
Web3Recommend
Decentralised Web3 social recommendations with trust and

relevance balance
— MSc. Thesis —

Rohan Madhwal
Delft University of Technology

Delft, The Netherlands
R.Madhwal@student.tudelft.nl

Johan Pouwelse
Delft University of Technology

Delft, The Netherlands
J.A.Pouwelse@tudelft.nl

Abstract—Web3Recommend is a decentralised Social Recom-
mender System implementation which enables Web3 Platforms
on Android to generate recommendations that balance trust
and relevance. Generating recommendations in decentralised
networks is a non-trivial problem because these networks suffer
from the lack of a global perspective due to the absence of a
central authority. Further, decentralised networks are prone to
Sybil Attacks in which a single malicious user can generate
multiple fake or “sybil” identities, allowing them to unfairly
manipulate the ranking of items, thus leading to low quality,
untrustworthy recommendations. The spam created by sybil
identities also places a large burden on Web3 platforms due to re-
source wastage. Web3Recommend relies on a novel graph-based
content recommendation design inspired by GraphJet, a recom-
mendation system used in Twitter enhanced with MeritRank, a
decentralised reputation scheme which provides sybil-resistance
to the system. By adding MeritRank’s decay parameters to
the vanilla Social Recommender Systems’s personalised SALSA
graph algorithm, we can provide theoretical guarantees against
Sybil Attacks in the generated recommendations. We leverage the
efficient graphing capabilities from jGraphT in our end-to-end
decentralised Android implementation. By using a real-time edge
gossiping mechanism on semantic overlays in combination with
compact serialization schemes, we construct global knowledge
of the network on each node. Performing probabilistic Monte
Carlo method based analysis of the social network structure, our
system is able to rank all items available to a user in order of
relevance while limiting sybil influence on the rankings. Similar to
GraphJet, we focus on generating real-time recommendations by
only acting on recent interactions in the social network, allowing
us to cater temporally contextual recommendations while keeping
a tight bound on the memory usage in resource constrained
devices, allowing for a seamless user experience. As a proof-of-
concept, we integrate our system with MusicDAO, an open-source
Web3 music sharing platform to generate personalised, real-time
recommendations. Thus, we provide the first sybil-reistant social
recommender system which allows real-time recommendations
that go beyond classic user based collaborative filtering. The
system is also rigorously tested with extensive unit and integration
tests. Further, our experiments demonstrate the trust-relevance
balance of recommendations against multiple adversarial strate-
gies in a test network generated using data from real music
platforms.

I. INTRODUCTION

The recent decade has witnessed an explosion of user
generated data on the Internet. According to a study from IBM
called “The Big Data Problem”, users generate 2.5 quintillion
bytes of data on a daily basis. In fact, 90 percent of the data
in the world today was created in the last two years alone. [1]

While this explosive growth in the amount of digital infor-
mation available online provides a plethora of options for a
diverse range of users and interests, it also results in the hin-
drance of timely access to items of interest and relevance since
finding anything useful requires time-intensive sifting through
troves of data, a majority of which is often entirely irrelevant.
[2], [3] In the words of neuroscientist Daniel J. Levitin, “The
information age is drowning us with an unprecedented deluge
of data”. [4]

The harms of information overload exceed beyond simple
time wastage with studies showing that it can lead to decrease
in efficiency, increased stress and even ill-health. [5]

The problem is exacerbated in social media platforms in
the modern age, where anyone can be a content creator.
[6] Statistics from the popular social media platform TikTok
which boasts over 1 billion monthly active users show that
83% of the platform’s users have posted a video on the
platform. [7]

The cardinal objective of a social media platform that aims
to be successful and vibrant is an active and engaged user
base. Achieving user engagement boils down to presenting the
most attractive and relevant content to each user. However,
popularity and success is a double edged sword since the
abundance of users and content on these platforms floods
users with huge amounts of information and hence poses
a great challenge in terms of information overload. While
search capabilities slightly alleviate the problem, often users
are unable to express keywords that convey requirements about
the type of content they would be interested in. Further, users
tend to have diverse taste and the quality of content may be
subjective depending on the user searching for it, therefore,

1

beyond simple searching capabilities, personalisation is also
required to make the content attractive and relevant to each
user. [8], [9]

A Social Recommender System is an intelligent system that
filters the massive amounts of information on social media
platforms and recommends useful items and information to
users based on their personalised needs which are inferred
through unique explicit and implicit interactions within the
social network. In this way, Social Networks and their Rec-
ommender Systems tend to have a symbiotic relationship
since the quality of recommendations catered to users allows
the networks to grow in size, which in turn provides more
interactions, allowing higher quality recommendations. [10]

GraphJet [11] is an example of a graph based Social Recom-
mender system used for generating content recommendations
in Twitter. GraphJet is able to provide personalized, real-time
content recommendations for Twitter users, i.e. for a given
user, it is able to recommend tweets that the user may be
interested in based on the user’s history and social interactions.
To serve these recommendations, a personalized SALSA algo-
rithm [12] is run on a bi-partite graph of interactions between
users and tweets. The system assumes that the entire graph
can be stored in the memory of a single server.

However, existing Social Recommender systems such as
GraphJet are designed to work in traditional centralized social
networks. In these centralized networks, users trust third party
service providers (such as Meta/Twitter/Google) with their
data and to provide them with recommendations. Recently,
there has been an erosion in this trust due to violations of user
privacy, whether it was intentional violations through the sale
of data to third parties [13] or unintentional violations through
the loss of data through hacking breaches in the platforms. [14]

This erosion of trust has led to a rise in popularity of
“Web3”, which leverages decentralized technologies such
as distributed ledgers to offer decentralized alternatives of
centralized platforms, such as social networks. [15] Web3
platforms allow direct interactions between users without
any third-party intermediaries or centralized servers. This
is achieved through utilizing communal infrastructure and
resources provided by the participating individuals themselves.

In this paper, we address the challenges associated with
generating recommendations in Web3 platforms by presenting
Web3Recommend, a novel distributed, social recommendation
system. Our approach integrates a graph-based content rec-
ommendation algorithm inspired by GraphJet with MeritRank
[16], a Sybil tolerant feedback aggregation mechanism. By
leveraging personalized SALSA algorithm with sybil-resistant
random walks, we aim to strike a balance between trustwor-
thiness and relevance in recommendations.

Web3Recommend contributes to the existing body of re-
search by providing an end-to-end implementation that can
be seamlessly integrated into any Web3 platform running on
Android. We fully implemented the recommender to generate
music recommendations for users of MusicDAO [17], an
open-source Web3 music sharing platform which offers a
decentralized alternative to Spotify/Apple Music.

First, we describe the problem that our system aims to solve
in II, next we present the key features of of our solution in III.
Then we provide some background on the concepts discussed
and techniques used in our solution in IV, V and VI. Our
system’s model, assumptions and limitations are discussed
in VII. In VIII we detail the implementation of the major
components in Web3Recommend. The details on how we
combined the two systems to generate our recommendations
is presented in IX.

In XI we demonstrate the trust-relevance balance of rec-
ommendations through four sets of experiments. The first
two experiments show that the recommendations generated
are relevant and that the relevance of non sybil nodes is
not too greatly diminished with increasing MeritRank decay
parameters. The last two experiments involve adversarial Sybil
attacks which allow us to demonstrate the sybil resistance of
the recommender system.

Fig. 1: Recommendations generated in MusicDAO

2

II. PROBLEM DESCRIPTION

The generation of recommendations in Web3 platforms
faces unique challenges compared to traditional centralized
models. In conventional Social Recommender systems, a
users’ prior experience can be viewed as a vote in favour of
certain items. Using a Sybil Attack [18], an attacker can create
a potential unlimited number of fake identities (or sybils) to
cast misleading votes.

Thus, by creating malicious users or identities, a bad actor
could potentially mislead the system system into recommend-
ing their desired items. The problem becomes quite important
when one considers the prevalence of abuse, fraud and spam
on online social media platforms. Carrying out such an attack
is not incredibly complicated, with existing solutions such as
Tube Automator and Friend Bomber which make such attacks
readily available to malicious users.

Recommender systems in centralized networks are relatively
more secure from Sybil attacks due to the centralized na-
ture of the system. Centralized systems often require user
authentication and verification, making it more difficult for
malicious actors to create multiple fake accounts to manipulate
the ranking of items. Additionally, centralized systems have
the advantage of being able to monitor user behavior and
detect anomalies such as unusual activity patterns or highly
repetitive actions, which could indicate the presence of a
Sybil attack. This detection is possible because of the large
number of skilled attendants dedicated to maintaining and
improving system capabilities in centralized systems. These
attendants can develop measures to prevent Sybil attacks, such
as restricting the number of user actions that can be performed
within a certain time frame, or introducing identity verification
requirements.

Further, the decentralized nature of Web3 platforms, cou-
pled with the pseudonymity and anonymity they offer creates
an environment where Sybil attacks can occur more easily.
Unlike in centralized systems, where user identities are typi-
cally verified, Web3 platforms prioritize user privacy and allow
users to operate under multiple pseudonyms. This makes it
challenging to establish the authenticity and credibility of users
and their preferences.

Therefore, creating a trustable and reliable decentralized
recommender system for Web3 platforms is a challenging task
due to the lack of centralized infrastructure, making it easier
for malicious users to create and control multiple identities,
manipulate the ranking of items, and compromise the trust-
worthiness of recommendations. Therefore, the creation of
decentralized recommender systems requires new approaches
that can address the challenges of decentralized networks,
including sybil attacks, limited resources, and lack of trust
among users. [19]

III. KEY FEATURES OF WEB3RECOMMEND

1) Based on Monte Carlo-type methods relying on ran-
dom walks
Web3Recommend uses personalized ego-centric random
walks to perform computations of estimated Personalized

Page Rank and SALSA values for nodes in the network.
These values are then used to generate recommendations
in the system. It has been shown that Monte Carlo
methods can provide very good probabilistic estimations
for Page Rank and SALSA. They are also much faster
and parallelisable than the conventional power iteration
method, making them a good choice for an online rec-
ommendation system. [20] Additionally, by enhancing the
random walks in these methods with decay parameters
from MeritRank, Web3Recommend is also able to limit
the influence of sybils in these estimations. They also
allow us to create a system that is simple and under-
standable, yet also sufficiently expressive to generate
relevant, trustworthy recommendations. Random walks
allow us to define a large design space, allowing room for
customization to a wide domain of use cases in different
applications (e.g. social search) and in different contexts.
Further, random walks act as “social proof” for the rec-
ommendations, allowing users to better understand why
certain items were recommended, leading to higher user
engagement. There is also room for further increasing
the quality of generated recommendations by feeding
the output from our random walks as input to machine
learning models, but in our case, the direct output is
sufficient for user consumption.

2) Each node stores the entire interaction graph between
users and items which is synchronized using an edge
gossiping mechanism
While readers might find the idea of storing the entire
graph in a node strange, graph partitioning remains a
complex problem in large, dynamically changing graphs
despite a lot of work and progress in the field. [21]
Achieving graph partitioning would require implementing
a fully-distributed graph progressing engine and further
add high communication cost to the system. Further,
in a P2P Web3 platform, users are not expected to
be always available/online, thus, similar to GraphJet,
Web3Recommend assumes that all nodes store the entire
graph in memory. Upto a billion edges can be reasonably
stored in less than 8GB of memory with our compact
graph serialization techniques which is a reasonable as-
sumption to make given the hardware present in modern
devices.

3) Bootstrapping mechanisms
The “new user” problem in Social Recommender system
[22] necessitates the need of bootstrapping mechanisms
to introduce new users to the network. Web3Recommend
includes two bootstrapping mechanisms: 1) A similarity
based mechanism for finding similar users, allowing new
users to find users they can trust 2) A personalized page
rank for creating a circle of trust which can be used
for recommending relevant items to users who haven’t
consumed many items and thus don’t have any existing
edges in the interaction graph

3

IV. BACKGROUND ON TRUST

The system presented in this paper relies on the (incre-
mental) computation of personalized PageRank and SALSA
augmented with principles from MeritRank. We also build on
top of the GraphJet recommender system by Twitter. In this
section, we provide a quick review of these methods.

A. PageRank

One of the most widely known ranking systems in the world
is Google’s PageRank [23] which is still used (along with
other algorithms) in order to rank websites for user queries on
Google.

PageRank determines a rough estimate of the relative im-
portance of a website by computing a ranking for every web
page. The underlying assumption of PageRank is that a website
that is more important is more likely to receive links from
other websites than a website that is less important i.e. that
the existence of a hyperlink u → v implies that the page u
votes for the quality of page v and hence, the most important
page is one that receives most votes. PageRank gave birth to
the idea of topic sensitive or personalized ranking and other
hyperlink-based centrality measures. [24]

More formally, let V represent the set of all web pages in a
network. A web graph is the directed graph which consists of
the vertex set V and the hyperlinks between pages represent
the edges in the network. Further, let r be the preference vector
which induces a probability distribution over V and c ∈ (0, 1)
be the reset probability.

Then, the PageRank vector p is the solution of the following
equation: [25]

p = (1− c)× pA+ c× r (1)

If r is uniform over V then p is referred to as the global
PageRank vector. In this paper, the special case where for
some web page x, the xth coordinate of r is 1 and the
rest of the coordinates are 0, the solution of r represents
the Personalized PageRank of web page x and is denoted as
PPR(x).

Note that it is also equivalent to interpret PageRank with
the Random Surfer model [26] where PageRank is simply the
stationary distribution of a random walk where at each step,
assuming we are at a certain web page u, with probability c
we jump to a random web page v, and with probability 1− c
we follow a randomly chosen outgoing edge (or hyperlink)
from u to a new web page w. In this model, Personalized
Page Rank is the same as PageRank except for the difference
that all random walks start and jump randomly to the seed
node x for which we are personalizing the PagenRanks. [27]

B. SALSA

Stochastic Approach for Link-Structure Analysis or SALSA
is a web page ranking algorithm similar to PageRank and
HITS [28] which attempts to extract information from the link
structure of a networked environment to associate two scores
with every node v, the hub score hv and authority score ax.

As the name suggests, ax reflects how much of an authority
a node is on a certain topic. While the notion of authority
is pretty broad, the intuitive idea is that in the context of
a specific query, links from one node to another express a
considerable amount of latent human judgement and the that
judgement is precisely what is needed to formulate the notion
of authority. Hence, if many nodes point to another node it will
possess a high authority score. hv on the other hand reflects
how well nodes point to authorities, so if a node largely links
to other nodes that are considered very authoritative, it will
have a high hv .

More formally, if E is the set of all edges in the graph and
indeg(x) and outdeg(v) are the in-degrees and out-degrees
of the node respectively then:

hv =
∑

{x|(v,x)∈E}

ax
indeg(x)

(2)

ax =
∑

{v|(v,x)∈E}

hv

outdeg(v)
(3)

It is worth noting that unlike PageRank where we only have
forward random walks, SALSA consists of forward-backward
random walk where the walk alternates between forward and
backward steps.

Similar to the notion of Personalized PageRanks, we also
have Personalized SALSA which tailors the hub and authority
scores to a single root node. As in Personalized PageRank,
in the personalized version of SALSA, we can have random
jumps to the seed node. Assuming that the seed node is u, hv,u,
the personalized SALSA hub score and ax,u, the personalized
SALSA authority score can be represented as:

hv,u = c× δu,v + (1− c)×
∑

{x|(v,x)∈E}

ax
indeg(x)

(4)

ax,u =
∑

{v|(v,x)∈E}

hv

outdeg(v)
(5)

Notice that this in this setting, the hub score and authority
score can be interpreted as the similarity and relevance score
respectively. This ability of personalized SALSA to create
tailored recommendations for specific root nodes is used later
on inside our recommendation system.

C. GraphJet

GraphJet is a graph-based system for generating real-time
tweet recommendations at Twitter. The recommendation al-
gorithm is based on an adaptation of personalized SALSA
which involves random walks in a bi-partite graph of users
and tweets. Formally, GraphJet manages a dynamic, sparse,
undirected bipartite graph G = (U, T,E) where U represents
users in Twitter, T represents tweets and E represents inter-
actions between the users and tweets over a temporal window.
Hence, the bipartite graph G consists of two set of nodes
U and T , users from U are always on the left side of the
random walk and represent hubs, while tweets from T are on

4

the right side and represent authorities. Figure 2 demonstrates
a sample bi-partite graph used by GraphJet, where the left
side consists of users from the “circle of trust” of the user
whose recommendations are being generated and the right side
consists of tweets the users in the circle interacted with. The
circle of trust is constructed using a personalized PageRank
algorithm.

GraphJet maintains and updates the bipartite graph by
keeping track of user-tweet interactions over the most recent n
hours. Periodically, edges older than n hours are discarded to
ensure that memory consumption doesn’t increase boundlessly,
experiments show that this pruning does not have a noticeable
impact on the system’s recommendation quality. The system
supports high performance ingestion of real-time and interac-
tions and generations of recommendations.

Below is a simplified description of the SALSA algorithm
run inside GraphJet:

1) The random walk begins from the vertex u in the left
hand side of the bi-partite graph corresponding to the
query user

2) An incident node from u to the right hand side of the
graph is uniformly selected to a tweet t on the right hand
side of the bi-partite graph

3) From t, an incident edge is selected uniformly back to
the left hand side to another node v

4) This is repeated an odd number of steps
Figure 3 demonstrates a sample random walk in one iter-

ation of the above SALSA algorithm. To introduce person-
alization, a reset probability as described in IV-B above is
used, which restarts the random walk from vertex u to ensure
that the random walk doesn’t “stray” too far from the query
vertex. Further, it may also be possible that the query user
doesn’t have any existing interactions in the bi-partite graph,
either because the last interaction was more than n hours ago
or because they are a new user. In this case, the random walk
could start from a seed set instead of from the query user’s
node. This seed set is configurable but the usual chose is to use
the circle of trust of the user constructed using Personalized
PageRank.

After constructing the bi-partite graph, multiple instances of
the SALSA algorithm are run which assigns hub scores to the
left side and authority scores to the right side. The vertices
on the right hand side are then ranked and presented as tweet
recommendations to the user. The vertices on the left hand
side are also ranked and based on the homophily principle
can be presented as “similar user” recommendations.

The GraphJet paper suggests that the algorithm is effective
because it is able to capture the recursive nature of the user
recommendation problem. A user u is bound to also like
tweets that are liked by users that are similar to u. These
users are in turn similar to u if they follow the same (or
similar) users. Personalized SALSA operationalizes this idea,
providing similar users to u on the left-hand side and tweets
that they like on the right-hand side. The random walk in
SALSA also ensures equitable distribution of scores out of
the vertices in both directions.

Fig. 2: Example of bi-partite graph used in GraphJet

Fig. 3: Example of a random walk in GraphJet’s
Personalized SALSA

V. BACKGROUND ON DECENTRALISATION

A. Decentralisation

The term “decentralised network” was initially introduced
by Paul Baran, one of the pioneers of packet switching.
Networks can generally be classified into two types: “star”
or centralized networks and “grid” or distributed networks.
In a star/centralized network, all nodes are connected to a
central node, requiring participants to go through this central
component to interact with one another. In contrast, distributed
networks have no central node, enabling direct communication
between nodes without reliance on a centralised point. Baran
termed networks that utilized a combination of these com-
ponents as “decentralised” since they lacked a single, central

5

Fig. 4: a) Centralised network b) Decentralised network c) Distributed network
Cardinal architectural insight from Baran’s 1964 paper [29]

point of failure. [29] Figure 4 visually illustrates these network
types.

In contemporary literature, the term “decentralised network”
refers to networks where participants and contributors control
the technology, content, and infrastructure, rather than relying
on large central platforms. This control manifests in various
ways, such as participants managing specific parts of the
infrastructure (e.g., servers and routers), collaborators owning
their own private data silos that are queried during network
discovery, and participants having autonomy in determining
the operational details of the network, including content
publicity and deletion decisions. [30] Twitter serves as an
example of a centralised network, where the platform owns
all user-generated content. Conversely, Tribler, a peer-to-peer
file sharing system that builds upon the BitTorrent protocol,
exemplifies a decentralised network. Tribler enables users
to share content using keyword search and incorporates a
reputation-management system to foster collaboration. [31]

B. Web3

The term ”Web2.0” was originally introduced by Tim
O’Reilly in 2007 to describe a new iteration of the Internet
that empowered users to publish, consume, and interact with
content and each other. It aimed to expand upon the earlier
version, ”Web1.0,” which primarily featured static pages for
information display. While ”Web1.0” was often referred to as
the ”read web,” ”Web2.0” aimed to be the ”read-write web,”
a term coined by Richard McManus in 2003.

Critics, including Tim Berners-Lee, the inventor of the
World Wide Web, argue that ”Web2.0” failed to fulfill the
vision of a secure, decentralised exchange of public and
private data. Instead, users’ data became increasingly stored
in corporate data silos, raising concerns about data ownership

and security. Berners-Lee and others advocate for users to have
ownership of their own data to ensure data security.

In 2014, Gavin Wood, co-founder of Polkadot and
Ethereum, introduced the term ”Web3.0” to describe an In-
ternet that is decentralised, open, and transparent. The Web3
movement seeks to transform the platform-oriented ”Web2.0”
into a decentralised web ecosystem with the following goals:
1) avoiding content discovery and propagation monopolies
by large centralised entities, 2) combating the spread of
misinformation and fake news, 3) enabling users to create,
exchange, and react to information securely, privately, and
freely, and 4) supporting immersive web development.

Liu et al. define Web3 as a movement that goes beyond
specific applications or underlying infrastructures, aiming to
establish ”an era of computing where the critical computing
of applications is verifiable.” In other words, an application
aligning with the Web3 idea allows all stakeholders to verify
its execution based on predetermined terms without the need
for intermediaries.

C. MeritRank

MeritRank [32] aims to bound the benefits of Sybil attacks
instead of preventing them altogether. The system is based on
the assumption that peers observe and evaluate each others’
contribution. Each peer’s evaluation is stored in a personal
ledger and modelled in a feedback graph where the feedback
to each user is modelled as a special token value which
accumulates over time. It is also assumed that each peer is
able to discover the feedback graph, for example, through a
gossip protocol.

In order to limit the influence of Sybils, three main types of
Sybil attack strategies are identified in MeritRank, these are
illustrated in Fig. 5.

6

Fig. 5: Sybil attack strategies [32]

MeritRank manages to achieve Sybil tolerance by imposing
the following constraints on how reputation can be gained
inside the feedback graph when using any of the above
strategies:

1) Transitivity α decay
This constraint limits the ability of an entity to create a
serial Sybil attack by terminating random walks in the
feedback graph with a probability α

2) Connectivity β decay
Sybil attack edges in a feedback graph are often bridges
i.e. their cut creates two separates components. This
constraints introduces a punishment for a node for being
in a separate component

A trust graph modelled using these MeritRank’s constraints
will satisfy:

lim
|S|→∞

w+(σs)

w−(σs)
≤ c (6)

where, w+(σs) is the profit gained by the Sybil Attack σs,
w−(σs) is the cost of the Sybil attack, S is the set of Sybils
and c is some constant value such that c > 0. Thus MeritRank
is able to provide a reputation system with feedback which is
Sybil tolerant.

VI. RELATED WORK

In this section, we cover broad categories of existing work
in research which attempts to solve similar problems and
show why they do not achieve the goals that we attempt to
fulfill. Thus, we demonstrate the relevancy of our work by
pointing out how it achieves the interesting niche of generating
trustworthy and relevant recommendations in Web3 platforms.

A. Bounding Identity Creation

A popular method to defend against sybil attacks is to lever-
age defenses that bound the ability of malicious attackers to
create sybil identities and hence indirectly limit the influence
of the sybil attack by limiting the votes that a sybil attack can
cast. The most rudimentary method of achieving this is by
ensuring that all unique identities on platforms correspond to
real human beings. This can be achieved using a trusted central
authority to verify information about users which is unique
to human beings, such as passports, phone numbers, credit
card etc. Other approaches involve using graphical challenges
such as CAPCHA to ensure that the user is a human. [33]
Such approaches are flawed in the context of Web3 for
multiple reasons. First, users of Web3 platform employing

such methods may be hindered from using them because of
privacy concerns, the anonymity guarantees of these platforms
is often the primary reason many of the users choose to
use these platforms. Second, using a centralized third party
for verification is antithetical to the idea of decentralization
that Web3 platforms stand for and further, maintaining a
centralized server adds too much complexity to the design
of the system.

Decentralized approaches to the same problem have been
suggested in research such as limited identities from certain
IP addresses/prefixes [34], creating resource based challenges
[35] and remote issuing of certificates to verify identity based
on network/location coordinates [36]. While these approaches
do make it harder to create sybil identities, they do not entirely
stop sybil attacks and a powerful adversary which enough
incentive could easily surpass these mechanisms to generate
significant influence on the recommendations in the network.
Further, bounding identity creation can also have the uninteded
effect of make it frustrating for non-sybil users to use the
platform. Therefore, our work does not rely on bounding
user creation to indirectly limit sybil influence and instead
directly limits sybil influence by effectively detecting sybils
and restricting the influence of their votes.

B. Reputation Systems

Reputation Systems [37] allow the collection of feedback
from different users in the network to determine which peers
can be trusted based on their past behaviour. A popular
example of a reputation system is the “Feedback Forum”
on Ebay [38] : after a transaction is completed, a buyer or
seller can rate each other (1, 0 or -1) and leave comments. A
participant in eBay accumulates such points over time which
are displayed next to their screen name. A buyer can view a
seller’s points and comments left by other users to create a
“shadow of the future” into the transaction they can expect to
have if they buy an item from the seller. Many other online
forums and marketplaces such as Amazon and Stack Overflow
rely on similar reputation systems. However, while reputation
systems are a strong mechanism to determine whether certain
users are trustworthy, on their own they do not provide a way
to generate recommendations based on trustworthy users.

C. Social Network based Sybil Defense

Other works have utilized the power of feedback from
social networks to limit sybil influence. Popular examples are
SybilGuard [39], SybilLimit [40], Ostra [41] and SumUp [42].

7

Similar to our work, these methods are able to establish an ap-
proximate notion of trust among users using the properties of
graphs and often assume global knowledge of the dynamically
changing social network. Using these properties, the influence
of sybil identities in the votes is limited. However, similar to
vanilla Reputation Systems, while these approaches are great
for generating trust in the network, on their own they are not
able to ensure that the non-sybil items they identity are relevant
to the user who the recommendations are being generated
for. We are able to achieve this by building on personalized
SALSA and ensuring that not only is the recommended item
trustworthy (i.e. non-sybil), but also relevant to the user the
recommendations are being generated for.

D. Machine Learning based approaches

Existing machine learning based approaches to recom-
mender systems attempt to apply techniques from the mul-
tiarmed bandit problem [43] or the contextual bandit problem
[44] where contextual information is used to group users that
belong to the same cluster via classification or clustering
techniques. The problem with this approach is that they assume
the presence of considerable existing feedback from users on
what items they like and on the “goodness” of various objects,
since these models are only as good as the data that they are
trained on. Web3 is an emerging technology and in a lot of
platforms (especially new platforms) this data is missing or not
sizable enough to allow the training of decent models, leading
to poor recommendations or the inability to have such models
altogether. [19]

E. Other approaches

Another notable paper worth mentioning is Dsybil [19], the
system presented in the paper utilizes similar mechanisms for
diminishing sybil influence and generating recommendations
as our paper. They are able to achieve this by: i) exploiting
the heavy-tail distribution of the typical voting behavior of
the honest identities, and ii) carefully identifying whether
the system is already getting “enough help” from the voters
and hence, if sybil votes are only latching on to existing
votes. While they demonstrate an impressive sybil tolerance,
a notable drawback of their paper is its reliance on only
explicit feedback through voting on items that need to be
recommended. However, explicit feedback is not always avail-
able and in fact, most of the feedback on social networks
is implicit rather than explicit. [45] Our system incorporates
implicit feedback from users in order to generate recommen-
dations. Further, like a lot of other mentioned papers, the
system focuses purely on trust and not on generating relevant,
personalized recommendations.

VII. SYSTEM MODEL, ASSUMPTIONS AND LIMITATIONS

A. Items, Users and Votes

Web3Recommends recommends items (e.g. songs/albums
in Spotify, movies in Netflix, posts in Reddit etc) to the
platform’s users based on the past experience of the users with
the items. A user’s preference for an item serves as a vote for

the item, therefore, if enough users like a certain item, it is
likely to have more votes by virtue of being visited more in
random walks inside the personalized SALSA algorithm and
therefore, more likely to be recommended to other users.

B. Target Application/Scenario

Recommendation Systems are a very broad concept and dif-
ferent systems differ in their goals and details. [46] Therefore,
a solution that works in one scenario may not work in another
scenario because the platform requires a different purpose from
its Recommendation System. For example, a Recommendation
System in an online retailer such as eBay may be required
to generate all products that a user may be interested in so
that the user has multiple choices while the system in modern
media applications such as TikTok would only be required to
generate a single recommendation to autoplay as the next item
for the user.

Web3Recommend aims to cover a broad range of use cases
by providing a system that is able to provide a ranking of
all items available to a particular user. For this, it assumes
scenarios where:

1) The objects to be recommended can be uniquely iden-
tified and are always available to the user (the exact
method of availability could vary from peer-to-peer to
being provided by a central server)

2) The lifespans of the users in the network is not incredibly
short lived, allowing them to establish trust relationships
with other users

3) Users are able to initially discover trusted users using
social discovery mechanisms or an initial set of trusted
users are provided to the user by the platform

The final assumption is a significant limitation of our work
since it’s impossible to build trust out of nothing and it is
possible for a new user to end up trusting sybil users via
bootstrap threats.

C. Network Assumptions

Web3Recommend assumes that the application utilizing it
leverages a peer to peer architecture [47] with each user
operating their own node and possessing the ability to commu-
nicate directly with any other node and item in the network.
We assume that all users in the network follow the protocol
honestly and cannot tamper with it in anyway. We also
assume that communication occurs over privacy preserving,
cryptographically secure protocols.

While the system presented in this paper relies on Gossiping
VIII-C over a content overlay network to synchronize its
data, it is important to acknowledge that it currently lacks
sufficient security measures to protect against spoofing of
gossip. However, it is worth exploring the potential of en-
hancing the system’s security through the implementation of
a certificate-based approach. By utilizing certificates for each
node within the content overlay network, it becomes possible
to establish a secure communication framework. These cer-
tificates can be used to verify the authenticity and integrity of
gossip messages exchanged between nodes, ensuring that only

8

trusted and authorized nodes participate in the synchronization
process. Moreover, by incorporating individual certificates for
each user, the system can prevent users from pretending to
be another user and signing actions on their behalf. This
significantly raises the bar for spoofing attempts, enhancing
the overall security of the gossiping process.

D. Affinity and Trust

Web3Recommend uses two distinct concepts, affinity and
trust to model user to user and user to item relationships
respectively.

A user u’s affinity for item i is expressed by Af(u, i) and
is calculated by:

Af(u, i) =
PC(u, i)∑

x∈Iu
PC(u, x)

(7)

Where PC(u, i) is the play count of user u for item i i.e.
the number of times the user has consumed item i and Iu
is the set of all items that have been consumed by user u.
Therefore, Af(u, i) is a value between 0 and 1 and serves as
a measure of the user u’s preference for item i compared to
all the items that they have consumed.

This definition of affinity may not suit all use cases and a
more fine grained metric such as share of total play time could
be more appropriate.

Like in reputation systems, a user’s trust in another user is
increased when the user performs useful work for the other,
which in this case of our recommendation systems means
providing a recommendation that the other user likes i.e. has
a high affinity for. Therefore, affinity and trust are inherently
linked since as a user’s affinity for an item increases, the user’s
trust in other users who recommended the item to them also
increases.

Since in our system recommendations are calculated using
random walks inside a personalized SALSA algorithm, recom-
mending an item to another user means that the recommender
“voted” for the item in the random walk by having a high
affinity for it. Note that modelling trust this way ensures that
sybil users cannot simply increase other user’s affinity in their
sybil items by having a high affinity for popular items since:
1) if they have a high affinity for popular items, their sybil
items are less likely to be recommended 2) Many users are
likely to have a high affinity for popular items thus sybils are
less likely to benefit from following this strategy 3) In order to
gain trust, the sybils still need to effectively perform “useful
work” by recommending items that other users like. They do
not simply reap rewards from items that have already been
recommended to other users.

VIII. WEB3RECOMMEND ARCHITECTURE AND DESIGN

Web3Recommend is a Recommender System designed to
provide recommendations in any application running on a
distributed network. The central data structure in the network
is the TrustNetwork which stores information about user to
user and user to item relationships across the entire network.
Recommendations in the system are generated by performing

random walks inside this network. Each node maintains a
personal copy of a TrustNetwork and updates to the network
are synchronized through a timestamp biased edge gossiping
mechanism which ensures that recommendations are based
on recent, global information inside the network. The system
design also includes a simple bootstrapping mechanism which
allows new users to find similar users in the network, however,
it is worth noting that this bootstrap mechanism can be ex-
ploited by malicious users and in a real application, we assume
that users are able to bootstrap through social discovery of
trusted peers or through the provision of trustworthy nodes by
the application itself. The following is an in-depth description
of the various components of the system:

A. TrustNetwork

As mentioned before, the TrustNetwork is the central data
structure of Web3Recommend. TrustNetwork consists of two
different types of nodes: users, U and items, I . Further, there
are two different types of edges in the network: directed user to
user weighted edges which represent the trust a user places in
another user and undirected user to item weighted edges which
represnt the affinity of a user for an item. In practice, this is
implemented using a combination of two graph strucutres:

1) User to User Graph
The user to user graph is a weighted directed acyclic
graph in which the vertex set of the graph consists of
all users in the network and the edge set consists of
trust relationships between the users. In order to ensure
efficient memory usage and to guarantee that an edge
between two users only exists if they trust each other,
only the top 5 edges in terms of trust/weight are retained
for each user.

2) User to Item Graph
The user to item graph is a weighted undirected acyclic
bi-partite graph in which the vertex set of the graph
consists of all users and items in the network and the edge
set consists of affinity relationships between the users and
items

All algorithms in Web3Recommend operate on top of the
TrustNetwork. In our Kotlin implementation, we use JGraphT
[48] for the efficient implementation of both the graph data
structures.

B. Recommendation Algorithm

The main component of Web3Recommend is its elegant
recommendation algorithm. The algorithm is inspired by
GraphJet’s algorithm presented in IV-C.

We present three modifications to the personalized SALSA
used in the original algorithm.

1) Weighted Random Walks
Instead of using uniform probabilities to decide which
node to walk to in our random walks, we perform walks
using the affinity metric defined earlier. Hence, when
walking from a node to an item the walk is biased by
the affinity for the item, so if a user u prefers an item
ij two times more than item ik, the random walk is also

9

twice more likely to visit ij from u than ik. We believe
this is a reasonable assumption which aligns with our goal
of recommending items that similar users like. Similarly,
when walking back from an item to a user, the walks are
biased by the user’s affinity for the item. Hence, we are
more likely to travel to a user who has a higher affinity
for the item. Again, finding similar users boils down to
finding users who like the same items so it’s reasonable
to bias our walks this way.

2) Add MeritRank decays to limit the influence of sybil
attacks
In order to add sybil tolerance to the system, alpha and
beta decays from MeritRank are added to the system.
In IX we explain how the decays are calculated and
used to provide sybil resistant recommendations. In our
experiments, we vary these decay values to measure
their influence on trust (sybil tolerance) and relevancy
of recommendations.

3) Generate “trusted” random walks
While GraphJet’s personalized SALSA algorithm allows
the generation of personalized, relevant recommenda-
tions, the recommendations generated are not guaranteed
to be trustworthy. This is because when performing a
random walk from an item to a user, it’s possible to
walk to a non trusted (sybil) user who also claims to
like the item. In Web3Recommend, we modify the walk
back from an item to a user to be limited to users who
the original voter of the item trusts. This ensures that
if we reach a sybil user in a random walk, it’s through
a malicious user or another sybil user and hence, their
influence on voting can be detected and limited through
MeritRank’s decays.

A simplified version of a random walk in our personalized
SALSA algorithm is illustrated in 6.

C. Timestamp Biased Edge Gossiping

Since Web3Recommend relies on each user storing a local
copy of a TrustNetwork each, a mechanism for synchro-
nizing the TrustNetworks across different users is required.
Gossiping [49] has proved to be a successful mechanism for
supporting dynamic and complex information exchange among
distributed peers. Gossiping based mechanisms are great for
building and maintaining the network topology itself as well
as supporting a pervasive diffusion of the information injected
into the network. [50] Gossiping takes inspiration from the
human social behavior of spreading information through peers
who are in direct contact.

Our gossiping mechanism relies on randomly gossiping
user to user edges and user to item edges to other users in
the network. In addition to gossiping, we leverage Semnatic
Overlay Networks (SON) [51] which guarantee that the users
we gossip to share similar interests.

GraphJet only generates recommendations based on recent
interactions between users and tweets. In order to achieve this,
only the n latest interactions in the network between users and
tweets are stored. Doing this has two advantages:

1) It allows the creation of temporally contextual (real-time)
recommendations which have have a profound impact in
retail, media, entertainment and other contexts [52]

2) It provides a mechanism for limiting the memory usage
on a device by using n as a tunable hyper-parameter, thus
allowing the recommendation algorithm to also be feasi-
ble in resource limited devices such as older smartphones

Web3Recommend achieves this by adding timestamp to all
edges and removing older user to item edges after the total
number of user to item edges in the network exceeds n.

Note that while user to item edges are deleted after a time
window, user to user edges are persisted and only deleted
either: 1) When they receive gossip with a more recently
created version of the edge or 2) The user to user edges of
the user exceeds a threshold in which case the edge with the
smallest weight is deleted. We believe that this is reasonable
since in most media platforms the amount of items greatly
exceeds the number of users and hence the memory cost of
this design choice should be low. Further, it allows us to persist
long-term trust relationships between users which are used in
VIII-D.

We also want to ensure that newly created edges have a
higher chance of being gossiped, in order to do this we con-
struct a mapping of edges to their delta from the oldest edge in
the network. Then, the array is softmax which produces weight
values which provide the bias by which an edge is gossip,
hence, a newer edge is much more likely to be gossiped than
an older one.

D. Bootstrap

Recommender Systems suffer from the “cold start” problem
where the systems meets a new user for the first time. Since
the system has no history of the user’s interactions, it can’t
establish the user’s personal preference. In a real-time recom-
mendation system such as ours this problem is compounded
since an inactive user querying for recommendations may not
exist in the interaction graph.

1) Circle of Trust: GraphJet solves this problem by starting
the random walks from a seed set instead of a single node. The
seed set could be provided by the network or be constructed
from the user’s trusted users called the “circle of trust”.

In a social network like Twitter this circle of trust can be
calculated using the user’s social connections/follows. In our
system, we calculate the circle of trust using an Incremental
Personalized Page Rank [27] algorithm that ranks nodes in
the network in order of their trustability while ensuring that
subsequent random walks are incrementally computed.

Since unlike user to item edges, user to user edges are per-
sisted over time, inactive users can still be served personalized
recommendations in this manner.

We implement the selection inside the seed set in a dynamic
manner that ensures that as the user has more user to item
interactions, random walks are more likely to start from the
user rather than the seed set. Hence, it serves as a bootstrap
measure to acquaint the user to the network.

10

2) New User: The previous bootstrap mechanism relied
on the user having prior interactions or social trust in the
network. For a fresh user neither of these exist and hence
a different bootstrap mechanism is required to acquaint them
to the network.

For this we provide a User Collaborative Filtering algorithm
based on the work from [53] for finding similar users in the
network. Initially, users are provided with “divisive” content
in the network which can be used to find more information
about their taste profile. This helps to establish user to song
edges which can be used to measure similarity between other
users.

The similarity sim(a, b) between two users (a, b) ∈ U
where U is set of all users is calculated as:

sim(a, b) = Nsim(a, b)× τ + (1− τ)×Dsim(a, b) (8)

Where Nsim(a, b) is calculated as:

Nsim(a, b) = cf(a, b)× sim(a, b) (9)

Here, sim(a, b) is the Pearson Correlation Coefficient [54]
of the two user’s item ratings calculated as:

sim(a, b) =

∑
i∈Iab

ra,irb,i√∑
i∈Iab

r2a,i

√∑
i∈Iab

r2b,i

(10)

Where Ia,b is the set of common rated items between both
users a and b. ra,i = Ra,i − avga, Ra,i is the rating given by
user a to item i and avga the average of all ratings by a.
cf(a, b) is the common preference degree between user a

and b:

cf(a, b) =
|Ia ∩ Ib|

maxx∈U |Ia ∩ Ix|
(11)

Where |Ia∩Ib| is the count of common rated items between
users a and b.

Hence, Nsim 9 uses the traditional measure of similarity
between users modified by the degree of common preference
between the two users.

Dsim is a measure of similarity calulated using the rating
difference of users on their common items. It helps calculate
a more fine tuned similarity metric than coarsely comparing
items both users have interacted with. The exact formula has
been omitted for space limtations, the code implementation
can be found here.

Hence, sim(a, b) is used to compare a similarity metric
to other users in every user and hence serves as a bootstrap
measure for new users.

Note that this strategy requires that the users being intro-
duced to the new user are non sybil. If the strategy is run
naively against all users it is prone to bootstrap threats as
mentioned in VII-B.

E. Compact Serialization

Since Android devices often have limited resources, it’s
important to be able to store networks compactly. Once a user
disconnects from the network, the TrustNetwork is serialized
and stored on the device.

Our design is inspired by the DIMACSFormat in JGraphT
which is based on the format used in the 2nd DIMACS
challenge [55].

The details of the serialization have been omitted due to
size limitations but the implementation is self documenting,
rigorously tested and can be found here.

IX. USING MERITRANK DECAYS TO GENERATE
RECOMMENDATIONS

As covered in V-C, MeritRank provides two main mech-
anisms for sybil-resistance, Alpha and Beta decays. Each of
the decays is tunable and used to limit the gains of a Sybil
Attack.

A. Alpha Decay

The alpha decay works exactly like the reset probability
described in IV. The random walk in the user interaction graph
stops with probability α. Setting an alpha decay reduces the
effectiveness of sybil attacks that rely on long walks that get
stuck inside a segment of sybil users as described in [32].

B. Beta Decay

Beta Decay punishes sybils for being isolated from the rest
of the network. In our system, this is achieved by measuring
the diversity of users voting for a song. Assuming the system’s
beta decay is set to β, the item beta decay b[i] is calculated
for each item i ∈ I with the following formula:

b[i] =

{
1− β if ∃u ∈ U : div(u, i) > τ

1 else
(12)

Where U is the set of all users, τ is the beta decay threshold
and div(u, i) is defined as:

div(u, i) =

∑
r∈R(i)

{
1 if ∃u ∈ U : (u ∈ r) ∩ (r[u] < r[i]))

0 else

|R(i)|
(13)

Where R(i) is the set of all random walks that contain item
i. Note that SALSA random walks can contain both users and
items. r[x ∈ U ∪ I] is the index of a user or item in a random
walk, hence, the step in the random walk when it was walked
to. So, for each vote that item i received in a random walk, it
measures what percentage of times user u led up to the vote.

Therefore, in 12 we measure the diversity in recommenders
leading up to a vote and compare the “sybilness” of item i to
the threshold τ and if it’s deemed sybil, it is assigned a beta
decay of 1− β.

The rankings of the items in the system are performed
using a modified aggregation of random walks. A personalized

11

https://github.com/rmadhwal/trustchain-superapp/blob/TrustedRecommendationsWithExperiments/musicdao/src/main/java/nl/tudelft/trustchain/musicdao/core/recommender/collaborativefiltering/UserBasedTrustedCollaborativeFiltering.kt
https://jgrapht.org/javadoc-1.3.1/org/jgrapht/io/DIMACSFormat.html
https://github.com/rmadhwal/trustchain-superapp/tree/TrustedRecommendations/musicdao/src/main/java/nl/tudelft/trustchain/musicdao/core/recommender/graph/customSerialization

ranking score s[i] is calculated for each item i ∈ I using the
following formula:

s[i] =
|R(i)|∑
x∈I |R(x)|

b[i] (14)

The highest ranked items are then presented to the user as
recommendations.

In our implementation, we provide two methods of calcu-
lating beta decays, one relatively faster option which gains its
speed by iterating through each random walk linearly and pre-
computing the number of times a user is involved in a specific
vote for each item. This is relatively fast and can be performed
in linear runtime relative to the size of random walks. But the
space cost of the algorithm makes it prohibitively expensive
on devices with limited memory, hence, we also provide an
on-the-fly implementation which is more time consuming but
also with a tiny memory footprint.

X. EXPERIMENT SETUP

A. Dataset and Test Network Generation

In order to demonstrate sybil resistance, it was important to
create a network of non-sybil users on which we could mount
sybil attacks. We used the dataset from the taste profile subset
of the Million Song Dataset [56], [57] in order to generate this
non-sybil network. The original dataset was sourced from The
Echo Nest, which is an online resource that provides music
applications on the web, smart phone etc. Therefore, using
this data from real music platforms it was possible for us to
generate a network that emulates the behavior of non-sybil
users in Web3Recommend. The taste profile subset provides
us with:

1) Users
2) Songs
3) User-Song-Play Count Triplet
For the test network generation, user-song edges were

created by using the user-song-play count triplet to estimate
user-song affinity as described in VII-D. User-User edges
were created using the same user based collaborative filtering
method we used to bootstrap trust relationships for new users.
This is reasonable since all the users in this network were
assumed to be non-sybil and hence, their trust between them
is simply a function of their similarity.

Figure 7 shows some statistics of the test network.

B. Metrics used for experiments

1) Top x Ranking: The goal of Web3Recommend is to
rank items available to a user in order of increasing relevance
and trust to them. However, in most consumer driven rec-
ommendation systems, only the top few recommendations are
important since those are the only ones the user would usually
look at to choose the next item to consume. Therefore, in
most of our experiments we measure the influence on the top
100/1000/10000 ranked items in the system.

Specifically, for the experiments which measure sybil resis-
tance we were interested in measuring how many sybil songs
ended up in these rankings. For example, a sybil item being the

highest ranked recommendation to a user is much worse than
two sybil items which are ranked much lower. Therefore, we
define a metric Sybil influence of top x ranking or SITR(x),
which measures the influence of sybils in the top x category
of ranking using the follow formula:

SITR(x) =

i=x∑
i=0

{
x− i if DRankedI(i) ∈ S
0 else

(15)

Where, DRankedI is the array of all items sorted in
descending order of their ranking and S is the set of all sybil
items. Hence, for example, if there is only one sybil item in
the network but it is the highest ranked item, the SITR(100)
will be 100.

2) Ranked Biased Overlap: In order to measure the effect
of decay parameters on the ranking of the items, we use
Ranked Biased Overlap [58] between two sets of ranking
to compare how similar they are. Ranked Biased Overlap is
specifically constructed to be a similarity measure between
incomplete ranking lists and hence fits our use case very well.
RBO outputs a value between 0.0 and 1.0, where 1.0 represents
two identical sets while 0.0 represents completely different
sets.

XI. EXPERIMENTS

A. Leave one out cross validation

In this set of experiments, we follow the below process:
1) 100 users from the User to Song graph are sampled

randomly
2) For each user, we remove an existing user to song edge
3) We run the personalized SALSA algorithm with alpha

decay value set to α
4) We measure: 1) The ranking score of the song whose edge

was removed 2) In how many percent of trials the missing
song shows up in the Top 100/1000/10000 rankings

While the goal of our paper is focused on limiting sybil
influence, this experiment helps demonstrate that the foun-
dational recommendation algorithm can provide reasonable
personalized recommendations. The result of our algorithm
is also compared to the result of a simple vanilla personalized
SALSA implementation to show that our algorithm performs
just as well if not better in terms of recommendation for our
dataset.

B. Effect on ranking of increasing decays

In this set of experiments, we follow the below process:
1) 100 users from the User to Song graph are sampled

randomly
2) For each user, we run the personalized SALSA algorithm

for a specific alpha decay value α ∈ 0.1, 1.0/beta decay
value β ∈ 0.1, 1.0

3) For each ranking with increasing α or β values, we
calculate the Ranked Biased Offset compared to the
original ranking

12

This experiment helps to measure the influence on ranking
with increasing decay values, showing us how increasing de-
cays in the network and hence, increasing trust by reducing the
influence of sybils impacts the relevance of recommendations.
This could also be interpreted as the “false positive” rate of
sybil detection.

C. Single sybil attack

As mentioned earlier, MeritRank provides sybil resistance
by limiting sybil influence through:

lim
|S|→∞

w+(σs)

w−(σs)
≤ c (16)

In this experiment we prove this property in our network by
constructing multiple sybil attacks where an adversary with an
existing trust edge to non-sybil users starts mounting a sybil
attack by creating multiple sybil identities. Thus, if we can
prove that after a certain threshold of identities, the benefit
to the adversary of creating more sybils is negligible, we can
show that our system offers sybil resistance.

Therefore, in this experiment be follow the below process:

1) In our test network, we randomly sample a user
2) A trusted neighbor of the user is converted to a traitor

who mounts either a: 1) linear sybil attack or 2) parallel
sybil attack as defined in V-C

3) The traitor mounts attacks with increasing number of
sybils and for each attack we measure the gain in total
ranking score in our personalized SALSA algorithm of
the sybil items created by the adversary

D. Giga sybil attack

In a real network, multiple users could potentially mount a
sybil attack. Hence, it is worth considering the performance
of our network as increasing percentage of all users in the
network become malicious users. For the first half of the
experiments, we set 50% of all the nodes to sybil nodes and
measure the influence gained for sybil songs over sampled
users with varying decay parameters like in the previous
experiments. This allows us to measure the influence on the
score gained from a “giga sybil” attacks with different decay
paramaters.

However, after the % sybil users in the network passes
a certain threshold, it will be impossible for our system to
work effectively since the only items that could be potentially
discovered by random walks would be sybil items and hence,
due to the influence of beta decays the rankings produced by
our system should be effectively random. In our experiments
we found this threshold to be around 0.6 for our dataset.

XII. EXPERIMENT RESULTS

A. Leave one out cross validation

Fig. 8: Leave out one experiment with α = 0.1 and β = 0.0

As shown in 8 with alpha decay set to 0.1, in more than
half of the sampled users, the missing song is within the top
100 recommendations (the dataset consists of 386213 songs
so this is top 0.0003% of the results) and about 80% of the
times it is in the top 10000 (top 33% recommendations).

Next, we compare our system’s performance to a vanilla
personalised SALSA recommendation system that doesn’t
include any of the enhancements mentioned in VIII. Figures
9, 10 and 11 compare the performance of both systems in
measuring % of missing songs in top X recommendations.
While in the top 1000 and 10000 recommendations our system
performs about similar as the vanilla algorithm, in the top
100 recommendations it performs much better. We believe
that the top 100 recommendations metric is also the most
significant one since users often only care about the very
highest recommendations.

Fig. 9: % of missing songs in top 100 recommendations in
both strategies with varying levels of alpha decay

13

Fig. 10: % of missing songs in top 1000 recommendations in
both strategies with varying levels of alpha decay

Fig. 11: % of missing songs in top 10000 recommendations
in both strategies with varying levels of alpha decay

B. Effect on ranking of increasing decays

Fig. 12: RBO similarity of non-sybil recommendations with
increasing Beta Decay

Fig. 13: RBO similarity of non-sybil recommendations with
increasing Alpha Decay

As can be seen from figures 12 and 13, the false positive
impact seems to increase a bit more with increasing Alpha
Decay while increasing Beta Decay seems to have an almost
negligible impact. Thus, a real implementation would be better
suited to use a low Alpha Decay and a high Beta Decay. In
the MusicDAO implementation we set Alpha Decay to 0.1 and
Beta Decay to 0.8.

C. Single sybil attack

Fig. 14: Ranking score gained for a malicious node with
increasingly larger linear sybil attacks (Alpha Decay: 0.0)

14

Fig. 15: Ranking score gained for a malicious node with
increasingly larger linear sybil attacks (Alpha Decay: 0.1)

Fig. 16: Ranking score gained for a malicious node with
increasingly larger parallel sybil attacks (Beta Decay: 0.8)

First, in 14 we show how an adversary can gain theoretically
infinite amount of ranking scores through linear sybil attacks
without the presence of Alpha Decay. Then in 15 we rerun
the experiment with Alpha Decay set to 0.1 and after a certain
number of sybils, the reputation gain for the adversary remains
the same, hence creating more sybils doesn’t provide any
additional benefit to the attacker. In 16 we demonstrate the
same effect with Beta Decay set to 0.8 against parallel attacks.

D. Giga sybil attack

Fig. 17: Cumulative Score for Sybil songs in Giga Sybil
Attack with increasing Alpha Decay

Fig. 18: Cumulative Score for Sybil songs in Giga Sybil
Attack with increasing Beta Decay

Figures 17 and 18 show the change in combined ranking
score for sybil songs in our Giga Sybil Attack with varying
Alpha and Beta decays respectively. Both mechanisms are able
to limit sybil gain as expected.

15

Fig. 19: SITR(100) for Sybil songs in Giga Sybil Attack
with increasing Alpha Decay

Fig. 20: SITR(100) for Sybil songs in Giga Sybil Attack
with increasing Beta Decay (Alpha Decay:0.1)

Figures 19 and 20 show the effect of increasing the decay
values on the SITR(100). Note that even though with beta
decays we can completely eliminate sybil attack edges, in a
giga sybil attack the majority of the items detected are sybil
items and hence even though their score is 0, since non-sybil
songs were starved of random walks, they have a much lower
score too. However, as shown in the graphs, adding the decay
values can noticeably reduce the giga sybil attack’s gain even
if it doesn’t eliminate it.

XIII. TESTING

All the mentioned components of Web3Recommend’s
Kotlin implementation are tested using JUnit.

XIV. REAL WORLD DEPLOYMENT

Outside of experiments, as a proof of concept,
Web3Recommend was also integrated into MusicDAO,
a peer to peer music sharing application that aims to rival
Spotify. Figure 1 shows dummy recommendations being
generated in the application in a network of 3 users connected
together. The code for MusicDAO is open source and can be
accessed at https://github.com/Tribler/trustchain-superapp.

XV. CONCLUSION

In this paper, we presented Web3Recommend, a decen-
tralised Social Recommender System designed to generate
trustworthy and relevant recommendations in Web3 platforms
on Android. We addressed the challenges posed by decen-
tralised networks, such as the lack of a global perspective and
susceptibility to Sybil Attacks.

By integrating the MeritRank decentralised reputation
scheme into our graph-based recommendation design, we
achieved sybil-resistance in the generated recommendations.
Our experiments included evaluations against multiple adver-
sarial strategies. The results demonstrated the trust-relevance
balance of our recommendations, showcasing the system’s
ability to generate personalised, real-time recommendations.

In summary, Web3Recommend represents a significant ad-
vancement in the field of social recommender systems. By
combining decentralised network principles, the MeritRank
reputation scheme, and efficient graph-based algorithms, we
have created a sybil-resistant recommendation system capable
of generating real-time recommendations in Web3 platforms.
Our work not only contributes to the research community but
also offers practical benefits to users by enhancing their Web3
platform experiences.

Future research directions could explore further improve-
ments to the decentralised recommendation system, such as
enhancing the scalability of the graph-based algorithms, inves-
tigating the integration of additional reputation mechanisms,
and conducting real-world deployments to evaluate the sys-
tem’s performance and usability in diverse settings. With the
increasing adoption of Web3 technologies, the development of
trustworthy and relevant recommender systems will continue
to play a crucial role in enabling users to discover valuable
content and build meaningful connections within decentralised
networks.

REFERENCES

[1] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward efficient and
privacy-preserving computing in big data era,” IEEE Network, vol. 28,
no. 4, pp. 46–50, 2014.

[2] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation
systems: Principles, methods and evaluation,” Egyptian informatics
journal, vol. 16, no. 3, pp. 261–273, 2015.

[3] D. Shenk, “Data smog: Surviving the information glut,” 1999.
[4] D. J. Levitin, The organized mind: Thinking straight in the age of

information overload. Penguin, 2014.
[5] D. Bawden and L. Robinson, “Information overload: An overview,”

2020.
[6] P. Hemp, “Death by information overload,” Harvard business review,

vol. 87, pp. 82–9, 121, 10 2009.
[7] Admin, “Tiktok statistics - everything you need to know [mar 2023

update],” Mar 2023. [Online]. Available: https://wallaroomedia.com/
blog/social-media/tiktok-statistics/

[8] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh, “Wtf:
The who to follow service at twitter,” in Proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 505–514.

[9] D. Das, L. Sahoo, and S. Datta, “A survey on recommendation system,”
International Journal of Computer Applications, vol. 160, no. 7, 2017.

[10] I. Guy and D. Carmel, “Social recommender systems,” in Proceedings of
the 20th international conference companion on World wide web, 2011,
pp. 283–284.

16

https://wallaroomedia.com/blog/social-media/tiktok-statistics/
https://wallaroomedia.com/blog/social-media/tiktok-statistics/

[11] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin, “Graphjet:
Real-time content recommendations at twitter,” Proceedings of the VLDB
Endowment, vol. 9, no. 13, pp. 1281–1292, 2016.

[12] R. Lempel and S. Moran, “Salsa: the stochastic approach for link-
structure analysis,” ACM Transactions on Information Systems (TOIS),
vol. 19, no. 2, pp. 131–160, 2001.

[13] A. Chaabane, Y. Ding, R. Dey, M. A. Kaafar, and K. W. Ross, “A
closer look at third-party osn applications: are they leaking your personal
information?” in Passive and Active Measurement: 15th International
Conference, PAM 2014, Los Angeles, CA, USA, March 10-11, 2014,
Proceedings 15. Springer, 2014, pp. 235–246.

[14] A. Hassan, “Replication and availability in decentralised online social
networks,” 2017.

[15] J. Bambacht and J. Pouwelse, “Web3: A decentralized societal in-
frastructure for identity, trust, money, and data,” arXiv preprint
arXiv:2203.00398, 2022.

[16] B. Nasrulin, G. Ishmaev, and J. Pouwelse, “Meritrank: Sybil tolerant
reputation for merit-based tokenomics,” in 2022 4th Conference on
Blockchain Research & Applications for Innovative Networks and Ser-
vices (BRAINS). IEEE, 2022, pp. 95–102.

[17] T. Wissel, “Fairness and freedom for artists: Towards a robot economy
for the music industry,” 2021.

[18] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems: First Inter-
nationalWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002
Revised Papers 1. Springer, 2002, pp. 251–260.

[19] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao, “Dsybil:
Optimal sybil-resistance for recommendation systems,” in 2009 30th
IEEE Symposium on Security and Privacy. IEEE, 2009, pp. 283–298.

[20] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova, “Monte
carlo methods in pagerank computation: When one iteration is suffi-
cient,” SIAM Journal on Numerical Analysis, vol. 45, no. 2, pp. 890–904,
2007.

[21] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” 2008.

[22] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A.
Konstan, and J. Riedl, “Getting to know you: learning new user prefer-
ences in recommender systems,” in Proceedings of the 7th international
conference on Intelligent user interfaces, 2002, pp. 127–134.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[24] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas,
“Finding authorities and hubs from link structures on the world
wide web,” in Proceedings of the 10th International Conference on
World Wide Web, ser. WWW ’01. New York, NY, USA: Association
for Computing Machinery, 2001, p. 415–429. [Online]. Available:
https://doi-org.tudelft.idm.oclc.org/10.1145/371920.372096

[25] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling fully
personalized pagerank: Algorithms, lower bounds, and experiments,”
Internet Mathematics, vol. 2, no. 3, pp. 333–358, 2005.

[26] A. Blum, T. H. Chan, and M. R. Rwebangira, “A random-surfer web-
graph model,” in 2006 Proceedings of the Third Workshop on Analytic
Algorithmics and Combinatorics (ANALCO). SIAM, 2006, pp. 238–
246.

[27] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and
personalized pagerank,” arXiv preprint arXiv:1006.2880, 2010.

[28] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[29] P. Baran, “On distributed communications networks,” IEEE Transactions
on Communications Systems, vol. 12, no. 1, pp. 1–9, 1964.

[30] G. Korpal and D. Scott, “Decentralization and web3 technologies,”
5 2022. [Online]. Available: https://www.techrxiv.org/articles/preprint/
Decentralization and web3 technologies/19727734

[31] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. Epema, M. Reinders, M. van Steen, and H. Sips, “Tribler: a social-
based peer-to-peer system,” Concurrency and Computation: Practice
and Experience, vol. 20, pp. 127 – 138, 02 2008.

[32] B. Nasrulin, G. Ishmaev, and J. Pouwelse, “Meritrank: Sybil tolerant
reputation for merit-based tokenomics,” 2022. [Online]. Available:
https://arxiv.org/abs/2207.09950

[33] N. Borisov, “Computational puzzles as sybil defenses,” in Sixth IEEE
International Conference on Peer-to-Peer Computing (P2P’06). IEEE,
2006, pp. 171–176.

[34] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Vi-
olante, “A reputation-based approach for choosing reliable resources in
peer-to-peer networks,” in Proceedings of the 9th ACM conference on
Computer and communications security, 2002, pp. 207–216.

[35] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta, “Limiting sybil
attacks in structured p2p networks,” in IEEE INFOCOM 2007-26th IEEE
International Conference on Computer Communications. IEEE, 2007,
pp. 2596–2600.

[36] R. A. Bazzi and G. Konjevod, “On the establishment of distinct identities
in overlay networks,” in Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, 2005, pp. 312–320.

[37] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Reputation
systems,” Communications of the ACM, vol. 43, no. 12, pp. 45–48, 2000.

[38] P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood, “The value of
reputation on ebay: A controlled experiment,” Experimental economics,
vol. 9, pp. 79–101, 2006.

[39] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
defending against sybil attacks via social networks,” in Proceedings of
the 2006 conference on Applications, technologies, architectures, and
protocols for computer communications, 2006, pp. 267–278.

[40] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-
optimal social network defense against sybil attacks,” in 2008 IEEE
Symposium on Security and Privacy (sp 2008). IEEE, 2008, pp. 3–17.

[41] A. Mislove, A. Post, P. Druschel, and P. K. Gummadi, “Ostra: Lever-
aging trust to thwart unwanted communication.” in Nsdi, vol. 8, 2008,
pp. 15–30.

[42] D. N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online
content voting.” in NSDI, vol. 9, no. 1, 2009, pp. 15–28.

[43] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM journal on computing,
vol. 32, no. 1, pp. 48–77, 2002.

[44] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on World wide web, 2010, pp. 661–
670.

[45] L. Guo, J. Ma, Z. Chen, and H. Zhong, “Learning to recommend with
social contextual information from implicit feedback,” Soft Computing,
vol. 19, pp. 1351–1362, 2015.

[46] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender
systems survey,” Knowledge-based systems, vol. 46, pp. 109–132, 2013.

[47] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”
in Proceedings first international conference on peer-to-peer computing.
IEEE, 2001, pp. 99–100.

[48] D. Michail, J. Kinable, B. Naveh, and J. V. Sichi, “Jgrapht—a java
library for graph data structures and algorithms,” ACM Transactions on
Mathematical Software (TOMS), vol. 46, no. 2, pp. 1–29, 2020.

[49] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. Van Steen, “Gossip-based peer sampling,” ACM Transactions on
Computer Systems (TOCS), vol. 25, no. 3, pp. 8–es, 2007.

[50] R. Baraglia, P. Dazzi, M. Mordacchini, and L. Ricci, “A peer-to-peer
recommender system for self-emerging user communities based on
gossip overlays,” Journal of Computer and System Sciences, vol. 79,
no. 2, pp. 291–308, 2013.

[51] A. Crespo and H. Garcia-Molina, “Semantic overlay networks for p2p
systems,” in International Workshop on Agents and P2P Computing.
Springer, 2004, pp. 1–13.

[52] Y. Ma, B. Narayanaswamy, H. Lin, and H. Ding, “Temporal-contextual
recommendation in real-time,” in Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, 2020,
pp. 2291–2299.

[53] B. Zhang and B. Yuan, “Improved collaborative filtering recommenda-
tion algorithm of similarity measure,” in AIP Conference Proceedings,
vol. 1839, no. 1. AIP Publishing LLC, 2017, p. 020167.

[54] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and I. Cohen, “Pearson correlation coefficient,” Noise reduction in
speech processing, pp. 1–4, 2009.

[55] D. S. Johnson and M. A. Trick, Cliques, coloring, and satisfiabil-
ity: second DIMACS implementation challenge, October 11-13, 1993.
American Mathematical Soc., 1996, vol. 26.

[56] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” 2011.

[57] B. McFee, T. Bertin-Mahieux, D. P. Ellis, and G. R. Lanckriet, “The
million song dataset challenge,” in Proceedings of the 21st International
Conference on World Wide Web, ser. WWW ’12 Companion. New

17

https://doi-org.tudelft.idm.oclc.org/10.1145/371920.372096
https://www.techrxiv.org/articles/preprint/Decentralization_and_web3_technologies/19727734
https://www.techrxiv.org/articles/preprint/Decentralization_and_web3_technologies/19727734
https://arxiv.org/abs/2207.09950

York, NY, USA: Association for Computing Machinery, 2012, p.
909–916. [Online]. Available: https://doi-org.tudelft.idm.oclc.org/10.
1145/2187980.2188222

[58] W. Webber, A. Moffat, and J. Zobel, “A similarity measure for indefinite
rankings,” ACM Transactions on Information Systems (TOIS), vol. 28,
no. 4, pp. 1–38, 2010.

18

https://doi-org.tudelft.idm.oclc.org/10.1145/2187980.2188222
https://doi-org.tudelft.idm.oclc.org/10.1145/2187980.2188222

1: function RANDOMWALK(currentNode, lastNode, userToUserGraph, userToItemGraph)
2: if currentNode is a User then
3: WalkToSong(currentNode, lastNode, userToItemGraph)
4: else
5: WalkToUser(currentNode, lastNode, userToUserGraph, userToItemGraph)
6: end if
7: end function

8: function WALKTOSONG(currentNode, lastNode, userToItemGraph)
9: userEdgesWeight← 0

10: for all edge e ∈ {edges of currentNode} do
11: userEdgesWeight← userEdgesWeight+ userToItemGraph.WeightOf(e)
12: end for
13: p← userEdgesWeight ∗RandomDoubleBetween(0, 1)
14: cumulativeP ← 0
15: for all edge e ∈ {edges of currentNode} do
16: cumulativeP ← cumulativeP + userToItemGraph.WeightOf(e)
17: if p ≤ cumulativeP then
18: lastNode← currentNode
19: currentNode← userToItemGraph.GetSongForEdge(e)
20: break
21: end if
22: end for
23: end function

24: function WALKTOUSER(currentNode, lastNode, userToUserGraph, userToItemGraph)
Require: currentNode is an Item and lastNode is User with neighbor currentNode
25: lastNodeNeighbors← userToUserGraph.neighborsOf(lastNode)
26: lastNodeNeighborsWithEdgeToCurrentNode← filterNodesWithMissingEdge(lastNodeNeighbors, currentNode)
27: songEdgesWeight← 0
28: for all edge e ∈ {edges of currentNode} do
29: if userToItemGraph.GetUserForEdge(e) ∈ lastNodeNeighborsWithEdgeToCurrentNode then
30: songEdgesWeight← songEdgesWeight+ userToItemGraph.WeightOf(e)
31: end if
32: end for
33: p← userEdgesWeight ∗RandomDoubleBetween(0, 1)
34: cumulativeP ← 0
35: for all edge e ∈ {edges of currentNode} do
36: if userToItemGraph.GetUserForEdge(e) ∈ lastNodeNeighborsWithEdgeToCurrentNode then
37: cumulativeP ← cumulativeP + userToItemGraph.WeightOf(e)
38: if p ≤ cumulativeP then
39: lastNode← currentNode
40: currentNode← userToItemGraph.GetUserForEdge(e)
41: break
42: end if
43: end if
44: end for
45: end function

Fig. 6: Simplified Web2Recommend SALSA Random Walk

19

Fig. 7: Test Network Stats (Note that UtU stands for User to User and UtS stands for User to Song)

20

	Introduction
	Problem Description
	Key Features of Web3Recommend
	Background on Trust
	PageRank
	SALSA
	GraphJet

	Background on Decentralisation
	Decentralisation
	Web3
	MeritRank

	Related Work
	Bounding Identity Creation
	Reputation Systems
	Social Network based Sybil Defense
	Machine Learning based approaches
	Other approaches

	System Model, Assumptions and Limitations
	Items, Users and Votes
	Target Application/Scenario
	Network Assumptions
	Affinity and Trust

	Web3Recommend Architecture and design
	TrustNetwork
	Recommendation Algorithm
	Timestamp Biased Edge Gossiping
	Bootstrap
	Circle of Trust
	New User

	Compact Serialization

	Using MeritRank Decays to generate recommendations
	Alpha Decay
	Beta Decay

	Experiment Setup
	Dataset and Test Network Generation
	Metrics used for experiments
	Top x Ranking
	Ranked Biased Overlap

	Experiments
	Leave one out cross validation
	Effect on ranking of increasing decays
	Single sybil attack
	Giga sybil attack

	Experiment Results
	Leave one out cross validation
	Effect on ranking of increasing decays
	Single sybil attack
	Giga sybil attack

	Testing
	Real World Deployment
	Conclusion
	References

