
Jump to bottom

WIP: Store preferable infohashes for queries #7786
 Draft qstokkink wants to merge 1 commit into from

Conversation 65 Commits 1 Checks 16 Files changed 15

Tribler /
tribler

Code Issues 365 Pull requests 11 Discussions Actions Projects Wiki Security 1,824 Insights

 GitHub users are now required to enable two-factor authentication as an additional security measure. Your activity on GitHub
includes you in this requirement. You will need to enable two-factor authentication on your account before January 25, 2024, or be
restricted from account actions.

Enable 2FA

Edit Code

Tribler:main qstokkink:add_user_activity

 qstokkink commented 2 weeks ago •

Related to #7632

This PR adds integrations with local and remote search results and stores the preferable torrent (according to what the user clicked and downloaded).

Currently, this integration is only local and the propagation of preferable torrents depends on the emergent effect of them being checked more often in the
torrent checker, causing them to be propagated in the content discovery community more. In a future PR, we can implement more direct interaction with other
peers to share recommendations.

The uncovered lines of this PR are in a TYPE_CHECKING block and, therefore, impossible to cover.

Memberedited

 qstokkink changed the title WIP: Store preferrable infohashes for queries WIP: Store preferable infohashes for queries 2 weeks ago

 qstokkink force-pushed the branch 6 times, most recently from f794284 to 78b304f 2 weeks agoadd_user_activity Compare

 qstokkink marked this pull request as ready for review 2 weeks ago

 qstokkink requested a review from Tribler/reviewers as a code owner 2 weeks ago

 qstokkink requested review from drew2a (assigned from Tribler/reviewers) and removed request for Tribler/reviewers 2 weeks ago

 qstokkink changed the title WIP: Store preferable infohashes for queries READY: Store preferable infohashes for queries 2 weeks ago

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Comment on lines +31 to +38

31 with db_session():+

32 queries = layer.Query.select()[:]+

33 +

34 assert len(queries) == 1+

35 assert queries[0].query == "test query"+

36 assert len(queries[0].infohashes) == 1+

37 assert list(queries[0].infohashes)[0].infohash == b"\x00" * 20+

38 assert float_equals(list(queries[0].infohashes)[0].preference, 1.0)+

 drew2a 2 weeks ago Member

https://github.com/qstokkink
https://github.com/Tribler/tribler/pull/7786
https://github.com/Tribler/tribler/pull/7786/commits
https://github.com/Tribler/tribler/pull/7786/checks
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/orgs/Tribler/dashboard
https://github.com/notifications
https://github.com/Tribler/tribler
https://github.com/Tribler/tribler/issues
https://github.com/Tribler/tribler/pulls
https://github.com/Tribler/tribler/discussions
https://github.com/Tribler/tribler/actions
https://github.com/Tribler/tribler/projects
https://github.com/Tribler/tribler/wiki
https://github.com/Tribler/tribler/security
https://github.com/Tribler/tribler/pulse
https://github.com/Tribler/tribler/settings
https://github.blog/2023-03-09-raising-the-bar-for-software-security-github-2fa-begins-march-13/
https://github.com/Tribler/tribler/tree/main
https://github.com/qstokkink/tribler/tree/add_user_activity
https://github.com/qstokkink
https://github.com/Tribler/tribler/issues/7632
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/Tribler/tribler/compare/f79428475d17db70ab1259906ff3dc294ebdea66..78b304f8f7f2d22314e71a95036325dd9cab1417
https://github.com/Tribler/tribler/commit/f79428475d17db70ab1259906ff3dc294ebdea66
https://github.com/Tribler/tribler/commit/78b304f8f7f2d22314e71a95036325dd9cab1417
https://github.com/qstokkink
https://github.com/Tribler/tribler/compare/f79428475d17db70ab1259906ff3dc294ebdea66..78b304f8f7f2d22314e71a95036325dd9cab1417
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/orgs/Tribler/teams/reviewers
https://github.com/Tribler/tribler/blob/f17ed57f091cb1574e00cad3f6d00e743e665730/.github/CODEOWNERS#L6
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/drew2a
https://github.com/orgs/Tribler/teams/reviewers
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

Reply...

NIT Same logic, but a bit more correct and easier to read.

The suggested version uses Query.get() instead of Query.select() because there should only be a single entity in the database, which you assert
later. It also confines the with block to only include lines that actually need the db_session . The suggested version avoids multiple, yet identical,
conversions to a list and retrieving the first element of the list.

Suggested change

31 with db_session():-

32 queries = layer.Query.select()[:]-

33 -

34 assert len(queries) == 1-

35 assert queries[0].query == "test query"-

36 assert len(queries[0].infohashes) == 1-

37 assert list(queries[0].infohashes)[0].infohash == b"\x00" * 20-

38 assert float_equals(list(queries[0].infohashes)[0].preference, 1.0)-

31 with db_session():+

32 test_query = layer.Query.get()+

33 infohashes = list(test_query.infohashes)+

34 +

35 assert test_query.query == "test query"+

36 assert len(infohashes) == 1+

37 +

38 infohash = infohashes.pop()+

39 assert infohash.infohash == b"\x00" * 20+

40 assert float_equals(infohash.preference, 1.0)+

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Comment on lines +48 to +55

48 queries = layer.Query.select()[:]+

49 winner, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]+

50 loser, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]+

51 +

52 assert len(queries) == 1+

53 assert queries[0].query == "test query"+

54 assert float_equals(winner.preference, 1.0)+

55 assert float_equals(loser.preference, 0.0)+

 drew2a 2 weeks ago •

NIT: the version avoids unnecessary select querying and list copying:

Suggested change

Memberedited

48 queries = layer.Query.select()[:]-

49 winner, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]-

50 loser, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]-

51 -

52 assert len(queries) == 1-

53 assert queries[0].query == "test query"-

54 assert float_equals(winner.preference, 1.0)-

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

Reply...

55 assert float_equals(loser.preference, 0.0)-

48 test_query = layer.Query.get()+

49 winner = layer.InfohashPreference.get(lambda x: x.infohash == b"\x00" * 20)+

50 loser = layer.InfohashPreference.get(lambda x: x.infohash == b"\x01" * 20)+

51 +

52 assert float_equals(winner.preference, 1.0)+

53 assert float_equals(loser.preference, 0.0)+

54 +

55 assert test_query.query == "test query"+

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Reply...

42 """+

43 Test that queries with a loser can be stored and retrieved.+

44 """+

45 layer.store("test query", InfoHash(b"\x00" * 20), {InfoHash(b"\x01" * 20)})+

 drew2a 2 weeks ago

From the text of the test, it is not clear why one infohash is called "winner" and another is called "loser". I'm not questioning the naming here (which
I will do in the class UserActivityLayer).

Here, I suggest helping the reader by showing that the "loser" is just an infohash that passes as the third function parameter, and in the with
statement, you retrieve this infohash.

Suggested change

Member

45 layer.store("test query", InfoHash(b"\x00" * 20), {InfoHash(b"\x01" * 20)})-

45 layer.store("test query", infohash=InfoHash(b"\x00" * 20), losing_infohashes={InfoHash(b"\x01" * 20)})+

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Comment on lines +67 to +78

67 queries = layer.Query.select()[:]+

68 winner, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]+

69 loser_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]+

70 loser_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]+

71 loser_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]+

72 +

73 assert len(queries) == 1+

74 assert queries[0].query == "test query"+

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034

Reply...

75 assert float_equals(winner.preference, 1.0)+

76 assert float_equals(loser_1.preference, 0.0)+

77 assert float_equals(loser_2.preference, 0.0)+

78 assert float_equals(loser_3.preference, 0.0)+

 drew2a 2 weeks ago •

NIT: More compact yet correct version of the same logic. It uses select where it is intended to query a list and get when it is supposed to be just a
single entity.

Suggested change

Memberedited

67 queries = layer.Query.select()[:]-

68 winner, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]-

69 loser_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]-

70 loser_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]-

71 loser_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]-

72 -

73 assert len(queries) == 1-

74 assert queries[0].query == "test query"-

75 assert float_equals(winner.preference, 1.0)-

76 assert float_equals(loser_1.preference, 0.0)-

77 assert float_equals(loser_2.preference, 0.0)-

78 assert float_equals(loser_3.preference, 0.0)-

67 test_query = layer.Query.get()+

68 winner = layer.InfohashPreference.get(lambda x: x.infohash == b"\x00" * 20)+

69 losers = list(layer.InfohashPreference.select(lambda x: x.infohash != b"\x00" * 20))+

70 +

71 assert test_query.query == "test query"+

72 assert float_equals(winner.preference, 1.0)+

73 assert len(losers) == 3+

74 assert all(float_equals(ls.preference, 0.0) for ls in losers)+

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Comment on lines +62 to +64

62 layer.store("test query", InfoHash(b"\x00" * 20), {InfoHash(b"\x01" * 20),+

63 InfoHash(b"\x02" * 20),+

64 InfoHash(b"\x03" * 20)})+

 drew2a 2 weeks ago •

NIT: It is easier to read the test function if you specify the argument names:

Suggested change

Memberedited

62 layer.store("test query", InfoHash(b"\x00" * 20), {InfoHash(b"\x01" * 20),-

63 InfoHash(b"\x02" * 20),-

64 InfoHash(b"\x03" * 20)})-

62 layer.store("test query", infohash=InfoHash(b"\x00" * 20), losing_infohashes={InfoHash(b"\x01" * 20),+

63 InfoHash(b"\x02" * 20),+

64 InfoHash(b"\x03" * 20)})+

https://github.com/drew2a
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

Reply...

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Comment on lines +93 to +104

Reply...

93 queries = layer.Query.select()[:]+

94 entry_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]+

95 entry_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]+

96 entry_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]+

97 entry_4, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]+

98 +

99 assert len(queries) == 1+

100 assert queries[0].query == "test query"+

101 assert float_equals(entry_1.preference, 0.2)+

102 assert float_equals(entry_2.preference, 0.8)+

103 assert float_equals(entry_3.preference, 0.0)+

104 assert float_equals(entry_4.preference, 0.0)+

 drew2a 2 weeks ago

NIT: the version avoids unnecessary select querying and list copying:

Suggested change

Member

93 queries = layer.Query.select()[:]-

94 entry_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]-

95 entry_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]-

96 entry_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]-

97 entry_4, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]-

98 -

99 assert len(queries) == 1-

100 assert queries[0].query == "test query"-

101 assert float_equals(entry_1.preference, 0.2)-

102 assert float_equals(entry_2.preference, 0.8)-

103 assert float_equals(entry_3.preference, 0.0)-

104 assert float_equals(entry_4.preference, 0.0)-

93 test_query = layer.Query.get()+

94 entry_1 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x00" * 20)+

95 entry_2 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x01" * 20)+

96 entry_3 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x02" * 20)+

97 entry_4 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x03" * 20)+

98 +

99 assert test_query.query == "test query"+

100 assert float_equals(entry_1.preference, 0.2)+

101 assert float_equals(entry_2.preference, 0.8)+

102 assert float_equals(entry_3.preference, 0.0)+

103 assert float_equals(entry_4.preference, 0.0)+

Commit suggestion Add suggestion to batch

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Reply...

106 +

107 def test_store_delete_old(layer: UserActivityLayer) -> None:+

108 """+

109 Test result decay after updating.+

 drew2a 2 weeks ago

The description of the test likely suffers from missing specifications about the difference between it and the previous test.

Member

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Comment on lines +119 to +132

119 queries = layer.Query.select()[:]+

120 entry_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]+

121 entry_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]+

122 entry_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]+

123 should_be_dropped = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]+

124 entry_4, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x04" * 20)[:]+

125 +

126 assert len(queries) == 1+

127 assert queries[0].query == "test query"+

128 assert float_equals(entry_1.preference, 0.2)+

129 assert float_equals(entry_2.preference, 0.0)+

130 assert float_equals(entry_3.preference, 0.0)+

131 assert should_be_dropped == []+

132 assert float_equals(entry_4.preference, 0.8)+

 drew2a 2 weeks ago

NIT: the version avoids unnecessary select querying and list copying:

Suggested change

Member

119 queries = layer.Query.select()[:]-

120 entry_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]-

121 entry_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]-

122 entry_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]-

123 should_be_dropped = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]-

124 entry_4, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x04" * 20)[:]-

125 -

126 assert len(queries) == 1-

127 assert queries[0].query == "test query"-

128 assert float_equals(entry_1.preference, 0.2)-

129 assert float_equals(entry_2.preference, 0.0)-

130 assert float_equals(entry_3.preference, 0.0)-

131 assert should_be_dropped == []-

132 assert float_equals(entry_4.preference, 0.8)-

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

Reply...

119 test_query = layer.Query.get()+

120 entry_1 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x00" * 20)+

121 entry_2 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x01" * 20)+

122 entry_3 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x02" * 20)+

123 entry_4 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x04" * 20)+

124 should_be_dropped = layer.InfohashPreference.get(lambda x: x.infohash == b"\x03" * 20)+

125 +

126 assert test_query.query == "test query"+

127 assert float_equals(entry_1.preference, 0.2)+

128 assert float_equals(entry_2.preference, 0.0)+

129 assert float_equals(entry_3.preference, 0.0)+

130 assert float_equals(entry_4.preference, 0.8)+

131 assert not should_be_dropped+

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Comment on lines +148 to +161

148 queries = layer.Query.select()[:]+

149 entry_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]+

150 entry_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]+

151 entry_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]+

152 entry_4, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]+

153 entry_5, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x04" * 20)[:]+

154 +

155 assert len(queries) == 1+

156 assert queries[0].query == "test query"+

157 assert float_equals(entry_1.preference, 0.2)+

158 assert float_equals(entry_2.preference, 0.0)+

159 assert float_equals(entry_3.preference, 0.0)+

160 assert float_equals(entry_4.preference, 0.0)+

161 assert float_equals(entry_5.preference, 0.8)+

 drew2a 2 weeks ago

NIT: the version avoids unnecessary select querying and list copying:

Suggested change

Member

148 queries = layer.Query.select()[:]-

149 entry_1, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x00" * 20)[:]-

150 entry_2, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x01" * 20)[:]-

151 entry_3, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x02" * 20)[:]-

152 entry_4, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x03" * 20)[:]-

153 entry_5, = layer.InfohashPreference.select(lambda x: x.infohash == b"\x04" * 20)[:]-

154 -

155 assert len(queries) == 1-

156 assert queries[0].query == "test query"-

157 assert float_equals(entry_1.preference, 0.2)-

158 assert float_equals(entry_2.preference, 0.0)-

159 assert float_equals(entry_3.preference, 0.0)-

160 assert float_equals(entry_4.preference, 0.0)-

161 assert float_equals(entry_5.preference, 0.8)-

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

Reply...

148 test_query = layer.Query.get()+

149 entry_1 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x00" * 20)+

150 entry_2 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x01" * 20)+

151 entry_3 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x02" * 20)+

152 entry_4 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x03" * 20)+

153 entry_5 = layer.InfohashPreference.get(lambda x: x.infohash == b"\x04" * 20)+

154 +

155 assert test_query.query == "test query"+

156 assert float_equals(entry_1.preference, 0.2)+

157 assert float_equals(entry_2.preference, 0.0)+

158 assert float_equals(entry_3.preference, 0.0)+

159 assert float_equals(entry_4.preference, 0.0)+

160 assert float_equals(entry_5.preference, 0.8)+

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Reply...

167 """+

168 layer.store("test query", InfoHash(b"\x00" * 20), {InfoHash(b"\x01" * 20)})+

169 +

170 assert layer.get_preferable(b"\x00" * 20) == b"\x00" * 20+

 drew2a 2 weeks ago

There is a type mismatch: "Expected type 'InfoHash', got 'bytes' instead"

Member

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Reply...

176 """+

177 layer.store("test query", InfoHash(b"\x00" * 20), {InfoHash(b"\x01" * 20)})+

178 +

179 assert layer.get_preferable(b"\x01" * 20) == b"\x00" * 20+

 drew2a 2 weeks ago

There is a type mismatch: "Expected type 'InfoHash', got 'bytes' instead"

Member

Resolve conversation

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Reply...

185 """+

186 layer.store("test query", InfoHash(b"\x00" * 20), {InfoHash(b"\x01" * 20)})+

187 +

188 assert layer.get_preferable(b"\x02" * 20) == b"\x02" * 20+

 drew2a 2 weeks ago

There is a type mismatch: "Expected type 'InfoHash', got 'bytes' instead"

Member

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

Reply...

198 random_selection = layer.get_random(limit=1)+

199 +

200 assert len(random_selection) == 1+

201 assert list(random_selection)[0] == b"\x01" * 20+

 drew2a 2 weeks ago

This is an unnecessary conversion to a list and retrieval of the first item:

Suggested change

Member

201 assert list(random_selection)[0] == b"\x01" * 20-

201 assert random_selection.pop() == b"\x01" * 20+

Commit suggestion Add suggestion to batch

Resolve conversation

drew2a reviewed 2 weeks ago

View reviewed changes

src/tribler/core/components/database/db/layers/tests/test_user_activity_layer.py

20 +

21 def float_equals(a: float, b: float) -> bool:+

22 return round(a, 5) == round(b, 5)+

23 +

 drew2a 2 weeks ago

In this file, you are using the same construction over and over again:

Member

def test_example(layer: UserActivityLayer) -> None:

 layer.store("test query", InfoHash(b"\x00" * 20), set())

 with db_session():
 queries = layer.Query.select()[:]

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/Tribler/tribler/pull/7786/files#diff-5c1d8b959385433ad5fa3ff34a2ee91f21c427f6a0eaf591751e2374b30d6034
https://github.com/drew2a

Reply...

This is basically a single test case that repeated in test_store_no_losers , test_store_with_loser , test_store_weighted_decay , test_store_delete_old ,
test_store_delete_old_over_e .

I would suggest that you extract it to a separate test. Then there will be no need to repeat this in other tests, and they will more accurately describe
the specific test case they are testing, without any excess.

Like:

 assert queries[0].query == "test query"
 assert len(queries[0].infohashes) == 1

 ...

def test_store_query(layer: UserActivityLayer) -> None:

 layer.store("test query", InfoHash(b''), set())

 with db_session():
 test_query = layer.Query.get()

 assert test_query.query == "test query"

Resolve conversation

drew2a requested changes last week

View reviewed changes

 drew2a left a comment

The PR appears to be a nice feature that looks promising for Tribler.

It is an interesting concept that appears quite similar to ClickLog. If that's the case, then it would be beneficial to add links to the ClickLog documentation as a
reference in the newly added classes and components.

I've suggested a few code improvements and raised some points for discussion.

Also, I'm adding @kozlovsky as a reviewer since there is a new database structure implementation involved.

Member

src/tribler/core/components/database/db/layers/user_activity_layer.py

Comment on lines +13 to +23

13 if typing.TYPE_CHECKING:+

14 @dataclass+

15 class InfohashPreference:+

16 infohash: bytes+

17 preference: float+

18 parent_query: Query+

19 +

20 @dataclass+

21 class Query:+

22 query: str+

23 infohashes: typing.Set[InfohashPreference]+

 drew2a 2 weeks ago

These structures are used solely in the _select_superior method, and there is no direct transformation into this datatype in the calling code, as
they merely replicate the existing structures described in UserActivityLayer . Adopting this approach of duplicating definitions necessitates
updating the structures twice (once for the original and again for the duplicate), which increases the risk of errors during future updates. The
developer responsible for this task should:

1. Be aware that there are two definitions that require changes.

2. Make changes twice, which is more error-prone than making a change once.

Member

https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/drew2a
https://github.com/kozlovsky
https://github.com/Tribler/tribler/pull/7786/files#diff-dbd2cbcdd45a042cae7e69cc41edcdbfef35853fb31032641a1d15fe15896c99
https://github.com/drew2a

Reply...

src/tribler/core/components/database/db/layers/user_activity_layer.py

Reply...

src/tribler/core/components/user_activity/user_activity_component.py

Reply...

src/tribler/core/components/database/db/layers/user_activity_layer.py

Additionally, for a developer who is not the owner of the code, this duplication might not be apparent (as we generally aim for code to be less,
rather than more, duplicative), and it may not be obvious that it is necessary to locate another data structure.

My suggestion is to avoid duplication by refactoring the existing code. There are several methods to achieve the same class behavior but without
duplication.

Resolve conversation

52 self.Query = Query+

53 self.InfohashPreference = InfohashPreference+

54 +

55 def store(self, query: str, infohash: InfoHash, losing_infohashes: typing.Set[InfoHash]) -> None:+

 drew2a 2 weeks ago

I have a point for discussion regarding this function interface. It is the naming.

You're using a "win-lose" representation which I find misleading, as it suggests a game-like process of identifying winners and losers. However,
according to your function description, it's not about winning and losing, but rather about determining which infohashes were used (downloaded)
and which weren't used (not downloaded).

I suggest reconsidering the naming to choose a more appropriate representation.

Member

Resolve conversation

43 database_component = await self.require_component(DatabaseComponent) # local_query_results notification+

44 torrent_checker_component = await self.require_component(TorrentCheckerComponent)+

45 +

46 self.database_manager: UserActivityLayer = database_component.db.user_activity_layer+

 drew2a 2 weeks ago

The name self.database_manager is misleading as it is not a manager but a layer:

Suggested change

Member

51 self.database_manager: UserActivityLayer = database_component.db.user_activity_layer-

51 self.user_activity_layer: UserActivityLayer = database_component.db.user_activity_layer+

Commit suggestion Add suggestion to batch

Resolve conversation

67 # Update or create a new database entry+

68 with db_session:+

69 existing = self.Query.get(query=query)+

70 if existing is not None:+

 drew2a 2 weeks ago

"flat is better than nested" regarding to the Zen of Python. To decrease nesting in your code you can simply use get_or_create function from
pony_utils :

Member

https://github.com/Tribler/tribler/pull/7786/files#diff-dbd2cbcdd45a042cae7e69cc41edcdbfef35853fb31032641a1d15fe15896c99
https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/Tribler/tribler/pull/7786/files#diff-dbd2cbcdd45a042cae7e69cc41edcdbfef35853fb31032641a1d15fe15896c99
https://github.com/drew2a
https://github.com/drew2a
https://github.com/drew2a
https://en.wikipedia.org/wiki/Zen_of_Python

Reply...

src/tribler/core/components/database/db/layers/user_activity_layer.py

Comment on lines +68 to +90

Next nesting level could be removed by using this trick:

Also, "readability counts" and "sparse is better than dense." Therefore, two-line formulas could be rewritten as follows:

Therefore, we can significantly simplify the code while retaining the same logic.

I'll add the assembled example with all improvements as a code suggestion.

 with db_session:
 existing = get_or_create(self.Query, query=query)

 for old_infohash_preference in existing.infohashes:
 ...

 if existing.infohashes and infohash in weights:

 weights[infohash] = self.update_weight_new

with db_session:
 existing = get_or_create(self.Query, query=query)
 known_infohashes = (i for i in existing.infohashes if i.infohash in weights)

 unknown_infohashes = (i for i in existing.infohashes if i.infohash not in weights)

 for old_infohash_preference in unknown_infohashes:
 ...

 for old_infohash_preference in known_infohashes:
 ...

 for infohash_preference in known_infohashes:

 weight = weights.pop(infohash_preference.infohash)
 new_weight = infohash_preference.preference * self.update_weight_old + weight * self.update_weight_new
 infohash_preference.preference = new_weight

Resolve conversation

68 with db_session:+

69 existing = self.Query.get(query=query)+

70 if existing is not None:+

71 for old_infohash_preference in existing.infohashes:+

72 if old_infohash_preference.infohash in weights:+

73 new_weight = (old_infohash_preference.preference * self.update_weight_old+

74 + weights.pop(old_infohash_preference.infohash, 0.0) * self.update_weight_new)+

75 old_infohash_preference.preference = new_weight+

76 else:+

77 # This infohash did not pop up, candidate for deletion+

78 new_weight = old_infohash_preference.preference * self.update_weight_old+

79 if new_weight < self.e:+

80 old_infohash_preference.delete()+

81 else:+

82 old_infohash_preference.preference = new_weight+

83 if infohash in weights:+

84 weights[infohash] = self.update_weight_new+

85 else:+

86 existing = self.Query(query=query, infohashes=set())+

87 +

88 for new_infohash, weight in weights.items():+

89 existing.infohashes.add(self.InfohashPreference(infohash=new_infohash, preference=weight,+

90 parent_query=existing))+

 drew2a 2 weeks ago

Simplified code block:

Suggested change

Member

68 with db_session:-

https://github.com/Tribler/tribler/pull/7786/files#diff-dbd2cbcdd45a042cae7e69cc41edcdbfef35853fb31032641a1d15fe15896c99
https://github.com/drew2a

Reply...

69 existing = self.Query.get(query=query)-

70 if existing is not None:-

71 for old_infohash_preference in existing.infohashes:-

72 if old_infohash_preference.infohash in weights:-

73 new_weight = (old_infohash_preference.preference * self.update_weight_old-

74 + weights.pop(old_infohash_preference.infohash, 0.0) * self.update_weight_new)-

75 old_infohash_preference.preference = new_weight-

76 else:-

77 # This infohash did not pop up, candidate for deletion-

78 new_weight = old_infohash_preference.preference * self.update_weight_old-

79 if new_weight < self.e:-

80 old_infohash_preference.delete()-

81 else:-

82 old_infohash_preference.preference = new_weight-

83 if infohash in weights:-

84 weights[infohash] = self.update_weight_new-

85 else:-

86 existing = self.Query(query=query, infohashes=set())-

87 -

88 for new_infohash, weight in weights.items():-

89 existing.infohashes.add(self.InfohashPreference(infohash=new_infohash, preference=weight,-

90 parent_query=existing))-

68 with db_session:+

69 existing = get_or_create(self.Query, query=query)+

70 related_infohashes = (i for i in existing.infohashes if i.infohash in weights)+

71 unrelated_infohashes = (i for i in existing.infohashes if i.infohash not in weights)+

72 +

73 for infohash_preference in unrelated_infohashes:+

74 # This infohash did not pop up, candidate for deletion+

75 new_weight = infohash_preference.preference * self.update_weight_old+

76 if new_weight < self.e:+

77 infohash_preference.delete()+

78 else:+

79 infohash_preference.preference = new_weight+

80 +

81 for infohash_preference in related_infohashes:+

82 weight = weights.pop(infohash_preference.infohash)+

83 new_weight = infohash_preference.preference * self.update_weight_old + weight * self.update_weight_new+

84 infohash_preference.preference = new_weight+

85 +

86 if existing.infohashes and infohash in weights:+

87 weights[infohash] = self.update_weight_new+

88 +

89 for new_infohash, weight in weights.items():+

90 existing.infohashes.add(self.InfohashPreference(infohash=new_infohash, preference=weight,+

91 parent_query=existing))+

Commit suggestion Add suggestion to batch

Resolve conversation

14 hidden conversations
Load more…

src/tribler/core/components/user_activity/user_activity_component.py

Reply...

src/tribler/core/components/database/db/layers/user_activity_layer.py

Comment on lines +42 to +50

19 from tribler.core.sentry_reporter.sentry_reporter import SentryReporter+

20 +

21 +

22 class UserActivityComponent(Component):+

 drew2a last week

NIT: From a design perspective, it would be beneficial to keep the UserActivityComponent more declarative at a high level and minimize specific
implementation details by extracting them into a separate class (for example, PreferableChecker (I don't like the name, it is just an example)). Then
the Component code will look neater, and it will be independent of PreferableChecker implementation changes.

This approach would make it easier to write and conduct tests separately for the UserActivityComponent (to test its composition) and the
PreferableChecker (to test its logic).

Member

class UserActivityComponent(Component):
 preferable_checker = None

 async def run(self) -> None:

 await super().run()

 # Wait for dependencies
 await self.require_component(ContentDiscoveryComponent) # remote_query_results notification

 await self.require_component(LibtorrentComponent) # torrent_finished notification

 database_component = await self.require_component(DatabaseComponent) # local_query_results notification
 torrent_checker_component = await self.require_component(TorrentCheckerComponent)

 self.preferable_checker = PreferableChecker(
 max_query_history=self.session.config.user_activity.max_query_history,
 torrent_checker=torrent_checker_component.torrent_checker,

 user_activity_layer=database_component.db.user_activity_layer
)

 async def shutdown(self) -> None:

 await super().shutdown()
 if self.preferable_checker:
 self.preferable_checker.shutdown()

 qstokkink yesterday

Agreed. I had this in my original design as well (#7632 (comment)) However, the impelementation was so small and trivial that I moved the code
here. Note that this code is not any less testable due to this (100% coverage).

Member Author

Resolve conversation

42 class Query(database.Entity):+

43 query = orm.PrimaryKey(str)+

44 infohashes = orm.Set("InfohashPreference")+

45 +

46 class InfohashPreference(database.Entity):+

47 infohash = orm.Required(bytes)+

48 preference = orm.Required(float)+

49 parent_query = orm.Required(Query)+

50 orm.PrimaryKey(infohash, parent_query)+

 drew2a last week

The database does not appear to be normalized. As @kozlovsky is coming back from vacation at the same time as you, I summon him to review the
database structure.

Member

https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/Tribler/tribler/pull/7786/files#diff-dbd2cbcdd45a042cae7e69cc41edcdbfef35853fb31032641a1d15fe15896c99
https://github.com/drew2a
https://github.com/qstokkink
https://github.com/Tribler/tribler/issues/7632#issuecomment-1855636285
https://github.com/drew2a
https://github.com/kozlovsky

 kozlovsky yesterday

To me, the database structure looks normalized. It is possible to link InfohashPreference with the Resource entity, but it is actually not necessary
and complicates the database schema a bit.

But I'd like to use integer fields instead of floats, like:

This way, changing the formula on how preference is calculated becomes possible.

Member

 class Query(database.Entity):
 query = orm.PrimaryKey(str)

 searched_counter = orm.Required(int, default=1)
 infohashes = orm.Set("InfohashPreference")

 class InfohashPreference(database.Entity):

 infohash = orm.Required(bytes)
 parent_query = orm.Required(Query)
 chosen_counter = orm.Required(int, default=0)
 ignored_counter = orm.Required(int, default=0)

 orm.PrimaryKey(infohash, parent_query)

 kozlovsky yesterday

After some additional thought, I agree with @drew2a that it may be better to link the InfohashPreference entity with the Resource entity in the
same way as the Tracker entity of the HealthDataAccessLayer is linked with the Resource entity via the Tracker.torrents / Resource.trackers
relationships.

It has the following benefits:

1. The primary key of InfohashPreference becomes shorter, as it now will use resource id instead of infohash bytes.

2. With the current approach of TriblerDatabase , the torrent metadata is just a kind of Resource , and having Resource directly linked with
InfohashPreference can simplify some future queries.

The drawback is when we want to search InfohashPreference knowing the specific info hash, we first need to find the Resource and then use it
instead of the info hash value.

With this change, the code will be like:

(In this example, I renamed parent_query to query , as parent_ prefix looks unnecessary)

And, in the Resource entity of the KnowledgeDataAccessLayer we will have:

Member

class UserActivityLayer:

 def __init__(self, knowledge_layer: KnowledgeDataAccessLayer) -> None:
 self.database = knowledge_layer.instance

 self.Resource = knowledge_layer.Resource

 class Query(self.database.Entity):
 query = orm.PrimaryKey(str)

 searched_counter = orm.Required(int, default=1)
 infohashes = orm.Set("InfohashPreference")

 class InfohashPreference(self.database.Entity):

 torrent = orm.Required(self.Resource)
 query = orm.Required(Query)
 chosen_counter = orm.Required(int, default=0)
 ignored_counter = orm.Required(int, default=0)

 orm.PrimaryKey(torrent, query)

 self.Query = Query
 self.UserPreference = InfohashPreference

infohash_preferences = orm.Set(lambda: db.InfohashPreference, reverse="torrent")

 qstokkink yesterday

I don't see how you could implement decay of previous search and results for the same (infohash, query) with this database format. Is it still
possible? Because that is a requirement.

Member Author

https://github.com/kozlovsky
https://github.com/kozlovsky
https://github.com/drew2a
https://github.com/qstokkink

 kozlovsky yesterday •

Indeed, it is not enough to implement the proper decay; I missed that requirement. But it leads me to some additional thoughts.

The current scheme implemented in this PR is single-user. I don't think decay is important when the statistics are accumulated only for a single user.
But if we aggregate anonymized query-result-preference statistics from thousands of users, the decay indeed makes sense.

But then we have a new question on spreading and accumulating these statistics. It probably should be signed by a second key when gossiping to
prevent spam. However, we cannot sign the dynamically decaying preference value of the float type. We can sign some discrete information that
at the moment T, an anonymous user U performed the query Q and clicked on the infohash H.

So, if the goal is to aggregate decaying anonymous user-clicks-at-query-results statistics across multiple users, the discrete signed piece of
information should probably be (T, U, Q, H). Then, the decay can be implemented by taking the time stamps into account - the weight of the user's
"vote" can be inversely proportional to the vote's age.

In that case, the entity attributes might be something like:

What do you think?

Memberedited

class InfohashPreference(self.database.Entity):
 user = orm.Required(User) # some new entity

 query = orm.Required(Query)
 torrent = orm.Required(self.Resource)
 last_clicked_at = orm.Required(datetime)
 signature = orm.Optional(bytes) # for remotely received gossips

 # for the next field see https://github.com/Tribler/tribler/pull/7786#discussion_r1439578570
 successfully_downloaded = orm.Required(bool, default=False) # to ignore local unfinished downloads
 orm.PrimaryKey(user, query, torrent)

 qstokkink yesterday

That is close to what I had in mind for the long term, in a different PR. I would prefer we discuss the grand design in the linked issue, not on this PR.

Just to touch on it, in short, the plan for now is to use emergent behavior, as follows:

1. Torrents that are "preferred" have their health checked more frequently locally (this PR).
2. Torrents that have their health checked recently (locally) are more frequently gossiped in the popularity community (already exists).

3. Torrents that are gossiped more by others have a higher chance of appearing in search results remotely (already exists).
4. Effect: search results that are gossiped to more users are more likely to be downloaded. For actually popular content, that is downloaded, this

forms a feedback loop: back to step 2.

In summary, this PR creates a soft bias and, therefore, an emergent effect that boosts the popularity of content that is searched for and
downloaded.

Establishing shadow identities and more aggressively gossiping - while preventing spam - is something I'll leave for a follow-up PR. Ideally, we don't
need to gossip preference directly and we can somehow merge gossiped ML models. However, this should only be implemented after careful
experimentation. For now, this PR gives each user a local ranking to start the ML experimentation.

Member Author

 kozlovsky 3 hours ago

Thanks for the explanation; now I understand your approach better. Initially, I was misguided by the picture in #7632 with a "store signed" label, as
my understanding was that it is only possible to sign discrete facts, not float values. If gossiping about individual provable facts is not the intention,
then storing calculated preferences is probably fine.

Still, you can consider using torrent = orm.Required(self.Resource) instead of infohash = orm.Required(bytes) in the InfohashPreference entity to
reduce the data size.

Member

 qstokkink 2 hours ago

Sure, thank you for the suggestion. Once the initial prototype has been merged, we can look at refactoring and optimizations and I will definitely
keep your suggestion in mind. That said, once this has been merged, this PR is also no longer my sole responsibility and others can also contribute
their excellent suggestions to the communal code. We can grow the code over time.

I do realize, now, that I left enabled = True as the default setting. I'll make sure to keep this disabled by default so we still have the freedom to
change things like the database format in future PRs.

Member Author

https://github.com/kozlovsky
https://github.com/qstokkink
https://github.com/kozlovsky
https://github.com/Tribler/tribler/issues/7632
https://github.com/qstokkink

Reply...

src/tribler/core/components/user_activity/user_activity_component.py

Reply...

src/tribler/core/components/user_activity/user_activity_component.py Outdated

Comment on lines 87 to 99

Resolve conversation

68 self.infohash_to_queries[infohash].append(query)+

69 self.queries[query] = results | self.queries.get(query, set())+

70 +

71 if len(self.queries) > self.max_query_history:+

 drew2a last week

Perhaps for this purpose (to store a limited amount of data), you could use a dedicated data structure. This would make it possible to better cover it
with tests and to use it in other parts of Tribler's code. As a beneficial side effect, it would be easier to understand the logic of the dedicated data
structure and of the current method.

We can extend this draft:

Member

class LimitedSizeDict(OrderedDict):

 def __init__(self, *args, size_limit=None, **kwargs):
 super().__init__(*args, **kwargs)
 self.size_limit = size_limit

 def __setitem__(self, key, value):
 super().__setitem__(key, value)
 self._check_size_limit()

 def _check_size_limit(self):
 if self.size_limit is None:
 return
 while len(self) > self.size_limit:

 self.popitem(last=False)

 qstokkink yesterday

Sure, we can implement such a feature once we have a need for it. However, that is not the feature this PR is implementing and it is therefore best
left to another PR.

Member Author

Resolve conversation

87 b_infohash = InfoHash(unhexlify(infohash))+

88 queries = self.infohash_to_queries[b_infohash]+

89 for query in queries:+

90 losing_infohashes = self.queries[query] - {b_infohash}+

91 fut = get_running_loop().run_in_executor(None,+

92 self.database_manager.store,+

93 query, b_infohash, losing_infohashes)+

94 self.task_manager.register_task("Store query", functools.partial(UserActivityComponent._fut_to_task, fut))+

 drew2a last week

Two points:

1. This method seems overly complicated for its simple purpose — to call the self.database_manager.store function.

2. I'm uncertain if the logic will work correctly in cases where the user downloads two or more torrents from the query results.

Member

 qstokkink yesterday

This is solving a real issue: it is related to #4320 and #7784.

Member Author

https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/drew2a
https://github.com/qstokkink
https://github.com/drew2a
https://github.com/qstokkink
https://github.com/Tribler/tribler/issues/4320
https://github.com/Tribler/tribler/issues/7784

Reply...

src/tribler/core/components/user_activity/user_activity_component.py

Comment on lines +104 to +105

Reply...

IIRC, the observation that we should not block the main asyncio thread with db operations should be accredited to @egbertbouman but I cannot
find his original comment for the life of me. Once I find it, I'll properly link it.

 qstokkink 1 hour ago

I did manage to shrink this a little bit (see conversation with @kozlovsky).

Member Author

Resolve conversation

104 for infohash in random_infohashes:+

105 self.task_manager.register_anonymous_task("Check preferable torrent",+

106 self.torrent_checker.check_torrent_health, infohash)+

 drew2a last week

Here's a simplified version: This version avoids a for loop for a set of just a single item and avoids an unnecessary intermediate call for
register_anonymous_task .

If you really want queuing for check_torrent_health , it would be better to implement it on the check_torrent_health side.

Suggested change

As a side note, if you never use get_random with a limit different from 1 (excluding tests), then it is probably a sign that the function should not
return a set but a single item. See: YAGNI on Wikipedia.

Member

103 for infohash in random_infohashes:-

104 self.task_manager.register_anonymous_task("Check preferable torrent",-

105 self.torrent_checker.check_torrent_health, infohash)-

103 if not random_infohashes:+

104 return+

105 +

106 infohash = random_infohashes.pop()+

107 await self.torrent_checker.check_torrent_health(infohash)+

Commit suggestion Add suggestion to batch

Resolve conversation

 drew2a requested a review from kozlovsky last week

kozlovsky requested changes yesterday

View reviewed changes

 kozlovsky left a comment

I like the idea of this PR! It is crucial for Tribler to understand which torrent users prefer for a specific query because it is tough to properly rank torrents for a
particular query without anonymized user feedback.

The system that analyzes user preferences and shares the anonymized aggregated results looks to me like a cornerstone of a future Tribler's search system.

Initially, I thought we needed to gather that information on the UI side, but this PR shows it is possible to do it entirely on the Core side, which brings
simplicity.

Member

https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/egbertbouman
https://github.com/qstokkink
https://github.com/drew2a
https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
https://github.com/drew2a
https://github.com/kozlovsky
https://github.com/drew2a
https://github.com/kozlovsky
https://github.com/Tribler/tribler/pull/7786/files
https://github.com/kozlovsky

With this, it may be hard to develop a good algorithm on the first try, and I believe the specific details of how calculations are performed can be changed in the
future. Therefore, storing integer values instead of floats and calculating the resulting rank on the fly may be better, as it allows changing the formula in the
future.

I mean, it is possible to keep the number of times it was searched for each Query and for each info hash that appeared in the query results to keep the number
of times it was chosen or ignored. This information should be enough to calculate the rank and allow for changing the ranking formula in the future without
the data being lost.

So what this PR literally does? Right now, it just adds repeated health checks for torrents that the user downloaded. This does not look very useful and can be
implemented much more simply; we can have a table with a list of locally downloaded info hashes and randomly check the health of its items. With the current
PopularityCommunity protocol, it will not help much, and if this is the end goal of the current PR, then a significant part of it is unnecessary. But I believe that
in the future, we should spread not only info hash health info but also should gossip anonymized user preferences for query results (in the form "for query Q,
the info hash H with title T was chosen by someone"), and this PR lays down a foundation for this.

src/tribler/core/components/database/db/layers/user_activity_layer.py

Comment on lines +42 to +50

src/tribler/core/components/user_activity/user_activity_component.py

42 class Query(database.Entity):+

43 query = orm.PrimaryKey(str)+

44 infohashes = orm.Set("InfohashPreference")+

45 +

46 class InfohashPreference(database.Entity):+

47 infohash = orm.Required(bytes)+

48 preference = orm.Required(float)+

49 parent_query = orm.Required(Query)+

50 orm.PrimaryKey(infohash, parent_query)+

 kozlovsky yesterday

To me, the database structure looks normalized. It is possible to link InfohashPreference with the Resource entity, but it is actually not necessary
and complicates the database schema a bit.

But I'd like to use integer fields instead of floats, like:

This way, changing the formula on how preference is calculated becomes possible.

Member

 class Query(database.Entity):
 query = orm.PrimaryKey(str)
 searched_counter = orm.Required(int, default=1)
 infohashes = orm.Set("InfohashPreference")

 class InfohashPreference(database.Entity):
 infohash = orm.Required(bytes)
 parent_query = orm.Required(Query)

 chosen_counter = orm.Required(int, default=0)
 ignored_counter = orm.Required(int, default=0)
 orm.PrimaryKey(infohash, parent_query)

25 super().__init__(reporter)+

26 +

27 self.infohash_to_queries: dict[InfoHash, list[str]] = defaultdict(list)+

28 self.queries: OrderedDict[str, typing.Set[InfoHash]] = OrderedDict()+

 kozlovsky yesterday

With the current implementation, the self.queries dict is stored in memory. That means (if I understand correctly) that if a user performs the
search, starts the download, closes Tribler, and starts it again, the finished torrent will not be matched with the corresponding search query. It looks
more correct if, upon torrent completion, we get queries from the database and do not store them in the memory in a separate dictionary. Another
approach is to pre-load the dictionary at the Tribler startup, but it probably overcomplicates the code compared to just storing objects in the
database.

Member

 qstokkink yesterday

Correct. By design, I only consider downloads in the current session.

Member Author

https://github.com/Tribler/tribler/pull/7786/files#diff-dbd2cbcdd45a042cae7e69cc41edcdbfef35853fb31032641a1d15fe15896c99
https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/kozlovsky
https://github.com/kozlovsky
https://github.com/qstokkink

No one—assign yourself

Reply...

src/tribler/core/components/user_activity/user_activity_component.py Outdated Show resolved

src/tribler/core/components/user_activity/user_activity_component.py Outdated Show resolved

I'm also not sure if it makes sense to change this. For example, something a user searched for in a previous Tribler session could be 3 months ago.
There would have to be some timeout/validity system etc. etc. We can add that at some point but I don't think this should be in this first prototype.

 kozlovsky yesterday

As I just wrote here, I think that we should add the timestamp field to the InfohashPreference . Then, we can update this field in the database if the
user clicks again at the same infohash.

In that case, the pure-db implementation looks relatively straightforward. When the user clicks on the search result, we add the InfohashPreference
object with the current timestamp to the database and start the download. When the download is finished, we mark the corresponding
InfohashPreference as successful. We are gossiping only successfully downloaded InfohashPreference objects. Still, the timestamp is recorded at

the time when the user clicks on the torrent and not at the time when the download is complete. We update the timestamp if the user clicks again
at the same torrent in the new query with the same query string.

Member

 qstokkink yesterday

Sure, I do not doubt the feasibility of adding this. My main concern is this:

I don't think this should be in this first prototype.

We can add features - like you suggested - later. This is not the goal of this initial prototype.

Member Author

 kozlovsky 3 hours ago

Ok, I agree that we can switch to the pure-db implementation later if necessary. Let's hope Tribler restarts will not significantly skew the preference
statistics about big torrents.

Member

Resolve conversation

 qstokkink changed the title READY: Store preferable infohashes for queries WIP: Store preferable infohashes for queries yesterday

 qstokkink marked this pull request as draft yesterday

 qstokkink force-pushed the branch 4 times, most recently from 09b16aa to 7186d73 1 hour agoadd_user_activity Compare

Store preferable infohashes for queries 8049b92

 qstokkink force-pushed the branch from 7186d73 to 8049b92 1 hour agoadd_user_activity Compare

kozlovsky

egbertbouman

drew2a

Requested changes must be addressed to merge this pull request.

Reviewers

reviewers

Assignees

https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/Tribler/tribler/pull/7786/files#diff-a8674ff24312644a4b00bda1f1d921b0451aad8694d90935a7d3db759c831404
https://github.com/kozlovsky
https://github.com/qstokkink
https://github.com/kozlovsky
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/qstokkink
https://github.com/Tribler/tribler/compare/09b16aa4203ff7db79151da7905fc8fe6c90c27f..7186d735f7001c2eed693be79fb4d486e81643ad
https://github.com/Tribler/tribler/commit/09b16aa4203ff7db79151da7905fc8fe6c90c27f
https://github.com/Tribler/tribler/commit/7186d735f7001c2eed693be79fb4d486e81643ad
https://github.com/qstokkink
https://github.com/Tribler/tribler/compare/09b16aa4203ff7db79151da7905fc8fe6c90c27f..7186d735f7001c2eed693be79fb4d486e81643ad
https://github.com/Tribler/tribler/pull/7786/commits/8049b921fa6cc324fe23a635ba1bae4b805e5339
https://github.com/Tribler/tribler/pull/7786/commits/8049b921fa6cc324fe23a635ba1bae4b805e5339
https://github.com/qstokkink
https://github.com/Tribler/tribler/compare/7186d735f7001c2eed693be79fb4d486e81643ad..8049b921fa6cc324fe23a635ba1bae4b805e5339
https://github.com/Tribler/tribler/commit/7186d735f7001c2eed693be79fb4d486e81643ad
https://github.com/Tribler/tribler/commit/8049b921fa6cc324fe23a635ba1bae4b805e5339
https://github.com/qstokkink
https://github.com/Tribler/tribler/compare/7186d735f7001c2eed693be79fb4d486e81643ad..8049b921fa6cc324fe23a635ba1bae4b805e5339
https://github.com/kozlovsky
https://github.com/kozlovsky
https://github.com/Tribler/tribler/pull/7786/files/78b304f8f7f2d22314e71a95036325dd9cab1417
https://github.com/egbertbouman
https://github.com/egbertbouman
https://github.com/Tribler/tribler/pull/7786/files/78b304f8f7f2d22314e71a95036325dd9cab1417
https://github.com/drew2a
https://github.com/drew2a
https://github.com/Tribler/tribler/pull/7786/files/78b304f8f7f2d22314e71a95036325dd9cab1417
https://github.com/qstokkink

None yet

None yet

No milestone

Successfully merging this pull request may close these issues.

None yet

4 participants

 Maintainers are allowed to edit this pull request.

Labels

Projects

Milestone

Development

https://github.com/qstokkink
https://github.com/kozlovsky
https://github.com/egbertbouman
https://github.com/drew2a

