
Portable Trust:
Blockchain identities and biometric-based authentication

Julian Faber1, Lucio Guerchi1, Joren Hammudoglu1, Shashank Rao1, Johannes Rauhamaa1,
Ioannis Petros Samiotis1, Jamey Sparreboom1

Abstract— In today’s world, security and safety is
in high demand. In this project we implemented a
safe biometric-based authentication through Android
systems’ cameras. The users use the camera of their
phone to acquire their fingerprint, the image is then
processed and the appropriate features are been
extracted. These features are then being used for
matching and authenticated the user.

This research is conducted in the context of the
”Hacking Lab Applied security analysis” course,
given at Delft University of Technology.

I. INTRODUCTION
Contracts, transactions, and the records of them

are among the defining structures in our economic,
legal, and political systems. They protect assets
and set organisational boundaries. They establish
and verify identities and chronicle events[?].

We created a strong biometric-based identifica-
tion and authentication primitive to build trust and
make trust portable.

First we propose an architecture to store identi-
ties in a tamper-proof manner using append-only
data structures, now dubbed the blockchain. Sec-
ond, we implemented an open source identification
and authentication tool using fingerprint matching.
Third, we specifically crafted our technology to be
fully permissionless, at all levels in our architecture
we do not require permission of organisations,
governments, or appointed holders of records to
create trustworthy identifiers.

We addressed the problem of creating trust with
a minimal amount of infrastructure, zero institu-
tional embedding and lack of preexisting trust.
On the technical side we used existing encryp-
tion libraries, solid open source image processing
frameworks, and robust fingerprint minutiae key
point matching.

For our portable biometric-based trust, we im-
plemented a fingerprint identification system for
Android smartphones. The main reasons for using
fingerprints as our biometric-based trust is the abil-
ity to implement it using a smartphone’s camera (a

1Faculty of Electrical Engineering, Mathematics and Com-
puter Science, Delft University of Technology, 2600 AA Delft,
The Netherlands

feature that the majority of phones have nowadays)
and the vast preexisting research that has been
conducted on the subject. Lastly, fingerprints are
a unique biometric information for humans and it
is being widely used for identification. The reason
we wanted to use the smartphone’s camera for
acquiring fingerprints was that not all Android
smartphones are equipped with fingerprint scan-
ners and the fingerprint data from these scanners
can only be used for authenticating the phone’s
user and not share the data with the phone’s appli-
cations. Finally, our architecture is permission-less
and open source, by using the smartphone camera
we remove the need to ask the fingerprint scanner
manufacturer for approval.

II. RELATED WORK

In this section we analyze a selection of projects
and algorithms that are related to our implemen-
tation. This gives us the opportunity to present
our main references and explain the differences
that our application has compared to them. The
selection of the related work was based on how
close they are to our implementation and on their
popularity in the community of fingerprint extrac-
tion and identification.

A. Fingerprint Matching on Android using
OpenCV

This resource [3] is found in OpenCV forums,
in the ”Answers” section, where the process of
fingerprint matching in Android is presented by
a user. The explanation is extensive and each step
is described in detail. We used this reference as
an example of fingerprint extraction and matching
technique to study the process that needed to be
implemented in our application.

The suggested process can be summarized as
follows:

• Fingerprint acquisition through camera
• Quality determination of image
• Image preprocessing and extraction of skele-

ton map
• Feature extraction



• Fingerprint search and match

This algorithm is the basis of our application’s
processes (explained in IV) and it was altered to
reflect the needs of our project in security and
robustness.

Based on the time frame available for the appli-
cation’s implementation, we made the decision to
follow parts of the image processing but apply a
different algorithm for feature extraction.

B. RxFinger Print

Rxfingerprint [1] project’s objective is to secure
users information via fingerprint authentication
using Android Fingerprints API [2]. Since this
project is based on Android’s Fingerprint API,
it essentially uses different techniques for feature
extraction. Nevertheless, the encryption-decryption
practices used here though, were used as a study
on fingerprint authentication in Android devices.

C. Fingerprint Recognition

In this GitHub project, part of Advanced Com-
puter Vision’ subject, MSc Artificial Intelligence
of the University of Southampton [13]. Using
OpenCv [14] libraries for Android OS; feature
extraction is accomplished using a Gabor filter
[6], ridge orientation and SIFT [4], and feature
matching using SIFT [4] and RANSAC [5].

Our image processing pipeline is based on the
one described by this project:

• Raw Image
• Grayscale
• Masking
• Histogram equalization

with different stage implementations such as the
use of Oriented FAST and Rotated BRIEF (ORB)
instead of SIFT.

III. ALGORITHM & IMPLEMENTATION
OF FINGERBLOX

The FingerBlox is a system for fingerprint au-
thentication through the integrated camera in An-
droid devices. It is divided into 3 major compo-
nents: fingerprint acquisition, the image processing
pipeline, and fingerprint matching. We further ex-
plain each step in the following subsections and we
provide an overview of the application’s pipeline
in the end of the section. UI demonstration of each
step can be found in Figure ??.

A. Image acquisition

As explained in Introduction, in FingerBlox
implementation we wanted to make use of the
Android camera for fingerprint acquisition. This
helps the application to be more easily available
to users with smartphones not equipped with fin-
gerprint scanners. Also, extracting fingerprint data
from integrated fingerprint sensors is either made a
difficult process or totally impossible deliberately
by the phone’s company for security reasons, thus
making the fingerprint acquisition through camera
the ideal option.

The image acquisition process is as follows: the
user opens the application and he is prompted to
take a picture of his fingerprint inside the elliptic
area. The elliptic area is being used as a mask for
the cropping step later, in the image processing
step. The application then makes use of the built-in
camera functionality to take a picture of the finger
placed inside the area. If the application doesn’t
detect skin in the area, then the picture cannot be
captured. Once the picture is taken, the captured
image is processed to extract features from the
user’s fingerprint.

B. Image processing pipeline

The implemented image pipeline has an ordered
sequence of processing stages using OpenCV [14].
Starting with skin detection using HSV (hue, sat-
uration, and value (brightness)) color space ap-
proach [7], the first step of this stage is to convert
the RBG image taken with the camera to HSV
color space and apply a human skin color thresh-
old. This is followed by erosion [8] and dilation [8]
morphological operations to isolate the fingerprint
from the rest of the image. As final step of this
stage a Gaussian blur linear filter is applied to
reduce noise.

The second stage converts the image color to
gray-scale for histogram equalization, also the im-
age can be processed more easily by the hardware
due to less information on each pixel.

In the third stage, the image is elliptically
cropped using a skin detection mask to isolate
the fingerprint from the rest of the image. After
this point further stages focus on enhancing and
extraction of fingerprint minutiae features.

In the fourth stage Histogram equalization is
performed as contrast enhancement to distinguish
ridges (darker curves) valleys (brighter curves) as
explained by Gao, Q. et al.[10].

For the fifth stage skeletonization is used to pro-
duce a lightweight representation of the fingerprint.



During the sixth stage thinning is achieved using
the Zhang-Suen algorithm [11] to reduce the width
of the ridges to one pixel.

In the seventh stage, the minutiae key point
detection algorithm is executed to find ridge end-
ings and bifurcations by iterating over pixels and
classifying image locations in rectangular coordi-
nates(x,y) as ridge endings when the it has one
neighbor pixel and as bifurcations when neighbors
pixel number equals three.

Finally, Oriented FAST and Rotated BRIEF
(ORB) calculate descriptors. ORB was selected
because is two times faster than SIFT as Rublee,
E. et al. [12] demonstrated it, additionally is more
suitable for low-power consumption devices such
as smartphones. Descriptors are stored and used
for matching purposes.

C. Matching

Fingerprint matching is done using the ORB de-
scriptors obtained as described in previous section
and compared with the stored ones. After that step,
a match test is being used to match the fingerprints
and grant access to the user.

D. User Experience

Screenshots: capture, (real-time?) processing
(pipeline), feature extraction, matching perfor-
mance (top10)

IV. EVALUATION

The performance of our system is evaluated
against a small dataset of 20 fingers belonging to
one of the authors. Of these 20 finger images, 10
belong to the same right hand, where 5 are used for
extracting feature points and other 5 for matching.
It is similarly repeated for the left hand.

The reference used for naming the fingers is
shown in figure 1.

Fig. 1: Reference used for naming fingers.

The matching algorithm gives percentage of
matching between two images. This metric is
currently used as a performance measure for the
algorithm. A higher percentage indicates a higher
confidence over that fingerprint matching.

Table I and Table II show the matching per-
centages of Left and Right hand respectively. The
finger labels on the Y-axis represent the images that
have been used for extracting feature points and
the image labels on X-axis are the images against
which they have been tested.

The mean percentage of performance of our
system is the mean of the matching percentages
represented in the diagonal values of the table I
and table II. The mean matching accuracy is 55%.

Since our image processing pipeline was built
to identify real-world finger images, we could
not perform evaluation on available finger images
dataset like NIST. NIST dataset has gray-scale or
binary images which would not be ideal when
implementing our skin detection algorithm. Due to
the limitation of evaluation data, other performance
metrics like precision, recall and F1-scores could
not be measured.

L1 L2 L3 L4 L5
L1 52 3 42 11 5
L2 11 56 26 14 10
L3 7 37 59 42 4
L4 14 17 23 67 9
L5 5 4 8 4 35

TABLE I: Comparison of Matching accuracies
across each finger of Left hand.

R1 R2 R3 R4 R5
R1 67 5 10 10 4
R2 12 54 34 11 6
R3 9 26 55 40 9
R4 6 10 31 58 5
R5 5 8 8 9 46

TABLE II: Comparison of Matching accuracies
across each finger of Right hand.

V. RECOMMENDATIONS FOR FUTURE
WORK

Our project had fingerprint identification as its
main focus from the start. The topic has been
thoroughly researched in the scientific community
and we wanted to apply those findings in a portable
device. As the title suggests though, we would like
to experiment with other biometric data as well
such as vein detection [?] and retina scan [?], all of
which though were out of the scope of this project
mainly because of the given time frame.



In the future, the efficiency of other Machine
Learning techniques could be examined for fin-
gerprint matching. Also the possibility of using
Deep Learning for fingerprint recognition could
be tested, as the use of neural networks in smart-
phones has been tested before and it has proven to
have potential [?].

VI. CONCLUSIONS

ACKNOWLEDGMENT

We would like to thank Johan Pouwelse for his
insights and help that he provided us throughout
the project.

REFERENCES

[1] M. Ramin, ’RxFingerprint’, 2017. [Online]. Available:
https://github.com/Mauin/RxFingerprint. [Accessed: 21-
04-2017].

[2] Android 6.0 API, 2015. [Online]. Available:
https://developer.android.com/about/versions/marshmallow/android-
6.0.html [Accessed: 21-04-2017].

[3] OpenCv Answers’ Forums, 2013. [Online]. Available:
http://answers.opencv.org/question/6364/fingerprint-
matching-in-mobile-devices-android-platform/ .
[Accessed: 21-04-2017]

[4] Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference on
(Vol. 2, pp. 1150-1157). Ieee.

[5] Fischler, M. A., & Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Communi-
cations of the ACM, 24(6), 381-395.

[6] Feichtinger, H. G., & Strohmer, T. (Eds.). (2012). Ga-
bor analysis and algorithms: Theory and applications.
Springer Science & Business Media.

[7] Oliveira, V. A., & Conci, A. (2009). Skin Detection
using HSV color space. In H. Pedrini, & J. Marques de
Carvalho, Workshops of Sibgrapi (pp. 1-2).

[8] Soille, P. (2013). Morphological image analysis: prin-
ciples and applications. Springer Science & Business
Media.

[9] Maio, Dario, and Davide Maltoni. ”Direct gray-scale
minutiae detection in fingerprints.” IEEE transactions on
pattern analysis and machine intelligence 19.1 (1997): 27-
40.

[10] Gao, Q., Forster, P., Mobus, K. R., & Moschytz, G.
S. (2001, May). Fingerprint recognition using CNNS:
Fingerprint preprocessing. In Circuits and Systems, 2001.
ISCAS 2001. The 2001 IEEE International Symposium
on (Vol. 3, pp. 433-436). IEEE.

[11] Zhang, T. Y., & Suen, C. Y. (1984). A fast parallel
algorithm for thinning digital patterns. Communications
of the ACM, 27(3), 236-239.

[12] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G.
(2011, November). ORB: An efficient alternative to SIFT
or SURF. In Computer Vision (ICCV), 2011 IEEE Inter-
national Conference on (pp. 2564-2571). IEEE.

[13] Noureldien Hussein, 2016 [Online]. Available:
https://github.com/noureldien/FingerprintRecognition
[Accessed: 08-03-2017]

[14] OpenCv. 2017. [Online] Available: http://opencv.org/ [Ac-
cessed: 10-03-2017]


