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IN our rapidly digitizing world, search engines play an
important role in finding the specific information we need

from the huge amount of content online. Internet users use
them to learn new things and for entertainment, such as
finding online videos based on personal interests. While pop-
ular search engines are helpful, mainstream ones like Google
raise significant privacy concerns, as the data they gather is
often utilized for purposes beyond improving search results,
including personalised advertising. This concern highlights the
need for local search capabilities that respect user privacy
while efficiently navigating local resources such as videos or
documents based on search queries.

Pursuing efficient and privacy-preserving search mecha-
nisms has led to the exploration of fuzzy and semantic
search techniques, going beyond simple and strict keyword-
result searching. Techniques such as BM25 ranking [1] have
significantly improved the performance of search engines like
Elasticsearch. Modern search engines also leverage artificial
intelligence and natural language processing (NLP) for better
performance. The recent popularity of applying large language
models (LLMs), like using GPT4 [2] as an alternative to
traditional search engines, illustrates a growing trend in search
technology. This shift is particularly relevant in the context
of edge computing, which brings up an interesting possibility
of employing language models as localized search engines in
environments constrained by computing power, such as mobile
devices.

Motivated by the evolving computational capabilities of
mobile devices and the potential development in distributed
learning [3], this research aims to explore the feasibility of
using LLMs for local semantic search functionalities, taking
the example of searching for YouTube videos on devices
with limited computing power through natural language input.
While LLMs are not designed to replace traditional SQL
databases, as they may struggle to achieve the same levels
of stability, availability, and data integrity [4], they offer
unique advantages in semantic search capabilities. LLMs can
support complex queries and understand nuanced relationships
between words, as demonstrated by the classic example of
”king - man + woman = queen”. Although LLMs are compu-
tationally expensive, they provide a promising alternative to
immature and costly semantic SQL search solutions.

In this study, we position LLMs as a novel type of se-
mantic database, focusing on their ability to enable powerful
semantic search functionality. However, the storage charac-

teristics of LLMs remain largely unknown, particularly in
terms of stochastic insert and select operations. Our research
aims to quantify these unknown properties through several
experiments centered around training and evaluation metrics
such as recall. We emphasize the usability of LLMs in real-
world systems, striving for precision and recall rates exceeding
98%. Additionally, we investigate the storage capacity of these
semantic databases using YouTube video search as a research
case.

Recent developments, such as Apple’s potential deployment
of LLMs within each new iPhone [?], further highlight the
relevance and timeliness of this research. With billions of
devices potentially leveraging LLMs for local search capabil-
ities, understanding the performance and limitations of these
models becomes increasingly important. Moreover, the self-
retrieval architecture proposed by Alibaba [5], which consol-
idates indexing, generating, and self-assessment using LLMs,
provides a foundation for our exploration of LLMs as semantic
databases.

This research targets all users of modern search engines,
with a particular focus on mobile device users constrained by
limited computing resources. Through experiments with state-
of-the-art language models like BERT [6] and T5 [7], we seek
to evaluate their capacity to store and retrieve key-value type
data, such as video IDs corresponding to video information,
paving the way for a new type of local or distributed search
engines optimized for privacy, efficiency, and accessibility.
This article is structured as follows: In section 2, we formulate
the main problems to resolve in this study. In sections 3 to 5,
we describe the experiments with two language models. We
discuss the results in section 6 and conclude our study in the
last section.

I. PROBLEM STATEMENT

The problem addressed in this research revolves around the
exploration of machine learning (ML) models as an alternative
to traditional search engine databases, particularly in dis-
tributed computing environments with limited computational
resources. The core issue at hand is the exploration of how
an ML model, specifically a language model, can effectively
function as a search engine database to retrieve video IDs from
online videos based on partial information derived from video
titles.

Traditional databases and search engines, while overlap-
ping in functionalities such as data storage, retrieval, and
modification (CRUD operations: Create, Retrieve, Update,
Delete) [4], differ significantly in their output requirements.
Databases typically demand strict, exact outputs, while search
engines often cater to ambiguous or fuzzy searches to find the
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most relevant results. This distinction means the need for a
search mechanism that can intelligently navigate through semi-
structured or unstructured data, with semantic understanding
to deliver precise search outcomes.

Additionally, the challenge extends to the user’s awareness
of the content within the target dataset. Does the user know
what they are looking for, or is the search driven by a vague
sense of what the content might contain? Modern search
engines go beyond only keyword matching, aiming to seman-
tically interpret the user’s query in relation to a knowledge
base. This research, therefore, seeks to push the boundaries
of conventional search engine databases by applying language
models that can understand and respond to user queries with an
high level of relevance and accuracy, all within the constraints
of limited computing power typical of distributed computing
devices.

The model’s task revolves around learning and generating
video IDs from user queries about video content. Video IDs
are traditionally structured in a base64 format, representing
a seemingly random combination of letters and digits. This
presents a unique challenge for the model: understanding
the semantic context of a query well enough to produce
a meaningful and precise video ID that corresponds to the
stored information. Unlike traditional keyword-based retrieval
systems, this requires the model not only to grasp the gist of
the query but also to map this understanding to a specific, and
semantically unrelated, string of characters.

The primary goal for the model is to accurately generate
video IDs based on natural language queries. This involves
learning a mapping between the semantic content of user
queries and the specific video IDs that correspond to content
meeting the search criteria. Given a query q, which reflects
what the user seeks, the model should output the video ID i
corresponding to the relevant video title. There might also be
intermediate output in the form of a video title, which is the
title memorized by the LLM or the title the LLM deems most
relevant to the query.

II. EXPERIMENT - BERT

In this section, we investigate the capability of large lan-
guage models (LLMs) to function as semantic search engines
for video retrieval, where the task is to accurately search
for a video URL given a semantic input, such as a natural
language query or a title-like description. Since video IDs
can directly form a Youtube video URL by adding the prefix
”youtube.com/watch?v=”, we choose video IDs as the desired
outcomes. The success criterion for our model is its ability to
grasp these semantic inputs and yield accurate video IDs. This
goal is similar to the key-value pair retrieval in a traditional
database, where the key is some query and the value is the
corresponding video ID.

As an initial setup, we focus on using video titles as queries
as the starting point because video titles inherently contain
information about the video that can be utilized for search
purposes. This simulates a real-world scenario where users
search for videos using natural language queries or title-like
descriptions. It is important to note that this experiment aims

to evaluate the broader potential of LLMs in understanding
and relating queries to video content, extending beyond the
limitations of exact title matching. To achieve this, we have
chosen to fine-tune a state-of-the-art LLM model, BERT [6]
(Bidirectional Encoder Representations from Transformers),
on a dataset of video titles and their corresponding video IDs.
Through fine-tuning we adapt BERT’s pre-trained language
ability to the specific task of video title matching. This
approach does not only reduce training time but also ensures
our model can effectively capture the linguistic patterns in the
video titles.

BERT has been released in several variations to accommo-
date different use cases. These include ”cased” and ”uncased”
versions for English text, as well as multilingual models
trained on a broader range of languages. For this experiment,
we assume that users do not depend on capitalization when
creating queries. Therefore, we selected the BERT-uncased
model, pre-trained on English text and insensitive to capital-
ization differences (e.g., ”english” vs. ”English”).

Our task involves fine-tuning BERT to process a text query
and predict the integer index corresponding to the most
relevant sample in a dataset, which contains both the video
title and its unique video ID. We opt to predict the row
index instead of the video ID to gain two advantages. The
first advantage is the simplified output Space. Video IDs are
complex 11-character strings, with most characters randomly
selected from a 64-character set, making them challenging to
directly predict. By predicting an integer index, we reduce the
model’s output space to a finite set of numbers, simplifying the
prediction task. The second advantage is the extensibility of
the output. Row indices provide a more flexible representation
than video IDs alone. Predicting the row index allows us to
easily retrieve not only the video ID but also other relevant
information associated with the video, such as the title or
additional metadata, which could be useful in future extensions
of this work.

A. Dataset and Preprocessing

The dataset chosen for this experiment is the ’Trending
YouTube Video Statistics (daily)’ dataset [8] from Kaggle,
which contains daily records of top trending YouTube videos
across various regions, including the US, Germany, and
France. We specifically focused on the US subset due to its
English-based content because of the BERT release version
we use. This dataset is a forked version of the dataset [9].
Compared to the original version, the forked US videos subset
offers a significantly larger volume of data, with 48,471
unique video titles. The dataset provides a one-to-one mapping
between video titles and their corresponding 11-character
video IDs (consisting of uppercase and lowercase letters,
hyphens, and underscores), which simplifies the task of video
ID prediction. Henceforth, this dataset is referred to as ’US
Videos’ III.

We performed a preliminary experiment and uncovered
two methods to improve our model. Our setup consisted of
separating a subset 4577 samples from the entire US Videos
dataset as the training dataset for a faster experiment. Then
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we performed pre-processing on this dataset before training
to ensure data consistency and compatibility with the model.
Firstly, any irrelevant or inconsistent information that may
negatively impact the model’s learning process is removed
from the titles including special characters or HTML tags and
leading/trailing whitespaces. As we use the uncased version
of BERT, which is not sensitive to letter casing, the original
case of each title is not preserved. Secondly, to maintain the
focus on English-language content and align with the linguistic
scope of the pre-trained BERT model, titles containing non-
English characters are filtered out. Each preprocessed title is
tokenized using BERT’s tokenizer, which converts the text
into a sequence of tokens that the model can process. The
tokenizer handles tasks such as splitting words, handling
punctuation, and converting the tokens into embeddings - their
corresponding numerical representations.

B. Metrics

We use several traditional metrics commonly used in In-
formation Retrieval tasks: precision, recall, and F1 score to
evaluate the performance of the fine-tuned model. All metrics
are calculated based on the row indices and the predicted row
indices.

1) Precision: Precision reflects the ability of a model to
identify only the relevant instances in classification tasks. It
is mathematically the number of true positives divided by the
number of true positives plus the number of false positives.
In our context, precision represents the fraction of correctly
predicted video IDs among all video IDs predicted by the
model. A high precision indicates that the model’s predictions
are highly reliable.

2) Recall: Recall reflects the ability of a model to find all
the relevant instances in a dataset. It is calculated by number
of true positives divided by the number of true positives plus
the number of false negatives. For our task, recall represents
the fraction of correctly predicted video IDs among all relevant
video IDs in the dataset. A high recall indicates that the model
can identify a large portion of relevant videos.

3) F1 Score: F1 score is a measure combining both pre-
cision and recall by calculating their harmonic mean. It is
calculated as follows:

F1 = 2× Precision × Recall
Precision + Recall

A high F1 score indicates a good balance between the predic-
tions’ reliability and covering as many relevant predictions as
possible.

C. Training and Evaluation

The process of fine-tuning and evaluation of the model
for video ID retrieval is illustrated in Figure 1. The figure
outlines the steps involved, starting from the US videos
trending dataset, which contains video IDs, titles, tags, and
other relevant information. During the pre-processing phase,
cleaning, deduplicating the titles, and adding integer indices
as well as tokenization are performed to prepare the data
for model training. During the training phase, the BERT
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Fig. 1: BERT experiment process

base uncased model is fine-tuned on the processed dataset,
effectively incorporating the knowledge of video titles and
the corresponding sample indices. In the evaluation phase,
the fine-tuned BERT model takes a given title as input and
generates the integer index, which is then used to look up the
matched video ID in the mapping table. This retrieved video
ID can subsequently be used to construct the corresponding
video URL, enabling semantic video retrieval based on the
input query or title.

We use the sequence classification capability of the BERT
model, which is designed to classify an entire input sequence
into one of several categories. This is achieved by passing
the output of BERT through a sequence classification head,
consisting of a linear layer. This linear layer produces a set of
scores, called logits, one for each potential class. In our case,
each class corresponds to a unique video in the dataset. The
model then selects the class with the highest logit score as its
prediction for the most relevant video title. During training,
a softmax function is applied to these logits to convert them
into probabilities, which are then used to calculate the cross-
entropy loss:

Lcross-entropy = −
C∑
i=1

yo,i log(po,i)

where C is the number of classes which is the number
of unique video titles, y is a binary indicator (0 or 1) of
whether predicted row index i is the correct classification
for observation o, and p is the predicted probability that
observation o is of class i. The cross-entropy loss function
quantifies the difference between the predicted probability
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distribution and the true label. By minimizing this loss, the
model learns to adjust its parameters so that its predictions
align more closely with the ground truth.

The model is trained on a Google Colab [10] instance with
the following hardware specifications:

• Instance type: n1-highmem-2
• vCPU: 2 @ 2.2GHz
• RAM: 13GB
• GPU: 1 NVIDIA Tesla T4
Preliminary experiments with 2 epochs showed a decrease

in loss, and further training for 8 epochs with an initial learning
rate of 0.001 and a linear scheduler led to convergence. The
training parameters can be found in tableIV in Appendix.

D. Results

We evaluated the model’s performance on the training
set (4577 samples of US videos) itself, which differs from
the conventional approach of using a separate test set. This
choice aligns with our objective of enabling the model to
memorize the dataset for precise retrieval. In this context,
overfitting, which is typically undesirable, is actually beneficial
as it allows the model to memorize the input data of video
classification information based on the titles as much as
possible, which further helps find corresponding video IDs
of the queries.

The fine-tuned BERT model achieved a precision of
95.79%, a recall of 99.10%, and an F1 score of 97.41%
on the training set. The high precision indicates that when
the model predicts a video ID, it is highly likely to be the
corresponding one. The exceptional recall value suggests that
the model successfully identifies a vast majority of the relevant
videos for the given titles in the training set. The high F1 score
shows the model’s overall effectiveness in accurately matching
video titles to their corresponding IDs.

Our approach has limitations in terms of generalization on
partial or modified titles. When presented with queries that
were not part of the training data, the model’s performance
is expected to decline. This is because the model has been
optimized to memorize the exact titles rather than learning
to generalize to unseen variations. We performed qualitative
analysis using only part of the titles as queries. This confirmed
our expectation that the model’s performance would drop
significantly. While this lack of generalization may be seen
as a drawback in other contexts, it aligns with our specific
goal of retrieving video IDs based on exact title matches.

It is important to acknowledge that the model’s effectiveness
relies on its ability to memorize the training samples. By
overfitting towards the training data, the model can achieve
a high recall, ensuring that it captures the most relevant video
IDs in the dataset. Although this approach may not be suitable
for scenarios requiring generalization on unseen data, it is
suited well for our task of accurate video retrieval given
queries based on exact titles.

III. EXPERIMENT WITH T5

The previous approach using BERT as a classifier for video
retrieval faced a significant limitation: the inability to directly

generate video IDs. BERT, being an encoder-only model, re-
quires an external mapping between the predicted indices and
the corresponding video IDs. This indirect approach introduces
an additional layer of complexity and storage requirements,
as the mapping needs to be maintained separately. To address
this issue, we explored the use of the ”Text-to-Text Transfer
Transformer” (T5) [7] model, which has an encoder-decoder
architecture capable of directly generating video IDs.

Our motivation for choosing the T5 model comes from its
ability to learn and generate sequences, making it well-suited
for the task of mapping video titles (a sequence of words) to
video IDs (a sequence of characters) without the need for an
intermediary mapping step. The T5 model has demonstrated
success in similar tasks, such as generating document IDs
from queries [11]. By leveraging the sequence-to-sequence
(seq2seq) nature of T5, we aim to create a direct mapping
between the input video titles and the generated video IDs,
eliminating the need for external storage of mappings.

For this experiment, we chose the flan-T5-small variant [12]
of the T5 model. The T5-small model is a smaller version
of T5 with 60 million parameters, making it more suitable
for environments with limited computational resources. The
”flan” version of T5 is an updated release that has been fine-
tuned on more than 1,000 additional tasks, covering a wider
range of language processing tasks such as question answering
and chain-of-thoughts [13] [14] compared to the original T5
model.

To encode the video IDs, we applied the Naively Structured
String Identifiers strategy [11]. In this approach, we used
T5’s original tokenizer to encode the video ID token-by-token,
where each token can be any substring of the video ID. For
example, the ID ’J78aPJ3VyNs’ is encoded by ’J78’, ’aP’,
’J3’, ’V’, ’yNs’ tokens which are already present in the T5
tokenizer’s vocabulary. This strategy allows the model to learn
the structure and composition of the video IDs.

A. Data Preparation and Preprocessing

For this experiment, we continued to use video titles as
queries, similar to our approach in the BERT experiment.
However, we performed additional data augmentation and data
preprocessing steps to generalize the capability of the model
to handle more queries based on the titles.

The T5 model is sensitive to the capitalization of user input.
The T5 tokenizer has uppercase and lowercase letters in its
vocabulary, so it distinguishes between them during training
and inference. Changing the case of words in the input can lead
to different model outputs. In the original dataset, many of the
samples are capitalized while some are not. To make the model
able to handle all lowercase queries, we created an additional
lowercase copy for each sample containing uppercase.

To further improve the model’s ability to learn query-video
ID associations, we extracted key nouns and named entities
from the video titles using the spaCy library. Each extracted
keyword from the original video title is added as a new query
with the same video ID of that title. For example, for the
video title ”When your cat is a real couch potato”, key nouns
or named entities ”cat”, ”couch”, and ”potato” are extracted
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and added as queries. This augmentation enables the model
to focus on the most relevant information within the titles,
potentially enhancing its retrieval performance.

After augmenting the dataset, we performed deduplication
to ensure that each unique query maps to only one video ID.
In cases where duplicate queries are mapped to different IDs,
we kept only the first query-ID pair. This deduplication step
was intended to enforce a one-to-one mapping between queries
and video IDs. However, in retrospect, this may be a potential
limitation to our work. Further experimentation without this
deduplication step is planned for future work.

B. Metrics

To evaluate the performance of the T5 model, we utilized the
same metrics as in the BERT experiment, namely precision,
recall, and F1 score. As the T5 model might output invalid
video IDs, we introduced a new metric specific to this task:
the validity rate. The validity rate measures the proportion of
generated video IDs that meet the format of a YouTube video
ID (containing lowercase letters [a-z], uppercase letters [A-Z],
hyphens [-], and underscores [ ]) out of all the predicted out-
puts. This metric provides insights into the model’s ability to
generate well-formed video IDs. The validity rate is calculated
as follows:

Validity Rate =
Number of valid video IDs

Total number of generated IDs
A low validity rate could limit the model’s practical utility

since it suggests that the model is having difficulty under-
standing the structure and format of the video IDs. We may
evaluate the model’s effectiveness in producing precise and
well-formed video IDs by taking the validity rate into account
in addition to the other metrics.

C. Training and Evaluation

The model was trained in the same environment as the
BERT experiment, utilizing 1 NVIDIA T4 GPU for 8 epochs.
We discovered through experimental investigation that we
obtained the best result with an initial learning rate of 0.001.
Also, we evaluated learning rates of 0.002 and 0.0005 but
observed no significant differences in performance. With a
learning rate of 0.0005, the training process was notably
slower. As such, we opted for the default value of 0.001 as
the initial learning rate. From this starting value, the scheduler
decreases the learning rate over time during training. The T5
model also use cross-entropy as its default loss function, which
is commonly used in sequence-to-sequence tasks.

The training phase involved 1 experiment with 50 samples
and 11 consecutive experiments across multiple increasing
sample sizes, ranging from 100 to 1100 samples in increments
of 100 (i.e., 100, 200, 300, ..., 1000, 1100). The AdamW
optimizer [15], with an initial learning rate of 0.001, and
the default linear scheduler were utilized alongside the cross-
entropy loss function. Data tokenization was performed using
the T5 tokenizer. It is important to note that no separate test
data was used in these experiments, and the evaluation was
conducted on the augmented training dataset itself. This ap-
proach aligns with the reasoning behind the BERT experiment,
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where the focus was on the model’s ability to memorize and
retrieve exact video IDs from the training set.

D. Results

Training with the dataset of 50 samples achieved the most
favorable loss reduction, with the loss dropping below 0.0001
after 1000 epochs, which achieved 100% precision and recall.
Therefore, for small data sets, training the T5 model from
the ground up is unnecessary, and fine-tuning the model is
sufficient.

We now present the results for the larger sample sizes. The
resulting precision of the varying sample sizes is given in
Figure3. These results reveal a clear trend: the precision of
the model decreases as the size of the sub-training dataset
increases. This observation suggests that the T5 model faces
challenges in maintaining high precision when trained on
larger datasets, given the fixed number of epochs used in each
experiment.

One possible explanation for the loss in precision as the
data set size increases is that larger datasets introduce more
complexity and diversity in the training samples, making it
harder for the model to converge to a low training loss within
the allocated number of epochs. For instance, a larger dataset
may contain a wider variety of video titles, ranging from
simple and straightforward titles like ”Funny cat video” to
more complex and descriptive titles such as ”The Kissing
Booth Cast Kisses A Hairless Cat & Other Weird Stuff
— Kiss & Tell — Netflix”. The diversity can be reflected
in the difference in title length, structure, and vocabulary.
Also, a larger dataset is likely to include a broader range
of topics, genres, and styles, requiring the model to learn
and memorize associations across a more heterogeneous set
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of samples. For example, a smaller dataset might primarily
consist of cat videos, while a larger dataset could encompass
a mix of cat videos, cooking tutorials, music performances,
and travel vlogs. Furthermore, the likelihood of encountering
ambiguous or overlapping titles may increase with the dataset
size growing. For instance, two videos with similar titles like
”Amazing Dance Moves” and ”Beautiful Dance Moves” might
have different video IDs, requiring the model to learn fine-
grained distinctions.

As the dataset size increases, the model requires more
training iterations to effectively learn and memorize the as-
sociations between video titles and their corresponding IDs.
Consequently, with a fixed number of epochs, the model ends
up with a higher training loss when trained on larger datasets
compared to smaller ones. It highlights the trade-off between
dataset size and the model’s ability to memorize and retrieve
exact video IDs. While larger datasets provide more diverse
and representative samples, they also pose challenges to the
model’s convergence and precision.

Our result shows the difficulty for the T5 model to memorize
more video IDs. Training time, which positively correlates
with the number of training samples, is a significant con-
sideration in this context. This is a scalability concern for
environments with constrained computing resources because it
is expected to take tremendous time to let the model memorize
800 million videos which is an estimation of the number of
Youtube videos as of 2023 [16], not taking into account the
limit of the capability model to memorize.

E. Discussion

While the experiment illustrates that the T5-small variant
faces challenges with larger datasets in terms of memorization
capacity, it also brings forth an intriguing question. Why does
the T5-small’s ability to memorize video IDs decline with an
increase in IDs, despite the apparent trend of precision drop
with fewer data points? This observation may not be directly
explainable by the aforementioned trends and suggests an area
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for further investigation. It could imply a nuanced complex-
ity in how sequence-to-sequence models like T5 deal with
information density and the memorization-retrieval balance,
especially when scaled down to smaller variants like the T5-
small.

In summary, the T5 model demonstrates a promising ca-
pacity to memorize and generate video IDs from title in-
puts, though with limitations influenced by dataset size and
computing constraints. This experiment not only showed the
potential of utilizing language models like T5 in search
engine applications but also highlighted the critical balance
required between computing resources and model precision in
distributed environments.

IV. EXPERIMENT WITH T5: USE TAGS AS QUERIES

The previous experiment using video titles as queries pro-
vided valuable insights into the T5 model’s performance.
However, we recognized that video titles may not accurately
reflect typical user search behavior. Users often perform fuzzy
searches using keywords, rather than full titles [17]. To better
simulate real-world scenarios, we explored the use of video
tags as queries, as tags tend to be shorter and more keyword-
oriented.

We treated this task as an information retrieval (IR) problem,
where the goal was to retrieve the correct video ID given a
tag (query). The overall process is illustrated in Figure 4. We
used pairs of (query, video id) as training samples, where
videoid was the expected output. In the US Videos dataset,
each video had multiple tags stored as a string separated by
the ”|” character in the ”tags” column. We extracted these tags
and created a (query, video id) pair for each tag.
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A. Data Preprocessing

Similar to the preprocessing steps in the previous T5 ex-
periment, we performed data augmentation using techniques
including extracting keywords, splitting elements and adding
lowercased queries. However, in this experiment, we applied
the Unstructured Atomic Identifiers strategy [11], where each
whole video ID was added as a single token to the vocabulary
of the tokenizer, and the model embedding dimension was
resized accordingly. This approach treats the video IDs as
atomic units, enabling the model to generate them as complete
entities.

B. Training and Evaluation

For the training phase, we utilized the DAS6 [18] High-
Performance Computing (HPC) resources, which provided
access to NVIDIA A4000 GPUs. Similar to the previous
T5 experiment, we chose the flan-T5-small model variant to
align with our computing resource constraints. The AdamW
optimizer [15] with an initial learning rate of 0.001, the default
scheduler, and cross-entropy loss were used during training.
We still only use the training dataset and tokenized the data
using the T5 tokenizer. Training the model for 70 epochs
on the augmented full dataset of 48,266 samples required
approximately 68 hours of computation time on the A4000
GPU, highlighting the significant computational demands of
training language models on larger datasets.

C. Results

We evaluate the model’s performance, initially focusing
on the same metrics used in the previous T5 experiment:
precision, recall, and F1 score. The results are summarized
in Table I.

Dataset size Augmented data-size Epochs Avg Recall
100 3220 70 0.957
100 3220 150 0.957
100 3220 70 0.955
1000 19382 70 0.836
10000 104833 70 0.938
20000 175364 100 0.287
48266 340884 70 0.001

TABLE I: Results of T5 experiment with tags as queries:
Average recall on augmented dataset in T5 experiment

The results show that the model achieves decent recall
rates on small dataset sizes but performs poorly when the
dataset size is larger, based on the initial metrics. However,
upon manual analysis of the incorrectly generated video IDs,
we discovered a significant number of false negatives. In
many cases, the video linked to the predicted video ID either
contained the input tag or had relevant information in its title.
For example, for the ’trailer’ query, the expected video ID was
present in the dataset, but the model predicted a different video
ID that also contained the ’trailer’ tag. For another example,
when given the query ”First Take,” the model was expected
to output a video with the tag ’first take’ (jLX-tcoI7q4), but it

Dataset size Augmented data-size Epochs New Metric Recall
100 3220 70 1.000
100 3220 150 1.000
100 3220 70 1.000
1000 19382 70 0.999
10000 104833 70 1.000
20000 175364 100 NA
48266 340884 70 NA

TABLE II: New metric recall on augmented dataset in T5
experiment

instead outputs a video (TkWSOtqJf6I) that did not have the
’first take’ tag but had ’First Take’ in its title.

We recognized that this might be a drawback of removing
all duplicate mappings when one tag maps to many video IDs
and only outputs one video ID for each query.

Based on the manual analysis, we updated the evaluation
metric to address the false negatives. We now consider a video
ID prediction correct if the input tag is present in either the
tags or the title of the predicted video. Using this updated
metric, the model achieves near-perfect recall rates on dataset
sizes of 1,000 and 10,000, with a recall of 0.999 on the 10,000
datasetsII. Furthermore, by manually examining the incorrectly
predicted results, we found that all ’wrongly’ generated video
IDs turn out to be false negatives because they all link to
relevant videos but the casing of the tag is mismatched either in
the tag or the title. Upon closer inspection, the model achieved
a 100% recall rate, successfully retrieving relevant video IDs
even when the exact tag-to-ID mapping is not present in the
training data.

D. Encoding video IDs with word list

The training target, video IDs, do not contain any semantic
information; they looks like hash strings. In our previous
experiments, we explored two strategies for encoding the video
IDs: the Naively Structured String Identifiers strategy and
the Unstructured Atomic Identifiers strategy. Although both
strategies gave relatively good performance, we wondered if
combining them could further improve the results. On a closer
look of the Naively Structured String Identifiers strategy, we
noticed that many tokens in the vocabulary of the T5 tokenizer
used to encode the video id did not have inherent meanings and
appear to be random substrings. However, language models
may perform better when dealing with semantic information.
This observation led us to hypothesize that replacing each
part of the video ID with meaningful words could potentially
enhance the model’s performance.

We selected the intersection of the BIP39 word list [19] and
the T5 tokenizer vocabulary as the vocabulary for encoding
the video IDs. The words in this list are more distinct and
well-separated [19], which we believed might aid the model
in better understanding the semantic information. We decided
to randomly select 64 words from this intersection vocabulary
and performed a small-scale experiment with 10 samples to
assess the effectiveness of this approach. Unfortunately, the
initial results were not promising, with the model achieving a
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precision rate of only 0.2568. This low performance indicated
that simply replacing parts of the video ID with meaningful
words from the BIP39 list did not yield the desired improve-
ment.

E. Discussion

The T5 experiment using video tags as queries provided
valuable insights into the model’s performance in a more
realistic search scenario. By updating the evaluation metric
to consider the presence of the input tag in either the tags or
title of the predicted video, we observed significant improve-
ments in recall rates, especially on smaller dataset sizes. This
optimization highlighted the importance of considering the
practical aspects of search engine applications when designing
experiments. In real-world scenarios, a query may be relevant
to multiple videos, and the model should be able to associate
a single tag with multiple video IDs. While we did not remove
the deduplication step during preprocessing in this experiment,
it is an important consideration for future work to better reflect
real-world search scenarios.

While the word encoding experiment using the BIP39 word
list did not yield promising results, it gives insight for further
exploration in incorporating semantic information into the
training process. Future work could investigate alternative
word encoding strategies or the use of different semantic-rich
vocabularies to potentially enhance the model’s performance.

Overall, the T5 experiments using both video titles and
tags as queries demonstrated the potential of using language
models for video retrieval tasks. The results underscored the
importance of selecting appropriate query types, preprocessing
techniques, and evaluation metrics to align with real-world
search scenarios. Furthermore, the experiments highlighted the
trade-offs between model complexity, dataset size, and com-
putational resources, emphasizing the need for careful consid-
eration when deploying such models in resource-constrained
environments. Future work should explore the removal of the
deduplication step during preprocessing to allow the model
to associate a single query with multiple video IDs, better
reflecting real-world search scenarios. Additionally, investigat-
ing alternative approaches to incorporate semantic information
into the training process could potentially improve the model’s
performance and generalization capabilities.

V. CONCLUSION

The conclusion goes here.

APPENDIX A
EXPERIMENTS

A. Dataset

B. Training parameters
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Field Name Description
video id Unique identifier for each video. Useful for indexing

and referencing specific videos in the dataset.
trending date The date when the video was trending. This can help

in analyzing trends over time.
title The title of the video. This is a crucial text field for

IR, as it often contains keywords and topics that are
highly relevant to the content of the video.

channel title The name of the channel that posted the video. This
can be used for channel-based recommendations or
analysis.

category id The category of the video (e.g., Entertainment, News,
etc.). Useful for categorizing content and making
category-based recommendations.

publish time When the video was published. This can be used
to study the impact of publication time on trending
status or viewership.

tags Keywords associated with the video. Tags are ex-
tremely valuable for IR as they directly represent the
content and context of the video.

views, likes, dislikes, comment count Engagement metrics. These can be used to gauge the
popularity and reception of a video.

thumbnail link Link to the video’s thumbnail. While not directly
useful for IR, it can be used for visual analyses or
to enhance the presentation of search results.

comments disabled, ratings disabled, video error or removed Boolean fields indicating certain statuses of the
video. These can be used for filtering out certain
videos from the analysis.

description The description text of the video. Like the title, this
is a rich text field that can be mined for keywords
and topics.

TABLE III: Fields in the ’Trending YouTube Video Statistics’ Dataset

Parameter Value
global_step 32760
training_loss 3.232750225882245
train_runtime 3834.9877
train_samples_per_second 68.337
train_steps_per_second 8.542
total_flos 7106770821765600.0
train_loss 3.232750225882245
epoch 8.0

TABLE IV: Training parameters and outputs for BERT training


