
AsyncMachine

The Definitive Guide

Introduction

Basic topics

States

Everything is a state

State definition

What to consider a "state"

Asynchronous state

Mutating the state

add mutation

drop mutation

set mutation

Machine definition

State Clocks

Checking The Current State

Finite State Machine vs Multi State Machine

Auto states

Multi states

Actions as states

Transitions

Transition handlers

Self transition handler

Defining handlers

Passing params

Transition steps

Calculating the target states

Negotiation Handlers

Final handlers

Abort functions

Exception As A State

Exception During Transition Handlers

Custom exception handler

State relations

add relation

drop relation

require relation

after relation

Advanced topics

Ways To Abort A Transition

Aborting By Requested States

Aborting By Negotiation Handlers

Aborting By An Exception

Aborting By A Pipe

The Target Object

Waiting For States Sets

Pipes ‑ connections between machines

Queue and machine locks

External queues and queue locks

Queue‑based race condition

Delayed mutations

Relation Resolution Process

Logging

Consumer API overview

Promises, callbacks and emitters

Object Oriented APIs

Prototypal Inheritance

TypeScript types generator

Debugging

Logging system

print_exception Flag

Dumping the current state

AsyncMachine Inspector

Terminology

...WORK IN PROGRESS...

Introduction

AsyncMachine is a Relational State Machine .

AsyncMachine is a relational state machine made for declarative flow control. It supports multiple states simultaneously, executes methods

based on a dependency graph and provides an event emitter.

It allows for easy:

state management

parallel tasks

loose coupling

resource allocation / disposal

exception handling

fault tolerance

method cancellation

It supports forming a network of state machines and can also be used as a simple state management library. Gzipped code is 7.5kb.

Basic topics

AsyncMachine is best to be described by simply listing its components and features. Most of them will probably sound familiar.

Components:

states

transitions

relations

clocks

pipes

queues

Features:

synchronous mutations

negotiation

cancellation

automatic states

exception handling

visual inspector / debugger

This guide includes many examples to makes understanding of those concepts as easy as possible. They contain visual representation

where applicable and each of them can be edited and inspected live on Stackblitz. Every method is linked to the API docs and method

signatures are provided using TypeScript definitions. Almost all of the examples make use of the machine factory, which imports have been

omitted for readability purposes. First, assume that every example starts with:

import { machine } from 'asyncmachine'

It's also required to have the npm module installed:

npm install asyncmachine

https://github.com/TobiaszCudnik/asyncmachine-inspector
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

States

Everything is a state

The fundamental idea of AsyncMachine is very simple ‑ everything is a state. A state represents certain abstraction in time. A classic

example of a problem which can be easily solved using the concept of states is an elevator ‑ it can be on one of the floors, it may be going

down or up, it may have pushed buttons or it may stand still. Some of those states can happen simultaneously, others can be mutually

exclusive.

State definition

State definition consists of a name and a JSON‑like structure describing it's properties and relations (more about those later). Here's a

TypeScript interface:

interface IState {
 // relations
 add?: string[]
 drop?: string[]
 require?: string[]
 after?: string[]

 // properties
 auto?: boolean
 multi?: boolean
}

What to consider a "state"

Not all of you app's data should be considered states, as those represent a higher‑level view on what's happening in your program.

States represent a model of your program's input, output and side effects. The fact that certain states are active or not is based on the

processed data and external APIs. In case of the elevator example mentioned above, you probably don't want to make every passenger a

state described by it's name, although it could be useful to have states like Empty , Boarded and Overcapacity .

Asynchronous state

Considering that everything is a state, representing asynchrony can be achieved by creating two separate states ‑ in progress and

complete. For example, when downloading a file, it would be Downloading and Downloaded . Having every meaningful action and event
encapsulated as a state allows us to precisely react on input events. In case of the "download" example, we could've had another states

called ButtonPressed , which triggers the download, but makes a different decision in case the state Downloading is currently active. Same

goes for Downloaded which can behave differently if there has been another Downloading state since the download process began.

Mutating the state

In AsyncMachine, every state mutation is synchronous and executed by a transition (but let's not worry about transitions just yet). This

takes an advantage of the event loop, which also is always synchronous during a single tick. Here are the most basic methods to alter the

state of a machine:

add mutation

Add is the most popular method, as it preserves the currently active states.

class AM {
 add(states: string[] | string, ...params: any[]): boolean | null
}

Example:

const example = machine(['A', 'B', 'C'])
example.is() // -> []
example.add('A')
example.is() // -> ['A']

drop mutation

Drop de‑activates only specified states.

class AM {
 drop(states: string[] | string, ...params: any[]): boolean | null
}

Example:

const example = machine(['A', 'B', 'C'])
example.add(['A', 'B'])
example.is() // -> ['A', 'B']
example.drop('A')
example.is() // -> ['B']

set mutation

Set removes all the currently active states and activates only the passed ones ‑ it could also be called force .

class AM {
 set(states: string[] | string, ...params: any[]): boolean | null
}

Example:

const example = machine(['A', 'B', 'C'])
example.add('A')
example.set('B')
example.is() // -> ['B']

Additionally, mutations aren't nested ‑ one can happen only after the first one finishes. The trick is a tri‑state logic ‑ after you try to

mutate the state of a machine, you can get the following returns:

true ‑ successful

false ‑ rejected

null ‑ queued

You can check prior to mutating if the machine is busy executing another transition by using the duringTransition() method (more about

that in the Locks section).

Machine definition

The simplest way to define an asyncmachine is to provide an object with state names assigned to their state definitions and use the

machine factory, like so:

const state = {
 Wet: { require: ['Water'] },
 Dry: { drop: ['Wet'] },
 Water: { add: ['Wet'], drop: ['Dry'] }
}
const example = machine(state)

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

State names have a predefined naming convention which is CamelCase . Thanks to that they are easily distinguishable from a handler's

suffix, which follows the state's name using snake_case . State names also can't start with a number.

An important thing when defining a machine is to give it an ID using the id(name: string) method. This is optional as a random ID is always

assigned, but helps reading the logs and inspecting the state graph. The id() method is chainable.

Example:

const example = machine(['A'])
// the id() methos is chainable
example.id('example')

State Clocks

Every state has a clock, which increments every time a state changes from being in‑active to active. The purpose of a state clock is to

distinguish different instances of the same state. Like in the "download" example about a button and a download process, the Downloaded
state can check if it has been originated by the current Downloading state. This prevents a common race condition in JavaScript called a

double callback execution.

The API for the clock is as trivial as clock(state: string): number . In most cases the calls to the clock are done by higher order functions,
but being aware of the concept is crucial for understanding of how AsyncMachine works.

Example:

const example = machine(['A', 'B', 'C'])
example.add('A')
example.add('A')
example.clock('A') // -> 1
example.drop('A')
example.add('A')
example.clock('A') // -> 2

Checking The Current State

Synchronous state checks are performed by the is() method. It serves both asserting the state and getting a set of currently active ones.

Consider the following example:

const example = machine(['A', 'B', 'C'])
example.is() // -> []
example.add('A')
example.is() // -> ['A']
example.is('A') // -> true
example.is('B') // -> false
example.is('A', example.clock('A')) // -> true

First four calls are pretty straightforward, while the last one can be harder to understand. What it does is it asserts that the given state is

currently in that specific tick (of it's clock). Usually you'd store the clock beforehand and check it later in the execution (eg in a callback), like

so:

// TODO clock example

The opposite of is() is not() , which returns true in case of all of the passed states aren't active. Example:

const example = machine(['A', 'B', 'C', 'D'])
example.add(['A', 'B'])

// not(A) and not(C)
example.not(['A', 'C']) // -> false
// not(C) and not(D)
example.not(['C', 'D']) // -> true

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

Another way to check the current state is the any() methods, which is a composition of is() ‑like calls and doesn't support the clock
value.

const example = machine(['A', 'B', 'C'])
example.add(['A', 'B'])

// A or C
example.any('A', 'C') // -> true
// (A and C) or C
example.any(['A', 'C'], 'C') // -> false

Finite State Machine vs Multi State Machine

Pretty much everyone is more‑or‑less familiar with the idea of a Finite State Machine (FSM), either from college, books or the internet. It's

one of the most basic and powerful tools in Computer Science. AsyncMachine isn't one of those. It can have many simultaneously active

states and during a mutation it triggers more than one transition (a handler in this case). That makes it fall into the category of non‑

deterministic state machines and comparisons to FSM will not make it easier to understand the presented concepts.

Auto states

Automatic (auto) states are one of the most powerful concepts of AsyncMachine. Those are simply the states which after every

mutation will try to activate themselves, considering their dependencies are met. In a more technical description ‑ after every transition,

there can be another transition consisting of auto states only. If at least one of them gets accepted ‑ the machine mutates again. Mentioned

transition is prepended to the queue, that means it happens immediately after each mutation instead of being queued like manual mutations.

Multi states

Multi‑state describes a state which can be activated many times, without being de‑activated in the meantime. It always trigger enter and

state transition handlers, plus the clock is always incremented. It's useful for describing many instances of the same event (eg network

input) without having to define more than one transition handler. Additionally, the incremented clock allows you to manually synchronize

callback results. Exception is a good example of a multi state.

Actions as states

A state usually describes something more "persistent" then an action, eg Click is an action while Downloaded is a real state. Those are of

course very common and still can be represented in AsyncMachine. All that's needed is a self drop at the end of the final transition handler.

Example:

const example = machine(['Click'])
example.Click_state = function() {
 this.drop('Click')
}

In this way the state of a machine stays integral and you can reference the action using state relations.

Transitions

Transition performs a synchronous mutation of machine's active states to a different subset of possible states. Eg machine with states

['A', 'B', 'C'] can have state mutated from ['A'] to ['A', 'B'] . Each transition has several steps and (optionally) calls several
handlers. Exception to this rule are self transition handlers and multi states, which trigger a self transition handlers for a mutation request

to an already active state. // TODO wrong

Transition handlers

Each state can define five state handlers (enter , exit , state , end and self) and many transitional handlers (eg A_B) used when
transitioning to or from other states.

List of handlers during a transition between ['A'] -> ['B'] , in the order of execution:

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

A_exit ‑ negotiation handler

A_B ‑ negotiation handler

A_any ‑ negotiation handler

any_B ‑ negotiation handler

B_enter ‑ negotiation handler

A_end ‑ final handler

B_state ‑ final handler

This list will be a little bit different for multi states and self transitions.

Self transition handler

Purpose of self transiton handlers is to be able to react to a mutation which has the same state before and after the mutation.

List of handlers during a transition between ['A'] -> ['A', 'B'] , in the order of execution:

any_B ‑ negotiation handler

B_enter ‑ negotiation handler

A_self ‑ final handler and a self handler

B_state ‑ final handler

Defining handlers

Transition handlers can be defined in two ways:

As an object method ‑ on the machine itself, or on the target object

As an event listener

Example of both declaration types for A_enter negotiation transition handler:

const example = machine(['A', 'B'])
// method handler
example.A_enter = function() {
 // handler's logic
}
// listener handler
example.on('A_enter', function() {
 // handler's logic
})

It's important to note, that when binding a listener using the event emitter API it can be executed immediately for:

A_enter and A_state when the state A is currently active

A_exit and A_end when the state A is currently in‑active

Example:

const example = machine(['A'])
example.add(['A'])
example.on('A_enter', function() {
 console.log('executed')
})
// will print 'executed'

Passing params

When you pass parameters to one of the mutation methods you can also provide additional parameters, besides the names of the requested

states. Those parameters will be passed only to the requested states and not to all of the target states. Example:

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

const example = machine({
 A: { add: ['B'] },
 B: {}
})
// method handler
example.A_state = function(param) {
 console.log('A', param)
}
example.B_state = function(param) {
 console.log('B', param)
}
example.add('A', 'param')
// prints:
// "A", "param"
// "B", undefined

Transition steps

There's six steps to a transition:

1. Lock checks ‑ this includes the queue lock and the machine lock. See the Queues section for more info.

2. Relations resolution ‑ computing the active states for the machine after the transition is over (target states).

3. Negotiation handlers ‑ methods called for each of the states which are about to be activated or de‑activated. Every of which can say NO

in which case the transition is aborted.

4. Set the target states as active

5. Final handlers ‑ methods called for each of the states which are about to be activated or de‑activated. They do the actual work ‑

allocate and dispose resources, call APIs, etc.

6. Release the machine lock.

Calculating the target states

Requested states combined with active states and the resolved relations result in target states of a transition. This phase is abortable ‑ if

any of the requested states gets rejected, the transition is aborted. The only exception to this rule are auto states, which can be accepted

independently.

Target states can be accessed using the instance.to() method or instance.is() , depending on the current step of the transition.

const example = machine({
 A: { add: ['B'] },
 B: {}
})
example.A_enter = function() {
 this.is() // -> []
 // this returns target states
 this.to() // -> ['A', 'B']
}
// 'A' is a requested state here
example.add('A')

Negotiation Handlers

Negotiation handlers (_enter and _exit) get called as the third transition step of transition for every state which is going to be activated
or de‑activated. They are allowed to abort the current transition by returning false . Negotiation handlers shouldn't be async , as their
return has to be boolean .

Target states can be accessed using the instance.to() method, while this.is() still returns the base states (before the mutation).

const example = machine(['A'])
example.A_enter = function() {
 return false
}

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

example.add('A') //-> false
example.is() // -> []

Final handlers

Final handlers (_state and _end) get called as the fifth transition step. Their purpose is to allocate and dispose resources, call APIs, and

perform other actions with side effects.

Just like negotiation handlers, they get called for every target state for every state which is going to be activated or de‑activated. Final

handlers can be async and control the flow cancellation by using abort functions.

Target states can be accessed using the this.is() method, while this.from() returns the base states (before the mutation).

const example = machine({
 A: { add: ['B'] },
 B: {}
})
example.A_enter = function() {
 return false
}
example.add('A')

Abort functions

Because of the way the event loop works theres only two ways to cancel a rinning function / method:

1. Control‑flow based (return or conditional statements)

2. Generators

AsyncMachine makes the control‑flow based cancellation fairly easy to use by laveraging a combination of states and their clocks. It

exposes the getAbort() method which then returns a function. Calls to the returned function tell you if you should abort the execution or

not. getAbort() should be called inside of final handlers and can be nested. In case of nesting, inner abort functions influence the outer

ones (in other words they "bubble").

Signature:

class AM {
 getAbort(states: string[], abort?: () => boolean): () => boolean
}

Example:

import delay from 'delay'
const example = machine(['A'])
// define a handler (won't be executed till later)
example.A_state = async function() {
 // you have to pass the state names explicitly
 const abort = this.getAbort(['A'])
 // wait for 2 seconds
 await delay(2000)
 // at this point `abort()` returns true, because
 // ...the state's A clock changed from 1 to 2
 if (abort()) return
 // this line will never get executed
}
// `add` the state A and then `drop` and `add` it again after a second
example.add('A')
setTimout(function() {
 example.drop('A')
 example.add('A')
}, 1000)

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

// TODO example of nested abort functions

Exception As A State

Considering that everything (meaningful) is a state, so should be the fact that an exception was thrown. Every machine has a predefined

exception handler, which is the only predefined state.

Signature of the Exception_state handler:

class AM {
 Exception_state(
 err: Error | TransitionException,
 // eg ['A', 'B']
 target_states: string[],
 // eg ['A']
 base_states: string[],
 // eg 'A_enter'
 exception_src_handler: string,
 // eg ['B']
 async_target_states?: string[]
)
}

// TODO explain why the exception is cought re-thrown on the next tick

Exception During Transition Handlers

Exceptions in AsyncMachine don't stop your machine from running. Instead, they add the Exception state and pass as much information to

it as possible, allowing you to act accordingly. Exception and it's Exception_state handler are the only predefined state and a handler in

the base AsyncMachine class.

Exception thrown in a negotiation handler:

1. Aborts the whole transition.

2. State of the machine stays untouched.

3. Add mutation to the Exception state is prepended to the queue.

Exception thrown in a synchronous final handler:

1. Transition is during the fourth step, so the machine's state has already been replaced with the target states.

2. Not all of the final handlers have been fully executed and the states from non‑executed handlers are removed from active states.

3. Add mutation to the Exception state is prepended to the queue and the integrity should be manually restored.

Exception thrown in an async final handler:

1. Transition is already finished, as async methods are executed on the next tick, so the machine's state has already been replaced with the

target states.

2. All of the final handlers have finished or returned their Promise s, but it's not possible to determine if any of those are still pending.

3. Add mutation to the Exception state is prepended to the queue to perform the proper action.

Example:

const example = machine(['A'])
example.A_enter = function() {
 throw new Error()
}
example.add('A') // -> false
example.is() // -> ['Exception']

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

// TODO exception during a negotiation handler // TODO exception during a final handler // TODO exception during a delayed
mutation

Custom exception handler

// TODO definition // TODO example // TODO exception during an exception handler // TODO move to advanced topics

State relations

There's several types of possible relations between states. Their meaning is very simple, but the mechanism behind resolving final states of a

mutation is quite complex. Let's look again at the state definition:

interface IState {
 // relations
 add?: string[]
 drop?: string[]
 require?: string[]
 after?: string[]

 // properties
 auto?: boolean
 multi?: boolean
}

add relation

The add relation (sometime called "implied") tries to activate the listed states along with itself. Their activation is optional, meaning if any of

those won't get accepted, the transition will still go through.

const example = machine({
 A: { add: ['B'] },
 B: {}
})
example.add(['A']) // -> true
example.is() // -> ['A', 'B']

drop relation

The drop relation prevents from activating or de‑activates the listed states. If some of the requested states drop other requested states or

some of the active states drop some of the requested states, the transition will be rejected.

Example of an accepted transition involving a drop relation:

const example = machine({
 A: {},
 B: { drop: ['A'] }
})
example.add(['A']) // -> true
example.add(['B']) // -> true
example.is() // -> ['B']

Example of a rejected transition involving a drop relation ‑ some of the requested states drop other requested states.

const example = machine({
 A: {},
 B: { drop: ['A'] }
})
example.add(['A', 'B']) // -> false
example.is() // -> []

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

Example of a rejected transition involving a drop relation ‑ some of the active states drop some of the requested states.

const example = machine({
 A: {},
 B: { drop: ['A'] }
})
example.add('B') // -> true
example.add('A') // -> false
example.is() // -> ['B']

require relation

The require relation describes the states required for this one to be activated.

Example of an accepted transition involving a require relation:

const example = machine({
 A: {},
 B: { require: ['A'] }
})
example.add(['A']) // -> true
example.add(['B']) // -> true
example.is() // -> ['A', 'B']

Example of a rejected transition involving a require relation:

const example = machine({
 A: {},
 B: { require: ['A'] }
})
example.add(['B']) // -> false
example.is() // -> []

after relation

The after relation decides about the order of the transition handlers. Handlers from the defined state will be executed after the handlers

from the listed states.

const example = machine({
 A: { after: ['B'] },
 B: {}
})
example.A_state = function() {
 console.log('A')
}
example.B_state = function() {
 console.log('B')
}
example.add(['A', 'B']) // prints 'B', then 'A'

Advanced topics

Now once you have the basic understanding of the way AsyncMachine works we can dive deeper into more advanced subjects. Those are

mostly extensions of the things already discussed.

Ways To Abort A Transition

In the previous chapter we discussed the easiest way to abort a transition ‑ negotiation handlers. They are not the only ones though, so lets

look at the other ways, each with a working example.

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

Aborting By Requested States

All the requested states of a mutation have to be accepted, which means not drop ped by any of active of about‑to‑be‑active states.
There's some ceaviot exceptions from that rule discussed in the Relations Resolution Process section.

const example = machine({
 A: { drop: ['B'] },
 B: {}
})
example.add('A') // -> true
example.add('B') // -> false
example.is() // -> ['A']

In the second mutation state B wasn't accepted, because the currently active state A have a drop relation with it. B being an explicitly

requested state and a non‑accepted one, aborted the transition (the return of the add method was false).

An edge case are auto states, which are always requested in a group, but only one need to be accepted to make a transition pass the

requested states requirement.

Aborting By Negotiation Handlers

As already shown in the Negotiation Handlers section you can easily abort any transition by returning false from either the _enter or

_exit handlers (to abort a drop mutation). What's worth noticing is that any of the target states can abort a transition this way, not only

handlers belonging to the requsted states.

const example = machine({
 A: { add: ['B'] },
 B: {}
})
example.B_enter = function() {
 return false
}
example.add(['A']) //-> false
example.is() // -> []

The transition to A, B was rejected by the B_enter negotiation handler, thus the machine's state wasn't mutated. It didn't matter that B
state wasn't explicitly requested, as negotiation handlers are triggered for every state which is going to be activated or de‑activated.

Aborting By An Exception

Another possibility to have a transition aborted is when an exception happens during:

negotiation handlers

synchronous final handlers (async ones happen after the transition ends)

const example = machine(['A'])
example.A_enter = function() {
 throw new Error()
}
example.add('A') //-> false
example.is() // -> ['Exception']

Refer to the Exception During Transition Handlers section for more details and examples.

Aborting By A Pipe

// TODO

The Target Object

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

Defining methods on every new instance (like in all of the examples here) is usually not the best idea, but worry not, theres better ways. One

of them is the target object and others are discussed in the Object Oriented APIs section.

The setTarget() method simply redirects the transition handler calls to an outside object. You can define and instantiete that object in

whatever way works for you, so thats the most flexible solution.

Example:

class Target {
 A_state() {
 console.log('A_state')
 }
}
const example = machine(['A'])
const target = new Target()
example.setTarget(target)
example.add('A') // prints 'A_state'

In the above example the A_state method is defined on the Target 's prototype and thus doesn't get duplicated with every instance.
Calling super methods also works well with this solution, although you have to keep in mind that the default Exception_state handler is

defined on the machine's prototype. Refer to the Exception Handling section for more details.

Waiting For States Sets

While waiting for one specific state is easy by using the event emitter API, waiting for a set of active states isn't that trivial. That's why

AsyncMachine provides two async methods making it fairly easy:

when(states: string[]): Promise<void>

whenNot(states: string[]): Promise<void>

when returns when all of the given states are set, while whenNot works the opposite ‑ returns when all of the given states aren't set.

Remember that it's an async function, and waiting for it is equivalent of event emitter's once() method, not on() , which means the code
after await will be executed only once.

Example:

const example = machine(['A', 'B'])
async function waitTest() {
 await example.when(['A', 'B'])
 console.log('ok')
}
waitTest()
example.add('A')
example.add('B') // prints 'ok'
example.is() // -> ['A', 'B']

// TODO will change in the newer versions

Pipes ‑ connections between machines

Modeling complex systems using one machine only is practically impossible. Just like relations, pipes between machines are supported on

the engine level. You can achieve similar functionality by defining event emitter handlers using delayed mutations, but the built in solution

provides some additional features.

// TODO - list the features

Piping API looks like the following:

pipe(states?: (TStates | BaseStates) | (TStates | BaseStates)[], machine?: AsyncMachine, flags?: PipeFlags)

pipeAll(machine: AsyncMachine, flags?: PipeFlags)

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

pipeRemove(state: string, machine: AsyncMachine, target_state?: string, flags?: PipeFlags)

Example:

const m1 = machine(['A'])
const m2 = machine(['A'])
m1.pipe('A', m2)
m1.add('A')
m2.is() // -> ['A']

The default piping behavior:

piped state in the target machine reflects the same state in the source machine

the mutation is not negotiable ‑ this means the target machine can reject the state while the source machine still accepts it

mutation is scheduled on the target machine's queue (more on that in the Queues section)

You can modify the default behavior by passing PipeFlags , which are implemented as a binary enum.

export enum PipeFlags {
 NEGOTIATION = 1,
 INVERT = 1 << 2,
 LOCAL_QUEUE = 1 << 3,
 FINAL = 1 << 4,
 NEGOTIATION_ENTER = 1 << 5,
 NEGOTIATION_EXIT = 1 << 6,
 FINAL_ENTER = 1 << 7,
 FINAL_EXIT = 1 << 8
}

They can be freely mixed with some limitations ‑ eg NEGOTIATION doesn't go with FINAL , although NEGOTIATION_ENTER can be mixed with

FINAL_EXIT .

Example combinations which are OK:

const f = PipeFlags
const example1 = f.NEGOTIATION & f.LOCAL_QUEUE
const example2 = f.NEGOTIATION_ENTER & f.FINAL_EXIT & f.LOCAL_QUEUE
const example3 = f.FINAL_ENTER & f.NEGOTIATION_EXIT & f.INVERT

Piping, similarly to event emitter listeners is executed right away in case the piped state is active (or in‑active in case of INVERT).

Example of negotiable piping and a different name (when m1.A then m2.B):

import { PipeFlags } from 'asyncmachine'
const m1 = machine(['A', 'B', 'C'])
const m2 = machine(['A', 'B', 'C'])
m2.A_enter = function() {
 return false
}
m1.pipe('A', m2, 'B', PipeFlags.NEGOTIATION)
m1.add('A')
m2.is('B') // -> false

Example of non‑negotiable inverted piping and a different name (when m1.A then no m2.Z):

import { PipeFlags } from 'asyncmachine'
const m1 = machine(['A'])
const m2 = machine(['Z'])
m1.add('A')
m1.pipe('A', m2, 'Z', PipeFlags.INVERT)
m2.is() // -> ['Z']

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

Example of piping on the source's machine queue:

// TODO example

You can pipe all of the machine's states using the pipeAll() . The Exception state is always excluded (you can pipe it manually though).

// TODO example

Queue and machine locks

Once you have more than one machine and let them talk to each other you can hit a new problem ‑ the order of transitions across the them.

Lets consider the following example:

1. machine 1 is during a transition

2. machine 1 tries to mutate machine 2

3. machine 2 starts a transition

4. machine 2 tries to mutate machine 1

What happens now is that machine 1 can't take make a synchronous mutation, because it's machine lock is active. Instead, the mutation

gets queued into it's local queue and will be executed once the transition from the first step (and possibly other queued ones) finishes,

after which the mutation from the point four will be executed. When you try to mutate a locked machine, the mutation method will return

null . You can check if a machine is currently locked using the duringTransition() method.

Example / live demo

const m1 = machine(['A', 'B']).id('m1')
const m2 = machine(['Z', 'Y']).id('m2')
m1.A_state = function() {
 m2.add('Z')
}
m2.Z_state = function() {
 m1.add('B')
}
m1.add('A')

Log:

[add] A
[states] +A
[transition] A_state
[add] Z
[states] +Z
[transition] Z_state
[queue:add] B
[add] B
[states] +B

External queues and queue locks

Besides machine locks, there're also queue locks. The purpose of those come from a very handy feature which is scheduling a mutation of

a machine on another machine's queue. Every mutation method can be scheduled on an external queue by passing the external

machine as the first param:

Example:

const m1 = machine(['A'])
const m2 = machine(['Z'])
// activate 'A' in m1 using the m2's queue
m2.add(m1, 'A')
m1.is() // -> ['A']

https://stackblitz.com/edit/asyncmachine-queues?file=index.ts

Queue‑based race condition

Even though AsyncMachine prevents race conditions by using queues, you can still lock it in the following scenario:

1. machine 1 is during a transition

2. machine 2 tries to mutate machine 1 using it's own queue

3. mutation from machine 2 get's cancelled

Example / live demo

// define transitions
const m1 = machine(['A', 'B']).id('m1')
const m2 = machine(['Z', 'Y']).id('m2')
m1.A_state = function() {
 m2.add(m1, 'B')
}
// make changes
m1.add('A')

This type of race condition should be fixed in the next version of AsyncMachine.

Delayed mutations

All the mutations we talked about so far are immediate, which means they'll happen right away and return the result. In many cases you'd

like to perform a mutation in:

Listeners

const example = machine(['Clicked'])
example.Clicked_state = function(event) {
 console.log('clicked')
}
document.addEventListener('click', example.addByListener('Clicked'))
document.dispatchEvent(new Event('click'))
// prints 'clicked'

// TODO explain how to properly catch erros from emitters

Callbacks (the error param is handled automatically)

import * as fs from 'fs'
const example = machine(['FileRead'])
// notice the lack of the `err` param
example.FileRead_state = function(data) {
 console.log('content', data)
}
fs.readFile('foo', example.addByCallback('FileRead'))
// prints 'content', ...

The next tick

const example = machine(['A'])
example.A_state = function() {
 console.log('A')
}
console.log('before')
// equals to setTimeout(example.addByListener('A'), 0)
example.addNext('A')
console.log('after')
// prints 'before', 'after', 'A'

In case of listeners and callbacks, the params passed to them are appended to the transition handler's params. The node‑style callbacks

have the error param removed and passed automatically to the Exception state. Every type of mutation provides helper methods for those

use cases, while still being compatible with external queues (which overloads the first param).

https://stackblitz.com/edit/asyncmachine-queues-race-condition?file=index.ts
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

Delayed add mutation methods

class AM {
 addByListener(
 states: string[] | string,
 ...params: any[]
): (...params: any[]) => void
 addByCallback(
 states: string[] | string,
 ...params: any[]
): (err?: any, ...params: any[]) => void
 addNext(states: string[] | string, ...params: any[]): number
}

Delayed drop mutation methods

class AM {
 dropByListener(
 states: string[] | string,
 ...params: any[]
): (...params: any[]) => void
 dropByCallback(
 states: string[] | string,
 ...params: any[]
): (err?: any, ...params: any[]) => void
 dropNext(states: string[] | string, ...params: any[]): number
}

Delayed set mutation methods

class AM {
 setByListener(
 states: string[] | string,
 ...params: any[]
): (...params: any[]) => void
 setByCallback(
 states: string[] | string,
 ...params: any[]
): (err?: any, ...params: any[]) => void
 setNext(states: string[] | string, ...params: any[]): number
}

Relation Resolution Process

During relations resolution the engine makes decision which states will become the target states of a transition.

Some common patterns and those to consider:

Cross blocking

When two states are mutually exclusive (eg they represent an async action and the done state), they set the drop relation against each

other:

const example = machine({
 A: { drop: ['B'] },
 B: { drop: ['A'] }
})
example.add('A')
example.add('B')
example.is() // -> 'B'
example.add('A')
example.is() // -> 'A'

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

Implied and blocked by a dropped one

Lets assume the following situation ‑ two states drop each other and one of them has an add relation with a third state, although the other

one blocks the third state. In that case the add state will still be activated along with the one who's adding it, BUT the lookup will be limited

only to adjacent (directly related) states.

Example using Wet , Dry and Water (live version)

const example = machine({
 Wet: { require: ['Water'] },
 Dry: { drop: ['Wet'] },
 Water: { add: ['Wet'], drop: ['Dry'] }
})
example.add('A')
example.add('B')
example.is() // -> 'B'
example.add('A')
example.is() // -> 'A'

Log:

[add] Dry
[states] +Dry
[add] Water
[drop] Dry by Water
[add:implied] Wet
[states] +Wet +Water -Dry

In the next version of AsyncMachine this behavior should be extended to a deeper lookup.

Logging

The simplest way to inspect whats happening when changing the state of a machine is to turn on it's logging. Log entries include the order of

events, called handlers, rejected transitions source of target, but not requested states and pretty much everything else. You can also push

your own messages to assert the proper time of events.

There's three level of logging:

1. Elementary state changes and important messages

2. Detailed relation resolution, called handlers, queued and rejected mutations

3. Verbose message like postponed mutations, pipe bindings, auto states

4. All the possible handlers

Example:

// LOG_LEVEL can be 1|2|3
const LOG_LEVEL = 1
const example = machine({
 A: {},
 B: { auto: true }
})
// logLevel() method is chainable
example.logLevel(LOG_LEVEL).id('example')
// register a handler for state A
example.A_state = function() {}
// register a rejecting handler for B's negotiation handler
example.B_enter = function() {
 return false
}
example.add('A')

Log level 1

https://stackblitz.com/edit/asyncmachine-example

[example] [states] +A

Log level 2

[example] [add] A
[example] [states] +A
[example] [transition] A_state
[example] [transition] B_enter
[example] [cancelled] B, A by the method B_enter

Log level 3

[example] [add] A
[example] [states] +A
[example] [transition] A_state
[example] [add:auto] state B
[example] [transition] B_enter
[example] [cancelled] B, A by the method B_enter

// TODO Log level 4

Consumer API overview

Promises, callbacks and emitters

AsyncMachine tries to support all the possible API patterns present in JavaScript like Promises, node callback, event emitter listeners. Below

a list of where each of those is present:

Promises

Promises are present in final transition handlers (in form of async methods) and indirectly in most of the delay mutation methods, which

after getting called expose a corresponding Promise object as the instance.last_promise attribute.

Delayed mutation methods who create a promise:

...ByCallback

...ByListener

Example:

import * as fs from 'fs'
const example = machine(['FileRead'])
fs.readFile('foo', example.addByCallback('FileRead'))
example.last_promise.then(data => {
 console.log('content', data)
})
// prints 'content', ...

Callbacks (node‑style)

Difference between node‑style callbacks and event emitter listeners is the way they handle errors. Common callback looks like

function(err, data) { /* ... */ } and the whole node's standard library uses this pattern. AsyncMachine supports it too and

automatically handles the error param, passing it as an exception mutation (in case of an error).

import * as fs from 'fs'
const example = machine(['FileRead'])
// notice the lack of the `err` param
example.FileRead_state = function(data) {
 console.log('content', data)
}

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

fs.readFile('foo', example.addByCallback('FileRead'))
// prints 'content', ...

Event emitter listeners

Event emitter listeners are supported for delayed mutations in the same way as node‑style callbacks. You want to use them to work with the

DOM API and libraries exposing event emitters.

Event emitter API

Besides supporting event emitters as a mutation input, AsyncMachine exposes it's own event using the underlying emitter. Important

difference between a standard one and the one used here is cancellation ‑ once a listener returns false , the event propagation stops. It's
used mostly by the negotiation transition handlers. The list of all events emitted by an instance of AsyncMachine can be found in the API

docs along with the event emitter API.

You probably won't have to work with them, but the most noticeable one is tick , which fires every time the machine's state changes, which
is usefull with eg performing repaints.

Example:

// define transitions
const example = machine(['A', 'B'])
example.add('A')
example.once('tick', (states_before: string[]) => {
 console.log(states_before)
})
example.add('B') // prints '["A"]'

Object Oriented APIs

All of the examples here use the machine factory, as it's the shortest way to compose a working machine. This factory is just a facade to the

main AsyncMachine class (API docs) which you can easily subclass.

While using the OOP interface you have to do the state registration manually. More than that, when using TypeScript, you have to register

them for every subclass because of the way attributes get initialized after the TS ‑> JS transpilation.

If all of the defined properties are states, then you can you the registerAll() method, but if you mix it with other data, you have to

manually specify state names.

Example:

import AsyncMachine from 'asyncmachine'
class Machine extends AsyncMachine {
 A: {}
 B: {}

 constructor() {
 super()
 this.states_all // -> []

 this.registerAll()
 // ...or...
 this.register('A', 'B')

 this.states_all // -> ['A', 'B']
 this.add('A') // -> true
 this.is() // -> ['A']
 }
}

Prototypal Inheritance

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html
https://tobiaszcudnik.github.io/asyncmachine/api/interfaces/iemit.html
https://tobiaszcudnik.github.io/asyncmachine/api/classes/eventemitter.html
https://tobiaszcudnik.github.io/asyncmachine/api/classes/asyncmachine.html

Defining listeners on every instance is wasteful and defining classes can be to expresive for some, that's why AsyncMachine provides

prototypal inheritance API. This way of inheritance can not only simulate classic OOP class model, but also dynamically assign prototypes

to objects. The latter solution will be used here, but first let's illustrate a simple example using plain JS:

const a = { x: 1, y: 1 }
const b = Object.create(a)
b.x = 2
console.log(b.x, b.y) // prints '1 2'
console.log(a.x, a.y) // prints '1 1'

What happened above, is that the variable b inherited all the properties from variable a , but every new assignment made on b won't

propagate to a . That's exactly the way prototypal children work in AsyncMachine. Consider the following example:

const parent = machine(['A', 'B'])
parent.B_enter = function() {
 console.log('foo')
}
parent.add('A') // -> true
const child = parent.createChild()
child.is() // -> []
child.add('A') // -> true
child.add('B') // prints 'foo'
child.is() // -> ['A', 'B']
parent.is() // -> ['A']

Prototypal children inherit:

transition handlers

registered states

class methods

log handlers

The following get reset:

active states

state clocks

queue

machine lock

queue lock

event listeners

pipes

TypeScript types generator

AsyncMachine is written in TypeScript as aims to provide full auto‑completion while developing your own machines. This includes the states

you define and the whole event emitter interface (including transition handler events). There's a dedicated tool for this called am-types
which ships with the npm module.

$ am-types --help

 Usage: am-types <filename> [options]

 Options:

 -o, --output [output] save the result to a file, default `./<filename>-types.ts`
 -e, --export <name> use the following export
 -V, --version output the version number
 -h, --help output usage information

 Examples:

 $ am-types file.js
 $ am-types file.json
 $ am-types file.js -s
 $ am-types file.js -s -e my_state

// TODO source, cli and output examples // TODO explain how to use the machine generic

machine<'A'|'B'|'C'|'D'>(['A', 'B', 'C', 'D'])

Debugging

If you got to this section you know everything about AsyncMachine, at least theory, but now new problems arise ‑ complex network of

machines with a lot of mutations can be hard to wrap your head around, especially without having proper tooling. Let's start step by step.

There's three ways to debug a machine:

Logging system

Already discussed in the logging section, quick example below:

const example = machine(['A']).id('example')
example.logLevel(3)
example.add('A')

Outputs:

[example] [add] A
[example] [states] +A

print_exception Flag

By default, when an exception is thrown it gets redirected to the Exception_state handler and re‑thrown on the next tick, to avoid

interrupting the current execution flow. You may want to see the exact moment when the exception has been thrown (eg to see the order in

the logs), which is achievable by setting print_exception flag to true on a machine's instance, which will print the error with

console.error() .

This flag is automatically set if logLevel() is higher than 0 .

Dumping the current state

You can dump the current state of a machine using statesToString(show_inactive: boolean)

const example = machine(['A', 'B', 'C'])
example.add('A')
example.statesToString(true)

Outputs:

example
 A (1)
 -Exception (0)
 -B (0)
 -C (0)

file:///Users/dev/workspace/asyncmachine.wiki/tmp/full.html

AsyncMachine Inspector

AsyncMachine Inspector is both a debugger and a visual inspector, which allows stepping through time while seeing:

synchronized log view

current

adjacent transitions

queues

custom summary output

and even activate states remotely

It's a great educational tool too and is used by almost every example in this book. It allows you to connect to a live server or load (and save)

JSON snapshots.

You can find more about the project on the GitHub:

https://github.com/TobiaszCudnik/asyncmachine‑inspector

Or try it live on StackBlitz:

https://stackblitz.com/edit/asyncmachine‑inspector‑starter

Terminology

State

Active state

In‑active state

Requested states

Target states

Mutation

Transition

Accepted transition

https://github.com/TobiaszCudnik/asyncmachine-inspector
http://tobiaszcudnik.github.io/asyncmachine-inspector/sample.mp4
https://github.com/TobiaszCudnik/asyncmachine-inspector
https://stackblitz.com/edit/asyncmachine-inspector-starter

Rejected transition

Negotiation Handlers

Final Handlers

Explicit states

