc-gnutella.sourceforge.net .

[2] A. Back. Hashcash - a denial of service counter-measure. Technical re-
port, 2002. available at http://www.cypherspace.org/hashcash/hashcash.
pdf.

[3] A. Bakker, R. Petrocco, and V. Grishchenko. Peer-to-Peer Streaming
Peer Protocol (PPSPP), Feb. 2013. available at http://datatracker.ietf.
org/doc/draft-ietf-ppsp-peer-protocol.

[4] K. Bennett, C. Grothoff, T. Horozov, and J. T. Lindgren. An encoding
for censorship-resistant sharing, 2003.

14-th IEEE International Conference on Peer-to-Peer Computing

[5] K. Bennett, T. Stef, C. Grothoff, T. Horozov, and 1. Patrascu. The gnet
whitepaper. 06/2002 2002.

I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Designing
Privacy Enhancing Technologies, volume 2009, pages 46—66. Springer
Berlin Heidelberg, 2001.

[71 A. Demiriz. Enhancing product recommender systems on sparse binary

data. Data Mining and Knowledge Discovery, 9(2):147-170, 2004.

[6

=

[8] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A
constant time collaborative filtering algorithm. Information Retrieval,
4(2):133-151, 2001.

[9] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-

preserving p2p data sharing with oneswarm. In Proceedings of the
ACM SIGCOMM 2010 conference, SIGCOMM 10, pages 111-122,
New York, NY, USA, 2010. ACM.

[10] D. Kgler. An analysis of gnunet and the implications for anonymous,
censorship-resistant networks. In Privacy Enhancing Technologies,
volume 2760 of Lecture Notes in Computer Science, pages 161-176.
Springer Berlin Heidelberg, 2003.

[11] P. Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Advances in Cryptology — EUROCRYPT 99,
volume 1592 of LNCS, pages 223-238. Springer, May 2-6, 1999.

[12] M. K. Reiter and A. D. Rubin. Anonymous web transactions with
crowds. Commun. ACM, 42(2):32-48, Feb. 1999.

[13] RetroShare. Retroshare aims to be a private f2f social
network, May 2010. available at http://sourceforge.net/blog/
retroshare-aims-to-be-a-private- f2f-social-network/.

[14] RetroShare. Turtle router - retroshare, Oktober 2010. available at http:
/lretroshare.sourceforge.net/wiki/index.php/Turtle_Router.

[15] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. In
Peer-to-Peer Computing, 2001. Proceedings. First International Confer-
ence on, pages 99-100, 2001.

[16] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the gnutella network.
IEEE Internet Computing, 6(1):50-57, Jan. 2002.

[17] M. Steiner, W. Effelsberg, and T. En-najjary. Load reduction in the kad
peer-to-peer system. In In Fifth International Workshop on Databases,
Information Systems and Peer-to-Peer Computing (DBISP2P, 2007.

[18] S. Voulgaris and M. Steen. Epidemic-style management of semantic
overlays for content-based searching. In Euro-Par 2005 Parallel Pro-
cessing, volume 3648 of Lecture Notes in Computer Science, pages
1143-1152. Springer Berlin Heidelberg, 2005.

[19] R.-Y. Xiao. Survey on anonymity in unstructured peer-to-peer systems.
Journal of Computer Science and Technology, 23:660-671, 2008.

[20] N. Zeilemaker, M. Capotd, A. Bakker, and J. Pouwelse. Tribler: P2P
media search and sharing. In Proceedings of the 19th ACM international
conference on Multimedia, MM 11, pages 739-742, New York, NY,
USA, 2011. ACM.

[21] N. Zeilemaker, Z. Erkin, P. Palmieri, and J. Pouwelse. Building a
privacy-preserving semantic overlay for peer-to-peer networks. In Pro-
ceedings of the IEEE International Workshop on Information Forensics
and Security (WIFS 2013), Guangzhou, China, November 2013.

[22] N. Zeilemaker, B. Schoon, and J. Pouwelse. Large-scale message
synchronization in challenged networks. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing (SAC), Gyeongju,
Korea, March 2014.

10

