
BEYOND FEDERATED LEARNING DECENTRALISED LEARNING ON THE EDGE 1

Beyond Federated Learning decentralised learning
on the edge

Quinten van Eijs Delft University of Technology The Netherlands Johan Pouwelse Delft University of
Technology The Netherlands

Abstract—

Index Terms—Decentralized learning, P2P, Information Re-
trieval.

I. INTRODUCTION

In recent years, the power of Artificial Intelligence (AI)
has been increasingly leveraged by search and recommender
systems to enhance user experiences and drive engagement.
These systems use AI to analyze vast amounts of data,
uncover patterns, and make personalized content suggestions
to users. This capability is particularly crucial for content-rich
platforms, such as social media and streaming services, where
users are continuously exposed to new and diverse content.
AI-driven search and recommender systems can deliver highly
relevant and timely recommendations, significantly improving
user satisfaction and retention.
Training AI models for these search and recommender
systems involves processing large datasets to identify and
predict user preferences accurately. Traditional approaches
often rely on centralized models, where data is collected and
processed in a central location. While this method can be
effective, it introduces several challenges, including scalability
issues, latency, and significant privacy concerns. Centralized
models require aggregating vast amounts of user data, raising
the risk of data breaches and unauthorized data usage.

Privacy concerns have become a major issue in centralized
AI systems. Users are increasingly wary of data breaches
and unauthorized data usage. Centralized models typically
aggregate vast amounts of user data, raising significant
privacy and security risks. Federated learning has emerged as
a solution to some of these issues by enabling the training
of AI models across multiple devices while keeping data
localized. This approach enhances privacy, as raw data never

leaves the local devices, and only aggregated model updates
are shared. However, federated learning still relies on a
central server for aggregating these updates, which introduces
bottlenecks and potential points of failure.

Decentralized systems offer a promising alternative by
ensuring that data is processed locally and only aggregated
insights are shared. This approach not only enhances user
privacy but also complies with stringent data protection
regulations, such as the General Data Protection Regulation
(GDPR). Decentralizing AI systems can overcome the
limitations of both centralized and federated models by
distributing computational tasks and data storage across
multiple nodes, thereby enhancing scalability, reducing
latency, and eliminating single points of failure.

This research is driven by the significant advancements
in the computational capabilities of mobile devices, which
now rival traditional computing systems, and the promising
potential breakthroughs in distributed learning methodologies.
These developments open up new possibilities for creating
more efficient, scalable, and privacy-preserving AI systems
that can operate seamlessly in a decentralized environment.

To enhance the effectiveness of the search and
recommendation system, this research employs advanced
techniques such as vector search, k-means clustering, and
approximate nearest neighbor (ANN) search. Vector search
allows for efficient retrieval of similar items in high-
dimensional space, essential for content recommendation.
K-means clustering helps in organizing content and user
behaviors into meaningful clusters, facilitating targeted
recommendations. ANN search techniques enable scalable
and real-time retrieval of nearest neighbors, critical for
maintaining the performance of the system under dynamic
conditions.

Decentralizing these techniques presents several interesting
challenges and opportunities. By distributing the computation
and data storage across a P2P network, the system can achieve
greater scalability and fault tolerance. Local processing of
data can significantly enhance user privacy, as sensitive
information does not need to be transmitted to centralized
servers. Additionally, decentralization can reduce latency and
improve the responsiveness of the system by leveraging the
computational resources available at the network’s edge.

BEYOND FEDERATED LEARNING DECENTRALISED LEARNING ON THE EDGE 2

II. PROBLEM DESCRIPTION

The significance of this problem lies in the absence of
high-performing decentralized search and recommendation
AI systems. Currently, the most widely used content-sharing
platforms, such as YouTube, TikTok, and Instagram Reels,
rely on centralized architectures for their recommendation en-
gines. These centralized systems, while efficient in controlled
environments, face significant challenges when it comes to
scalability, privacy, and real-time data processing, especially
as the volume of content and user interactions continues to
grow exponentially.

The rise of frameworks like TensorFlow Lite has enabled
machine learning capabilities on local mobile devices, allow-
ing for more personalized and efficient processing without
the need for constant communication with central servers.
This advancement is crucial for enhancing user experiences
through faster, on-device computations and reduced latency.
However, despite these advancements, there has been a lack
of exploration into leveraging these capabilities within a dis-
tributed or decentralized setting. This gap highlights the need
for research into decentralized AI systems that can harness the
power of local learning while also facilitating robust, scalable,
and privacy-preserving recommendation systems.

III. DESIGN AND IMPLEMENTATION

In this section, we present a comprehensive overview of the
Beyond Federated system architecture. We will begin with a
high-level description of the overall architecture, highlighting
the key components and their interactions. Following this, we
will delve into detailed descriptions of each component, ex-
plaining their roles, functionalities, and how they collectively
contribute to creating a decentralized search engine built on
top of the Tribler SuperApp.

App Screenshots x2

A. High-Level Overview of the Architecture

Beyond Federated represents an initial, modest step toward
creating the first decentralized search engine. The system is
built on top of the Tribler SuperApp and its architecture
consists of four distinct components. These components work
together to provide a decentralized, secure, and efficient search
experience. The key components are:

• User Interface: Facilitates user searches and data entry.
• IPV8 Protocol: Leverages decentralized peer-to-peer net-

working for secure communication.
• Search and Embedding Model: Converts queries into

embeddings and retrieves similar items.
• Beyond Federated TensorFlow Lite Support: Provides

APIs for model interaction and customization of the
model.

B. System Model and Assumptions

C. User Interface

This component allows users to search for content, returning
the top results most relevant to the query. The interface is
designed to be simple and practical, enabling efficient and

Fig. 1. The PeerAI system model. The system consists of three components:
the P2P network, the model, and the collaborative learning algorithm. The
P2P network is responsible for sharing the data, the model is responsible for
encoding the data into a vector space, and the collaborative learning algorithm
is responsible for updating the embedding model based on the data received
from the P2P network.

intuitive searches. Content is retrieved as metadata and can
include various types of data such as compressed files or
references to file locations. Our specific focus is on YouTube
music and video search; therefore, our metadata consists of the
Title, Author, and YouTube video ID. The interface also allows
users to insert new entries into the system by providing the
Title, Artist, and YouTube video ID for new YouTube items.

D. IPV8 Protocol

Beyond Federated is built on top of the Tribler SuperApp,
leveraging its decentralized peer-to-peer network to ensure
secure communication between users. This component enables
robust, decentralized interactions through the IPV8 protocol,
which facilitates secure data exchange.

The clicklog data is gossiped around the network using a
gossip protocol. Gossip protocols are decentralized commu-
nication methods where nodes periodically share information
with a subset of other nodes. This approach ensures that data is
disseminated efficiently across the network without requiring
a central coordinator.

Each time a user clicks on a search result, the clicklog
entry is created and initially stored on the local node. The
gossip protocol then takes over, periodically sharing this new
clicklog entry with neighboring nodes. These neighbors, in

BEYOND FEDERATED LEARNING DECENTRALISED LEARNING ON THE EDGE 3

turn, propagate the information to their neighbors, and so on,
ensuring that the clicklog data eventually reaches all nodes in
the network.

This decentralized distribution method enhances the re-
silience and fault tolerance of the network. Since the data is not
reliant on a single central server, the system can continue to
function and share information even if some nodes go offline.

The clicklog is an essential component for understanding
user interactions and improving the relevance of search results.
Each entry in the clicklog consists of three key attributes: Title,
Author, and YouTube video ID.

E. Search and Embedding Model

The third component is the search model, which converts
input queries into embeddings and searches for the most
similar items within the dataset. This model ensures that the
search results are highly relevant to the user’s query, providing
accurate and efficient retrieval of information.

To make Beyond Federated capture semantics in our search
terms and content, we utilize the Universal Sentence Encoder
(USE) to transform text into high-dimensional vectors
suitable for various natural language processing tasks. The
USE is trained and optimized for processing text longer than
individual words, such as sentences and phrases. The model
accepts variable-length English text as input and produces
a fixed-length 512-dimensional vector as output. The USE
is built upon a Deep Averaging Network (DAN) encoder
architecture, training on tasks that necessitate understanding
the meaning of word sequences rather than individual words.

In addition to the USE, we employ the ScaNN algorithm
for similarity search in 512-vector dimension space. ScaNN
is based on Product Quantization (PQ) and Asymmetric
Hashing, compressing database embeddings into a compact
form for fast retrieval resulting in state-of-the-art performance
in similarity search tasks. Training a codebook for 512-
dimensional vectors in ScaNN involves subdividing the
vectors into smaller subvectors, applying k-means clustering
to create codebooks for each subvector set, and encoding
the original vectors into compact representations using these
codebooks. This process enables efficient approximate nearest
neighbor searches by reducing the computational complexity
and leveraging the compact quantized representations. Next
all the quantized representations are then clustered also
using K-mean to form partitions of the dataset. For optimal
performance the number of partitions is suggested by the
square root of the dataset size.

Assumption 1: The Universal Sentence Encoder significantly
enhances the decentralized search model’s capability to
handle fuzzy search queries by providing semantically rich
embeddings that ScaNN can efficiently process and search
within a large and diverse dataset.

Despite the ”S” in ScaNN standing for scalable, ScaNN
does not dynamically support the insertion of new items
into the index after initial training. This limitation arises
because the process of learning the codebook and forming

partitions is computationally expensive, making it infeasible
to run on edge devices or in real-time scenarios. To address
this, we developed a Non-Perfect Insert (NPI) method. The
NPI method involves embedding the query, quantizing it
using the pre-trained codebook, and appending it to the
closest cluster. By doing so, we can simulate an imbalanced
tree structure within the dataset. This approach enables us
to evaluate the performance of the system under different
conditions and analyze the impact of non-perfect inserts
on search performance. By testing this method, we aim to
understand how the system copes with new data and to ensure
it maintains a high level of accuracy and efficiency despite
the constraints imposed by non-dynamic scalability.

Assumption 2: Although the NPI method allows for the
practical insertion of new data without the computational
expense of re-learning the entire codebook and forming new
partitions, the resulting search performance will be somewhat
lower. This is because the new data points are not perfectly
integrated into the index structure, potentially leading to less
optimal clustering and retrieval accuracy.

F. Beyond Federated TensorFlow Lite Support

The final component consists of TensorFlow Lite APIs that
enable users to interact with the search model. This component
allows for customization of model inference and modification
of the model’s metadata, including all YouTube entries. The
TensorFlow Lite Support library is written in C++ and uses
Bazel for cross-platform building. It is supported on Java, C++,
and Swift. The library provides APIs for loading and running
TensorFlow Lite models on edge devices, enabling efficient
and personalized processing without the need for constant
communication with central servers.

IV. EXPERIMENTS AND EVALUATION

In this section, we will present the experiments and evalu-
ations conducted to assess the system’s potential as the first
decentralized search and recommendation AI system. We will
begin by discussing the datasets used for training the pre-
trained model, followed by an explanation of the evaluation
metrics. Finally, we will present and analyze the experimental
results to evaluate the system’s performance.

A. Datasets and Pre-trained Models

The datasets for this experiment have been selected based on
the specific use case of focusing on audio and video content.
Consequently, the embeddings consist of the artist’s name
and the title of the video or audio content. Additionally, the
metadata includes a YouTube video ID to enable retrieval and
display of the actual video within our user interface.

To highlight the diversity of the metadata, we began with
the PandaCD dataset, which contains 700 songs featuring
legally distributed music under Creative Commons licenses
and artist permissions. Although the videos are accessed
through YouTube, indicating that the system is not fully

BEYOND FEDERATED LEARNING DECENTRALISED LEARNING ON THE EDGE 4

decentralized due to the necessity of sending requests to
Google’s central authority, this setup demonstrates that the
metadata does not have to be limited to a specific domain.
To explore full decentralization, we included a dataset that
consists of magnet links.

The second dataset, sourced from Kaggle, is the Spotify
and YouTube dataset, released under the CC0: Public Do-
main license. This dataset includes 20,230 songs from 2,079
artists. Before utilizing this dataset, it was cleaned to remove
redundant YouTube-specific extensions from the titles, such
as ”Official video,” ”music video,” and ”lyrics video,” to
ensure that our embedding model remains unaffected by these
extraneous details.

Our final dataset, YouTube-Commons, is a large collection
comprising 2,063,066 videos from 411,432 individual chan-
nels. These videos are shared on YouTube under a CC-BY
license. The dataset predominantly features English-speaking
content, accounting for 71

By using these diverse datasets, we aim to thoroughly
evaluate the system’s robustness, scalability, and ability to
manage various types of metadata. This approach ultimately
contributes to our goal of developing a fully decentralized
search and recommendation AI system.The datasets are
summarized in Table II.

For training the ScaNN artifacts, we use the following
parameters to ensure efficient and accurate similarity search:

• Number of Clusters/Partitions (σ): The number of
clusters or partitions is determined by σ =

√
N , where N

is the total number of items in the dataset. This balances
search speed and accuracy.

• Distance Measure: We use the dot_product method
to measure the distance between embedding vectors. The
negative dot product value is computed to ensure smaller
values indicate closer proximity.

• Tree Structure (ω): The number of partitions to search
through, which reduces computational load while main-
taining high search accuracy.

• Quantization (score ah): Float embeddings are quan-
tized to int8 values, retaining the same dimensionality.
This reduces the memory footprint and speeds up the
search process without significantly compromising preci-
sion.

• Dimensions per Block: This parameter specifies the
number of dimensions in each Product Quantization
(PQ) block. For example, a 12-dimensional vector with
dimensions per block set to 2 results in six 2-dimensional
blocks. This parameter is set to 1 for all datasets.

• Anisotropic Quantization Threshold: This parameter
penalizes quantization errors parallel to the original vec-
tor differently than orthogonal errors, with a recom-
mended value of 0.2.

• Training Sample Size: The number of database points
sampled for training the K-Means algorithm for PQ
centers.

• Training Iterations: Specifies the number of iterations
to run the K-Means algorithm for PQ, with a default of
10 iterations for all datasets.

B. Experiment I — Pretrained Model Search and Insert

In this experiment, we aim to test the system’s ability to
perform searches and insert new items. The experiment will
utilize all the pretrained models. The testing environment
consists of a single node with a single peer running inside
an Android emulator, specifically the PIXEL API LEVEL
34. The host machine is equipped with an 11th Gen Intel(R)
Core(TM) i7-11800H @ 2.30GHz processor and 16GB of
RAM.

1) Metrics: A common metric for testing the accurcy of
the search is the Recall@k metric. This metric measures the
percentage of relevant items that are retrieved in the top-k
search results. The formula for Recall@k is as follows:

Recall@k =
|{relevant} ∩ {retrieved}|

|{relevant}|
(1)

where {relevant} is the set of relevant items and {retrieved}
is the set of items retrieved by the search algorithm. The
Recall@k metric is used to evaluate the search accuracy of
the system. In addition to measuring recall, we will also
evaluate the system’s performance in terms of the time it
takes to insert and search for items. This will provide a
comprehensive assessment of the system’s efficiency and
effectiveness. Tensorflow is capable of running CPU and
GPU operations, but we will focus on CPU performance for
this experiment.

2) Searching results: In this section, we present the results
of evaluating multiple queries containing parts of the original
embeddings learned by the model. An immediate observation
is that all queries take roughly the same amount of processing
time, even though the partitions in the 2M model are much
larger. This consistency in query processing time is attributed
to the parallel nature of the search and its logarithmic time
complexity. On average, all queries return the top 8 results in
approximately 500ms, as shown in Table ??.

When querying using the full embedding as stored in the
model, the results consistently include the correct items within
the top 3, yielding a recall of 100

Additionally, when we examine the query results for the
band ”UB40,” we observe that while the correct song is
returned, the band has multiple songs in the dataset. Therefore,
it is logical that the results would include more of the songs
by UB40, demonstrating the model’s ability to handle queries
for artists with multiple entries in the dataset.

Another notable finding is the model’s semantic under-
standing of the queries. For instance, querying ”green wine”
successfully returns the correct song, showcasing the model’s
capability to comprehend and process the semantic context of
the query accurately.

However, we also observed that queries in languages other
than English are less effective, with a recall@k score of 0

These findings highlight the efficiency of the system in
handling large datasets and its robustness in returning relevant
results even with partial queries. The consistency in processing
time across different query types and dataset sizes underscores

BEYOND FEDERATED LEARNING DECENTRALISED LEARNING ON THE EDGE 5

Embedding Metadata
{artist} {title} JSON{artist : {artist}, title : {title}, id : {youtubeID}}

TABLE I
OVERVIEW OF DIFFERENT PRE-TRAINED MODELS AND THEIR TRAINED DATASET.

Dataset Model Params Entries Model Size Dataset Size

PandaCD σ = 30, ω = 6 700 500KB 657KB

Spotify and Youtube σ = 140, ω = 6 20,230 4MB 30.78MB

YouTube-Commons σ = 1450, ω = 3 2,063,066 458MB 427.27MB

TABLE II
OVERVIEW OF DIFFERENT PRE-TRAINED MODELS AND THEIR TRAINED DATASET.

Fig. 2.

the effectiveness of the parallel search mechanism employed
by the model.

C. Experiment II — Partition Overflow

In this experiment, we aim to test the system’s ability
to handle partition overflow scenarios. The experiment will
utilize the Spotify and YouTube dataset, which contains 20,230
songs from 2,079 artists. Our primary interest is to observe
when the system’s performance begins to degrade as the
number of inserted items increases, potentially leading to
partition overflow.

The testing environment consists of a single node with a
single peer running inside an Android emulator, specifically
the PIXEL API LEVEL 34. The host machine is equipped
with an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz
processor and 16GB of RAM. This setup provides a controlled
environment to accurately measure the system’s performance
under varying conditions of data load and insertion rates.

We will incrementally insert new items into the dataset
and monitor the system’s response time and accuracy. By
analyzing these metrics, we aim to identify the threshold
at which partition overflow occurs and evaluate the impact
on the system’s overall efficiency and search accuracy. This
experiment will help in understanding the robustness of the
system in real-world scenarios where data continuously grows
and new items are frequently added.

1) Metrics: The metrics during the partition overflow ex-
periment will primarily focus on CPU performance and the

time required to search for items after numerous inserts.
This will provide a comprehensive assessment of the sys-
tem’s efficiency and effectiveness under increased data load.
Although TensorFlow is capable of running both CPU and
GPU operations, we will focus on CPU performance for this
experiment to maintain consistency and accurately gauge the
impact of partition overflow on the system.

2) Results: To test the effects of overloading a single parti-
tion in the model, we repeatedly inserted the same embedding
until the partition contained 1,000,000 identical items. Since
the LevelDB storage overwrites the same key that already
exists, the model size was not affected.

As a result of this overload, the search time increased
significantly to around 1300 ms, compared to the 500 ms
observed before the overload. Despite this increase, the system
still performs reasonably fast and continues to handle a large
volume of data effectively. Importantly, the rest of the queries
were not affected by this overload, as only the partition with
the repeated embedding experienced the slowdown.

For this specific overloaded embedding, recall reached 100

Fig. 3.

To conduct this analysis, we repeated our previous experi-
ment but this time inserted 1,000,000 different items into their
respective closest partitions. This deliberate overloading aimed
to assess how the system handles significant data influxes
across multiple partitions.

The results showed that the search time increased to 2300
ms, which, while higher than previous measurements, is still
relatively fast given the volume of data. This demonstrates

BEYOND FEDERATED LEARNING DECENTRALISED LEARNING ON THE EDGE 6

the system’s robustness and ability to manage large datasets
effectively.

For single word queries, the recall remained at 100
To ensure a thorough evaluation, we used a text file con-

taining 1,000,000 random sentences to insert new items into
the model. This diverse set of entries provided a rigorous test
of the system’s capacity to handle extensive and varied data
inputs. However, unlike our previous single partition overflow
experiment, we observed a notable decrease in recall scores
when multiple partitions were overloaded. This indicates that
the system’s accuracy is compromised when several partitions
are simultaneously burdened with excessive data.

For single word queries, the recall was notably lower than
100

Fig. 4.

D. Experiment III — Network Level

This network experiment aims to investigate the efficiency,
latency, and scalability of communication protocols within
a decentralized system by focusing on the distribution of
clicklog data. The experiment involves continuously inserting
random n clicklog entries per second into the network and
recording the resulting traffic. The primary objectives are to
measure the network’s ability to handle high-throughput data
insertion and to monitor how traffic evolves over time.

To achieve this, we will simulate a scenario where clicklog
data is generated at a constant rate, with random entries
being inserted into the system continuously. Throughout the
experiment, we will meticulously record the network traf-
fic, capturing both the total amount of data transferred (in
megabytes) and the incremental increases over time.

The collected data will then be plotted to visualize the total
traffic volume and its growth over the duration of the experi-
ment. This visualization will help us understand the network’s
capacity to handle continuous data streams and identify any
potential bottlenecks or inefficiencies in the communication
protocols.

By analyzing the traffic patterns and latency, we aim to gain
insights into the performance of the network under high-load
conditions. This will contribute to developing more efficient

and scalable communication protocols for decentralized sys-
tems, ensuring they can effectively manage large volumes of
distributed data in real-time.

E. Metrics

The primary metrics for this experiment will focus on net-
work performance, including throughput, latency, and scalabil-
ity. By measuring the total amount of data transferred and the
rate of data insertion, we can assess the network’s capacity to
handle high-throughput data streams. Additionally, monitoring
the latency of data transmission will provide insights into the
system’s responsiveness and efficiency in processing incoming
data.

F. Results

V. CONCLUSION

The results show that the Beyond federated architecture can
effectively support decentralized k-means clustering, enabling
nodes to collaboratively learn and refine models without a
central coordinator. Now tackle assumptions based on results
from the experiments.

A. Future work

Future work could explore k-means clustering methods that
do not require access to the entire dataset. This approach
would enhance the scalability and efficiency of the system,
particularly for large and growing datasets.

Traditional k-means clustering needs the entire dataset to
identify optimal centroids, which can be computationally
intensive. Developing methods to perform k-means clustering
incrementally or on representative samples could reduce this
computational load and allow real-time clustering updates as
new data is added.

This capability would be especially useful in a decentralized
search system, where data is distributed and continuously
updated. Incremental k-means clustering would enable the
system to adapt to new data without exhaustive recomputation,
maintaining performance and accuracy in dynamic environ-
ments.

VI. APPENDIX

BEYOND FEDERATED LEARNING DECENTRALISED LEARNING ON THE EDGE 7

CPU Speed Searched Partition size Rank Distance Metadata

434.396 ms
P1= 9
P2= 28
P3= 13
P4= 29

1 -0.52592 artist: Cullah, title: Firebird, magnet: magnet:?xt=urn:..tr=..
2 -0.42465 artist: Hatemagick, title: Hellfire EBM,magnet: magnet:?xt=urn:..tr=..
3 -0.40696 artist: Greendjohn, title: Loophole,magnet: magnet:?xt=urn:..tr=

TABLE III
RESULTS OF THE SEARCH QUERY FOR THE QUERY ”FIREBIRD” IN THE PANDACD TRAINED MODEL.

CPU Speed Searched Partition size Rank Distance Metadata

477.54 ms

P1= 86
P2= 108
P3= 139
P4= 132
P5= 110
P6= 63

1 -0.56265 artist: UB40, title: Red Red Wine, url: zXt56MB-3vc
2 -0.51885 artist: Cream, title: Strange Brew (1967), url: hftgytmgQgE
3 -0.51441 artist: Owl City, title: Vanilla Twilight , url: pIz2K3ArrWk
4 -0.51441 artist: Pouya, title: Death by Dishonor, url: otl8yjZcg2Y
5 -0.51220 artist: Duster, title: Chocolate And Mint, url: t4NcmzFx2tk
6 -0.51164 artist: Dominic Fike, title: Vampire, url: SUjD nwooTg
7 -0.50942 artist: Saweetie, title: Tap In , url: jUIrolORx6M
8 -0.49944 artist: Night Lovell, title: Dark Light, url: HTp5PH8ot6Q

TABLE IV
RESULTS OF THE SEARCH QUERY FOR THE QUERY ”RED RED WINE UB40” IN THE SPOTIFY YOUTUBE TRAINED MODEL.

CPU Speed Searched Partition size Rank Distance Metadata

469.873 ms

P1= 190
P2= 92
P3= 106
P4= 149
P5= 127
P6= 129

1 -0.71566 artist: Red Hot Chili Peppers, title: Cant Stop, url: 8DyziWtkfBw
2 -0.70641 artist: Red Hot Chili Peppers, title: Give It Away , url: Mr uHJPUlO8
3 -0.51441 artist: Red Hot Chili Peppers, title: Otherside , url: rn YodiJO6k
4 -0.65953 artist: Red Hot Chili Peppers, title: Californication , url: YlUKcNNmywk
5 -0.64781 artist: Red Hot Chili Peppers, title: Dark Necessities , url: Q0oIoR9mLwc
6 -0.64226 artist: Red Hot Chili Peppers, title: Dani California , url: Sb5aq5HcS1A
7 -0.59723 artist: Red Hot Chili Peppers, title: Snow (Hey Oh) , url: yuFI5KSPAt4
8 -0.57441 artist: Jonas Brothers, title: Marshmello x - Leave Before You Love Me , url: hmUyEDG7Jy0

TABLE V
RESULTS OF THE SEARCH QUERY FOR THE QUERY ”RED HOT CHILI PEPPERS” IN THE SPOTIFY YOUTUBE TRAINED MODEL.

CPU Speed Searched Partition size Rank Distance Metadata

477.235 ms

P1= 1032
P2= 687
P3= 13
P4= 1533

1 -0.88953 title: how to pronounce fallible, author: Proper English, id: 8ZxQ57QpoYk
2 -0.88628 title: How to pronounce August Ames, author: Pronunciation Guide USA, id: foQaI7gbIuc
3 -0.87587 title: How to pronounce larynx., author: Pronunciation Guide USA, id: rx5WeqUXeeU
4 -0.86677 title: How to pronounce jeopardize., author: Pronunciation Guide USA, id: DadHqPqJs1I
5 -0.85506 title: how to pronounce fallers, author: Proper English, id: 8Z8WpaYn-vI
6 -0.85051 title: How to pronounce Aaliyah Love, author: Pronunciation Guide USA, id: 5X10rDWRxlE
7 -0.84725 title: How to pronounce Maxon, author: Pronunciation Guide USA, id: AAiUt ADZRQ
8 -0.84075 title: how to pronounce juxtaposition, collocation and suggestion, author: English Perfect Pronunciation with Cherif, id: UWQo8enKDlo

TABLE VI
RESULTS OF THE SEARCH QUERY FOR THE QUERY ”HOW TO PRONOUNCE AUGUST” IN THE YOUTUBE COMMON TRAINED MODEL.

	Introduction
	Problem Description
	Design and Implementation
	High-Level Overview of the Architecture
	System Model and Assumptions
	User Interface
	IPV8 Protocol
	Search and Embedding Model
	Beyond Federated TensorFlow Lite Support

	Experiments and Evaluation
	Datasets and Pre-trained Models
	Experiment I | Pretrained Model Search and Insert
	Metrics
	Searching results

	Experiment II | Partition Overflow
	Metrics
	Results

	Experiment III | Network Level
	Metrics
	Results

	Conclusion
	Future work

	Appendix

