P2P VECTOR DATABASES FOR DECENTRALIZED LEARNING

Decentralized P2P databases for collaborative
learning in Al applications

Quinten van Eijs Delft University of Technology The Netherlands Johan Pouwelse Delft University of
Technology The Netherlands

Abstract—

Index Terms—Decentralized learning, P2P, Information Re-
trieval.

I. INTRODUCTION

Recommender systems leverage the power of Artificial In-
telligence (AI) to predict user preferences and suggest relevant
items. This technology plays a crucial role in various online
platforms, from suggesting video’s on YouTube to recom-
mending personalized content on TikTok. By analyzing user
data like past purchases, browsing history, and engagement
metrics, Al algorithms within recommender systems create
a personalized profile for each user. This profile then fuels
content recommendations, aiming to surface items that are
most likely to capture user interest and keep them engaged.

The current generation of Al is fully centralised. Only
huge Big Tech companies can afford the enormous cost of
datacenters filled with scarse Al training hardware. We prove
the viability of a radically different AI model. We show that
machine learning without any point of control is possibly. One
of the Internet’s defining features is its lack of any single
point of technical, political, or economic control. We present
experimental results of a machine learning architecture without
any central control. [4]

Decentralized learning paradigms are emerging as an alter-
native due to their superior privacy, security, and scalability.
However, existing decentralized learning methods are still
immature. Federated learning is still struggling to provide the
performance offered by centralised LLM-based approaches .
Yet, federated learning has some of the same drawbacks
of centralised learning. Federated learning is still based on
central control. The defining feature of The Internet of fully
decentralised control can not be achieve with the federated
learning model[3]].

1) Enabling collaborative learning: Developing robust
communication protocols and efficient algorithms for
nodes to share data and model updates, fostering the
collective refinement of knowledge and leading to better,
more consistent models across the network.

2) Facilitating dynamic embedding learning: Implement-
ing mechanisms for nodes to dynamically adjust vector
representations based on their local data and interactions,
resulting in contextually relevant and personalized mod-
els that adapt to the evolving data landscape.

3) Ensuring privacy-preserving learning: Exploring
privacy-preserving techniques like federated learning
and homomorphic encryption to allow nodes to con-
tribute to the learning process without directly sharing
sensitive data, thereby addressing privacy concerns in-
herent in decentralized learning.

4) Robustness to node failure: PeerAl gracefully handles
the failure of neighboring nodes.

By addressing these challenges we aim to unlock the true
potential of P2P vector databases for decentralized learning,
paving the way for a more secure, scalable, and privacy-
conscious future of Al and ML applications.

II. PROBLEM DESCRIPTION

While content retrieval systems on platforms like Youtube
and TikTok offer personalized recommendations and a seem-
ingly endless stream of content, they are not without limita-
tions. These limitations stem from their dependence on cen-
tralized control and infrastructure. Some of the key challenges
include:

Privacy Concerns: Centralized storage of user data raises
privacy issues. User behavior, search history, and watch time
are all collected and analyzed to personalize recommendations.
This data can be vulnerable to breaches and may be used in
unforeseen ways, leading to a lack of transparency and control
for users.

Bias and Algorithmic Injustice: Algorithms that power
these systems can be biased based on the data they are
trained on and the goals of the platform. This can lead to the
filtering out of diverse viewpoints and the promotion of content
that reinforces existing biases. Users may end up trapped in
“echo chambers” where they are only exposed to content that
confirms their existing beliefs.

Scalability and Performance: Centralized systems face
challenges in scaling to accommodate the growing volume of
data and users. As the number of users and content items

P2P VECTOR DATABASES FOR DECENTRALIZED LEARNING

increases, the system may struggle to provide timely and
relevant recommendations. This can result in slower response
times and decreased user satisfaction.

Limited Control for Users: Users have little control over
how their data is used or how content is recommended. The
algorithms operate as a black box, making it difficult for users
to understand why specific content is being surfaced. This lack
of control can be frustrating for users who may not appreciate
the recommendations they receive.

These limitations highlight the need for alternative ap-
proaches to content retrieval systems. Decentralized models
that prioritize user privacy and data control are emerging as
potential solutions for a more secure and equitable future of
online content consumption.

PeerAl is a decentralized learning paradigm that leverages
peer-to-peer (P2P) vector databases and dynamic embeddings
to address the challenges of centralized content retrieval sys-
tems. By enabling collaborative learning, facilitating dynamic
embedding updates, and ensuring privacy-preserving mecha-
nisms, PeerAl aims to provide a more secure, scalable, and
privacy-conscious alternative to traditional content retrieval
systems.

III. BACKGROUND AND RELATED WORKS
IV. DESIGN OF PEERAI

We now present the design of PeerAl and discuss the system
architecture, data partitioning, communication protocols, and
consistency management mechanisms. We also describe the
dynamic embedding learning algorithm and its role in collab-
orative learning within the P2P network.

A. System Model and Assumptions

'Li—---

PeerAl TensorFlow
Lite Support

Tensorflow Model

Node Y

IPv8 Protocol

IPv8 Communication

Fig. 1. The PeerAl system model. The system consists of three components:
the P2P network, the model, and the collaborative learning algorithm. The
P2P network is responsible for sharing the data, the model is responsible for
encoding the data into a vector space, and the collaborative learning algorithm
is responsible for updating the embedding model based on the data received
from the P2P network.

The System model consists of three differente components.
The first component is the P2P network, which is responsible
for sharing the data. The second component is the model,
which is responsible for encoding the data into a vector space.
The third component is the collaborative learning algorithm,
which is responsible for updating the embedding model based
on the data received from the P2P network.

B. P2P IPV8 network

The IPV8 network is a decentralized peer-to-peer network
that enables secure communication between nodes.

C. Tflite model

1) Universal Scente Encoder: The Universal Sentence En-
coder (USE) transforms text into high-dimensional vectors
suitable for various natural language processing tasks like text
classification, semantic similarity measurement, clustering,
and more. Trained and optimized for processing text longer
than individual words, such as sentences, phrases, or short
paragraphs, the USE is versatile across a spectrum of natural
language understanding tasks. Its training corpus encompasses
diverse data sources and tasks, facilitating adaptability to var-
ious text-related tasks. The model accepts variable-length En-
glish text as input and produces a fixed-length 512-dimensional
vector as output. In practice, it demonstrates effectiveness in
tasks like semantic similarity evaluation, exemplified through
its application in the STS benchmark, with detailed results
available in an accompanying notebook. Built upon a Deep
Averaging Network (DAN) encoder architecture, the USE
stands apart from traditional word-level embedding models by
training on tasks that necessitate understanding the meaning
of word sequences rather than individual words. For further
exploration of text embeddings, refer to the TensorFlow Em-
beddings documentation. (7]

"How old are you?" [0.3, 8.2, .]
"What is your age?" [0.2, 8.1, .]
"My phone is good." Embed [6.9, 8.6, .]

Fig. 2. Universal scentence embedder

2) SCaNN: The SCaNN algorithm is a scalable and ef-
ficient algorithm for similarity search in high-dimensional
vector spaces. It is based on Product Quantization (PQ)
and Asymmetric Hashing, which compresses the database
embeddings into a compact form for fast retrieval. SCaNN
is designed to work with large-scale datasets and is optimized
for both CPU and GPU architectures. It is capable of handling
millions of embeddings and can perform similarity search in
milliseconds. SCaNN is particularly well-suited for applica-
tions that require fast and accurate retrieval of similar items,
such as recommendation systems, search engines, and content-
based filtering.[2]

P2P VECTOR DATABASES FOR DECENTRALIZED LEARNING

D. PeerAl TFLITE SUPPORT

Dynamic embeddings are vector representations that can
adapt to changes in the underlying data distribution. By updat-
ing the embeddings based on the local data and interactions of
each node, dynamic embeddings can capture context-specific
information and improve the performance of machine learning
models. In the context of PeerAl, dynamic embeddings enable
nodes to personalize their models and contribute to the collab-
orative learning process. The collaborative learning algorithm
leverages the dynamic embeddings to refine the global model
and ensure consistency across the network.

Everything should be accissible from the Tribler SuperApp
Kotlin implementation.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We now describe our implementation and present the ex-
perimental evaluation of PeerAl. We first discuss the system
architecture, data partitioning, and communication protocols.
We then present the dynamic embedding learning algorithm
and evaluate its performance. Finally, we discuss the results of
our experiments and compare them with existing approaches.

A. Implementation Details

1) PeerAl TFLite Support: We implement the PeerAl sys-
tem using the TensorFlow Lite framework, which enables
the deployment of machine learning models on mobile and
IoT devices. TensorFlow Lite provides a lightweight solution
for running machine learning models on edge devices with
limited computational resources. We leverage the TensorFlow
Lite framework to interact with the pre-trained model that
transforms text into high-dimensional vectors suitable for
various natural language processing tasks. The framework is
written in C++ and uses Bazel [1]] to build cross-Platform and
is supported on Java, C++ (WIP), and Swift (WIP).

2) Tensorflow Lite Model: Dataset used for training for the
pre-trained model.

In ScaNN PQ is used to compress the database embeddings,
but not the query embedding. Which is called it Asymmetric
Hashing.

dimensions_per_block How many dimensions in each
PQ block. If the embedding vector dimensionality is a
multiple of this value, there will be. “ber-ol-dimensions
PQ blocks.

Otherwise, the last block will be the remainder. For example,
if a vector has 12 dimensions, and dimensions_per_block is
2, then there will be 6 2-dimension blocks. However, if the
vector has 13 dimensions and dimensions_per_block is still
2, there will be 6 2-dimension blocks and one 1-dimension
block.

If this value is set, we will penalize the quantization error
that’s parallel to the original vector differently than the orthog-
onal error. A generally recommended value for this parameter
is 0.2.

When measuring distance, we opt for the dot_product
method to assess the disparity between two embedding vectors.
It’s essential to highlight that we derive the negative dot
product value to adhere to the principle that smaller is closer.
Regarding the dataset structure, it undergoes segmentation into
o partitions, roughly corresponding to the square root of the
dataset size. During retrieval, the search encompasses o of
these partitions, constituting approximately between 0.15%
and 3% of the dataset. For space optimization, we implement
quantization for floating-point embeddings, converting them
into int8 values of the same dimension.

B. Experimental Evaluation
C. Content Retrieval Performance

In app screenshots.

D. Non perfect insert experiment breeaking the partition

We evaluate the performance of the PeerAl system using

1e Spotify and Youtube dataset. We compare the performance
of the system with and without the use of non-perfect inserts.
The non-perfect inserts are used to simulate an imbalanced
tree structure in the dataset, which can lead to an exploded
artition. We measure the retrieval accuracy and efficiency of

H Dataset Model Params Entries Size
PandaCD [5]] c=30,w=06 700 500KB
Spotify and Youtube [6] o=140,w =6 20.000 4MB
NPI* Spotify and Youtube [6] o=140,w =6 2.600.000 37MB
YouTube-Commons [8] o =1450, w =3 2.000.000 400MB?
TABLE 1

OVERVIEW OF DIFFERENT PRE-TRAINED MODELS ALL USING THE SAME
EMBEDDING MODEL. MPI NON PERFECT INSERTS ARE USED FOR THE
NPI* SPOTIFY AND YOUTUBE DATASET WHICH CONSISTS OF AN
INBALANCED TREE AND THUS A EXPLODED PARTITION.

Metadata is not bound to the model, but it is to the
SuperApp kotlin implementation therefore the metadata is
stored as parsed JSON including a title, author and a youtube
video id.

We utilize the following parameters for all models:

o distance_measure

o dimensions_per_block

e anisotropic_quantization_threshold

the system under different conditions and analyze the impact
of non-perfect inserts on the search performance.

E. Non perfect insert versus pretrained model

We evaluate the performance of the PeerAl system using the
Spotify and Youtube dataset. We compare the performance of
the system with and without the use of non-perfect inserts.
The non-perfect inserts are used to simulate an imbalanced
tree structure in the dataset, which can lead to an exploded
partition. We measure the retrieval accuracy and efficiency of
the system under different conditions and analyze the impact
of non-perfect inserts on the search performance.

P2P VECTOR DATABASES FOR DECENTRALIZED LEARNING

VI. EVALUATION AND EXPERIMENTS

o Design and conduct experiments comparing the proposed
system with existing approaches.

o Evaluate search accuracy, efficiency, and personalization
based on real-world datasets.

o Analyze the impact of dynamic embeddings and collab-
orative learning on search performance.

A. Vector Space

Indexing Youtube and TikTok: Explore the feasibility of
indexing content from these platforms using P2P vector
databases. Consider potential challenges related to copyright,
privacy, and data access limitations. Recommending 20k
Closely Related Items: Design and evaluate algorithms that
recommend highly relevant content based on a user’s personal-
ized model and collaborative learning within the P2P network.
Analyze the accuracy and diversity of recommendations com-
pared to traditional approaches.
o Pretrained 20k item model including 140 partitions and
128 embedded asymmetric hashes

o Inference Speed

o Impact of different embedding methods and inpact on
clusters. Such as sentence encoder vs weighted song
features.

o cluster visualization

B. Investigate the use of various distance metrics and simi-
larity search algorithms for enhanced retrieval accuracy.

C. Benchmark against traditional or static vector databases
database?

D. (CPU/GPU) Performance

Personalized Model on Smartphones: Investigate the imple-
mentation of personalized models on individual smartphones
using local data and collaborative learning within a P2P
network. Evaluate the impact of limited resources and privacy
constraints.

o Gossip 1 item per second with multiple connected peers.

o Loss function calculating new centroids given k-mean

and codebook update of hashes. Non-Perfect update show
practical implementation but does not converge the loss
function since partitions are expanded.

VII. CONCLUSION AND FUTURE WORK

o Summarize the key findings and contributions.

o Discuss limitations and potential future research direc-
tions.

o Highlight the broader implications of P2P vector
databases and dynamic embeddings for personalized con-
tent retrieval and other applications.

Current setup has no block/filter on given other nodes
such that all data and given meta data is learned by peers
even unwanted metadata. This is out of scope for the given
research.

(1]
(2]

(3]

(4]
(5]
(6]

(7]
(8]

REFERENCES

Bazel. URL: https://bazel.build/.

Ruigi Guo et al. “Accelerating Large-Scale Inference
with Anisotropic Vector Quantization”. In: International
Conference on Machine Learning. 2020. URL: https://
arxiv.org/abs/1908.10396,

Enrique Tomds Martinez Beltrdn et al. “Decentralized
Federated Learning: Fundamentals, State of the Art,
Frameworks, Trends, and Challenges”. In: IEEE Commu-
nications Surveys & Tutorials 25.4 (2023). 1SSN: 2373-
745X. pot: |10.1109/comst.2023.3315746. URL: http:
//dx.doi.org/10.1109/COMST.2023.3315746.

Mark Nottingham. RFC 9518: Centralization, Decentral-
ization, and internet standards. URL: https://datatracker.
1etf.org/doc/rfc9518/.

pandacd-dataset. URL: |https://pandacd.io/|
spotify-youtube-dataset. URL: https://www.kaggle.com/
datasets/salvatorerastelli/spotify-and- youtube.
tensorflow. URL: https://tensorflow.org/.
youtube-commons-dataset. URL: https://huggingface.co/
datasets/PlelAs/YouTube-Commons.

https://bazel.build/
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396
https://doi.org/10.1109/comst.2023.3315746
http://dx.doi.org/10.1109/COMST.2023.3315746
http://dx.doi.org/10.1109/COMST.2023.3315746
https://datatracker.ietf.org/doc/rfc9518/
https://datatracker.ietf.org/doc/rfc9518/
https://pandacd.io/
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube
https://tensorflow.org/
https://huggingface.co/datasets/PleIAs/YouTube-Commons
https://huggingface.co/datasets/PleIAs/YouTube-Commons

	Introduction
	Problem Description
	Background and Related Works
	Design of PeerAI
	System Model and Assumptions
	P2P IPV8 network
	Tflite model
	Universal Scente Encoder
	SCaNN

	PeerAI TFLITE SUPPORT

	Implementation and Experimental Evaluation
	Implementation Details
	PeerAI TFLite Support
	Tensorflow Lite Model

	Experimental Evaluation
	Content Retrieval Performance
	Non perfect insert experiment breeaking the partition
	Non perfect insert versus pretrained model

	Evaluation and Experiments
	Vector Space
	Investigate the use of various distance metrics and similarity search algorithms for enhanced retrieval accuracy.
	Benchmark against traditional or static vector databases database?
	(CPU/GPU) Performance

	Conclusion and Future Work

