
Title
Optional Subtitle

B. van IJzendoorn

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

TITLE
OPTIONAL SUBTITLE

by

B. van IJzendoorn

in partial fulfillment of the requirements for the degree of

Master of Science
in Applied Physics

at the Delft University of Technology,
to be defended publicly on Tuesday January 1, 2013 at 10:00 AM.

Supervisor: Prof. dr. ir. A. Einstein
Thesis committee: Prof. dr. C. F. Xavier, TU Delft

Dr. E. L. Brown, TU Delft
Ir. M. Scott, Acme Corporation

This thesis is confidential and cannot be made public until December 31, 2013.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

Preface. . .

B. van IJzendoorn
Delft, January 2013

iii

CONTENTS

1 Introduction 1

2 Problem Description 3
2.1 Latency in trading. 3
2.2 Latency in Anonymization techniques . 5
2.3 Latency in Parallel algorithms. 5
2.4 The current status of latency in Tribler . 5

3 System Design 7

4 Related Work 9
4.1 Chaum Mixes . 9
4.2 TOR Onion Routing . 9
4.3 Triangle Violations . 10

5 System Design 11
5.1 Latency Community . 11
5.2 Enhancing privacy . 11

5.2.1 Privacy of traders in matching engine . 11
5.2.2 Requirements . 13
5.2.3 Optional requirements . 13
5.2.4 Tests . 13

5.3 Incremental Algorithms . 14
5.3.1 Incremental algorithms and the peer discovery mechanism 14
5.3.2 Performance of incremental algorithms . 15

6 Experiments 17
6.1 Incremental algorithm . 17

6.1.1 Performance metrics. 17
6.1.2 Results . 20
6.1.3 Naive implementation experiment. 20
6.1.4 Incremental algorithm in Tribler . 20

6.2 Latency measurements . 21

Bibliography 29

v

1
INTRODUCTION

A decentralized market has been implemented in Tribler by Olsthoorn (2016) that does not guarantee the
privacy of traders. Traders can exchange BitCoin against Multichain coin in a decentralized system. Ensuring
the privacy of traders in an exchange is important because otherwise traders can play games and abuse the
trade information of other parties for their own benefit. Sensitive trading information becomes public to
other users and the trading position of a trader can potentially be derived at two points. At first, there is
a decentralized matching engine where bid and ask offers are broadcasted to all other traders to make a
match. [1] Secondly, the trading position of a trader might be exposed because the BitCoin wallet does not
ensure privacy. The payment transactions are recorded in a decentralized public ledger from which much
information can be deduced. An alternative to the BitCoin wallet is the Zerocash wallet which uses a changed
version of the blockchain that ensures the privacy of transactions with zero knoweldge proofs and onion
routing. [2] However, this is not an option because users should be allowed to pay with the BitCoin wallet and
with other wallets from for instance traditional banks like ABN AMRO or ING.

1

2
PROBLEM DESCRIPTION

Almost all systems have some requirements for latency, defined as the time required for a system to respond
to input. Problem domains like web applications, voice communications and multiplayer gaming have la-
tency requirements. In distributed systems latency requirements have become stricter with new applications
like trading and anonymity systems. In this work I investigate methods to reduce the latency in distributed
systems. [3]

2.1. LATENCY IN TRADING
A good example of a user application where low latency communication is important is the trading domain.
In the past 30 years, trading has become faster. The time it takes to process a trade has gone from minutes to
seconds to milliseconds. "Low Latency" would be under 10 milliseconds and "Ultra-Low Latency" as under
one millisecond . It is estimated that 50% of trades in the U.S. are done in high frequency trading with an
"Ultra-low latency". Thus, low latency is a major differentiation factor for exchange firms. Some firms state
that a 1 millisecond advantage can save an exchange firm 100 million U.S. dollars. [4] An individual trader
has numerous advantages when using trading in a system with low latency: [5]

1. Better decision making: A trader makes trading decisions based on the information the trader has from
the market. Other traders send the prices and quantities they offer as orders to other traders. Let’s say
these traders maintain these orders in an order-book. If these orders arrive later, the individual trader
is limited in it’s trading decision making.

2. Competitive advantage towards other traders: When an individual trader can trade relatively faster than
another trader due to low latency it has a competitive advantage. Let’s say a price differentiation takes
place, a price suddenly becomes lower. A trader with a relatively lower latency can act on it earlier than
it’s competitors and take advantage of the lower price before a price correction takes place.

3. Lower latency traders are served with a higher priority. Offering a lower price gives a trader always a
higher priority as other traders would buy a product with a lower price faster. However, when the price
is the same. The offer that arrives first is served. A trader with a high latency needs to lower its price in
order to get a higher priority. If the high latency trader does not lower its price it is simply not served.
Also, offers at the same price level with a higher priority have less adverse selection. [6] [7]

Moallemi and Saglam (2013) estimate the latency cost based on cross-sectional data on volatilities and
bid-offer spreads in the U.S. between 1995-2005 from the dataset of Ait Sahalia and Yu (2009). The results can
be seen in 2.1. The median latency cost approximately increased threefold in the 1995-2005 time period. To
obtain the latency cost estimation the data set is used in a model that under simplifications calculates the
latency cost. The model assumes an individual trader with a fixed latency of 500ms. As time increases, the
cost for this latency also increases. As can be seen later on, the Tribler market has latencies around 150 ms.
The assumption of a trader with 500ms is realistic in the Tribler context. For details of the model we refer to
the paper of Moallemi and Saglam (2013). [4]

3

4 2. PROBLEM DESCRIPTION

Figure 2.1: A hypothetical investor with a fixed latency of 500 ms is assumed. The latency costs are computed from the data set of Ait
Sahalia and Yu (2009) The latency cost for GS is also reported, beginning from its IPO. The dashed lines correspond to dates where the
NYSE tick size was reduced. The latency cost had a consistent increasing trend over the 1995-2005 period. The median latency cost
approximately increased threefold by reaching roughly 14% from 5%.

2.2. LATENCY IN ANONYMIZATION TECHNIQUES 5

Figure 2.2: Anonymization in Tribler

2.2. LATENCY IN ANONYMIZATION TECHNIQUES
Anonymization techniques require data to go through different nodes to make it hard to link the sender and
receiver of a message. In one of the early anonymization techniques called mixes by Chaum developed in
1981 latency was a big problem. Messages are batched at nodes and a new batch is send forward at a node
when n message are received giving a large delay between sending and receiving a single message. [8] In the
TOR anonymization technique a solution to the latency problem is provided by forwarding messages in real
time between mixes at the cost of the quality of the privacy. With TOR anonymization sender and receiver
can be linked when all messages are sniffed in the global passive attack. [9] Because anonymization requires
multiple nodes to which data travels a high latency between these nodes is unacceptable for a good working
protocol. Figure 2.2 shows an overview of the anonymization in Tribler.

2.3. LATENCY IN PARALLEL ALGORITHMS
In high granularity, fine-grain parallel algorithms one of the primary bottlenecks is communication latency.
Only small amounts of computational work is done between communication events and the communica-
tion overhead is high because the message needs to be prepared and there is an electrical delay for signal
processing between physical network links. These parallel algorithm have a wide range of applications in
for instance data mining and knowledge discovery. The algorithms involve decomposing the data into parts
based on available information and knowledge. The decomposition allows to do a parallel computation on
multiple nodes. [10] [11]

2.4. THE CURRENT STATUS OF LATENCY IN TRIBLER
The latency of Tribler applications appears to be around 150ms normally. There are however outliers of la-
tencies of 10 seconds. The normal latency response of 150ms is high for a exchange market but explained by
the distributed nature of the Tribler market. Other exchange markets that are considered low latency have la-
tencies around 10 ms. The outlier latencies of 10 seconds are unacceptable in the market application. These
super high latencies result almost directly in the problems described by Cespa and Foucault, 2009. 1) Com-
petitive advantage for other traders 2) Bad decision making from traders due to incomplete information and

6 2. PROBLEM DESCRIPTION

Figure 2.3: Delays while waiting for similarity responses for 4 hours in a real world Tribler application. [12]

3) Low priority serving because another trader gets served earlier due to the first come first served principle.
[5]

3
SYSTEM DESIGN

A number of systems have been proposed for estimating latencies by computing the synthetic coordinates of
servers. One of the first systems is the GNP system by Zhang et al. It assumes that hosts H are coordindates in
a D dimensional geometric space S. Because S is geometric the distance function f (C S

H1
,C S

H2
) between two

host coordinates C S
H1

and C S
H2

is easily calculated by taking the euclidean distance between these two host
coordinates. The GNP algorithm consists of two stages. In the first stage a subset of landmarks L from all
the hosts H are chosen as points of reference for fast host position calculation in stage 2. Suppose there are
N landmarks chosen and each of the landmarks measure the latencies between hosts resulting in an N xN
distance matrix. In order to uniquely compute host coordinates at least D +1 landmarks are chosen and thus
N > D + 1. The goal is to find a set of coordinates C S

L1
,C S

LN
for the N landmarks such that the overall error

between the measured distances and computed distances in S is minimized. Thus, in the first stage the fol-
lowing objective function is minimized:

fob j (C S
L1

, ...,C S
LN

) = ∑
Li ,L j ∈{L1,...,LN }|i> j

= ε(f (C S
L1

,C S
L2

), f (CH1 ,CH2))

where ε(.) is the error measurement function: ε(f (C S
L1

,C S
L2

), f (CH1 ,CH2)) = f (C S
L1

,C S
L2

)− f (CH1 ,CH2)

After the landmark coordinates C S
L1

,C S
LN

are computed the second stage of the algorithm can start where
other hosts place themselves relative

7

4
RELATED WORK

4.1. CHAUM MIXES
Chaum , D.L. first published about anonymization techniques in 1981 now known as mix networks. [8] The
purpose of mix networks is to unlink the sender and receiver of messages. A mix is a node in the network with
its own public/private key pair. Messages are send towards mixes encrypted with the public key of the mix.
The mix hides the correspondence between incoming and outgoing message. To achieve this the mix does
three things:

1. Incoming messages are batched together and send in one batch.

2. The mix strips of the encryption layer of incoming messages with its private key and forwards messages
to another mix or to the final destination node of the messages.

3. The order of the messages is permuted.

A mix network is a series of mixes connected together. More mixes in the network make the unlikability
property stronger but result in a higher latency.

The identity of the next recipient in the network is encrypted together with the message to let the mix
know to which node it has to send the next batch.

EM I X (messag e, A)
M I X−−−→ messag e, A

Thus the encryption for a mix network of three layers looks the following.

EM I X1 (EM I X2 (EM I X3 (messag e, A), M I X3), M I X2), M I X1)
M I X1−−−−→ EM I X2 (EM I X3 (messag e, A), M I X3), M I X2), M I X1

EM I X2 (EM I X3 (messag e, A), M I X3), M I X2)
M I X2−−−−→ EM I X3 (messag e, A), M I X3), M I X2

EM I X3 (messag e, A)
M I X3−−−−→ messag e, A

Because messages are batched together mix networks require that a (threshold) mix has to wait until N
messages are arrived to forward a new batch of messages. This gives a high latency to the system. In a timed
mix the mix forwards every t seconds. If a limited number of messages arrive in the time interval the mix
loses its unlinkability property. For instance, if one message arrives in the time interval it can be easily linked
to the only outgoing interval. To solve this problem dummy messages with no meaning can be send into
the network. Dummy messages also lower the latency and make the unlinkability property in a threshold
stronger.

In a Trickle attack the adversary can slow down messages that are send into the mix to ensure only one
message is send into a timed mix every t seconds. The Flooding attack injects N −1 messages in a threshold
mix and then distinguishes its own injected message from other messages.[13] [14]

4.2. TOR ONION ROUTING
TOR onion routing is a method developed by Dingledine, R. et al that like mix networks also aims to provide
anonymity for users but operates at a lower latency compared to mix networks. The onion routers are real

9

10 4. RELATED WORK

time mix networks. Messages are not batched together but passed on nearly in real-time. This makes TOR
onion routing vulnerable to the global passive attack where peers sniff all the network traffic and can then
link sender and receiver to each other. When only parts of the network can be sniffed, TOR onion routing still
provides anonymity.

Clients create a path through the network where each node only knows its predecessor and successor
node in the path. The end node connects with the recipient of the messages. Session keys are negotiated
between each pair of successive nodes in the path to ensure "Perfect forward secrecy" With "Perfect forward
secrecy" a hostile node cannot record traffic and decrypt it later at another compromised node in the network.

4.3. TRIANGLE VIOLATIONS

5
SYSTEM DESIGN

5.1. LATENCY COMMUNITY
The latency community has 4 distinct packets. Ping Pong Request Latencies Response Latencies

GNP is often more accurate on a small number of hosts. Calculating GNP with a large number of nodes
takes a lot of computation time. Therefore a small number of nodes is required. The only requirement for the
nodes is to remove outliers. This should be feasible with a small number of nodes.

5.2. ENHANCING PRIVACY

5.2.1. PRIVACY OF TRADERS IN MATCHING ENGINE
A matching has to be found by broadcasting the price and quantity details towards other peers. Peers gossip
the information towards each other. In this broadcasting process a path between two traders is made via other
peers in the peer to peer network. The path creates a tunnel like in the design of the TOR protocol and chaum
mixes. The path is used in all future communication between the two traders to ensure privacy. A session key
is shared using Diffie Hellman key exchange between the two peers in the tunnel to ensure privacy against
the 3 peers that facilitate the tunnel. The session key is shared using Diffie Hellman key exchange. [8] [9]

The first step in the matching process is the broadcast of a bid or ask towards other peers in the network
as shown in Figure 5.1. The price and quantity (qtt) details of the bid or ask are first encrypted with the pri-
vate key of the sending peer to let the receiving peer make sure the match is coming from the sending peer.
A second layer of encryption is added with the public key of the receiving peer to ensure that only the re-
ceiving peer can read the information of the match. The match is three times forwarded towards other peers
to make the tunnel with three peers into it. The time to live (ttl) field maintains how many times the match
is forwarded. Also the first part of the Diffie Hellman key exchange A and a unique random number ni to
distinguish between peers to which the match is forwarded is calculated and send with the broadcast. The
peer saves the peer to which the match is forwarded in the tuple (mi d ,ni) where mi d is the match id. For
example in Figure 5.1 P1 would save P2 in the tuple (mi d ,ni). This information is later used to distinguish
between multiple matches made with one broadcast. Also the mi d is saved tell from which peer a broadcast
was coming. For example P2 would let mi d correspond to P1 because the match with mi d was coming from
P1.

When after three hops a match is found the second step starts and the matching peer sends a proposed
trade back towards the broadcasting peer via the tunnel. The second part and the session key of the Diffie
Hellman key exchange is calculated. Because multiple matches can be made there will be multiple unique
session keys. The proposed trade is encrypted with the session key K and is send back into the tunnel together
with the second part B of the Diffie Hellman key exchange. The broadcasting peer receives the second part B
of the Diffie Hellman key and calculates the session key K to decrypt the proposed trade. The communication
to accept a trade, decline a trade or propose a counter-trade between the two trading peers at the end of the
tunnel is from this point in time done with the session key that both ends know.

To distinguish between multiple matches in the same broadcast the tuple (mi d ,ni) was saved that tells
to which peer the broadcast was send. A path identifier (mi d ,ni ,n j ,nk) is created on the way back from

11

12 5. SYSTEM DESIGN

Figure 5.1: Broadcast of bid or ask match request towards other peers.

Figure 5.2: Match send back towards broadcaster. The path identifier is created upon hopping back

5.2. ENHANCING PRIVACY 13

matched peer to the broadcast peer and can be used to distinguish between paths on the way forward from
the broadcast peer. Thus (mi d ,ni) tells the first peer who is the next peer in the path. (mi d ,n j) tells the
second peer the next peer in the path and (mi d ,nk) tells the third peer the last peer in the path. The mi d is
used by a peer to go back toward the broadcasting peer. An overview of the second step is given in figure 5.2

5.2.2. REQUIREMENTS
• Proxies in trading to ensure privacy.

• No Trader id in first offer.

• Encrypted trader id in proposed trade.

• Reputation system to prevent DDoS attacks.

• Reputation reward upon contributing in a proxy trade.

• Only trade with low latency peers to prevent DDoS attacks.

5.2.3. OPTIONAL REQUIREMENTS
• Multiple relays in proxies

• Use proxies in negotiating proposed trade.

5.2.4. TESTS
• DDoS test with a large number of peers doing trade offers to the system.

14 5. SYSTEM DESIGN

5.3. INCREMENTAL ALGORITHMS
In order to solve the complexity problems of the GNP algorithm in the decentralized Tribler setting we in-
troduce an incremental algorithm approach to stretch the computation of the solution over time. With in-
cremental algorithms the input changes over time. Given a sequence of input, the algorithm calculates an
output sequence. At each new time point when a new input vector is given to the algorithm new solutions are
calculated. According to Sharp, 2007 we can further specify the algorithm class to online incremental algo-
rithms. Online algorithms differ from normal incremental algorithms in that there is no knowledge on future
input while in normal incremental algorithms there is complete knowledge. [15] [16]

A good problem to to use as an example what online algorithms are is the k-server problem. Figure 5.3
illustrates the k-server problem. Suppose there are k reporters who have to travel to and investigate on news
events in a country. Every time a new news event happens one of the reports is chosen by the algorithm to go
toward that event and to investigate on it. The goal of the algorithm solution is to minimize the sum of the
distances that all reporters travelled. When the algorithm decides on which reporter to send towards a new
event it does not know about the locations of future events. This lack of knowledge results in sub-optimal
solutions in the above example. [15]

Figure 5.3: Illustration of K-server online incremental algorithm. At each new input event e a calculation is done in O(a) time where a is
a polynomial function to decide which reporter x to assign on event e. Past solutions can be used in future calculations.

5.3.1. INCREMENTAL ALGORITHMS AND THE PEER DISCOVERY MECHANISM
Peer discovery is constructed in such a way that it allows easy incorporation of an incremental algorithm.
There are four faces in the peer discovery mechanism of Tribler. These four fases are also illustrated in figure
5.4.

1. peer A chooses a peer B from its neighbourhood and it sends to peer B an introduction-request;
2. peer B chooses a peer C from its neighbourhood and sends peer A an introduction-response containing
the address of peer C;
3. peer B sends to peer C a puncture-request containing the address of peer A;
4. peer C sends peer A a puncture message to puncture a hole in its own NAT.

Figure 5.4: Overview of peer discovery in Tribler

5.3. INCREMENTAL ALGORITHMS 15

5.3.2. PERFORMANCE OF INCREMENTAL ALGORITHMS
The performance of an online algorithm can be analyzed by comparing the solution to the optimal solution
which can be calculated offline. The optimal solution of an online algorithm can be computed offline with
complete knowledge.

6
EXPERIMENTS

6.1. INCREMENTAL ALGORITHM

In this section, we describe the performance metrics used to measure the performance of the incremental
algorithm and discuss the experimental results.

6.1.1. PERFORMANCE METRICS

To fully evaluate the performance of the incremental algorithm the trade-off between the computational time
and the accuracy of the algorithm needs to be explored. Because of the incremental nature of the algorithm
the computation is separated over time. Every time a peer explores a new neighbouring peer a new data
vector containing the latency’s measured by the newly explored peer is added to the latency data-set of the
exploring peer. The computational time it takes to process this new data vector can easily be measured by
taking the time difference of the time before and after the computation. The accuracy change after each
incremental step of the algorithm is harder to measure and requires specifically designed metrics.

We use two metrics to measure the accuracy performance of the algorithm: ranking accuracy and relative
error. We will first discuss ranking accuracy. Because we are building a low-latency overlay to select new
peers for introduction we are only interested in the closest neighbours of a peer. How good the algorithm
selects new peers is measured in rank accuracy. A close related metric is used in the literature to measure the
performance of the GNP algorithm [17]. Let’s say we are interested only in the top 20 of closest peers to each
peer. The idea is that after each incremental step we can calculate the predicted distances between peers and
know the real distances based on the measured latency’s. We then sort the predicted distances and measured
distances to calculate a top 20 closest peers list to each known peer for both the predicted distances and
measured distances. The ranking accuracy is defined as the percentage of peers that is both in the top 20 list
of predicted closest peers and in the top 20 list of the measured closest peers. If the ranking accuracy is 100%
accurate then the 20 predicted closest peers are also the top 20 measured closest peers. If the accuracy is
only 50% accurate then 50% of the peers of the 20 predicted closest peers list are also in the top 20 measured
closest peers list.

The relative error metric measures how well a predicted distance matches the corresponding measured
distance. This metric is also used to measure the performance of the GNP algorithm [17]. For each predicted
distance that can be calculated between two peers the relative error is defined as follows:

|pr edi cteddi st ance−measur eddi st ance|
mi n(pr edi cteddi st ance,measur eddi st ance)

A value of zero implies a perfect prediction as then the predicted distance and measured distance are
equal. A value of one implies the predicted distance is larger by a factor of two. The relative error metric
measures the overall predictive performance of the algorithm while ranking accuracy is a good metric to
evaluate the selective performance of the algorithm. Both metrics do not necessarily imply each other. A
good selective performance might have a bad relative error and vice versa.

17

18 6. EXPERIMENTS

Figure 6.1: Computational time for different algorithms. The Red dots are the naive implementation, blue dots represent the simple in-
cremental algorithm. Green, orange dots are improved incremental algorithms with respectively 10 and 20 random repeats of coordinate
calculation at every incremental step. The brown line is an algorithm with systematic 20 repeats every incremental step. The purple line
has systematic 20 repeats plus triangle inequality violation correction.

Figure 6.2: Ranking Accuracy and relative error in different algorithms. The colors represent the same algorithms as in figure 6.1

6.1. INCREMENTAL ALGORITHM 19

Figure 6.3: All Computational times in Tribler setting. The colors red and blue represent experiment 3 with the naive implementation of
the algorithm. Green and orange represent experiment 4 with random choice.

Figure 6.4: Ranking Accuracy and relative error in Tribler setting

20 6. EXPERIMENTS

6.1.2. RESULTS

6.1.3. NAIVE IMPLEMENTATION EXPERIMENT
The figures show the computational time and accuracy metrics as the size of the problem increases. In the
naive algorithm the computational time grows O(n2) and becomes larger than 1 second if the number of
neighbouring peers and thus the matrix size is larger than 40. The ranking accuracy seems to decrease as the
matrix size becomes larger. In the naive algorithm the relative error metric converges to a certain level and
does not decrease. It is interesting to note that the relative error seems to stay the same as the problem size
increases but the ranking accuracy measuring the selective performance decreases. The ranking accuracy
metric has a startup time at the beginning of the algorithm when the matrix size is below 20. This is normal
as the ranking accuracy takes the top 20 closest peers list into consideration. When the number of peers
known in the system is small, the performance metric becomes insufficient.

6.1.4. INCREMENTAL ALGORITHM IN TRIBLER
The computational time of the incremental algorithm increases slightly as the problem size increases but
stays short with most computation times below 0,1 seconds. The variation in computation time becomes
larger as the problem size increases. Both the ranking accuracy and error seem to converge as the problem
size increases. The relative error is larger compared to the naive algorithm. The accuracy metric have a
startup period at the beginning of the algorithm when both metrics show large variations across peers.

6.2. LATENCY MEASUREMENTS 21

6.2. LATENCY MEASUREMENTS
In the first experiment the GNP algorithm is implemented and the optimalization is calculated on every node.
This gives scalability issues with swarms of more than 50 nodes as can be seen in Figure 5.2 to 5.5. In the sec-
ond experiment a decentralized version of the GNP algorithm is implemented to solve the scalability prob-
lem. The latencies are returning to normal with an experiment of 500 nodes. This can be seen in Figure 5.6.
The error function at 50 nodes converges. King Dataset.

Figure 6.5: Histogram of collected latencies with NPS algorithm and
500 nodes.

The following figures show that applying the GNP algorithm has scalability problems.

22 6. EXPERIMENTS

Figure 6.6: Plot of 2D landmark coordinates after applying the NPS
algorithm to the king dataset with 50 nodes.

Figure 6.7: Plot of 2D landmark coordinates after applying the NPS
algorithm to the king dataset with 500 nodes.

6.2. LATENCY MEASUREMENTS 23

Figure 6.8: Plot of error function over time after applying the NPS
algorithm to the king dataset with 50 nodes.

Figure 6.9: Plot of error function over time after applying the NPS
algorithm to the king dataset with 500 nodes.

24 6. EXPERIMENTS

Figure 6.10: Plot of 2D landmark coordinates after applying the GNP algorithm to the king dataset with 50 nodes.

6.2. LATENCY MEASUREMENTS 25

Figure 6.11: Histogram of all collected latencies after application of the decentralized GNP algorithm described by Szymaniak et al, 2004
[18] in a Tribler environment with 75 nodes. The system appears to function normal. The algorithm does not add extra latency to the
system.

26 6. EXPERIMENTS

Figure 6.12: Histogram of all collected latencies after application of the decentralized GNP algorithm described by Szymaniak et al, 2004
[18] in a Tribler environment with 100 nodes. The system has some latencies higher than 1 second. The algorithm appears make the
system slower.

6.2. LATENCY MEASUREMENTS 27

Figure 6.13: Histogram of all collected latencies after application of the decentralized GNP algorithm described by Szymaniak et al, 2004
[18] in a Tribler environment with 75 nodes. The system has a lot of latencies higher than 1 second. The algorithm appears to disrupt the
system because of the long calculations.

28 6. EXPERIMENTS

Figure 6.14: Histogram of all collected latencies after application of the decentralized GNP algorithm described by Szymaniak et al, 2004
[18] in a Tribler environment with 100 nodes. The system has a lot of latencies higher than 1 second. The algorithm appears to disrupt
the system because of the long calculations.

BIBLIOGRAPHY

[1] Olsthoorn, M.J.G.,Winter, J., Decentral market, (2016).

[2] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, Zerocash: Decentralized
anonymous payments from bitcoin, in Security and Privacy (SP), 2014 IEEE Symposium on (IEEE, 2014)
pp. 459–474.

[3] A. Brook, Evolution and practice: low-latency distributed applications in finance, Queue 13, 40 (2015).

[4] C. C. Moallemi and M. Sağlam, Or forum—the cost of latency in high-frequency trading, Operations Re-
search 61, 1070 (2013).

[5] G. Cespa and T. Foucault, Insiders-outsiders, transparency and the value of the ticker, (2009).

[6] L. R. Glosten, Is the electronic open limit order book inevitable? The Journal of Finance 49, 1127 (1994).

[7] P. Sandås, Adverse selection and competitive market making: Empirical evidence from a limit order mar-
ket, The review of financial studies 14, 705 (2001).

[8] D. L. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms, Communications
of the ACM 24, 84 (1981).

[9] R. Dingledine, N. Mathewson, and P. Syverson, Tor: The second-generation onion router, Tech. Rep.
(DTIC Document, 2004).

[10] Y. Yao and N. Zhong, Potential applications of granular computing in knowledge discovery and data min-
ing, in Proceedings of World Multiconference on Systemics, Cybernetics and Informatics, Vol. 5 (1999) pp.
573–580.

[11] U. K. V. Rajasekaran, M. Chetlur, G. D. Sharma, R. Radhakrishnan, and P. A. Wilsey, Addressing communi-
cation latency issues on clusters for fine grained asynchronous applications—a case study, in International
Parallel Processing Symposium (Springer, 1999) pp. 1145–1162.

[12] .

[13] A. Peter, Anonymous communication, (2016).

[14] A. Serjantov, R. Dingledine, and P. Syverson, From a trickle to a flood: Active attacks on several mix types,
in International Workshop on Information Hiding (Springer, 2002) pp. 36–52.

[15] A. M. Sharp, Incremental algorithms: solving problems in a changing world (Cornell University, 2007).

[16] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Communications of
the ACM 28, 202 (1985).

[17] T. E. Ng and H. Zhang, Predicting internet network distance with coordinates-based approaches, in INFO-
COM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, Vol. 1 (IEEE, 2002) pp. 170–179.

[18] M. Szymaniak, G. Pierre, and M. van Steen, Scalable cooperative latency estimation, in Parallel and Dis-
tributed Systems, 2004. ICPADS 2004. Proceedings. Tenth International Conference on (IEEE, 2004) pp.
367–376.

29

	Introduction
	Problem Description
	Latency in trading
	Latency in Anonymization techniques
	Latency in Parallel algorithms
	The current status of latency in Tribler

	System Design
	Related Work
	Chaum Mixes
	TOR Onion Routing
	Triangle Violations

	System Design
	Latency Community
	Enhancing privacy
	Privacy of traders in matching engine
	Requirements
	Optional requirements
	Tests

	Incremental Algorithms
	Incremental algorithms and the peer discovery mechanism
	Performance of incremental algorithms

	Experiments
	Incremental algorithm
	Performance metrics
	Results
	Naive implementation experiment
	Incremental algorithm in Tribler

	Latency measurements

	Bibliography

