Delft University of Technology

Contextproject - Blockchain

An Embedded, Interactive Explorer
for the Tribler Network

l-B-B- BlockchainBoys -ll-H-l-

Yinghao Dai Max van Deursen Geert Habben Jansen
Bram van den Heuvel Ruben Keulemans Tim Speelman

supervised by
Martijn Gribnau, Stefan Hugtenburg, Johan Pouwelse and Alberto Bacchelli

June 29, 2017

Abstract

Tribler is an open-source BitTorrent client for anonymous peer-to-peer file sharing. It attempts to
solve the Tragedy of the Commons problem by recording up- and download history of peers. Based
on this history, it may refuse service to users who don't contribute. If users do not understand
these mechanisms, they will not change their behavior. To this end, we have added a feature to
Tribler: The Network Explorer. It attempts to explain the mechanisms and incentives within the
Tribler network by visualizing the network and collected statistics.

Contents

Introduction

1.1 The Tribler Project
1.2 Goal of this project
1.3 End-user's requirements

Product description
2.1 An Overview of the network explorer

2.2 The features not implemented

Code quality description
3.1 Legacy code base

3.2 Ourcodequality
3.3 Shipping our code within Tribler . . .

Components of the Network Explorer
4.1 Front-end code structure

4.2 Back-end code structure

Evaluating Usability and Awareness

5.1 Evaluation method
52 Results
53 Conclusion
54 Discussion

Evaluation of functional modules
6.1 Continuous Integration

Further development of the product
7.1 Actual Trust

7.2 Relevantnodes.

7.3 Alternate views

Evaluating Usability and Awareness
A.1 Debriefing questions
A.2 User feedback

A.2.1 Feedback gathered in the first round

N =

Gl w W

~N o o O

o

10
10
11
11
11

A.2.2 Feedback gathered in the second round

Chapter 1

Introduction

1.1 The Tribler Project

Tribler is an open-source BitTorrent client for anonymous peer-to-peer file sharing (Pouwelse,
2008). It is fully decentralized, protecting its users against censorship, lawyer based attacks and
government control. Like many decentralized systems, it suffers from a problem known as the
Tragedy of the Commons. As described by Hardin (1968), individual users of a shared unregulated
resource may act only in their self-interest, posing a threat to the existence of the resource. In
the context of file sharing, the resource is kept alive by users uploading their files. Users who do
not contribute are called free-riders. In order to protect the resource, systems must find a way to
identify them and deny service.

Since Tribler users are anonymous and creating a new identity is virtually free, identifying
free-riders is more difficult. Tribler uses TrustChain (Norberhuis, 2015) to capture interactions
between users. This establishes the notion of reputation of a peer in the network. Although users
cannot directly tamper with these interactions, it is susceptible to Sybil attacks. In this kind of
attack a user creates a set of fake identities, and fakes transactions between them, to improve
his own reputation. In an attempt to detect these attacks, Otte (2016) has investigated the
usage of the Net-Flow and Temporal PageRank algorithms to detect Sybil attacks. Based on the
aforementioned technologies, a trust level of peers can be determined. A peer is considered trust-
worthy if it has contributed sufficiently and is unlikely to be a sybil. Currently, these algorithms
are not integrated into Tribler. When they are, Tribler can refuse service to other peers.

A first iteration of the service-refusing algorithm will use a simple metric in order to decide
whether a user should be prevented from downloading content: if the balance (difference) between
uploaded and downloaded data gets too negative, i.e. exceeds a given threshold, then the user
will be considered a free-rider. This means that he or she has to start uploading before being
able to download again.

Later iterations will expand on this binary model and use models of preference and limiting.

1.2 Goal of this project

As most of the Tribler users are unaware of these technologies, they may not understand why their
service is being (partially) denied. This may leave them frustrated, and abandon the software

instead of improving their contribution to the network.

This gap between the Tribler software and the person using it must be bridged. To this end
we developed a Network Explorer that shows users exactly what is going on around them, what
their reputation is, how that came to be, how they can improve it, but most importantly, why
they should improve it.

1.3 End-user’s requirements

Since the product is an extension of Tribler, its users are existing Tribler users. Our goal is to
offer existing users a new feature that enhances their Tribler experience. Current users need to
understand how they obtained their current balance and how this affects their download speed.
Moreover, they need to understand how to improve this balance. Users only contribute to the
network once it is in their short-term interest (Hardin, 1968). Some of these features might also
convince currrent users of other torrent clients of the added value of Tribler.

This understanding is furthered by allowing these users to gain insight into the network of
their peers. This is done by showing, for example, the calculated balance of a node in the network,
and relations between nodes. The users are then able to compare these different balances.

For this to work, the users need to understand what they are seeing in the Network Explorer.
Therefore, there needs to be a help page with a clear description of what the different components
represent. This has to be shown in such a way, that an average user without a background in
computer science engineering can easily understand. While doing this, we have to ensure that the
user experience does not decay. For instance, the start-up time of the Tribler application must
not be negatively affected.

Moreover, seeing so much information about the network could make users worried about
their own anonymity. We have to make sure that users do not doubt about this matter, and
become fearful of using Tribler.

Chapter 2

Product description

When an end user downloads and/or uploads files using the Tribler network, he or she exchanges
data with other Tribler users. In the background, Tribler keeps track of how much data was
exchanged and between whom, not only of the end user but of all peers it can find. This way it
forms an ever-growing picture of the Tribler network and the traffic between users.

2.1 An Overview of the network explorer

The network explorer is simply a view on the gathered data. It displays all users, their upload
and download totals, and their exchanges with other users. It provides the end user with valuable
insight about his or her position in the network.

As displayed in figure 2.1, users are represented as circles with a short anonymous pseudonym.
The circles are connected with lines, which represent the amount of exchanged between users.
An intuitive representation of the data is given through visual cues such as colors, circle size and
line thickness. When the end user hovers over these circles and lines the exact quantities are
displayed in a sub-window called the inspector (see figure 2.2).

Tribler judges its users based on these data and determines when to stop uploading to a
specific user; i.e. when its ‘reputation’ is too bad. Determining a fair metric for reputation is
difficult, but Tribler currently uses ‘balance’ for this. The balance is a user’s total upload minus
download. Reputation is presented through a color; a user with a poor reputation is colored red,
a good user (“toffe peer”) is colored green.

Displaying all known users in a single view would become impossible as the gathered data
grows. To this end the network explorer only shows a portion it. It focuses on a single user
(initially the end user), centered in the view, and displays its peers in a ring around it. A second
ring contains all peers-of-peers. This is called a ‘radial layout’. When a user has a lot of peers,
only its biggest exchanges are displayed.

Any of the users (circles) can be clicked, which shifts the focus to that user.The clicked user's
circle animates toward the center and its known peers and peers-of-peers are revealed on their
respective rings. This way the end user can explore the network and inspect peers who are more
than two steps away. By means of helping the end user find the way back to his or her own node,
a ‘Back To You' button is provided which triggers a step-by-step animation navigating all the
way back to the user’'s own circle.

Tribler

Search for your favorite content

Network Explorer

Tribler Network
Partial vi roun

Showing 27 users

Click on users to explore the rest of the
network.

U with or worse will
be blocked from downloading until they
start uploading again.

Figure 2.1: The network explorer feature inside Tribler with (a) menu-item, (b) end-user's node,
(c) ring containing first level neighbors, (d) first level neighbor, (e) exchanged data between users,
(f) inspector, (g) help button and (h) back-to-you button

Tribler Network

Partial view around user #a9b
Showing 29 users
Click on users to explore the rest of the network.

Users with or worse will be

blocked from downloading until they start

uploading again.

User #3e9

An onymous
Shared 51.04 GB
Consumed 58.45 GB

Showing 10 of 10 connected users.

Content exchanged
Between user #002 and you

User #002 shared 8.361 GB with you
You shared 3.191 GB with user #002

File contents are always hidden

Figure 2.2: Different modes of the inspector, displaying information about the network (left), the
hovered user (middle) or the hovered connection (right).

2.2 The features not implemented

The original intention of the network explorer, as described in the Product Vision document, was
visualizing 'trust’. As it turns out, Tribler developers have not yet clearly defined their notion of
trust. This makes it impossible to visualize it, for now. Nevertheless, there should always be a
metric on which denial of service by Tribler is based. The network explorer shows this score by
means of color. Even though calculation of the color may change, its message remains: a red
user should worry about being blocked, a green user can rest assured.

More advanced calculations of trust call for more elaborate visualization. A notion of con-
nectedness could be introduced, indicating how many users a particular user has connected to or
how much data was exchanged. This could yield a view showing the different paths along which
two users are connected, indicating size, number of middle-men of number of hops (shortest path
between to users). Alternatively, it could yield a 'cluster’ view where well connected users are
positioned more closely together. This gives a sense of clusters; groups of users who have many
connections with each other but few with users outside their cluster. A cluster view would be a
great indicator of Sybil attacks.

Ultimately, a combination of views may be more effective than a single view. This can simply
be solved by adding tabs or sub-navigation to the network explorer window allowing the user to
switch between views.

Chapter 3

Code quality description

3.1 Legacy code base

The Tribler code base is not perfect!. Some issues are bad documentation or no documentation
at all, very long methods and classes, inconsistent naming, old Python version usage and untested
code. Because the Network Explorer is an addition to Tribler, and uses and extends its REST
API, database and database communication classes, we are forced to work with this legacy code
base. This has important implications including investing time in understanding the code we are
using and extending, writing maintainable code without proper examples while being consistent
with the conventions (if existing). Furthermore we constantly need to stay up to date with the
Tribler fork of the Tribler repository. This takes a lot of time because new additions to the
development branch can cause merge conflicts with our code, requiring several hours to create
working code again in some cases. The above distinguishes the Network Display project from the
other context projects, where software is developed from scratch, without the need to integrate
it into an existing code base.

3.2 Our code quality

Working Agile using the SCRUM framework helped us write high quality code. Although we were
integrated our product in an existing code base, we made sure to focus on the maintainability
of our code. Each morning in the daily stand up meeting group members indicated issues and
whether they needed need solving them. Pull requests were kept small and we used a "maximal
one pull request at a time per person” policy. Per pull request group members reviewed the
introduced functionality and code quality. Changes were adopted if needed. Moreover, in the
last few sprints, the focus was on refactoring our code to be even more maintainable and neatly
organized. This process lead to an overall outstanding code quality.

1Code base statistics on http://jenkins.tribler.org:9000/

3.3 Shipping our code within Tribler

Our project distinguishes itself from the other context projects since our deliverable is not going
to be thrown away, but instead to be merged within the Tribler code base and used by millions
of users. This lead to a difficult situation, since we had to comply with not only our assigned
product owner and the context teaching assistant, but the Tribler developers as well. In order to
comply to the latter party, we had to comply with multiple constraints and conventions in order
to fit into the existing code base of Tribler. While doing this, we made sure that the code was
easy to maintain for future modifications.

Chapter 4

Components of the Network Explorer

The Network Explorer consists of modules in both the back-end and the front-end. These modules
communicate through a REST API.

4.1 Front-end code structure

The front-end of a single Tribler window is composed as follows. QT loads a Chromium based
browser engine to display an HTML web page containing the actual Network Explorer view. The
web-page loads all CSS and JavaScript modules, which compose the Network Explorer, and the
required library D3.js, used for drawing and animation.

When the focus is moved to a user, the front-end sends a request to the back-end. It requests
the clicked user as a ‘focus node’ and asks for its first and second level neighbors. When the
response comes back, the DataProcessor does the necessary data conversion required by other
front-end modules.

The processed data contains nodes (users) which must first be positioned. A positioning
algorithm uses breadth-first traversal to make a tree from the graph. It then divides the space
on the rings over all nodes. The animating of nodes to their desired positions is then done using
D3 forces. A custom built ‘torque force’ ensures the nodes move along their own ring and not in
a straight line.

A set of drawing modules takes care of drawing the users and connections as circles and lines.
It binds to mouse click events for loading a different focus node and to mouse hover events for
highlighting and displaying information in the inspector widget.

A separate module is responsible for guiding the user back through the nodes he or she clicked,
using animated markers and careful timing. This ensures the user does not lose orientation.

4.2 Back-end code structure

The HTTP request from the front-end is received at an APl endpoint in the Tribler Core. This
request should specify the public key of the user it wishes to focus on. Additionally it may specify
the number of neighbor levels and limits for each level. Finally, a list of 'mandatory’ users may
be provided whom may never be limited from the response.

An extension of the Community module first queries all users with connections to the focus
node. It filters out the smallest connections (lowest up-/download) if requested. This is the set
of first level neighbors. A second query lists all connections from users in this set with other
users. This is limited in the same fashion and the process is repeated for every requested level.
The data is converted into a suitable format and sent back to the front-end.

The database contains a table with all known transactions between Tribler users, not only
with the end user but also between others. A crawler included with Tribler is responsible for
scanning the network and filling this database.

The transactions table is in part encoded by a Python script which makes it unsuitable for
querying sums. As a solution, our product comes with a custom aggregates table, listing pairs
of users and the total exchange between them. Whenever a new transaction is added to the
database, the aggregates table is updated as well.

Chapter 5

Evaluating Usability and Awareness

The Network Explorer is an addition to Tribler which helps users understand the Tribler Network
by letting them interactively explore using the mouse. User actions should be self evident so all
attention can be used to understand the visualization. From the start of the project we developed
and designed with this goal in mind.

During the first six weeks of development, the group members and Product Owners Johan and
Stefan gave their feedback and opinion about the usability. In the seventh week the first round
of user testing was performed. Testing with users is important to verify if the assumptions made
are correct. After processing the feedback the product was adjusted and the week thereafter a
new user testing round followed.

5.1 Evaluation method

On the basis of the gathered information mentioned above, we set up a user experiment in order
to test our product against usability and awareness. Using this test, we wanted to check whether
users, with or without a computer science background, could easily understand, use, and know
the importance of our product.

When choosing the target audience for participating in our test, we took into account the
likelihood that a given person would use Tribler. After all, testing a Tribler component on a
person that will never use Tribler, makes little to no sense. Therefore, we asked five people
from another groups in our context, three people from other contexts in our course, and two
mathematics students.

Our evaluation was performed in two iterations, which meant we executed the test, thereby
generating results, evaluated and analyzed these afterwards, before improving our product and
starting a new round of evaluation, executing another test, etc.

The test execution procedure was as follows:

1. We started explaining the procedure to the participant, thereby stating that we were record-
ing the audio during the tests, and would annihilate all recordings within ten working days.
In fact, only one of the audio recordings had been listened to afterwards, as we made useful
notes during the tests as well.

2. Moreover, we explained that we wanted the participant to “think aloud” (and how to do

10

this) during the usage of our product, and that we would ask some additional questions
afterwards.

3. At the end, if the participant wished to, we could explain more about Tribler and our
product, so that the participants would not go home with the unease of having unanswered
questions.

4. After this, the execution of the test took place, exactly as described above.

That means we conducted a minimal-risk test, which we verified using the ethics checklist of
the TU Delft Human Research Ethics Committee. We did annihilate the recordings made in the
first round, and even refrained from making recordings in the second round, as we felt that the
notes sufficed.

This decision followed from the analysis that we made after the first round. When setting up
the test procedure, we decided that one person would accompany and question the participant,
and a second person would make notes. However, there was a possibility that one of us would
miss information or interpret the saying differently, which meant having a recording and being
able to listen another time, would be a blessing. However, as this happened only once, this did
not outweigh the risks of recording for the participants anymore. Therefore, we decided not to
record the audio in the second round.

5.2 Results

The results of the user tests can be found in the appendix. The feedback as well as the product
adjustments following from this are stated. Usability and awareness feedback are not distinct
because of their large overlap.

5.3 Conclusion

Based on the test results, we can conclude that users can indeed quite easily understand and use
our product. This was the main encountered problem during the first round (the comprehensibility
for users that are not familiar with Tribler or torrenting), and had been greatly improved before
the second round. The awareness of our product’s importance, however, turned out to be slightly
insufficient in the second round as well. After the improvements of the second round, we believe
this issue has been addressed. Unfortunately, there is no third round of user testing in order to
verify this.

5.4 Discussion

Having such a third round, would naturally have been an improvement. Besides, if we started
the user tests earlier, we would have done less redundant work. Moreover, we could have asked
other groups of participants than only university students, since they are potential Tribler users
as well. Having more participants anyway, would have helped as well, in creating a better view
of how the users appreciate our product.

11

The main limitation of our evaluation procedure, was the procedure itself. By explaining
the whole procedure to the participants at the beginning, they feel that everything is done so
‘officially’, which can cause a certain perception of pressure. As we all know, people can behave
differently under pressure, either positively or negatively. For instance, we saw that almost every
participant clicked on the ‘Help’ button and read all information carefully, whereas we know (not
only from personal experience) that users tend to scroll through such manuals really quickly. In
order to have a view that reflects reality as accurately as possible, we might have to track users’
behavior when they are comfortably in front of their home computers, without them knowing. It
goes without saying, however, that this method would have been highly unethical.

12

Chapter 6

Evaluation of functional modules

6.1 Continuous Integration

Although maintainable code can be written and reviewed by peers without running the code, there
has to be a way to simply evaluate the functionality of newly written code, as well as making sure
that the written code works. In order to achieve this, Tribler already has a continuous integration
system in place: Jenkins!. In Jenkins, Tribler developers have created multiple so called jobs
over the years which each run tests written for a certain part of the system on multiple operating
systems, including MacQOS, Linux and Windows. These tasks are triggered whenever a commit
is made in a Pull Request on the Tribler repository. In order to test our own added modules in
our separate repository, we have cloned the current jobs used in the Tribler repository in order to
maintain the same quality standards as Tribler supplied. This in turn lead to a greater amount of
tests being written, as well as a extra notion of code quality among our added code, which was
checked as well by the continuous integration.

One hurdle we came across during our sprints was that we had added JavaScript tests, which ini-
tially were not taken into consideration by the continuous integration, leading to falsely decreases
in code coverage, since the JavaScript code was not covered by the tests ran by continuous inte-
gration. Because of this, we added a new job to Jenkins, which made sure to run all JavaScript
test, as well as report the covered lines which could in turn be used to calculate the true code
coverage.

Concluding, our testing suite was mostly covered by the continuous integration in place for the
Tribler repository, but an additional testing suite was added to accompany the JavaScript code.

http://jenkins.tribler.org/

13

Chapter 7

Further development of the product

7.1 Actual Trust

Unfortunately, the notion of trust is a vague one. When do we consider a given user trusted? At
first thought, one could say that someone is trusted if he or she will always be involved in and
contribute to the network. But how do we know this? Can we base trust rating on findings from
the past, of which we know that they give no guarantee for the future? And if we do, how can
we be sure that nobody can ever find a way to trick the trust system, thereby undermining the
network? Sadly, there is no clear answer to all these questions. When trying to invent a trust
metric, there is the eternal fight between metrics that can straightforwardly be computed on the
one hand, and metrics that give a more accurate indication on the other hand. A question that
naturally arises is the following: does a metric that gives an accurate reflection of trust actually
exist? Since we do not even know the answer to that question, we chose for inventing a metric
that can straightforwardly be computed. However, we implemented this in such a way that the
metric can really simply be changed in the future. As the discussion about trust will continue to
develop, our product will keep evolving. Until the day that we have found a trustworthy trust
metric.

7.2 Relevant nodes

The decision on which nodes to show is a complex one. If each user has traffic with one hundred
others (which is a conservative number if you 'only’ download 20 GB), showing two levels of
neighbors will generate about ten thousand nodes. Limiting this to a number under one hundred
can be done in many different ways. Our approach of only picking the connections with the highest
amount of total traffic is one solution, but many others can be created. Finding a solution to
limit the amount of nodes on screen without deforming the view of the network can be an entire
context project on its own, because many factors can be used for filtering. Some examples are
filtering on the total amount of traffic of a node, total amount of traffic to another node or the
average amount of traffic of a node to all its neighboring nodes.

14

7.3 Alternate views

We created a view where the user can get an overview of the major nodes in the network around
one user, but this does not give a clear overall view of the entire network. Also, detecting
occurrences of Sybil attacks is really hard since the clusters created by this kind of attack are
usually linked to the rest of the network through only one node, so finding a cluster requires a
user to find the bridging node. To give a clearer overview of the network, a separate view could
be created, displaying the entire known network. This view could also incorporate clustering
algorithms to find parts of the network that are isolated and thus indicate Sybil attacks, making
it easier for users to understand what Sybil attacks are and help the community find users who
perform this kind of attack and exclude them from the network.

15

Appendix A

Evaluating Usability and Awareness

A.1 Debriefing questions

» Usability

— Did you notice you can click on a circle? What happens when you do so?

— Did you notice you can hover over circles and lines? What happens when you do so?
— Did you notice the 'Back To You' button? What happens when you click it?

— Did you notice the "Help’ button? What happens when you click it?

— Did you like using this application? Please explain why.

= Awareness

— Describe what you have just seen.
— What does a circle represent, what does a circles text, size and color mean?

— Is it clear you are a 'part’ of the network, how is this visualized?

How can you influence the color of your own circle?

How are the colors of the other circles influenced?

— What does a line represent, what does a lines size and divider mean?

A.2 User feedback

A.2.1 Feedback gathered in the first round

The main feedback and comments are paraphrased and summarized below.
= Tip
— "What is PageRank"?

— Missed both legend and question mark buttons.

16

— "Put a delay on highlighting of the lines.”
— Not clear what the reputation means.

— Users ask for explanation about meaning of circle text.

— Network structure clear.

— Circles are users/computers.

— Lines are connections.

— Notion there is some kind of reputation.

— Beautiful animation, fun to use.
Adjustments
» Merge legend and question mark button into 'Help’ button showing a help page.
» Replace PageRank reputation metric by easy to understand Balance metric.
= Delay on highlighting lines when hovering over lines.

» Use easy to understand and non technical naming.

A.2.2 Feedback gathered in the second round

The main feedback and comments are paraphrased and summarized below.
» Tip
— Not clear which edge is highlighted when edges are overlapping.
— "Why do | still see free riders? Are they blocked already?”
— User tries right mouse click, this shows an unintended menu.
— "How much can | download before | am blocked?”

— "'Back To You' is animated in steps?”

— Animation too fast, too much circles, hard to follow.

— Network structure clear.

— Balance and how to influence this is clear.

— "You' circle distinguishable from other circles.

— 'Help’ and 'Back To You' button found and clicked by most users.
— 'Back To You' animation looks awesome.

— "Fancy animation.”

17

Adjustments

» Disable right mouse click.

= Limit the amount of circles (and thereby the amount of edges) shown.
= Add text quantifying when users will be blocked.

» Rename 'Trust Display’ to 'Network Explorer’.

18

