
1

Adversarial information retrieval in distributed
systems

Jelle Licht, Johan Pouwelse

Abstract—Trust is fundamental to any human interaction. Any
web page, tweet, blog post, wikipedia edits, news article can be
fake or real. Technology can assist in determining trustworthiness
of information shared by strangers. A plentiful amount of
techniques have been developed to do exactly this. However,
many existing systems delegate ultimate trust to a predatory
company, or assume that there is some out of band information
available on which to base initial estimates of trustworthiness. A
system without these drawbacks that consistently classifies peers
as honest or dishonest does not currently exist. The goal of this
paper is to evaluate and analyze the existing systems and their
shortcomings, as well as look at ongoing efforts to make use of
the properties of distributed ledger technology for a way forward.

I. INTRODUCTION

Human interactions are based on trust between individu-
als. The willingness to trust others can be diminished by
continuous dealings with incompetent or abusive behavior,
and technological systems are not exempt from this. Indeed,
whereas advances in predictive models and behavioral ana-
lytics can advise us regarding the trustworthiness of certain
individuals, the value judgment of whether to trust is still
a essentially human one. This problem is exacerbated when
assessing the trustworthiness of hundreds, thousands or even
millions of individuals, as is often the case in decentralized
content sharing systems.

These systems rely on trust for their core operations once
the amount of content is intractable for an individual to verify
and/or authenticate. Some sort of gatekeeping or filtering
is required. For systems like FaceBook, this responsibility
is delegated to a central authority. A drawback of allowing
FaceBook, or any other central authority for that matter, to
make these decisions is that it can lead to inadvertently taking
part in a emotion study 1. A general lack of transparency on the
inner workings of such a system 2 make it difficult to identify
biases in the selection of content as presented. A decentralized
and transparent solution is needed with accountability and trust
built-in. More specifically, we take a view that focuses on
dealing with spam in these systems.

This work means to provide insight into the existing designs
and techniques in this area, as well as provide a framework
with which to analyze and compare the shortcomings of
existing and proposed solutions. In this paper we demonstrate
the various ways in which existing systems deal with dishonest

jlicht@fsfe.org, j.a.pouwelse@ewi.tudelft.nl
1https://www.theguardian.com/technology/2014/jun/30/

facebook-news-feed-filters-emotion-study
2http://raley.english.ucsb.edu/wp-content/Engl800/Pasquale-blackbox.pdf

peers, specifically by making use of votes cast by peers. Our
major contributions are as follows:

• A survey of different dealings with the potential mali-
ciousness of peer-supplied information in decentralized
systems.

• A case study showing how a real-world file-sharing
systems makes use of votes cast by users to improve
relevance of search results.

The rest of this paper is organized as follows: Section II
introduces the problems as tackled by this paper, as well
describing the general challenges plaguing decentralized sys-
tems. Section III describes mitigation strategies which apply
only in specific cases and a more general approach to building
trust. Section IV-D regards a case study using Tribler, a real-
world fully distributed content sharing and streaming system
Section V gives the concluding remarks of this paper.

II. PROBLEM DESCRIPTION

It is hard to divide the world in good and evil, even more so
for a machine. When exchanging information with a multitude
of individuals, the distinction has to be made between honest
and dishonest peers in order to make informed decisions.

A key feature of decentralized systems is information shar-
ing. In any but the most trivial systems, peers can not feasibly
share all information available in the system: Peers need to use
information retrieval techniques to find relevant information.
Information retrieval refers to the activity of finding relevant
information with regards to a certain query.

A dishonest peer can influence the process of information
retrieval depending on the specific system architecture. By
gaining control of trusted parts of the system, one can choose
to ignore, subvert or simply monitor peer interaction with
the decentralized system. This can be effectively equivalent
to denying certain or all peers service or threatening legal
actions to users of such a system. Deciding which peers to
trust is therefore paramount to the functioning of the system.

Decentralized system architectures were originally used
and actively researched as a means to make systems more
robust against censorship. Properly designed decentralized
system exhibit attributes such as scalability, trustworthiness
and reliability as well. Since 1999 the usage of p2p file-sharing
systems has steadily increased, bringing with it an increased
amount of interest in how these systems function. This has
been a double edged sword, as interest come from both well-
meaning users as well as more adversarial parties aiming to
sabotage these systems. A modern decentralized file-sharing
system needs. to take the motivations of adversaries and risks
for legitimate users of the system into account. Tribler is one

https://www.theguardian.com/technology/2014/jun/30/facebook-news-feed-filters-emotion-study
https://www.theguardian.com/technology/2014/jun/30/facebook-news-feed-filters-emotion-study
http://raley.english.ucsb.edu/wp-content/Engl800/Pasquale-blackbox.pdf


2

of such decentralized file-sharing systems that aims to provide
users with a robust and censorship-proof service.

Modern examples of widely used decentralized systems
are the BitCoin blockchain 3, BitTorrent 4 and the Internet
itself. Decentralization trends that have been ongoing since
the inception of the Internet, combined with bursts of intense
research activity have contributed to a sort of arms race
between designers of decentralized systems and those perceiv-
ing harm by the successful development and deployment of
decentralized systems. This has led to the creation increasingly
complex decentralization schemes, while these adversaries
have come up with social, legal and technical means to prevent
designers and users of these systems from being successful in
going about their business.

Interactions with honest peers can then be trusted, as well
as the corollary of this statement. Voting systems can alleviate
some of the more serious weaknesses seen in most file-
sharing systems. A potential issue with basing spam prevention
measures on active user participation is that users might not be
properly incentivized to act for the greater good of the system.
In the most extreme cases, entities can try to shut down all
services by launching a DDoS attack conducted either in the
open or anonymously [19].

Most of the theoretical models rely on two central assump-
tions:

1) Cooperative users vote in a similar way, properly clas-
sifying spam vs authentic content.

2) Cooperative users vote.
Prior research challenges both of these assumptions in an

empirical study [16]. As the first assumption can be seen as
a stronger one than the second, disproving the second also
allows the first to shown as optimistic in realistic scenarios.

In some way, determining the authenticity of content based
on the statements of potentially untrustworthy users is similar
to a Byzantine Fault Tolerance problem [15]. As a corollary,
this also means that cooperative users often inadvertently help
polluters spread misinformation and spam in the network with-
out being aware of this. Any proposed solution for dividing the
world in good and evil has to take into account that even honest
peers can commit to abusive behavior because of ignorance.

We aim to give an overview of the abuse types adversaries
have taken to prevent users from finding relevant content by
spamming some part of the service.

[1]

A. Index poisoning and routing table poisoning

A relatively simple way of preventing a user from down-
loading certain content is making sure the user has no way
of finding said content. As described in [30], index poisoning
can take place when users depend on other, potentially mali-
cious users for locating content. Index poisoning takes place
when users have no way to distinguish content advertised by
malicious vs cooperative users. Index poisoning is effective
because an adversary only has to advertise non-existing or

3https://www.bitcoin.com/
4http://www.bittorrent.com

corrupt locations of content, after which a naive user will
start the expensive process of following up on finding this
advertised content.

If an adversary is able to advertise the misinformation in
a superior way, this can lead to users repeatedly trying to
make use of the corrupted index information before eventu-
ally stumbling on a correctly advertised piece of content by
happenstance. By then, the damage is done, as most proper
decentralized file-sharing systems rely on other users dealing
with the same piece of content before being able to download
it.

Another issue starts to rear its head when an adversary
is able to contribute and sustain large enough of ostensibly
cooperative peers to the network. As long as no malicious
behavior is undertaken or detected, adversary-controlled nodes
start to become entwined in the distributed routing tables of
normal users. An adversary can employ this position of power
to monitor traffic, or even deny services to any subset of users,
or event deny services related to a specific piece of content
[21].

A way to deal with index- and routing table poisoning is
to routinely label misleading information, and purge it from
local information stores. The advantages of this approach
are two-fold. First of all, the peer will no longer make use
of misleading information, and secondly the peer will no
longer contribute to the problem by distributing the misleading
information. The challenge then becomes to identify with rea-
sonable certainty which pieces of information are misleading.

B. Content poisoning

An orthogonal method for the adversary to deny users of
p2p networks services is to actively flood the network with
mislabeled content. Compared to the index poisoning and
routing table poisoning method, this method does actually lead
to content being available on the network [18]. If the content
has to be downloaded in its entirety before a user is able
to determine its authenticity, this can quickly lead to entire
swarms of peers downloading and in turn sharing spam. One
way of dealing with content poisoning is by estimating the
probability of the content being authentic.

To estimate the pollution of a file-sharing network, the
authors of [18] differentiate between natural and intentional
pollution, but conclude that natural pollution is usually lim-
ited to a negligible amount. A crawler collects metadata an
availability information on the content in a certain network in
a best-effort to create a snapshot.

C. Stream poisoning

The application of live p2p streaming of content gives an
extra set of constraints which make it especially sensitive to
stream poisoning. Dishonest peers can collude to periodically
upload corrupt data to honest peers. Depending on how robust
the transfers are, honest peers might have to re-download
blocks, chunks or even entire files, thereby slowing down the
network with unnecessary work. These same considerations
also exist for non-live streaming systems, but in that case a
system can already be considered usable if honest peers are

https://www.bitcoin.com/
http://www.bittorrent.com


3

able to use the system within some reasonable amount of time.
On the other hand, even a two minute delay could already be
considered too much for a live streaming system.

D. Tag spam

Tagging is the process of annotating content with a tag. P2p
systems can benefit from tagging by providing a self-regulating
fine-grained filter. When tags are properly applied to content,
search performance should go up by more clearly describing
and distinguishing the content available in a network.

E. votes-spam

If the assumption holds that colluders act in detectable
patterns, techniques employed for identifying Web link farm
spam pages can also be employed on partial views of a
network [29], 5

SumUp [26] is one the systems designed to be resilient
against large swaths of colluding malicious users. It limits
the amount of influence colluders have by introducing a
bastardized version of the MaxFlow problem.

TorrentTrust [24] extends upon the Credence system by
taking into account user trust. The authors also incorrectly
state that Credence is by definition a centralized scheme with
a centralized certificate issuer. This is arguably the case for
the implementation of Credence, but [27] clearly states that
any different gate-keeping scheme can be used.

III. SOLUTIONS

This section provides an overview of mitigation strategies to
deter or limit the effect an adversary can have on the quality of
service of the file-sharing system. Ways to prevent dishonest
peers from being successful can be labeled in one of two types.
The first one is to prevent or disincentivize an adversary from
exhibiting the malicious behavior. The second type mitigates
or isolates the effects of the malicious behavior such that
honest peers can make use of the service unhindered.

Having defined the plethora of ways in which an decentral-
ized file-sharing system can be abuses and secured in Section
II, the decision has to be made on how to categorize gathered
information according to trustworthiness.

Building trust among peers is a well researched topic, and
one way of looking at the problem is to see interactions
between peers as edges in a graph, with vertices denoting
peers. Verifying an interaction implies trusting another peer
to some extent. This way of defining trust in a network leads
to Web of Trust.

A. Cold start based trust building

Credence [27] introduces the concept of object-based rep-
utation as a way to estimate content authenticity. A simple
voting protocol is used where a vote can be cryptographically
traced back to the voter. In principle, an adversary can employ
a Sybil attack [9] and quickly generate lots of misleading

5TODO: Describe [17]. (Collusion detection in completely-known systems
"works", should/could be applicable to online systems. Not sure whether
knowing you are being detected changes collusion behaviour.

votes. Figure III-A outlines the network topology for a Sybil
attack. Any technique that makes the edge cut between the
honest region and Sybil region smaller can be effective in
practice A gate-keeper mechanism that disincentivizes joining
the network multiple times in rapid succession would alleviate
this issue, such as a cryptographic challenge comparable to the
proof of work mechanism as employed on certain blockchain
structures and similar the scheme proposed in [1].

Semantically, Credence assumes a positive vote to be a vote
of confidence that the content is authentic; they do not have
to be indicative of popularity, although in practice users may
complect the two. Cooperative peers will generally consis-
tently vote to correctly classify authentic and non-authentic
content. Credence uses a weighted average scheme to estimate
the authenticity of each content item based on the collected
votes. Using the set of content items on which two peers both
voted, a local weight is assigned as follows: Assuming that
all cooperative peers vote in a similar fashion, looking at the
correlation between voting behavior allows a peer to quickly
asses the honesty of a different peer.

SpamResist [36] follows a scheme similar to Credence and
Sorcery [33], albeit applied to tag clouds. By dividing peers
in two groups, the unfamiliar peers and the interacted peers,
two different heuristics with widely different characteristics
can be applied. SpamClean [35] is another way to combat tag
spam. Again the authors make use of the insight that users with
similar voting behavior can provide more reliable information
in general, while also leading to degraded performance of the
system for deviants and dishonest peers.

SpamLimit [2]. . . 6.
Scrubber introduces a scheme which allows for swift pun-

ishment of malicious users, while still allowing redemption as
a result of continuous honest behavior [6]. It operates on the
assumption that at least 25% of users react to punishment by
removing the polluted content from the network.

The authors of [12] propose a quorum-based approach,
where peers can create a quorum to assess the honesty of
certain peers based on ad-hoc voting procedure. As long as
honest peers participate in these voting schemes this can be
effect, but as the authors of [32] noted, user participation in
voting is usually nonexistent or wildly inaccurate in the best of
cases. This leads us to believe that earlier mentioned schemes,

6TODO: Compare SpamLimit vs SpamResist vs SpamClean



4

while performing admirably in a simulation or experiment,
give no guarantees for real world deployments.

Some special considerations have to be made for preventing
dishonest peers from sharing corrupted data with honest peers
in live streaming systems; honest peers repeatedly trying to
get an uncorrupted copy of the data can shut down the system
if left unchallenged. A trivial solution would be to create a
published checksum for each unit of data, although this leads
to a problematic amount of metadata quickly. The authors of
[10] introduce a system for honest peers to make a converging
assessment regarding the trustworthiness of peer groups by
determining and refining probabilities of a specific peer being
complicit in repeatedly delivering corrupted data. By taking
into account that not each peer is responsible for the same
piece of data, this can strike an effective balance between the
amount of metadata required and the sensitivity to abuse by
dishonest peers.

B. Social enrichment

Most p2p networks have users use information contained
within the system to determine which peers to trust. This
can be problematic for users who only joined the network
recently, as they might not have all the information to correctly
categorize peers they interact with. The situation turns into a
bootstrap problem, where being initially basing your behavior
on information begotten from dishonest peers leads to honest
colluding with dishonest peers without by accident.

A different approach allows for using out-of-band infor-
mation to enrich the information gathered from within the
system. One such system is Sorcery as introduced in [33] and
[34], adding social network information as a source of baseline
truth, thereby addressing the bootstrap problem. Sorcery uses
this baseline truth to issue challenges to peers of which no
prior knowledge is available. Comparing challenge responses
to the baseline truth allows each peer to estimate a relative
reliability connected peer in the network.

SybilInfer as proposed in [8] relies on knowledge of all
social interaction in a network overlay in order to determine
the likelyhood of peers being either honest or dishonest.

IV. SEARCH IN EXISTING SYSTEMS

A glaring flaw in several of the proposed solutions is the
fact that most of them have not been deployed and used by real
life users. Simulations as run in some of the existing research
is can provide valuable insight into the dynamics and steady-
state behavior of systems, but mean nothing if some of the
initial assumptions made for the system or simulation do not
hold in the real world. In this section, we show the black box
behavior of several supposedly mature decentralized systems.

A. Information retrieval in Freenet

Freenet 7 is a system which allows its users to make use
of web services hosted on the Freenet platform while still
providing a modicum of privacy. Development of Freenet has
focused on providing the platform for others to offer services

7https://freenetproject.org/

on top of. Indices can be created by anyone, with a de facto
set of indices being proposed on the starting page, such as the
Filtered Index seen in Figure [[fig:freenet] . These indices are
a simple service like any other, and are usually curated by a
group of individuals. Interacting with resources on the Freenet
platform is done by establishing a connection to the network
and sending queries for specific resource. Freenet allows for
searching its network of content, but this usually leads to
significant delays, while depending on the current peers as
well as the state of the local cache. Effectively, making use of
the curated index services is more reliable when looking for
content. Freenet has been development for 17 years and the
platform is still in active development. The technical platform
leaves users to their own devices on deciding which services
and what content to trust, and as such could be seen to leave
spam prevention entirely up to the community as a social
challenge.

Fig. 1. An example of a Freenet curated index, allowing users to find non-
spam content.

B. Information retrieval in gnunet

GNUnet 8 is a reputation-based network with a focus on
anonymity. It can either be run on top of an exiting TCP/IP
stack, or replace it with the GNUnet stack entirely, although
this has mostly been an academic exercise.

The goals of the GNUnet project can seen as quite ambi-
tious, at the time of this writing there are no pieces of software
readily available that work with modern operating systems
and dependencies. TODO: Contact Christian on why nothing
builds.

GNUnet supports anonymous search queries by allowing
peers to forward queries, resulting in an inability to discern
original queries compared to forwarded ones. Responders to
queries have to prove they have actual knowledge about the

8https://gnunet.org/bibliography?page=2&f[keyword]=2

https://freenetproject.org/
https://gnunet.org/bibliography?page=2&f


5

looked-for content via a layered hashing system, comparable to
a Zero-knowledge proof TODO: {Ask Christian for reference
regarding ZKP}[11].

C. Information retrieval in YaCy

YaCy aims to be a fully decentralized search engine which
can provide an alternative to services such as the Google
search engine 9. Compared to the other systems reviewed here,
the scope of the problem YaCy aims to solve is more limited;
it is mainly used to index content in existing networks, such
as the Internet, but is not limited to this use-case. Figure 2
demonstrates the basic interface of YaCy.

Fig. 2. The YaCy search interface, showing all options

D. Information retrieval in Tribler

Tribler search functionality focuses on three key require-
ments: fast results, correct results and spam protection 10.
Tribler started out as fork of Yet Another BitTorrent Client,
aiming to use social networks to enhance the user experience.
Active research has extended Tribler to make it a tool for
researchers of decentralized systems to run experiments in the
real world. Tribler is compatible with other BitTorrent clients.
Users of Tribler can discover content from other peers via a
gossip protocol.

1) Communities: Tribler is extendable by introducing com-
munities. A Tribler community is a network overlay via which
peers can exchange predefined messages. The SearchCommu-
nity is a Tribler community used to share and receive partial
torrent files, allowing users to actually search for content on
the Tribler network in a decentralized manner. Each user can
have any number of content-channels associated with them. A
content channel is essentially a collection of torrent files, as
well as an assorted list of subscribers [31]. The AllChannel
community stores users’ vote preference for content channels,
and shares known votes among peers, allowing for filtering
based via a distributed moderation system. A vote can either

9https://yacy.net/en/index.html
10https://www.tribler.org/ContentSearch/

be positive (or "favorite"), or negative (or "spam"), as defined
by the VoteCast protocol 11. Tribler also allows peers to change
their mind at a later time and revoke their vote. Changes
in voting preferences are propagated over the network via a
gossip protocol.

2) Voting data: Tribler stores the current beliefs about of
the vote counts per channel in a local database, allowing for
offline analysis of voting behaviour within the network. We
need an understanding of user voting behavior to evaluate how
resilient Tribler is to vote-based spam.

The storage scheme as of this writing allows us to create
a coarse overview of how popular each content channel is by
calculating an effective vote count per channel. We subtract the
number of ’spam’ votes from the number of ’favorite’ votes
for a specific channel, reaching a number of effective votes.

3) Analysis: The VoteCast data crawled from the AllChan-
nel over several hours allows us to see how popularity is
distributed over the channels in Tribler. Looking at Figure 3,
we see that a channel on average has 127 votes, with only
45 channels having more than 1000 votes. The gathered data
leads us to the conclusion that there are a handful of reasonably
popular channels, and a myriad of less-popular channels.

Fig. 3. Content channel popularity, demonstrating that all but the 40 most
popular channels only have a handful of subscribers.

4) Votes over time: Giving a closer look to the gathered
VoteCast data reveals that there exist two clusters of votes
which predate the existence of Tribler, and by extension
VoteCast, by respectively 28 and 6 years. It can be assumed
that these anomalies are either the result of either a bug or a
curious user testing the limit of the VoteCast validation logic.
These findings have no bearing on further elaboration of vote-
spam behaviour in Tribler. See Figure 4 for the raw plot of
this data, including the anomalous past votes.

11https://www.tribler.org/Votecast/

https://yacy.net/en/index.html
https://www.tribler.org/ContentSearch/
https://www.tribler.org/Votecast/


REFERENCES 6

Figure 5 shows how votes are distributed when properly
filtered. We see that the first few votes were steadily cast, after
which the bigger group of users started using the VoteCast
system. 12

Fig. 4. Voting behaviour over time, unfiltered to include phantom votes.

Fig. 5. Voting behaviour over time, filtered to show the distribution of
legitimitely cast votes.

V. CONCLUSIONS

Clearly delineating the set of honest from dishonest peers
in a fully decentralized system is a difficult and for the
general case unsolved problem. The cold-start problem has
newly joined peers having trouble judging the authenticity of
claims made by peers in the network, while the lack of an
accepted ground truth necessitates heuristics and compromises
to establish an initial bearing on trustworthiness. Adding out of
band information to assist systems with making these decisions
alleviates the cold start problem, but this is not a general
solution for systems without persistent identities or systems
with high churn.

Honest peers can be misled and contribute to the activities of
dishonest peers in various ways. The effects of such poisoned
peers in the network should be mitigated, while allowing
poisoned peers redemption in the long term if their behavior
is corrected. Incentivizing peers to participate in the human-
driven quality assurance process that lies at the basis of most
technical solutions to identify dishonest peers is also still an
open problem.

The advent of tamper-proof distributed ledger technologies
brings with it a renewed interest in creating a Sybil-resistant
scheme for identifying dishonest peers, by making peers
accountable for their behavior. As of this writing, no scalable
system has been deployed with magnitudes comparable to
BitTorrent.

REFERENCES

[1] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo.
“DOS-resistant authentication with client puzzles”. In:
International workshop on security protocols. Springer.
2000, pp. 170–177.

[2] Eric Chang. “Defending against Spam in Tagging Sys-
tems via Reputations”. In: (2016). URL: http : / / dlc .
dlib. indiana.edu/dlc /handle /10535/10221 (visited on
07/17/2017).

[3] Nitin Chiluka et al. “Leveraging trust and distrust for
sybil-tolerant voting in online social media”. In: Pro-
ceedings of the 1st Workshop on Privacy and Security
in Online Social Media. ACM. 2012, p. 1.

[4] Edith Cohen, Amos Fiat, and Haim Kaplan. “Asso-
ciative search in peer to peer networks: Harnessing
latent semantics”. In: Computer Networks 51.8 (2007),
pp. 1861–1881.

[5] Fabrizio Cornelli et al. “Choosing reputable servents
in a P2P network”. In: Proceedings of the 11th inter-
national conference on World Wide Web. ACM. 2002,
pp. 376–386.

[6] C. Costa and J. Almeida. “Reputation Systems for
Fighting Pollution in Peer-to-Peer File Sharing Sys-
tems”. In: Seventh IEEE International Conference
on Peer-to-Peer Computing (P2P 2007). Sept. 2007,
pp. 53–60. DOI: 10.1109/P2P.2007.15.

12http://demo.polr.me/7

http://dlc.dlib.indiana.edu/dlc/handle/10535/10221
http://dlc.dlib.indiana.edu/dlc/handle/10535/10221
https://doi.org/10.1109/P2P.2007.15
http://demo.polr.me/7


REFERENCES 7

TABLE I
OVERVIEW OF COMPARED METHODS FOR IDENTIFYING SPAM IN DECENTRALIZED NETWORKS.

System Decentralization Out-of-band information Identify Sybil region Manual interaction Real-life demo
PageTrust [14] Unstructured None? Yes Yes ?
Sorcery Pre-defined trust edges? Yes Yes? Yes
EigenTrust
[3]
[25]
[7]

[7] Arturo Crespo and Hector Garcia-Molina. “Routing
indices for peer-to-peer systems”. In: Distributed Com-
puting Systems, 2002. Proceedings. 22nd International
Conference on. IEEE. 2002, pp. 23–32.

[8] George Danezis and Prateek Mittal. “SybilInfer: Detect-
ing Sybil Nodes using Social Networks.” In: NDSS. San
Diego, CA. 2009.

[9] John R Douceur. “The sybil attack”. In: International
Workshop on Peer-to-Peer Systems. Springer. 2002,
pp. 251–260.

[10] Rossano Gaeta, Marco Grangetto, and Lorenzo Bovio.
“DIP: Distributed Identification of Polluters in P2P
Live Streaming”. In: ACM Trans. Multimedia Comput.
Commun. Appl. 10.3 (Apr. 2014), 24:1–24:20. ISSN:
1551-6857. DOI: 10 .1145 /2568223. URL: http : / /doi .
acm.org/10.1145/2568223 (visited on 07/17/2017).

[11] Christian Grothoff et al. “The gnet whitepaper”. In:
Purdue University (2002).

[12] Hatem Ismail, Daniel Germanus, and Neeraj Suri. “P2P
routing table poisoning: A quorum-based sanitizing ap-
proach”. In: Computers & Security 65 (2017), pp. 283–
299. URL: http://www.sciencedirect.com/science/article/
pii/S016740481630178X (visited on 07/17/2017).

[13] Sepandar D Kamvar, Mario T Schlosser, and Hector
Garcia-Molina. “The eigentrust algorithm for reputation
management in p2p networks”. In: Proceedings of the
12th international conference on World Wide Web.
ACM. 2003, pp. 640–651.

[14] Cristobald de Kerchove and Paul Van Dooren. “The
pagetrust algorithm: How to rank web pages when
negative links are allowed?” In: Proceedings of the 2008
SIAM International Conference on Data Mining. SIAM.
2008, pp. 346–352.

[15] Leslie Lamport, Robert Shostak, and Marshall Pease.
“The Byzantine generals problem”. In: ACM Trans-
actions on Programming Languages and Systems
(TOPLAS) 4.3 (1982), pp. 382–401.

[16] Uichin Lee et al. “Understanding Pollution Dynamics
in P2P File Sharing.” In: IPTPS. Vol. 6. 2006, pp. 1–6.
URL: http://netlab.cs.ucla.edu/internal/wiki- internal/
files/uclee2006iptps.pdf (visited on 07/16/2017).

[17] Qiao Lian et al. “An empirical study of collusion
behavior in the Maze P2P file-sharing system”. In:
Distributed Computing Systems, 2007. ICDCS’07. 27th
International Conference on. IEEE, 2007, pp. 56–56.
URL: http : / / ieeexplore . ieee . org / abstract / document /
4268209/ (visited on 07/16/2017).

[18] Jian Liang, Naoum Naoumov, and Keith W. Ross.
“Efficient blacklisting and pollution-level estimation in
p2p file-sharing systems”. In: AINTEC 3837 (2005),
pp. 1–21. URL: http://link.springer.com/content/pdf/10.
1007/11599593.pdf#page=10 (visited on 07/17/2017).

[19] Haiman Lin et al. “Conducting routing table poisoning
attack in DHT networks”. In: Communications, Circuits
and Systems (ICCCAS), 2010 International Conference
on. IEEE, 2010, pp. 254–258. URL: http://ieeexplore.
ieee . org / abstract / document / 5582015/ (visited on
07/16/2017).

[20] Qin Lv et al. “Search and replication in unstructured
peer-to-peer networks”. In: Proceedings of the 16th in-
ternational conference on Supercomputing. ACM. 2002,
pp. 84–95.

[21] Naoum Naoumov and Keith Ross. “Exploiting p2p
systems for ddos attacks”. In: Proceedings of the 1st
international conference on Scalable information sys-
tems. ACM. 2006, p. 47.

[22] Johan Pouwelse and Martijn de Vos. “Laws for Creating
Trust in the Blockchain Age”. unpublished paper. 2017.

[23] Sean C Rhea and John Kubiatowicz. “Probabilistic lo-
cation and routing”. In: INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE. Vol. 3.
IEEE. 2002, pp. 1248–1257.

[24] Ian Sibner et al. “TorrentTrust: A Trust-Based, Decen-
tralized Object Reputation Network”. In: (2016).

[25] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui
Zhang. “Enabling efficient content location and retrieval
in peer-to-peer systems by exploiting locality in inter-
ests”. In: ACM SIGCOMM Computer Communication
Review 32.1 (2002), pp. 80–80.

[26] Dinh Nguyen Tran et al. “Sybil-Resilient Online Con-
tent Voting.” In: NSDI. Vol. 9. 2009, pp. 15–28. URL:
https://www.usenix.org/legacy/events/nsdi09/tech/full_
papers/tran/tran_html/ (visited on 07/16/2017).

[27] Kevin Walsh and Emin Gun Sirer. Thwarting p2p
pollution using object reputation. Tech. rep. Cornell
University, 2005. URL: https://ecommons.cornell.edu/
handle/1813/5680 (visited on 07/17/2017).

[28] Yongang Wang et al. “Dspam: Defending against spam
in tagging systems via users’ reliability”. In: Parallel
and Distributed Systems (ICPADS), 2010 IEEE 16th
International Conference on. IEEE. 2010, pp. 139–146.

[29] Baoning Wu and Brian D. Davison. “Identifying link
farm spam pages”. In: Special interest tracks and
posters of the 14th international conference on World

https://doi.org/10.1145/2568223
http://doi.acm.org/10.1145/2568223
http://doi.acm.org/10.1145/2568223
http://www.sciencedirect.com/science/article/pii/S016740481630178X
http://www.sciencedirect.com/science/article/pii/S016740481630178X
http://netlab.cs.ucla.edu/internal/wiki-internal/files/uclee2006iptps.pdf
http://netlab.cs.ucla.edu/internal/wiki-internal/files/uclee2006iptps.pdf
http://ieeexplore.ieee.org/abstract/document/4268209/
http://ieeexplore.ieee.org/abstract/document/4268209/
http://link.springer.com/content/pdf/10.1007/11599593.pdf#page=10
http://link.springer.com/content/pdf/10.1007/11599593.pdf#page=10
http://ieeexplore.ieee.org/abstract/document/5582015/
http://ieeexplore.ieee.org/abstract/document/5582015/
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/tran/tran_html/
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/tran/tran_html/
https://ecommons.cornell.edu/handle/1813/5680
https://ecommons.cornell.edu/handle/1813/5680


8

Wide Web. ACM, 2005, pp. 820–829. URL: http : / /
dl . acm . org / citation . cfm ? id = 1062762 (visited on
07/16/2017).

[30] Quan Yuan et al. “AStudy OF INDEX POISONING
IN PEER-TO-PEER FILE SHARING SYSTEMS”. In:
(). URL: https : / / pdfs . semanticscholar . org / ef1e /
10d6047a1c2f2a07d0214d29092f1270e810.pdf (visited
on 07/17/2017).

[31] N. Zeilemaker et al. “Tribler: Search and stream”. In:
2011 IEEE International Conference on Peer-to-Peer
Computing. Aug. 2011, pp. 164–165. DOI: 10 . 1109 /
P2P.2011.6038729.

[32] Ennan Zhai et al. “Resisting tag spam by leveraging
implicit user behaviors”. In: Proceedings of the VLDB
Endowment 10.3 (2016), pp. 241–252. URL: http : / /
dl . acm . org / citation . cfm ? id = 3021939 (visited on
07/17/2017).

[33] Ennan Zhai et al. “Sorcery: Could we make P2P content
sharing systems robust to deceivers?” In: Peer-to-Peer
Computing, 2009. P2P’09. IEEE Ninth International
Conference on. IEEE, 2009, pp. 11–20. URL: http : / /
ieeexplore.ieee.org/abstract/document/5284532/ (visited
on 07/16/2017).

[34] Ennan Zhai et al. “Sorcery: Overcoming deceptive votes
in P2P content sharing systems”. en. In: Peer-to-Peer
Netw. Appl. 4.2 (June 2011), pp. 178–191. ISSN: 1936-
6442, 1936-6450. DOI: 10.1007/s12083- 010- 0074- 2.
URL: https://link.springer.com/article/10.1007/s12083-
010-0074-2.

[35] Ennan Zhai et al. “Spamclean: Towards spam-free tag-
ging systems”. In: Computational Science and Engi-
neering, 2009. CSE’09. International Conference on.
Vol. 4. IEEE, 2009, pp. 429–435. URL: http://ieeexplore.
ieee . org / abstract / document / 5284153/ (visited on
07/16/2017).

[36] Ennan Zhai et al. “SpamResist: making peer-to-peer
tagging systems robust to spam”. In: Global Telecom-
munications Conference, 2009. GLOBECOM 2009.
IEEE. IEEE, 2009, pp. 1–6. URL: http : / / ieeexplore .
ieee . org / abstract / document / 5425801/ (visited on
07/16/2017).

VI. TODO PUT IN PROPER CONTEXT

• [13] Assign each peer a global trust value (via Power
Iterations??). Using transitive trust, leads to ’a system
where global trust values correspond to the left principal
eigenvector of a matrix of normalized local trust value’.
Dealing with ’malicious collectives’ is done by adding a
pre-set possibility of crawling to a predetermined trust-
worthy peer instead of only the self-reinforcing links
within the malicious collective. Pre-trusted peers are
required for this to work (ie converge and be aperiodic)
in any way. M score managers are assigned to each peer
via DHT who democratically present that peers trust score
on request. (NB, score managers need to properly pass
on their state and computations to their DHT neighbors
when leaving the network).

• [22] wrt interaction rules in trust systems
• [28] wrt tag spam
• [20] Centralized vs decentralized + structured vs de-

centralized + unstructured. This paper applies random
graph walks on decentralized + unstructured systems like
Gnutella, and shows an improvement of resource usage
at the scale of two orders of magnitude compared to the
old Gnutella flooding scheme. Expanding ringe (increase
TTL each time while flooding, expecting ’hot’ items to
be replicated more often (and thus, closely to peer issuing
the query). k random walkers after T steps should/could
have reached the same nodes as 1 walker after kT steps.
And indeed simulations confirm this. TODO: WHICH.
TTL walkers continue until TTL is 0 or the object has
been located, while ’checking’ walkers check in with
requester to see if the object has already been located by a
different walker. Magical number of 16-64 walkers seem
to work, with checking after every 4 node. State keeping
per random walk set makes sure the same routes are not
repeated for a certain node, but this only seems to work
in simulations and not in existing networks. Squareroot
replication is needed to limit overhead, which can happen
with owner replication (searcher stores object as well), or
path replication (each node along the search path stores
object). Random replication looks at the final hop count
for the query, and selects ’hop count’ nodes from all
the visited nodes to replicate the object. In experiments,
this seems to have the best results compared to other
replication strategies. This is more difficult to imple-
ment correctly however. Any solution should "adaptive
termination, minimizing message duplication and small
granularity of coverage" when making queries.

• [4]
• [23] Attenuated loom filter = lossy distributed index.

Route queries from a client to the closest replica adhering
to certain properties (such as shortest network path).
These consist of layer of bloom filter per edge, with
each layer representing the bloom filter for the {1,2,3,. . . }
hop document content, although this is an inherently non-
deterministic process (WHY?)

• [7] Search without index, search with index nodes (cen-
tralized search) and index-per-node (distributed search).
This document describes storing routes instead of indices,
(which seems a bit like DHT?), allowing each ’step’
to get closer to the content, while being robust against
dynamic network topology. Index size => O(num of
neighors) instead of O(num of documents)? Compound
RI vs Exponential RI (finger table?) vs Hop count RI
(DHT again?)

• [25] Early approach to "neighbourhoods" or taste buddies:
Allow the system to keep track of a group of peers with
matching performance characteristics and relevant con-
tent availability, while still falling back to Chord (TODO:
Is this DHT?) and eventually flooding for looking up
content. Neighborhoods are defined as being "peers who
have the content we are looking for"???

• [5] "The use of a P2P network for information exchange
involves two phases, the first phase is the search of

http://dl.acm.org/citation.cfm?id=1062762
http://dl.acm.org/citation.cfm?id=1062762
https://pdfs.semanticscholar.org/ef1e/10d6047a1c2f2a07d0214d29092f1270e810.pdf
https://pdfs.semanticscholar.org/ef1e/10d6047a1c2f2a07d0214d29092f1270e810.pdf
https://doi.org/10.1109/P2P.2011.6038729
https://doi.org/10.1109/P2P.2011.6038729
http://dl.acm.org/citation.cfm?id=3021939
http://dl.acm.org/citation.cfm?id=3021939
http://ieeexplore.ieee.org/abstract/document/5284532/
http://ieeexplore.ieee.org/abstract/document/5284532/
https://doi.org/10.1007/s12083-010-0074-2
https://link.springer.com/article/10.1007/s12083-010-0074-2
https://link.springer.com/article/10.1007/s12083-010-0074-2
http://ieeexplore.ieee.org/abstract/document/5284153/
http://ieeexplore.ieee.org/abstract/document/5284153/
http://ieeexplore.ieee.org/abstract/document/5425801/
http://ieeexplore.ieee.org/abstract/document/5425801/


9

the servent where the requested information resides. The
second phase, which occurs when a servent has identified
another servent exporting a resource of interest, requires
to establish a direct connection to transfer the resource
from the exporting servent to the searching servent"

• [3] "Reducing the effect per attack edge of sybil re-
gion, by combining Social Network-based Sybil Defenses
(SNSD) and Signed Network Analysis (trust and distrust
relationships). They need ~10% vigilant nodes to make
some things work, which is actually quite high according
to earlier research about people not voting properly.

• [14] Extending PageRank to incorporate negative links,
which would normally invalidate the non-negativity as-
sumption from the original PageRank theory (TODO: Ref
pageRank?. By working around this problem by defining
a distrust matrix which "works both ways?", negative
edges can be incorporated in PageRank, re-interpreting
where a random walker should go (and thus ends up in the
steady state) => resulting in PageTrust with potentially
better results.


	Introduction
	Problem description
	Index poisoning and routing table poisoning
	Content poisoning
	Stream poisoning
	Tag spam
	votes-spam

	Solutions
	Cold start based trust building
	Social enrichment

	Search in existing systems
	Information retrieval in Freenet
	Information retrieval in gnunet
	Information retrieval in YaCy
	Information retrieval in Tribler
	Communities
	Voting data
	Analysis
	Votes over time


	Conclusions
	TODO put in proper context

