
Digital voting pass - Final report

Wilko Meijer Daan Middendorp Jonathan Raes Rico Tubbing

May 2017

Contents

1 Introduction 3
1.1 Problem definition . 3
1.2 Problem analysis . 3

2 Initial Prototype 4
2.1 OCR . 4
2.2 Blockchain implementation . 5

2.2.1 Multichain . 5
2.2.2 Alternatives . 7

2.3 Alternative signing . 8
2.3.1 Block ciphers modes of operation . 8

2.4 Coupling android app and passport . 8

3 Clickable + Technical Demo 10
3.1 User experience design . 10
3.2 App Permissions . 10
3.3 Connecting to the blockchain . 11

3.3.1 JSON RPC . 11
3.3.2 Light wallet . 11
3.3.3 Full wallet . 12
3.3.4 Hybrid . 12
3.3.5 Choice . 12

3.4 Refactor MultiChain . 12
3.5 Permission analysis . 12
3.6 Blockchain parameters . 13

3.6.1 Permissions . 13
3.6.2 Blocks . 13

3.7 Testing MultiChain . 14
3.8 Testing NFC related methods (passportconnection) . 14
3.9 Testing and improving OCR . 14

4 Full prototype 16

5 Sprint 4 17

6 Conclusions 18

1

A Requirements 20
A.1 Blockchain . 20

A.1.1 Must Have . 20
A.1.2 Should Have . 20
A.1.3 Could Have . 20

A.2 Voting station app . 20
A.2.1 Must Have . 20
A.2.2 Should Have . 21
A.2.3 Could Have . 21

A.3 Voter app . 21
A.3.1 Must Have . 21
A.3.2 Should Have . 21
A.3.3 Could Have . 21
A.3.4 Won’t Have . 21

B UX 22
B.1 Polling station app - iteration I . 22

C Parameters 25

D Testplan 30
D.1 Passport connection . 30

D.1.1 Bad BAC Key . 30
D.1.2 Bad NFC connection . 31

2

Chapter 1

Introduction

1.1 Problem definition

1.2 Problem analysis

3

Chapter 2

Initial Prototype

The first sprint after the research phase was used for creating an initial prototype. This sprint had a duration
of 1.5 weeks so the next sprints could start on a Monday.

The prototype consists of two parts:

• Creating an app that can interact with a passport

• Altering a blockchain implementation so it works with a passport

The focus of this sprint was to make it clear if our proposed solution would be viable. Getting Multichain
to work with the passport was a concern and had to be implemented in this first sprint, otherwise another
(less preferred) blockchain implementation had to be chosen to ensure the viability of the project.

2.1 OCR

There are a few options to choose from when it comes to doing OCR on an android device. Two popular
approaches that were considered are using the Mobile Vision API [1] provided by Google and using Tesseract
[2], a popular OCR library that has a history of being an accurate OCR solution, it has an android solution
Tesseract Tools [3]. We chose to implement Tesseract and not Android Vision because first of all, looking
at the vision example project, there was little support as issues were not being addressed. Next to that it
seemed that the Android Vision library is much less accurate than Tesseract and also has no support for
putting contrains on the detected data. People online seem to switch to Tesseract after not reaching their
goal with the Vision API. Therefore we decided to go with Tesseract. More specifically, tess-two [4], a fork
of Tesseract that is expanded and maintained. Because of our API 21+ requirement, we could go with only
supporting the improved “android.hardware.camera2” camera API classes that were introduced by Google
in API 21. [5] To make implementation easier and not reinvent the wheel, a sample app made by Google was
used to get the code related to using the camera2 API. [6] To get a feel for the Tesseract API, a tutorial was
used [?].

During development of the OCR feature we found that the speed of detection and the ability to run
multiple scanning threads simultaneously is greatly dependent on the kind of phone used. For example the
Samsung galaxy S7 that is owned by one member of the team had no difficulty running at least 4 threads
and is able to scan a passport or ID card almost instant. However the LG G4 that we used in testing had
a lot more difficulty, and started visually lagging when we deploy multiple scanning threads. Of course
optimization of the OCR feature is still possible, which could improve detection speed and accuracy some.
since OCR is a CPU intensive operation we expect this problem only to diminish in the future.

Surprisingly we also found that the accuracy of the OCR is greatly dependant on the used document.
One passport seems to be much easier to detect than another. This may be because of a slightly different
font used on the older passports or the particular order of letters in the MRZ zone. In particular characters

4

like 0, O and D or 8 and B are often wrongly interpreted. It is possible to write code that swaps known
wrongly-interpreted characters, but this would mean checking for many combinations as the list of possibly
wrongly interpreted characters grows. Also this would increase the chance on getting a result that passes
checksums but doesn’t open a connection to the passport. In another attempt to increase the accuracy,
some image processing was done. Attempts included changing the contrast, filtering colors, and converting
to monochrome bitmap. This did not seem to have any significant, if any at all, effect on accuracy. Part of
this was expected since Tesseract does image processing by itself using the leptonica library. [7]

In order to increase detection efficiency ad accuracy further we could make specialized trained data for
reading MRZ data. Someone already created this data once [8], and we tried to use it, sadly this traineddata
seems to cause crashes when performing the scan on some devices.

To ensure that the information we obtained from the OCR scan is correct, we check it with a checksum
using several check digits provided in the MRZ data. [9–11]

2.2 Blockchain implementation

2.2.1 Multichain

MultiChain is a blockchain which is based on the Bitcoin core, but the developers of MultiChain have
added more features. It features a customizable permission system, where each node can have the following
permissions: connect, send, receive, issue, create, mine, activate and admin [12]. The permissions send,
receive, issue and mine are the most valuable to the initial prototype. The following list elaborates what a
wallet is allowed to do:

• send - The wallet is allowed to send a token

• receive - The wallet is allowed to receive a token

• issue - The wallet is allowed to create a new token

• mine - The wallet is allowed to mine

Sending and receiving are valuable permissions since every voter has a wallet where they must receive their
voting right, and claiming this persons voting right by sending a digital token. The mining permissions is
valuable, since a third party can perform a monopoly attack (51% attack) and MultiChain relies on nodes
that mine in order to verify transactions. Besides this, it is possible to alter the time it takes to mine a block,
which is useful since transactions should be verified in at least five seconds (see requirement 3 in section A.1).

Travel document signing

MultiChain uses the secp256k1 elliptic curve to verify and sign transactions and since travel documents use
the BrainpoolP320r1 elliptic curve a library that implements the BrainpoolP320r1 elliptic curve is desired.
CryptoPP 1 has implemented this curve and has been used this sprint to alter MultiChain to support
BrainpoolP320r1.

To be able to verify a transaction using a travel document, MultiChain must use the accept Brain-
poolP320r1 elliptic curve signatures. The initial step to implement this, was to find where the private and
public keys are stored. After some searching in the code we found that the private and public key are stored
in the classes CKey and CPubKey respectively. These classes have been altered to use BrainpoolP320r1
elliptic curve instead of the secp256k1 elliptic curve. Now we had to find out how the keys were stored in
these classes. After some debugging, we find that in both classes the keys were stored as a byte array called
vch. The next step was to implement CryptoPP keys in the classes CKey and CPubKey and retrieve the byte
arrays from these keys and store this in the variable vch. After this, the reverse has also been implemented:
create a CryptoPP key from a byte array vch. This took some time since the keys were loaded and stored

1https://www.cryptopp.com/

5

https://www.cryptopp.com/

from a few different functions in these classes. These functions have been successfully altered and mining
and sending transactions to the blockchain is now possible with the BrainpoolP320r1 elliptic curve.

Since a travel document can only sign eight bytes of data and the hash of a transaction is a SHA256 hash
(32 bytes), the hash is split up in four different parts and are signed individually by a travel document. In
Figure 2.1 a visualization of the signing by the passport is given, where the 32 byte block is the hash of a
transaction.

Figure 2.1: Signing a transaction with a travel document

Now the blockchain must verify a transaction signed by a travel document, so the verify function must
be altered so it accepts four signatures. This was caused some trouble since MultiChain implemented a
maximum signature length of 255 bytes while one signature from a travel document is always 80 bytes long
(so 4 ∗ 80 ≥ 255). The 255 byte limited has been altered to support signatures of maximum 320 bytes long.
This makes is possible to store the signatures after each other in a byte array, as has been visualized in
Figure 2.2. So for example, the signature of the second part of a hash, sig1, is stored at index 80 till 160 of
the byte array containing all signatures. The verify function now verifies each sigi and if it isn’t correct the
whole transaction is rejected.

Figure 2.2: Signature storage

The problem now is that mined blocks create one signature of the hash, while the verify expects four
signatures. Two options were considered:

• Only verify a transaction with four signatures

• Sign the mined blocks also with four signatures

The first option is chosen, since it is easier to implement. The hash is again split up in four parts, as
displayed in Figure 2.1. These signatures are then stored as in Figure 2.2 so the verify function accepts these
signatures. The second option is more secure and will be implemented in one of the following sprints.

Public key to blockchain address

To ensure that a machine readable travel document can act as a wallet, the public key of the document needs
to be translated to an address on the blockchain. MultiChain uses an address system similar to the ones

6

used by Bitcoin. The small differences consist of the addition of an identifier generated by the blockchain
instance itself. This value is hashed into the final address. Due to this, it is impossible to use an address
which is intended for a different blockchain.

The steps leading to a valid address are well documented by in the developer reference. This ensured a
smooth integration of this process which lead to a function to translate the public key of a passport to a
valid address on the blockchain.

Distributing voting tokens

At every election, there needs to be a new batch of voting tokens sent to the citizens. For this first prototype,
a simple python CLI script is built. This script follows the following steps:

1. Load CSV with public keys

2. Convert public keys to valid MultiChain addresses

3. Create new assets corresponding to the amount of addresses

4. Grant send and receive permissions to the generated addresses

5. Distribute the assets to the generated addresses

This script can be found in the digital-voting-pass-util repository.

2.2.2 Alternatives

Due to minor struggles during the implementation of the BrainpoolP320r1 Elliptic Curve in MultiChain,
other solutions are also considered during this sprint. One of the drawbacks of MultiChain is that it is built
on the original Bitcoin core which is written in C++. This language makes it harder to understand the
complex structure of a blockchain. The other possibilities that are considered are listed below.

Dragonchain

Dragonchain is a blockchain platform which is actively developed by the Walt Disney company, but does not
seem to be entirely finished. It is written in Python which makes the code really accessible. The structure of
a transaction relies on an embedded public key in PEM format. This means that the curve parameters are
shipped with every transaction. Due to this, it does not matter which Elliptic Curve is used for the signing
of a transaction. It literally took 5 minutes to come up with a proof of concept by modifying the unit test
to a BrainpoolP320r1 curve.

Unfortunately, Dragonchain is more some sort of blockchain platform, which only has support for raw
transactions and basic Python based smart contracts. There does not seem to be any implementation of a
wallet or any other way to store any value in the blockchain, just pure signed transactions.

Due to this, and the lack of documentation, this platform doesn’t seem to be suitable for the purpose of
implementing a digital voting pass at this moment.

Openchain

Another possible implementation is Openchain, which acts more like blockchain as a service. Due to this,
there can only be one validation node, as discussed earlier. The code is written in C# which makes it quite
accessible. The only drawback of C# is that it is Microsoft-minded and you need all the Dotnet stuff to get
it working.

The implementation makes use of the Bouncycastle library for signing and validation of transaction signa-
tures. Due to this, it was relatively easy to transform the codebase to BrainpoolP320r1. This transformation
consists out of changing the curve properties which are sent to Bouncycastle.

7

Different experiments turned out that is is fairly easy to issue a new assets as an admin and distribute
it to an address. It was also quite simple to transform the public key of a passport to a valid Openchain
address.

Further investigation of this solution was stopped because significant process was booked with the first
blockchain solution (Multichain).

2.3 Alternative signing

2.3.1 Block ciphers modes of operation

As discussed in the research report, there is an issue with the capabilities of travel document standard.
Due to this, it is not possible to sign a message larger than 8 bytes. This makes is more difficult to sign
a transaction which is hashed with a SHA256 hash, which has a length of 32 bytes. This problem is also
relevant in other fields of cryptography, for example the 3DES encryption is only able to encrypt blocks of
8 bytes. To tackle this problem there are mainly two methods of operation to avoid this issue.

The first one is ECB (Electronic Code Book), named after the analog lookup books for encrypting and
decrypting texts [13]. With this method, every single block of 8 bytes is encrypted and decrypted separately.
Because 3DES is deterministic, which means that encrypting the same data with the same key results in
the same cyphertext, block which contain the same data will also have the same cyphertext. Due to this,
it becomes easy to find patterns in the encrypted data. It makes it also possible by an attacker to combine
different blocks and create a complete new signed/encrypted message using blocks from other encrypted
messages. This is not that big of a problem, because the only thing that will be signed in this prototype is
an SHA256 hash, which makes it difficult to combine different parts.

The second one is a method so called CBC (Cipher Block Chaining). Just like the blockchains in the rest
of the prototype, this operation method consists of using previous blocks to sign or encrypt the upcoming
blocks. This makes it more difficult to see patterns in the data. This seems to be a really smart idea, because
it isn’t even possible to determine the signature of a block if the signature of the previous block is unknown.
Unfortunately, this methods uses the previous signature to XOR the following block. The signatures created
by a Dutch travel document are signed using the ECDSA standard. Due to the possible leak of the private
key, these signature cannot be deterministic. This means that signing a block with the same travel document
multiple times, results in a different signature every time. So encrypting an decrypting the next block using
XOR will not work.

2.4 Coupling android app and passport

For both the Voting Station App (VSA) as the Voter Helper App (VHA) a connection with the passport
needs to be made. This connection needs to be able to do two things:

• Read the Active Authentication (AA) public key (located in Data-group 15 [14])

• Sign a blockchain transaction using the ’private key’ located in the passport

The AA public key serves as a identifier for the account of the voter on the blockchain. For every
interaction (e.g. sending tokens, retrieving current balance) with the account of a voter, this public key is
needed. To ensure that a transaction is performed with the authorization of the voter, the transaction needs
to be signed with the voters’ passport.

The signing is done by making use of the AA protocol of the passport. This protocol serves as a
verification of the uniqueness of the passport. It accepts an 8-byte input and signs this with the private key
of the passport located in a non-readable part of the chip. The passport returns a byte array. It can be
verified that this byte array was signed with the passport belonging to a certain public key, confirming the
authorization of the voter.

8

For creating the connection with the passport the JMRTD library2 is used. JMRTD is an open-source
java library that implements the MRTD (Machine Readable Travel Documents) standards as defined by the
International Civil Aviation Organization (ICAO). The use of this library makes the connection in an Android
app much easier since there is no need for a custom built interpretation layer between two programming
languages.

In the Google Play Store a few apps can be found that make a connection with the passport and retrieve
information from it. These apps give a clear example of a working concept. A well-known app is ReadId3

which also makes use of the JMRTD library, this app unfortunatily is not open source. As a starting point
the epassportreader app by github user Glamdring4 was used, which has a very basic implementation of the
JMRTD library.

(a) Output 1 (b) Output 2

Figure 2.3: Results of signing the hex string ’0a1b3c4d5e6faabb’
with a passport

The activity that reads the data from
the passport waits until a NFC chip is
detected, if this NFC chip belongs to a
passport it tries to make a connection.
For this connection three bits of informa-
tion are needed:

• Document number

• Date of birth

• Expiry date of document

This is needed for the Basic Access Con-
trol (BAC), which ensures a person try-
ing to read the passport also has physical
connection to it. This information can be
read from the Machine Readable Zone on
the passport by using OCR as explained
in 2.1 or can be filled in manually when
OCR fails or if OCR is not preferred by
the user. Once the BAC succeeds, a con-
nection is established and the contents of
the chip are unlocked and can be read.

Depending on what functionality is
needed one of two functions can be called:

• getAAPublicKey - which returns
the public key located in datagroup
15

• signData - which accepts an 8-byte
array as input and returns a byte array signed by the passport

In Figure 2.3 the resulting byte array represented as a hex string can be seen, since the signing algorithm
of the passport is non-deterministic, the same input will yield different outputs every time.

These two functions are essential for signing transactions and getting information from the blockchain
associated with the voter. The implementation of this functionality is described in chapter 3.

2http://jmrtd.org/
3https://www.readid.com/
4https://github.com/Glamdring/epassport-reader

9

Chapter 3

Clickable + Technical Demo

The goal of sprint 2 is a clickable demo of the app’s UX and a technical demo consisting of the connec-
tion between the blockchain and the app. During this sprint testing was set-up for the various parts of
the application. This chapter gives an overview of the work that was done and the problems that were
encountered.

3.1 User experience design

As stated in the project plan, the client offered a budget to use an external party to create a UX design for
the application. At the end of sprint 1, a professional UX designer was hired at Milvum. To make clear the
purpose of the first application, a wireframe on was sketched on paper. During the second sprint, there were
several meetings set up with this professional.

The first prototype was based on a sketch drawn with pencil and paper, to make clear which screens were
needed. This can be seen in figure B.1, this emerged to a basic colorized workflow.

When discussing this design, there were some things that we thought were still sub-optimal and resulted
in new insights. There was for example no way to select the current elections. Beside these minor changes,
there were also some small detailed changes we came up with. E.g. the amount of ballot-papers that should
be handles was not very obvious, the process of scanning the MRZ isn’t really a process which should be
visible in a process bar. The design was also not fully compliant to the Angular Material Design styleguide
as we wanted to see. The styleguide states that the app bar should be used for branding, navigation, search,
and actions, not for notifications.

The feedback above resulted in a second iteration where these issues are improved. This result is visible
in figure B.2.

Besides design choices made by the designer, we made some of our own. One of these is about the status
bar, we decided to make it transparent according to Material design guidelines. We added a top-padding
to the Action bar and enabled the transparent status bar. This way the color of the Action bar will shine
trough the status bar giving it the same kind of color but darker. In the camera view the transparent status
bar causes the camera feed to shine through he status bar, which is a nice effect in our opinion.

As part of the clickable demo, the design was implemented. During the implementation Android Material
Design [15] was used as reference to get a uniform design which would feel familar and logical for users.

3.2 App Permissions

The adnroid app needs several permissions in order to perform its basic functions. These include:

• Camera permissions to scan the MRZ zone.

• NFC permissions to communicate with the document.

10

• Internet permissions to communicate with the blockchain. Storage permissions to store and read both
the blockchain data and trained data for the OCR scanning library.

Internet and NFC permission are not considered dangerous permissions by Android ??, so these permissions
are granted when installing the app and we can use them with no problem. The others, storage access and
camera access, are considered dangerous permissions. This means that starting from API level 23 these
permissions needs to be granted at runtime when the app requires them. For the camera permission, this
occurs when the CameraActivity is opened after the user clicks the button to scan a document. The need for
camera permissions in this case if quite clear to the user. For storage permissions the situation is different
however, these permissions are needed right when the app is launched in order to store the downloaded
blockchain data. The need for this permission is not very clear to the user and may be confusing when
the app asks to write to the storage right after launch. For this reason we included an ErrorDialog in our
app. When the app is denied one of the dangerous permissions, it will display a dialog explaining why the
permission is needed, after which the activity is closed.

3.3 Connecting to the blockchain

The app which is used at the voting station needs to check the balance amount of votes spendable by the
owner of the passport. In order to know this balance, something needs to look inside the block chain and
check unspent outputs. Clearly we need a connection to the blockchain in some fashion. There are three
ways of connecting to the blockchain. In this section, the pros and cons of these choices will be taken into
consideration.

3.3.1 JSON RPC

This is the easiest solution, because the app doesn’t need to know anything about the blockchain. Down-
loading all the blocks will not be necessary and all the logic happens at the server. Only the signing of the
transaction occurs in the app. Due to this, the system relies on one working webservice, which is a single
point of failure.

The standard RPC service which is shipped with Multichain is also not designed to act in this way. For
example, it relies on its own wallet which is attached to the node. So, before we can use this RPC service, we
need to fork it and implement some authentication rules in it, or place some kind of proxy service between
the app and the node.

3.3.2 Light wallet

In this case, the wallet functionality is embedded into the app. So the app is able to calculate the balances
and is directly connected to the nodes in the network. The download of the entire blockchain can be a really
time and data consuming process. To fix this, light wallets rely on only the headers of every block with only
the transactions related to the wallet included.

There are two problems with this approach: Because it is desirable to have near instant verifications,
the parameters are set to mine really small blocks in short intervals. Downloading only the headers will
still be inefficient. The main Bitcoin network is set to mine a block every 10 minutes on average. With the
parameters used in blockchain it is 15 seconds.

Experiments turned out that downloading headers with a size of 80 bytes runs at 1 kilobyte per second.
The amount of headers produced in one day with a rate of 4 blocks per minute is 4 ∗ 60 ∗ 24 ∗ 80 = 460800
bytes, or 461 kilobytes. So downloading one entire day of headers will take around 7 minutes, which is not
acceptable.

Another problem with this approach is that the headers are not enough to calculate the balance of voting
tokens of every citizen. So, either the blockchain needs to be synchronized every time a passport is scanned,
or the entire blockchain still needs to be downloaded.

11

3.3.3 Full wallet

Tackles all of the problems above, but it will be slow and will also be slower as the blockchain grows. This
will also not be suitable for running on mobile devices.

3.3.4 Hybrid

To have the best of both worlds (light wallet and JSON RPC), the following approach might work. If the
app doesn’t have a local blockchain at all, but is connected to a node. Then it is still able to broadcast a
transaction to the network. A rejection of a transaction it also broadcasted back.

Why not broadcast 3 transactions and see how many of them are rejected? This could be supported
by a simple web service which returns the amount of voting tokens available in a wallet before the actual
transaction happens.

3.3.5 Choice

The last option seems to be the most obvious solution. Unfortunately, during the implementation, it turned
out that this is not possible due to the way transactions are built.

3.4 Refactor MultiChain

CreateBlockSignature from miner.cpp calls sign from class CKey
TransactionSignatureChecker::VerifySignature calls verify

3.5 Permission analysis

MultiChain has implemented a permissions system, which enables permissions on address level. These
permissions are stored on the blockchain and changes to them are done through transactions. The following
permissions [12] are currently available:

• connect – to connect to other nodes and see the blockchain’s contents.

• send – to send funds, i.e. sign inputs of transactions.

• receive – to receive funds, i.e. appear in the outputs of transactions.

• issue – to issue assets, i.e. sign inputs of transactions which create new native assets.

• create – to create streams, i.e. sign inputs of transactions which create new streams.

• mine – to mine blocks, i.e. to sign the metadata of coinbase transactions.

• activate – to change connect, send and receive permissions for other users, i.e. sign transactions which
change those permissions.

• admin – to change all permissions for other users, including issue, mine, activate and admin.

As will be explained in section 3.6, anyone is able to connect to the network. This poses a minimal risk
to the network since nodes can only see what is happening in the blockchain. It is thus not possible to alter
the blockchain with this right.

If a node has the send permission, it is possible to send funds to another node. When this node is a
corrupt node, it can flood the network with transactions. To prevent this, only wallet addresses of travel
documents of voters will receive this right. Since the private keys of these travel documents are not accessible,
there is now way to send more than three transactions (maximum of votes through proxy voting) and thus

12

flood the network. The receive permissions poses minimal risk since receiving requires a node to send some
funds.

Creating an asset or stream is considered as a transaction in MultiChain [16]. This means that rogue
nodes can flood the network by, for example, creating many. assets. To prevent this only government nodes
should have permissions to issue and create. However, the government nodes can be hacked and hackers can
flood the network. This can be prevented by revoking these rights of these nodes after the vote tokens are
distributed. A disadvantage of this solutions is that it is not possible to reuse the blockchain for a future
election.

The mining right allows a node to generate a block. If there is monopoly of rogue nodes with mining
permissions it is possible that fraud is committed. Without the mining right no blocks will be generated
and no transactions will be verified. There need to be thus at least one mining node and this mining node
should be owned by the government. Again, this mining node can be hacked, which is why it is desired to
have several mining nodes owned by the government. Now the non-hacked nodes can reject a mined block
from a rogue node.

With admin right it is possible to change permissions, either revoking or granting, of users. Revoking is
useful when a person dies just before an election and this person has an account on the blockchain with a
token. The government is now able to revoke the permissions of this person, so no other person can ’steal’
the token by proxy voting.

A disadvantage of an admin account is that this account can be hacked, and can be used to tamper
with the elections by granting himself mining rights for example. This can be prevented by revoking the
permissions of the admin (the admin can do this himself). The problem with this solution is that revoking
the permissions of other nodes is not possible any more, so a solution to revoke proxy votes of dead persons
should be thought of.

3.6 Blockchain parameters

With MultiChain it is possible to alter parameters of the chain. In this section the most important param-
eters, values of these parameters and a justification of these values will be discussed. A complete list of the
parameters, values and explanations can be found in Appendix C.

3.6.1 Permissions

The two parameters that will be discussed in this section are anyone-can-connect and anyone-can-mine,
which are permission parameters. These parameters control if any node can connect to the blockchain and
if any node can mine a block. Parameter anyone-can-connect is set to true, so any person can see what is
going on in the blockchain and increase the trust of a person. The second parameters, anyone-can-mine, is
set to false. This is done so only government nodes can mine a block, which ensures a monopoly attack is
not possible.

3.6.2 Blocks

A transaction is accepted when it is contained in a block, so in order to verify an transaction swiftly a
block should also be generated swiftly. MultiChain has two parameters which can influence the block time:
target-block-time and pow-minimum-bits. The parameter target-block-time which is the target average time
in seconds between two consecutive blocks. The other parameter, pow-minimum-bits, is the proof-of-work
difficulty which must contain a value between one and 32. One is the most easy and 32 the most difficult.

If we assume that there are 13 million persons who cast their vote on a single day, where it is possible
to cast a vote from 6am to 9pm, we calculated that there are approximately 240 transactions per second
(13000000/15/60/60 ≈ 240). This is the average and since we want to handle more than the average, we
assume 480 transactions per second. A transaction is about 200 bytes and we have blocks of one megabyte,

13

there fit about 5000 transactions in a block. Now it is possible to calculate the target block time: 5000/480 ≈
10.4. The target-block-time is set to 10 since only natural numbers are allowed.

To make sure that a miner is indeed able to mine a block in 10 seconds, the parameters pow-minimum-
bits must be low enough. After some experimentation we concluded that a proof-of-work difficulty of four is
suited to mine blocks in ten seconds.

3.7 Testing MultiChain

MultiChain test framework has been removed, since Bitcoin has a test framework - private add link Is hard,
since all files need to be compiled and MultiChain removed all tests from the repo. Compiling with pre-
compiled libraries does not work since, it gives us a mc gstate unkown exception Works if you pass a flag
UNIT TESTS MULTICHAIN to the compiler

3.8 Testing NFC related methods (passportconnection)

The passportconnection related methods all work with the Passportservice from JMRTD. This Passportser-
vice handles all requests and responses to and from the passport and makes use of an Inputstream. Because
in Unittests the passport (hardware) can’t be used, this Passportservice is mocked, just as the Inputstream.

The Inputstream is given data that represents a ECDSA public key, which should get handled similarly
to data from the passport. However, this raises an exception in the method that reads the public key from
the data. Even when the data from datagroup 15 from an actual passport is used as input, it still raises an
exception.

Because a lot of time was spent on trying to get these tests to work without any result, it was decided
to not test these methods by using Unit tests. Instead AndroidTests or a testing plan could be set up to
manually test the functionality of the passportconnection before each release. Even though this means Travis
CI can’t be used for continuous integration tests, this proposed solution is a way to ensure no functionality
is broken by new releases.

AndroidTests (instrumented tests) are used to test on dedicated hardware. The problem with this project
is that several user actions are required for testing (scanning the OCR and hold passport to the phone).
This makes it very hard to test for specific cases. Only the case of a successful passport connection can be
tested, but this is the same as testing the functionality of the app. It was decided that creating separate
tests for this is not worth the time. Testing for how the app handles the failed cases, e.g. passport is held to
the phone too short, is possible by using regular Unit Tests. Since the tests will handle the null cases, there
is no need to mock any Inputstreams, which makes testing easier. Testing for the handling of the NFC tag
discovery was not successful, because Mocking NFC tag intents is not possible, methods to do so are not
available in newer android versions. [?]

For each release to master a testing plan should be walked through in order to ensure the functionality
that is not tested by unit or integration tests is still working. The test plan for the passport connection
can be found in ??. Using a test plan instead of unit tests or integration tests has serious limitations. The
amount of test cases is very limited and it is much harder to test for rare bugs. Furthermore it is hard to
maintain a consistent test environment, which would make it harder to debug. Although this set-up is far
from ideal, it is sufficient to ensure a working prototype for releases.

3.9 Testing and improving OCR

In order to test the Tesseract OCR UnitTests were written. Because tesseract uses a number of dependencies
that cannot be mocked, AndroidTests were used instead of regular tests. AndroidTests allow for executing
tests in an emulated environment or on actual hardware.

Using AndroidTest and images of traveling documents it was possible to verify the accuracy of the OCR
scanning. During the use of the application the OCR scanner scans a series of pictures until it recognizes

14

a correct MRZ (verified by checksums). Because of this it is not needed that the OCR scanner has 100%
accuracy for each picture. Since the images used for testing are not perfectly focused, the OCR scanner
won’t have 100% accuracy. To account for this a threshold was set for accuracy in the tests. This accuracy
was calculated using the Levenshtein distance. The resulting MRZ code from the OCR scanning of the test
images should at least have a reasonable accuracy, like 90%. By setting the accuracy threshold to just below
the lowest performing test, any drop in performance of the OCR scanner can be detected by continuous
integration, since test will start failing.

These tests are also essential in order to test for improvements of the OCR. Using the accuracy improve-
ments to the OCR scanner can easily be detected. After creating these tests several traineddata files were
tested to see if any caused an improvement in scanning the MRZ. Eventually a traineddata file was created
based on the OCR-B ttf file. This resulted in a 5 percent increase in accuracy. In the real world, however, it
resulted in much faster recognition of the MRZ. On passports where reading the MRZ used to be impossible,
now the scanner recognized the MRZ immediately after the camera had a good focus. This improvement is
very important for the ease-of-use requirement of the system.

15

Chapter 4

Full prototype

16

Chapter 5

Sprint 4

17

Chapter 6

Conclusions

18

Bibliography

[1] Android. Mobile vision. [Online]. Available: https://developers.google.com/vision/

[2] Tesseract. Tesseract ocr. [Online]. Available: https://github.com/tesseract-ocr/tesseract

[3] ——. Tesseract android tools. [Online]. Available: https://code.google.com/archive/p/
tesseract-android-tools/

[4] Tess two. [Online]. Available: https://github.com/rmtheis/tess-two

[5] Android. Android developer docs. [Online]. Available: https://developer.android.com/reference/
android/hardware/camera2/package-summary.html

[6] Google. Camera2 google samples. [Online]. Available: https://github.com/googlesamples/
android-Camera2Basic

[7] C. Colglazier. Improving the quality of the output. Accessed: 2017-05-19. [Online]. Available:
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality

[8] Tesseract addons. [Online]. Available: https://github.com/tesseract-ocr/tesseract/wiki/AddOns#
community-training-projects

[9] Wikipedia. Machine-readable passport. [Online]. Available: https://en.wikipedia.org/wiki/
Machine-readable passport#Nationality codes and checksum calculation

[10] A. de Smet. Machine readable passport zone. [Online]. Available: http://www.highprogrammer.com/
alan/numbers/mrp.html

[11] ICAO. Doc 9303: Machine readable travel documents. [Online]. Available: https://www.icao.int/
publications/Documents/9303 p3 cons en.pdf

[12] MultiChain. Multichain permissions managment. Accessed: 2017-05-22. [Online]. Available:
http://www.multichain.com/developers/permissions-management/

[13] M. Dworkin, “Recommendation for block cipher modes of operation. methods and techniques,” DTIC
Document, Tech. Rep., 2001.

[14] “Machine readable travel documents part 10,” International Civil Aviation Organization, Montréal,
Quebec, Canada H3C 5H7, Tech. Rep. 9303, 2015.

[15] Google Inc. Material design for android. [Online]. Available: https://developer.android.com/design/
material/index.html

[16] G. Greenspan. Multichain private blockchain. Accessed: 2017-05-26. [Online]. Available: http:
//www.multichain.com/download/MultiChain-White-Paper.pdf

19

https://developers.google.com/vision/
https://github.com/tesseract-ocr/tesseract
https://code.google.com/archive/p/tesseract-android-tools/
https://code.google.com/archive/p/tesseract-android-tools/
https://github.com/rmtheis/tess-two
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://github.com/googlesamples/android-Camera2Basic
https://github.com/googlesamples/android-Camera2Basic
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
https://github.com/tesseract-ocr/tesseract/wiki/AddOns#community-training-projects
https://github.com/tesseract-ocr/tesseract/wiki/AddOns#community-training-projects
https://en.wikipedia.org/wiki/Machine-readable_passport#Nationality_codes_and_checksum_calculation
https://en.wikipedia.org/wiki/Machine-readable_passport#Nationality_codes_and_checksum_calculation
http://www.highprogrammer.com/alan/numbers/mrp.html
http://www.highprogrammer.com/alan/numbers/mrp.html
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
http://www.multichain.com/developers/permissions-management/
https://developer.android.com/design/material/index.html
https://developer.android.com/design/material/index.html
http://www.multichain.com/download/MultiChain-White-Paper.pdf
http://www.multichain.com/download/MultiChain-White-Paper.pdf

Appendix A

Requirements

A.1 Blockchain

A.1.1 Must Have

1. The blockchain must verify transactions with the ECDSA curve BrainpoolP320r1.

2. A voter must be able to claim his vote right only one time and no more, either with a digital voting
pass or physical voting pass.

3. The government must be in control of the blockchain.

(a) The government must be able to transfer votes to wallets of eligible persons

(b) The government must be able to control which nodes are able mine

4. The blockchain must accept a transaction when the wallet has sufficient funds and the transaction was
signed by a passport

5. The blockchain technology must not have a single point of failure

A.1.2 Should Have

1. A voter should be able to transfer a vote to a different voter who is eligible to vote (proxy-vote)

2. The government should be able to freeze accounts

3. A transaction should be contained in a block (confirmed) within twenty seconds

A.1.3 Could Have

1. A voter could be able to use all types of identification documents without specifying which one this
person is voting with

A.2 Voting station app

A.2.1 Must Have

1. There must be an option to manually input the data from the machine readable zone.

2. Reading public key from passport using NFC

20

3. The app must support of transaction with ePassport using NFC

4. The app must show wether the signing was succesful and if the transaction was acepted by the network.

5. The app must send a signed transaction to the blockchain.

A.2.2 Should Have

1. The app should be able to show a list of transactions made with the scanned passport.

2. The app should be able to use OCR to read the ePassport’s MRZ zone

A.2.3 Could Have

1. The app could have manual control for flash and focus in OCR scanning mode.

A.3 Voter app

A.3.1 Must Have

1. See current balance of voting tokens

2. Transfer tokens to another voter (proxy-voting)

3. See transaction history

A.3.2 Should Have

1. Reclaim voting token from proxy-voting

A.3.3 Could Have

1. Verify if traveling document chip is working correctly

2. Explanation of how the digital voting process works

3. Information about voter turnout

4. Information about nearest voting stations

A.3.4 Won’t Have

1. Registration for digital voting

2. Local storage of voter information

21

Appendix B

UX

B.1 Polling station app - iteration I

Note: The following user experience design emerged from a collaboration with Angelo Croes (angelo@milvum.com),
UX designer at Milvum.

22

mailto:angelo@milvum.com

(a) Splash screen (b) Main menu (c) OCR I (d) OCR II

(e) NFC (f) OCR error (g) Manual input (h) Authorized

(i) Not authorized (j) Transaction history

Figure B.1: Iteration 1

23

(a) Splash screen (b) OCR error (c) Main menu (d) OCR I

(e) OCR II (f) NFC

Figure B.2: Iteration 2

24

Appendix C

Parameters

Parameter Description Value Explanation
chain-protocol Use MultiChain for a MultiChain blockchain or bitcoin

for a bitcoin-style blockchain with no permissions, na-
tive assets or streams.

MultiChain Necessary to have permis-
sions in the blockchain

chain-
description

Textual description of the blockchain for display to
users.

Elections
X

root-stream-
name

Name of the root stream for general data storage (leave
blank for none).

root Default

root-stream-
open

Allow anyone with send permissions to write to the
root stream.

true Default

chain-is-testnet Whether to set testnet to true in the output of various
JSON-RPC API calls. This is for compatibility with
Bitcoin Core and does not affect any other testnet-like
behavior.

false The blockchain should not
be a test net

target-block-
time

Target average number of seconds between blocks, i.e.
delay for confirming transactions. If this is below 10
seconds, it is recommended to set mining-turnover low,
to minimize the number of forks.

10 See subsection 3.6.2

maximum-
block-size

Maximum number of bytes in each block, to prevent
network flooding by a rogue miner.

1MB Default, should be able to
hold 5k transactions, see fi-
nal report

Table C.1: Basis chain parameters

25

Parameter Description Value Explanation
anyone-can-
connect

Apply no restriction to connecting to the network, i.e.
nodes do not require connect permissions.

true For transparency reasons

anyone-can-
send

Apply no restriction to sending transactions, i.e. sign-
ing transaction inputs.

false Government can freeze
wallets if person in ques-
tion loses his right to vote,
(e.g in case of incarceration
or death)

anyone-can-
receive

Apply no restriction to receiving transactions, i.e. ap-
pearing in transaction outputs.

true Ability to proxy-vote

anyone-can-
receive-empty

Apply no restriction to addresses which appear in
transaction outputs containing no native currency, as-
sets or other metadata. Only relevant if anyone-can-
receive=false. This allows addresses without receive
permission to include a change output in non-asset
transactions, e.g. to publish to streams.

false Default

anyone-can-
create

Apply no restriction to creating new streams. false No streams, except the
root stream, are used so
unnecessary

anyone-can-
issue

Apply no restriction to issuing (creating) new native
assets.

false Issuing means creating new
election which is only re-
served for the government

anyone-can-
mine

Apply no restriction to mining blocks for the chain,
i.e. confirming transactions.

false Mining reserved for gov-
ernment nodes to protect
against monopoly attack

anyone-can-
activate

Apply no restriction to changing connect, send and
receive permissions of other users.

false Only admin is allowed to
do this

anyone-can-
admin

Apply no restriction to changing all permissions of
other users.

false Obvious

support-miner-
precheck

Support advanced miner permission checks by caching
the inputs spent by an administrator when setting ad-
min or mine permissions – see permissions manage-
ment for more information.

true Default

allow-p2sh-
outputs

Allow pay to scripthash outputs, where the redeem
script is only revealed when an output is spent. See
permissions management for more information about
permissions and P2SH addresses.

false p2sh is not needed to cre-
ate and send/verify trans-
actions. This is thus
an unnecessary risk (when
turned on), which can be
avoided.

allow-multisig-
outputs

Allow multisignature outputs, where more than one
address is explicitly listed in a transaction output, and
a given number of these addresses are required to sign
in order to spend that output. See permissions man-
agement for more information about permissions and
multisig outputs.

false Isn’t needed

Table C.2: Global permissions parameters

26

Parameter Description Value Explanation
setup-first-
blocks

Length of initial setup phase in blocks. During the
setup phase, the constraints specified by the other pa-
rameters in this section are not applied.

60 This does not matter since
the government will send
about 13 million transac-
tions, which will create a
lot of blocks

mining-
diversity

Minimum proportion of permitted miners required to
participate in round-robin mining to render a valid
blockchain, between 0.0 (no constraint) and 1.0 (ev-
ery permitter miner must participate). Unlike mining-
turnover, this is a hard rule which determines whether
a blockchain is valid or not.

0.75 Default

admin-
consensus-
admin

Proportion of permitted administrators who must
agree to modify the admin privileges for an address,
between 0 (no consensus required) and 1 (every admin
must agree).

1 All admins for safety

admin-
consensus-
activate

Proportion of permitted administrators who must
agree to modify the activate privileges for an address,
between 0 and 1.

Value
admin-
consensus-mine

Proportion of permitted administrators who must
agree to modify mining privileges for an address, be-
tween 0 and 1.

1 All admins agree for safety
reasons

admin-
consensus-
create

Proportion of permitted administrators who must
agree to modify stream creation privileges for an ad-
dress, between 0 and 1.

1 There is only stream, and
no more. So default one

admin-
consensus-issue

Proportion of permitted administrators who must
agree to modify asset issuing privileges for an address,
between 0 and 1.

Value

Table C.3: Consensus parameters

27

Parameter Description Value Explanation
lock-admin-
mine-rounds

Ignore forks that reverse changes in admin or mine
permissions after this many (integer) mining rounds
have passed. A mining round is defined as mining-
diversity multiplied by the number of permitted min-
ers, rounded up. This prevents changes in the
blockchain’s governance model from being reversed
and can be overridden by each node using the lock-
adminminerounds runtime parameter.

10 Default value

mining-
requires-peers

A node will only mine if it is connected to at least one
other node. This is ignored during the setup phase or
if only one address has mine permissions, and can be
overridden by each node using the miningrequirespeers
runtime parameter.

true An isolated node mining is
useless to the network

mine-empty-
rounds

If there are no new transactions, stop mining after
this many rounds of empty blocks. A mining round is
defined as mining-diversity multiplied by the number
of permitted miners, rounded up. This reduces disk
usage in blockchains with periods of low activity. If
negative, continue mining indefinitely. This is ignored
during the setup phase or if target-adjust-freq>0, and
can be overridden by each node using the mineempty-
rounds runtime parameter.

5 No mining needed when
there is no election in
progress or no passes being
cashed,

mining-turnover A value of 0.0 prefers pure round robin mining be-
tween an automatically-discovered subset of the per-
mitted miners, with others stepping in only if a miner
fails. In this case the number of active miners will
be mining-diversity multiplied by the number of per-
mitted miners, rounded up. A value of 1.0 prefers
pure random mining between all permitted miners. In-
termediate values set the balance between these two
behaviors. Lower values reduce the number of forks,
making the blockchain more efficient, but increase the
level of mining concentration. Unlike mining-diversity,
this is a recommendation rather than a consensus rule,
and can be overridden by each node using the mining-
turnover runtime parameter.

Value
Must be low to reduce forks

Table C.4: Mining runtime parameters

28

Parameter Description Value Explanation
skip-pow-check Skip checking whether block hashes demonstrate proof

of work.
false Obvious

pow-minimum-
bits

Initial and minimum proof of work difficulty, in leading
zero bits. (1 - 32)

4 Should be low so it easy to
mine a block and thus con-
form transactions

target-adjust-
freq

Interval between proof of work difficulty adjustments,
in seconds, if negative - never adjusted. (-1 -
4294967295)

-1 Difficulty should not in-
crease, to ensure blocks are
still mined fast enough

allow-min-
difficulty-blocks

Allow lower difficulty blocks if none after 2*. false Difficulty is already low, so
this is not necessary

Table C.5: Advanced mining parameters

Parameter Description Value Explanation
only-accept-std-
txs

Only accept and relay transactions which qualify as
’standard’.

true Default

max-std-tx-size Maximum size of standard transactions, in bytes.
(1024 - 100000000) Value

max-std-op-
returns-count

Maximum number of OP RETURN metadata outputs
in standard transactions. (0 - 1024)

10 Default

max-std-op-
return-size

Maximum size of an OP RETURN metadata output
in a standard transaction, in bytes.

2097152 Default

max-std-op-
drops-count

Maximum number of inline OP DROP metadata ele-
ments in a single output in standard transactions.

5 Default

max-std-
element-size

Maximum size of data elements in standard transac-
tions, in bytes.

8192 Default

Table C.6: Standard transaction definitions

29

Appendix D

Testplan

D.1 Passport connection

For each release to the master branch the following steps must be taken to ensure the connection with the
passport still works as intended.

Do all of the below for a Dutch passport and a Dutch ID card, both issued after March 9th 2014. The
whole test suite should be done on two different devices in order to uncover device specific issues.

Successful connection

1. Start up the app

2. Wait for the app to be initialized

3. Choose an election

4. Press manual input button

5. Put in the document details of the travel document and submit

6. Start connection

7. Hold travel document to back of phone

8. Wait until the passport connection is completed

9. The authorization screen should be showed

D.1.1 Bad BAC Key

1. Start up the app

2. Wait for the app to be initialized

3. Choose an election

4. Press manual input button

5. Put in wrong document details and submit

6. Start connection

7. Hold travel document to back of phone

30

8. The passport connection should fail and display an error indicating the document details
are wrong

D.1.2 Bad NFC connection

1. Start up the app

2. Wait for the app to be initialized

3. Choose an election

4. Press manual input button

5. Put in the document details of the travel document and submit

6. Start connection

7. Hold travel document to back of phone for a very short time failing the passport connection

8. An error indicating to retry holding the travel document to the phone should be displayed.

31

	Introduction
	Problem definition
	Problem analysis

	Initial Prototype
	OCR
	Blockchain implementation
	Multichain
	Alternatives

	Alternative signing
	Block ciphers modes of operation

	Coupling android app and passport

	Clickable + Technical Demo
	User experience design
	App Permissions
	Connecting to the blockchain
	JSON RPC
	Light wallet
	Full wallet
	Hybrid
	Choice

	Refactor MultiChain
	Permission analysis
	Blockchain parameters
	Permissions
	Blocks

	Testing MultiChain
	Testing NFC related methods (passportconnection)
	Testing and improving OCR

	Full prototype
	Sprint 4
	Conclusions
	Requirements
	Blockchain
	Must Have
	Should Have
	Could Have

	Voting station app
	Must Have
	Should Have
	Could Have

	Voter app
	Must Have
	Should Have
	Could Have
	Won't Have

	UX
	Polling station app - iteration I

	Parameters
	Testplan
	Passport connection
	Bad BAC Key
	Bad NFC connection

