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Abstract

Physical Unclonable Functions (PUFs) are physical ob-
jects that are unique, practically unclonable and that be-
have like a random function when subjected to a challenge.
Their use has been proposed for authentication tokens and
anti-counterfeiting. A Controlled PUF (CPUF) consists
of a PUF and a control layer that restricts a user’s ac-
cess to the PUF input and output. CPUFs can be used
for secure key storage, authentication, certified execution
of programs, and certified measurements.
In this paper we modify a number of protocols involving
CPUFs in order to improve their security. Our modifi-
cations mainly consist of encryption of a larger portion
of the message traffic, and additional restrictions on the
CPUF accessibility. We simplify the description of CPUF
protocols by using flowchart notation. Furthermore we ex-
plicitly show how the helper data for the PUFs is handled.

1 Introduction

1.1 PUFs

The concept of Physical Unclonable Functions (PUFs),
also known as Physical One-Way Functions or Physical
Random Functions, was introduced in [12]. A PUF is
a physical object with the following1 properties: (1) It
can be challenged by applying a stimulus to it, and the
responses are highly unpredictable and unique to each ob-
ject. Applying a challenge and measuring the response
can be done efficiently. The number of challenge-response
pairs is very large. (2) The object is hard to clone phys-
ically, even by the original manufacturer. (3) It is also
hard to model mathematically. (4) Determining the pre-
cise structure of the object is difficult.
A good example are the Optical PUFs introduced in [12].
These consist of a transparent material containing scat-
tering particles at random locations. When laser light is
shone onto it, coherent multiple scattering occurs. An im-
age made of the reflected or transmitted light shows a so-
called speckle pattern, a highly irregular pattern of bright

1Some physical systems are referred to as PUFs even though they
do not satisfy the full list of properties.

and dark spots. The pattern is highly sensitive both to
the locations of the scattering particles and to the proper-
ties of the incoming laser light, such as wavelength, angle
of incidence and focal distance. The angle of incidence,
for instance, can be used as a ‘challenge’ to the PUF. The
resulting speckle pattern has a large entropy [16, 10] and
can be seen as the ‘response’ to the challenge.

1.2 Authentication using PUFs

An Optical PUF supports a very large number of such
challenge-response pairs (CRPs). Furthermore, knowl-
edge of a large set of CRPs gives only negligible informa-
tion about the response to a new challenge [15]. This prop-
erty makes PUFs suitable for authentication purposes. In
[12] it was proposed to use PUFs as remote authentication
tokens. PUFs are randomly manufactured by the verifier,
Bob. The following procedure is followed independently
for each PUF.

• In the enrollment phase, Bob generates a number of
random challenges. He measures the response for
each challenge and stores the set of CRPs for that
PUF in a database. The PUF is then handed over to
a user, Alice. Bob couples users to PUF identifiers in
his database.

• In the verification phase, Alice wishes to prove to Bob
that she possesses a specific PUF. She sends the PUF
identifier to Bob. Bob looks up the CRP list for this
specific PUF in the database. From the list he ran-
domly selects a CRP. He sends the challenge part of
the CRP to Alice. She applies the challenge to the
PUF and measures the response. She sends the re-
sponse to Bob. He compares Alice’s response to the
response in his database. If these match, then Bob is
convinced of the PUF’s authenticity. Whatever the
outcome, the used CRP is removed from the list.

Alternatively, Alice does not send the response in the clear
to Bob. Instead, the response is used to derive a shared
secret between Alice and Bob, which they then use for
an authentication protocol.2 Optionally, a session key is
generated from the shared secret as well.

2There are many of these protocols in the literature, so we will
not be specific here.
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Figure 1: Fuzzy Extractor. The Gen function takes a mea-
surement X as input, and generates helper data W and a
near-uniform key S. The Rep function attempts to repro-
duce S from W and a noisy measurement X ′. It succeeds
(S′ = S) if the noise is sufficiently weak.

The security of the PUF as an authentication token as
described above completely depends on the unclonability
of the PUF and the unpredictability of its responses.

1.3 Dealing with measurement noise

Apart from Optical PUFs many other types of PUF tech-
nology have been described in the literature, such as re-
flection of laser light from paper fibers [1], randomized
dielectrics in protective chip coatings [13], radiofrequent
responses from pieces of metal [3] or thin-film resonators
[17], delay times in chip components [2] and start-up val-
ues of SRAM cells [9].
In this paper we will not be concerned with the physi-
cal aspects of PUFs, but merely assume that PUFs are
available as a resource with all the right properties.
Whatever the physical realization of the PUF concept,
there is a common problem that needs to be solved: noise
in the response. The measurements are analog and hence
inevitably noisy. A measurement result cannot be directly
used in a cryptographic primitive such as a one-way hash
or a block cipher. A single bit flip in the input (due to
noise) would result in roughly 50% bit flips in the output.
Hence, an error-correction step is needed so that Alice
and Bob can exactly agree on a bit string representation
of a PUF response. (This is known as information rec-
onciliation.) However, the error correction is nontrivial.
The usual attacker model for PUFs assumes that the re-
dundancy data which is required for noise elimination is
known to the attacker. Hence it is necessary to make sure
that the redundancy data does not leak critical informa-
tion about the common secret (the “key”) derived from
the response. The concept of a Fuzzy Extractor [4, 5], also
known as a helper data scheme [11], was introduced as
a primitive that achieves both information reconciliation
and privacy amplification. The redundancy data (a.k.a.
helper data or public data) suffices to reproducibly recon-
struct a string from noisy measurements (see Fig. 1), yet
leaks only a negligible amount of information about the
extracted key.
In this paper we will not be concerned with the exact
details of fuzzy extractors. We will merely assume that
proper helper data is present.

1.4 Controlled PUFs

The concept of a Controlled PUF (CPUF) was introduced
in [6]. A CPUF is a combination of a PUF and a control
layer in which the PUF is inseparably embedded. The
control layer completely shields off the PUF inputs and
outputs from the outside world. Any communication with
the PUF has to occur through the control layer electronics.
Any attempt to force the components apart will damage
the PUF. A CPUF has considerably stronger security than
a bare, unprotected PUF, since attackers cannot probe
and query the PUF at will. In effect, the CPUF is a sort
of trusted computing environment.
In Gassend et al. [6, 7, 8] a way was presented to employ
this trusted environment for the purpose of outsourcing
computations. The idea is roughly as follows. (More de-
tails are given in Section 2.) First, CRPs of the PUF
are handed to users in a secure way. Everybody (even
people without CRPs) can remotely run programs on the
CPUF control layer. There is a special Application Pro-
gramming Interface (API) for accessing the PUF. With
the help of this API a user can instruct the CPUF to gen-
erate a ‘proof’ of the correct execution of the outsourced
program. This proof can be thought of as a MAC over the
executed program and the program output, using the PUF
response as the MAC key. If the user has a valid CRP, he
can verify the MAC. (See Section 2.3.3.) This procedure
is referred to as ‘certified execution’. In the construction
of [6] the proof is verifiable only by the user who sends the
task to the CPUF. In [8] this was generalized to a proof
(‘E-proof’) that can be verified by third parties as well.
The above scheme provides a way for users to outsource
computations and be certain that their program was cor-
rectly executed, by the designated device, yielding the
given result. No public key infrastructure is needed. In-
stead, the security is based on the secrecy of the CRPs.
In addition to the proof generation, [6, 7, 8] also provide
a number of protocols for CRP management, most no-
tably bootstrapping (creation of the original CRPs) and
renewal (allowing a user who possesses a CRP to obtain
more CRPs).
For an overview of PUFs, CPUFs, and fuzzy extractors
we refer to [14].

1.5 Contributions in this paper

In this paper we propose a modification of the main CPUF
security primitives. These modifications improve the over-
all security by putting additional restrictions on access to
the CPUF and by encrypting more of the exchanged mes-
sages. We represent the protocols in a different way from
[6, 7, 8], namely in the form of flowcharts, which improves
the comprehensibility of the protocols and of their security
properties.
In [6, 7, 8] the protocols between users and a CPUF were
represented as programs executed by the CPUF’s control
layer, using a specific security API. Hashes of these pro-
grams play an important role in the security primitives. In
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some cases, a function call involves a hash of a piece of the
program containing the function call. We feel that such
a formulation is needlessly complicated. Especially the
self-referential nature of the program hashes is confusing.
In our flowchart notation, each security primitive corre-
sponds to a ‘mode’ of the CPUF, in which the control
layer has a certain fixed input/output bahaviour. A user
can instruct a CPUF in which mode to operate, but cannot
change the CPUF’s sequence of actions in that mode. For
each mode we present a flowchart. There are no hashes of
control layer programs; the security clearly derives from
the secrecy of the challenge-response pairs. Avoiding the
program hashes allows for more efficient implementation.
In contrast to Gassend et al., we do not allow just any-
body to outsource computations to the CPUF, but we first
demand that a user establishes a secure channel with the
control layer, based on a shared CRP. Any further com-
munication has to take place through this channel. The
advantage of this approach is twofold: (i) it provides more
data confidentiality, e.g. the outsourced job and the re-
sults are not revealed to eavesdroppers, and (ii) it restricts
the opportunities for denial of service attacks.
Finally, we explicitly show how the helper data is handled;
this makes no essential difference with respect to the prior
literature but completes the data flow overview.
The outline of this paper is as follows. We first briefly
summarize the construction of Gassend et al. in Section 2.
Then we present our flowchart formulation in Section 3.
We summarize our results in Section 4.

2 API formulation of CPUF prim-
itives

We briefly review the main CPUF primitives as described
in [6, 7, 8]. We do not discuss all the protocols, but restrict
ourselves to Certified Execution, E-proofs and basic CRP
handling (bootstrapping and renewal).

2.1 Hash blocks

The control layer maintains a stack containing program
hash values. The most recent value pushed onto the stack
is also referred to as PHashReg. The API has a command
hashblock which manipulates the stack as follows.

hashblock(arg1)( {
... lines of code ...

},arg2)
The above code leads to the computation of a hash over
the concatenation of arg1 with all the lines of code within
the {} brackets and arg2. When execution reaches the
hashblock command, the CPUF computes this hash and
pushes it onto the stack. When execution reaches the
final ) brace, the top value of the stack is popped off
and purged. The code within the hash block has access
to PHashReg, i.e. a hash over itself. The self-referential

nature of this construction was one of our motivations to
look for a simplification.

2.2 PUF commands

The control layer accesses the PUF through the function
‘PUF’.

• PUF(Chal) yields the PUF response to challenge
Chal.

We list the API commands that deal with PUF access
and the PUF responses. These commands are available to
users.

• GetResponse. This instruction feeds PHashReg to the
PUF as a challenge.
GetResponse() = PUF(PHashReg).

• GetSecret. Essentially, this instruction generates a
hash of a PUF response.
GetSecret(Chal) = Hash(PHashReg, PUF(Chal)).

2.3 API notation for CRP handling, Cer-
tified Execution and E-proofs

2.3.1 Bootstrapping

The CRP management of a CPUF is bootstrapped in a
trusted environment. A trusted third party (TTP), e.g.
the manufacturer or a CPUF issuer, obtains the first CRPs
from the CPUF by running the following program,
hashblock(PreChal)( {

Return GetResponse();
});
Here ‘PreChal’ stands for ‘pre-challenge’. The above code
computes the hash of PreChal concatenated with the in-
struction between { } brackets (the hash that gets stored
in HashReg), then feeds that to the PUF and directly re-
turns the PUF output. The TTP has to compute the
actual PUF challenge PHashReg, and stores it along with
the CPUF’s output as a CRP.
As bootstrapping gives CRPs to users who do not yet have
a CRP, this function should be disallowed after the TTP
has obtained its CRPs.

2.3.2 Renewal

Users who already have a CRP (OldChal, OldKey) can
obtain more CRPs by running the ‘renewal’ protocol on
the CPUF, as follows.
hashblock(OldChal,PreChal)( {
my newR = GetResponse();
my OldKey = GetSecret(OldChal);
return EncryptAndMAC(newR,OldKey);
});
The CPUF creates an encrypted channel back to the user
through which it sends the new response. The actual new
PUF challenge is a program hash that depends on both
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PreChal and OldChal. The user computes this hash; to-
gether with newR it forms the new CRP.

2.3.3 Certified Execution

The method of creating an encrypted channel back to the
user is used also for Certified Execution. A user possesses
a CRP (Chal,Resp). Running the Certified Execution pro-
tocol for a job Prog with this CRP is formally denoted as
CertifiedExecution(Chal,Prog), and done by running
the following program,
hashblock (Prog)( {

my result;
hashblock ()({ result = RunProg(Prog); });
my key = GetSecret(Chal);
my cert = (result, MAC(result,key));
Return cert;

});
The user has all the ingredients to compute key himself,
so he can verify the MAC.
Remark: The motivation to have a pre-challenge in the
renewal protocol instead of a direct challenge is, as ex-
plained in [6, 7, 8], to prevent man-in-the-middle attacks.
In the Certified Execution protocol, Chal gets sent in the
clear; An attacker could try to exploit this by abusing Re-
newal to get the response to Chal. However, Renewal is
tailored to only accept a pre-challenge, so the attacker has
to find a hash pre-image.

2.3.4 E-proof generation

Next we list the steps for E-proof generation and verifica-
tion as given in [8].
my Hprog = Hash(Prog);
hashblock (Hprog)(HCodeA, {

my result;
hashblock ({ result = RunProg(Prog); });
my secret = GetResponse();
my Eproof = (result, MAC(result,secret));
return Eproof;

});
The parameter HCodeA stands for the hash over the arbi-
tration program (see Section 2.3.5). The PUF challenge
for deriving the MAC key is completely determined by
Prog. Nobody but the CPUF has access to this MAC
key.

2.3.5 E-proof verification (‘Arbitration’)

A verifier who has Eproof, Prog and a valid CRP can
check the correctness of Eproof. He first computes HProg
= hash(Prog), and then runs the following arbitration
program on the CPUF through Certified Execution.
hashblock(HProg)( {

my (result, M) = Eproof;
my secret = GetResponse();
if M = MAC(result,secret) return(true);

else return(false);
},HCodeE);
Here HCodeE stands for the hash over the E-proof genera-
tion program (see Section 2.3.4).

2.3.6 Remarks about the API formulation

We feel that the API construction is somewhat unsatisfac-
tory from the point of view of implementation efficiency.
Furthermore, the security of the protocols is not always
transparent.

1. In all the above programs, the control layer has to
compute hashes over portions of code, even when the
code is completely fixed. This is inefficient. The pro-
gram hashing in e.g. the Renewal protocol is crucial
for the security, but only because the input arguments
need to be hashed. It would be more efficient to have
a construction where only the important parameters
get hashed.

2. When a function call to GetResponse or GetSecret
is placed inside a hash block, this leads to the highly
self-referential situation that an instruction operates
on a hash over itself. While there is nothing wrong
with this per se, it can cause confusion. We feel that
such confusion is avoidable, since the main function
of the hash blocks is actually to hash the parameters
in the blocks, not the lines of code.

3. The Renewal protocol can be run even by users who
do not possess a valid CRP. While this does not im-
mediately pose a clear security risk (the attacker does
not have OldKey, so the encrypted newR is inaccessible
to him), it allows for denial of service (DoS) attacks.
There is also a lack of elegance in allowing CRP-less
users to run Renewal.

4. In the Renewal protocol, the PreChal is sent in the
clear, and any eavesdropper can compute the actual
challenge to the PUF. While this is not necessarily a
security risk, the leakage of the new challenge could
easily have been avoided by a slight change to the
Renewal protocol: the pre-challenge could be sent to
the CPUF over a secure channel, based on the shared
secret OldKey.

5. E-proof generation and verification is ‘asymmetric’ in
the sense that anybody can initiate E-proof genera-
tion, but a valid CRP is needed for E-proof verifica-
tion. Again this opens up the possibility of a DoS
attack by users who do not possess a valid CRP.

6. In Certified Execution and E-proof generation, the
Prog and result are communicated in plaintext.
While this does not necessarily have to be consid-
ered as a security risk, it would have been easy to
build in some extra confidentiality: Again, it would
have sufficed to set up a bidirectional secure channel
based on a shared secret (the PUF response).
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3 Protocol modifications and
flowchart representation

3.1 Our improvements

In this section we introduce a more transparent formalism
for specifying user interaction with a Controlled PUF. Our
main observation is this: Since the lines of code in the
Bootstrapping, Renewal, Certified Execution and E-proof
programs are fixed anyway, we may as well replace the
instructions by fixed circuits. Each hash block is replaced
by a hash circuit operating on the variable parameters
only. In this way we remove the self-referential nature of
the GetResponse and GetSecret function calls, while at
the same time improving efficiency by reducing the input
size of all the hashes.

Each of the programs in Section 2.3 is replaced by a circuit
(flowchart) corresponding to a ‘mode’ of the CPUF. A user
can instruct a CPUF in which mode to operate, but cannot
change the CPUF’s sequence of actions in that mode.

We furthermore completely ‘symmetrize’ all the interac-
tions between the CPUF and a user. We introduce a
basic protocol underlying all the others: the setup of a
(bidirectional) secure channel (SC) based on the shared
knowledge of a CRP. We demand that any CPUF pro-
tocol has to run through a SC, i.e. a user needs a valid
CRP in order to achieve any further communication with
the CPUF whatsoever. This reduces the potency of DoS
attacks and provides more confidentiality than the con-
struction of Gassend et al. Hence our protocols do not
have any of the drawbacks listed in Section 2.3.6.

Our construction immediately leads to a substantial sim-
plification: Execution of any user program by the control
layer is automatically Certified Execution. Therefore we
do not need a separate flowchart for Certified Execution.

As a final technicality, we explicitly include the handling
of the PUF helper data in our flowcharts. While this does
not add anything essential to the protocols, it completes
the visualization of all the data flows and clearly indicates
which PUF processing (Gen/Rep) occurs where.

In Sections 3.2–3.6 we present our flowcharts for Boot-
strapping, SC setup, CRP Renewal and E-proof genera-
tion and verification. The shaded area in each flowchart
represents actions that occur within the control layer. A
block arrow indicates data sent through a secure channel.

3.2 Flowchart for Bootstrapping (Fig. 2)

The CRP management of a CPUF is bootstrapped in a
trusted environment. A trusted party, e.g. the manufac-
turer or a CPUF issuer, obtains the first CRPs from the

Figure 2: Bootstrapping mode. The control layer receives
a pre-challenge P . The pre-challenge is hashed, yielding
a challenge C, which is fed to the PUF. The PUF output
is sent to the Gen function, which generates a secret key
k and helper data w. The key k is hashed, yielding the
response R. Finally, the control layer outputs the helper
data w and the response R.

CPUF in bootstrapping mode.3 These CRPs4 {C, w,R}
are distributed to authorized users.
Bootstrapping is the only time at which the control layer
ever reveals a PUF response in the clear to the outside
world. After the trusted party has obtained a number of
CRPs he permanently disables the bootstrapping mode.

3.3 Flowchart for Secure Channel Setup
(Fig. 3)

A user who possesses a CRP for a specific CPUF can set
up a secure channel with that CPUF over an insecure com-
munication line. See Fig. 3. The security is based on the
fact that the response R is secret, even though C and w
are revealed to attackers. The shared secret R allows the
user and the CPUF to encrypt their communication, gen-
erate MACs etc. In Fig. 3 we have deliberately abstracted
away the details of the SC setup by putting everything in
a box called ‘SC handling’. Many ways are known to es-
tablish a SC and then to properly communicate through
it (with protection against replay attacks etc.), so we do
not have to be specific here.

3.4 Flowchart for CRP Renewal (Fig. 4)

Any user who already possesses a valid CRP for a certain
CPUF can obtain additional CRPs for that CPUF us-
ing Renewal mode. Our flowchart for Renewal (Fig. 4)
is very simple: it amounts to Bootstrapping executed
through a Secure Channel. The user first establishes a
SC with the CPUF. Then he initiates renewal mode. He

3The ‘hash1’ function is included here for cosmetic reasons only,
in order to have exactly the same flowchart as for our Renewal pro-
tocol. Its role will become apparent in Section 3.4. Note that hash1

and hash2 are different hash functions. The output of hash1 is a
PUF challenge, while the output of hash2 is a key. The role of
‘hash2’ is to ensure that there is a secret known only to the control
layer. This is important for the E-proofs (see Sections 3.5 and 3.6).

4The PUF challenge C and the helper data w together are con-
sidered as a challenge to the CPUF.
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Figure 3: Secure Channel setup mode. The control layer
receives C and w. It feeds C to the PUF. The PUF out-
put and w are sent to the Rep function, which reproduces
the key k. This gets hashed, yielding the shared secret R,
which is then used by the ‘SC handler’ module to handle
the secure communication channel with the user.

Figure 4: Renewal mode. The steps in the CPUF are
identical to Bootstrapping, but communication between the
user and the CPUF goes through a secure channel.

sends a random pre-challenge Pnew and receives Rnew,
wnew. Finally he computes Cnew = hash1(Pnew) and
stores {Cnew, wnew, Rnew}.
Remark: Similar to the Gassend et al. construction, man-
in-the-middle attacks are prevented by the fact that the
hash1 function is present at Renewal, but not at SC setup.
This prevents an attacker from abusing Renewal to ob-
tain the response R for eavesdropped challenges (C, w).
He would have to invert hash1 to obtain the proper pre-
challenge P = hash1inv(C).

3.5 Flowchart for E-Proof Generation
(Fig. 5)

We present our variant of E-proofs (verifiable by third
parties). The protocol is run through a SC based on a
CRP {C, w,R}. A user Alice outsources the execution
of a program prog to the CPUF. She receives the re-
sult of the computation and the proof Eproof. She stores
{C, w, prog, res, Eproof} for later use.
The MakeProof module in Fig. 5 can be e.g. a MAC using
k as the key, or a keyed hash. The security is based on the
fact that the ‘internal’ secret key k is known only to the
CPUF. Hence nobody is able to forge the certificate, not
even Alice, who has R = hash2(k), or even the trusted
enrollment authority.

Figure 5: E-proof generation mode. The protocol is run
through a SC. The SC-key in use is the hash of the secret
key k; this k never leaves the CPUF. The user sends a
program, which is executed and also hashed by the CPUF.
The key k is used by the MakeProof function to certify the
program hash, the result of the computation, and the SC
setup parameters C, w.

Remark: The only program hash occurring in the E-proof
generation is the hash over the to-be-executed job. There
are no hashes over API instructions as in Gassend et al..

3.6 Flowchart for E-proof Verification
(Fig. 6)

When Alice wants to convince a third party, Victor, that
prog executed on the CPUF gave the result res, she hands
over to Victor the data {C, w, prog, res, Eproof}. Vic-
tor establishes a SC with the CPUF using one of his own5

CRPs. Through this SC he runs the E-proof verification
protocol. The protocol amounts to nothing more than
checking the consistency between the E-proof, the ‘certi-
fied’ data {C, w, hash3(prog), res} and the key k. If
the E-proof is a MAC as in the example above, then the
consistency check is a simple MAC verification.

4 Summary

We have given a modified version of the basic CPUF pro-
tocols for CRP management, certified execution and proof
of execution. Our modifications further restrict access to
the CPUF, and provide more confidentiality.
We have introduced flowchart notation to replace the API
program formulation of Gassend et al. This gets rid of the
self-referential program hashes and clarifies the essential
steps of the protocols. The security clearly derives from
the secrecy of the challenge-response pairs. Furthermore,
elimination of the program hashes reduces the amount of
work done by the control layer.
In our flowchart notation, each security primitive corre-
sponds to a ‘mode’ of the CPUF, in which the control

5If Victor does not have a CRP, he can obtain one from somebody
else.
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Figure 6: E-proof verification mode. The protocol is run
through a SC. The CPUF recovers the secret key k from
(C, w) by using the PUF and the Rep function. The
VerifyProof module then verifies the consistency between
Eproof, the key k and the data C, w, h, res.

layer has a certain fixed input/output bahaviour. A user
can instruct a CPUF in which mode to operate, but can-
not change the CPUF’s sequence of actions in that mode.
Finally, we have explicitly shown how the helper data is
handled, completing the data flow overview.
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[14] P. Tuyls, B. Škorić, and T. Kevenaar. Security with
Noisy Data: Private Biometrics, Secure Key Storage
and Anti-Counterfeiting. Springer, London, 2007.
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