INTRODUCTION

TO

STRUCTURAL STEEL

Dr. Gregory MacRae

Dr. Theodore Chang

Department of Civil and Natural Resources Engineering

April 13, 2024

UNIVERSITY OF
CANTERBURY
Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-ncnd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Contents

List of Figures xV
List of Tables xviii
0 Preface 1
0.1 Standards 1
0.2 Additional Resources 1
0.3 To Use This Book 2
0.4 Additional Resources 3
I 5
1 Design 7
1.1 Design Process 7
1.2 Design Approaches 7
1.2.1 Design for Strength 7
1.2.2 Design for Serviceability 12
1.3 Calculation Accuracy 16
2 Material 17
2.1 Sustainability and Steel Structures 17
2.2 Structural Steel 19
2.2.1 Material Properties 20
2.2.2 Material Attributes 20
2.2.3 Typical Mechanical Behaviour 21
2.2.4 Common Grades 22
2.3 Design Yield Stress for Sections 23
2.4 Structural Shapes 24
2.4.1 Hot-Rolled Products 25
2.4.2 Cold-Formed Products 28
2.4.3 Standard Welded Products 29
2.5 Steel Availability 30
2.6 Standard Tolerance 30
2.7 Undesirable Steel Behaviour 31
2.7.1 Brittle Fracture 31
2.7.2 Buckling 32
2.7.3 Excessive Deformation/Vibration 33
2.8 Standard Gauge 33
2.9 Special Considerations Affecting Steel Properties 36
3 Tension Members 45
3.1 Strength Design Concept 45
3.1.1 Definition of Net Area 46
3.1.2 Determination of Distribution Factor 49
3.2 Tension Member Slenderness Limitations 51
4 Compression Members 61
4.1 Factors Affecting Compressive Strength 61
4.1.1 Elastic Buckling 61
4.1.2 Compressive Strength 65
4.1.3 Local Buckling 66
4.1.4 Residual Stress 66
4.1.5 Initial Out-of-Straightness and Eccentrical Loading 67
4.2 Strength Design Concept 68
4.2.1 Section Capacity 69
4.2.2 Member Capacity 71
4.2.3 Development and Use of Design Chart/Table 75
4.3 Design Procedure 76
4.3.1 Consideration of Effective Length 87
4.3.2 Modifications to γ-Factor Method 96
4.3.3 Leaning Columns 102
4.3.4 Design of Columns in Frames 106
5 Bending Members 109
5.1 Limit States 109
5.2 Section Flexural Yielding Strength 111
5.2.1 Calculation of Plastic Modulus 113
5.3 Strength Considering Local Buckling 113
5.4 Strength Considering Member Buckling 117
5.4.1 Orientation Effect 118
5.4.2 Uniform Moment 119
5.4.3 Effect of Loading Type 125
5.5 Strength Design Concept 130
5.5.1 Strong Axis Bending 130
5.5.2 Weak Axis Bending 131
5.6 Design for Shear 132
5.6.1 Shear Flow On Thin-Walled Sections 132
5.6.2 Shear Capacity 135
5.6.3 Interaction Between Bending and Shear 136
5.7 Design for Bearing 137
5.7.1 Force Dispersion 138
5.7.2 Yielding 140
5.7.3 Buckling 140
5.7.4 Web Stiffener 141
5.8 Biaxial Loading 144
6 Bolted Connections 151
6.1 Connection Types 151
6.2 Connector Types 153
6.3 Bolt Strength 154
6.4 Washer Size 155
6.5 Bolt Dimension 155
6.6 Installation of Bolts 157
6.7 Erection Tolerances 159
6.8 Modes of Carrying Shear Force 160
6.8.1 Shear Planes 160
6.8.2 Snug Tightening 161
6.8.3 Proof Loading 161
6.9 Minimum Bolt Proof Loads 162
6.10 Strengths of Different Bolt Types 164
6.11 Strength Design 164
6.11.1 Connection Behaviour 164
6.11.2 Yield on Plate Gross Area 165
6.11.3 Fracture on Plate Net Area 165
6.11.4 Bolt Shear Failure 165
6.11.5 Plate Bearing and Tearing Failure Beside Bolts 167
6.11.6 Block Tearing Failure 169
6.11.7 Bolt Tension Failure 171
6.11.8 Bolt Combined Failure 171
6.11.9 Bending Failure of Bolts 172
6.11.10 Fatigue Failure of Bolts 172
6.11.11 Prying 172
6.12 Serviceability Design 176
6.12.1 Shear Slip 177
6.12.2 Gap Opening (Tension Behaviour) 177
6.12.3 Shear Slip Under Tension 178
7 Welded Connections 181
7.1 Basic Types of Welded Joint 181
7.2 Weld Categories and Types 182
7.3 Weld Process 184
7.4 Standard Weld Symbols 187
7.5 Electrodes Used for Welding 196
7.6 Weld Size and Strength 198
7.7 Fillet Weld Root Gaps 201
7.8 Good Practice for Welded Members 201
7.9 Member Design Considerations 202
7.9.1 Yielding on Gross Area 202
7.9.2 Fracture on Effective Net Area 202
7.9.3 Block Tearing Failure 202
7.10 Quality of Welded Connection 207
7.11 Possible Weld Defects 210
7.12 Possible Plate Defects 212
II 213
8 Eccentric Connections 215
8.1 Types of Connections 215
8.2 Eccentric Bolted Connections 215
8.2.1 Elastic Design Method 216
8.2.2 Ultimate Strength Method 222
8.3 Eccentric Bolted Tension Shear Connections 224
8.4 Welded Eccentric Shear Connections 227
8.4.1 Elastic Method 227
III 233
Structural Steel Weld Specification and Implementation 235

List of Figures

1.1 Typical design process 8
1.2 Univariate Gaussian distribution 11
1.3 Bivariate Gaussian distribution 11
1.4 Sample handwritten solution 15
2.1 Energy life cycle for an office building over 60 years 18
2.2 Admittance of normal and lightweight concrete remains unchanged beyond depths of 100 mm (https://www.steelconstruction.info/File:CSD126_N7.jpg) 18
2.3 Typical strain-stress response of steel 21
2.4 Nominal and true area 22
2.5 Idealised strain-stress responses of various types of steel 22
2.6 Examples of non-symmetric, singly symmetric and doubly symmetric sections 28
2.7 Profiled sheets and linear trays (Dubina et al., 2012) 28
2.8 Single open sections (Dubina et al., 2012) 29
2.9 Channel sections (Dubina et al., 2012) 29
2.10 Non-prismatic sections by plates welded together 30
2.11 Tolerances on a cross section 31
2.12 Measurement of camber and sweep 31
2.13 Brittle fracture 32
2.14 Buckling 32
2.15 Ponding on roof 33
2.16 Galvanic activity (https://www.jlconline.com/how-to/exteriors/separating-g alvanic-metals_o) 37
2.17 Steel strength decreases with temperature (Espinos et al., 2015) 38
2.18 Residual stress from cooling member 39
2.19 Stress-strain curve considering residual stress 39
2.20 Residual stress patterns of hot-rolled sections (https://www.lajss.org/index.php/ LAJSS/article/view/176) 40
2.21 Stress concentration due to sharp change of geometry (Katsivalis et al., 2018) 40
2.22 Crack in connections (Qu et al., 2017) 41
2.23 Illustration of lamellar tearing in thick steel plates (http://sainsmechanical.blog spot.com/2011/12/hot-working-of-metals.html) 41
2.24 Gain reshaped due to rolling 41
2.25 Strain hardening by cold working 42
2.26 Strain ageing 42
2.27 Cyclic loads 43
2.28 Stress-life curve for a brittle aluminium (https://upload.wikimedia.org/wikiped ia/commons/d/d2/BrittleAluminium320MPa_S-N_Curve.svg) 43
2.29 Charpy V-notch test apparatus (https://www.totalmateria.com/page.aspx?ID=Ch eckArticle\&site=kts\&NM=534) 44
2.30 von Mises yielding criterion (https://upload.wikimedia.org/wikipedia/commons /c/cc/Yield_surfaces.svg) 44
3.1 Fracture over net area 46
3.2 Definitions of gross and net areas 46
3.3 Definition of gauge length and pitch 47
3.4 Illustration of gauge of staggered layout in an angle 49
3.5 Shear lag in welded angle specimen (Dhanuskar and Gupta, 2021) 51
3.6 Shear lag in bolted angle specimen 51
3.7 Shear lag factors for connections to tension members 52
4.1 Elastic buckling of a pinned-pinned column 61
4.2 First three modes of buckling loads (https://en.wikipedia.org/wiki/Euler\'s_ critical_load) 62
4.3 Illustration of effective length 63
4.4 Theoretical governing region for $f_{c r}$ for elastic material 65
4.5 Theoretical governing region for $f_{c r}$. 66
4.6 Governing region considering local buckling 66
4.7 Stress-strain curve considering residual stress 67
4.8 Governing region considering residual stress 67
4.9 Effect of initial out-of-straightness on column behaviour 68
4.10 Eccentrical loading 68
4.11 Governing region considering initial OOS and eccentric loading 68
4.12 Five flat elements in a typical I section 69
4.13 Yield slenderness limits of flat plate elements 70
$4.14 \alpha_{c}$ as a function of λ_{n} 72
4.15 Design load capacity table for members subject to axial compression buckling about weak axis 77
4.16 Design capacity chart for members subject to axial compression 78
4.17 Effective length factor k_{e} 88
4.18 Illustration of different types of frame members with theoretical k_{e} shown 89
4.19 Alignment chart for k_{e} 91
$4.20 k_{e}$ for braced and sway members (Gorenc et al., 2015) 92
4.21 Far end of beam conditions 97
4.22 Transfer of vertical loads 98
4.23 Connection types 103
4.24 Destabilizaing effect of leaning columns 103
4.25 Sidesway due to non-rigid columns 106
4.26 Moment developed in columns due to horizontal loads 106
5.1 Critical areas for consideration of web stiffeners (Gorenc et al., 2015) 110
5.2 Idealisation of steel response 111
5.3 Development of plasticity of a rectangular section 111
5.4 Development of plasticity of a rectangular section in a beam 112
5.5 Section response 113
5.6 Flat elements in different sections 114
5.7 Flexural behaviour of different types of sections 116
5.8 Section capacity as a function of slenderness 117
5.9 Compression develops in the upper part of a beam 118
5.10 Components of FLT buckling 118
5.11 Sections less sensitive to lateral buckling 119
5.12 The division of a beam into segments and subsegments (Gorenc et al., 2015) 121
5.13 Definition of local axes 122
5.14 Loads applied to different heights 122
5.15 Critical moment as a function of effective length 125
5.16 Horizontal shear of free body cut on flange 133
5.17 Vertical shear of free body cut on flange 134
5.18 Vertical shear of free body cut on web 134
5.19 Vertical shear distribution in an I section 135
5.20 Design region of shear capacity 136
5.21 Interaction between shear and moment 136
5.22 Web bearing and the load dispersion method (Gorenc et al., 2015) 138
5.23 Interior force 139
5.24 End force 139
5.25 Ineffective regions are ignored 139
5.26 Web buckling due to bearing 140
5.27 Web stiffeners 141
5.28 Plan view at web buckling surface 142
5.29 Decomposition of biaxial moment into x and y components 144
5.30 Envelop of biaxial moments 144
6.1 Installing a rivet 154
6.2 Bolt diameters (https://www.kelstonactuation.com/imagelibrary/screw-threa d-principle.jpg) 156
6.3 Bolt dimensions 156
6.4 Bolt, washer and nut 157
6.5 Steps of turn-of-nut method 158
6.6 Direct tension indicator and protrusion 158
6.7 Steps of installing TC bolts 159
6.8 Definition of impact wrench sizes (Australian Steel Institute, 2016) 159
6.9 Dimension of extension bar and universal joint (Australian Steel Institute, 2016) 160
6.10 Illustration of number of shear planes (https://commons.wikimedia.org/wiki/Fil e:Bolt-in-shear.svg) 161
6.11 Snug tighten bolts (McMullin et al., 2018) 161
6.12 Proof loading bolts (McMullin et al., 2018) 162
6.13 Behaviour of high-strength structural bolts. Slip load 1 applies to tension-controlled HS structural bolts (i.e., proof loaded bolts) using a slip factor of 0.35 . Slip load 2 applies to snug-tight bolts. (Gorenc et al., 2015) 162
6.14 Proof load 163
6.15 Actual deformation of bolted single shear tension connection (http://fgg-web.fgg .uni-lj.si/~/pmoze/esdep/master/wg11/l0310.htm) 165
6.16 Bolt shear failure 166
6.17 Bearing failure 167
6.18 Tear out failure 167
6.19 Edge failure of plate 168
6.20 Illustration of a_{e} 168
6.21 Illustration of minimum pitch s and edge distance e 169
6.22 Illustration of block tearing failure 170
6.23 Definition of net and gross areas 170
6.24 Failure surface of block shear/tearing (https://m2ukblog.wordpress.com/2016/05 /28/block-shear-failure-in-tension-members/) 171
6.25 Bolt tension failure 171
6.26 Envelop of axial force versus shear 172
6.27 Bending failure of bolts 172
6.28 T section hanger connection (Smith and Smith, 1996) 173
6.29 Prying failure modes (https://www.structures-simplified.com/2020/08/why-p rying-force-is-important.html) 173
6.30 Friction force 177
6.31 Envelop of tension versus shear 178
7.1 Basic types of welded joints (https://www.flight-mechanic.com/welded-joint s-using-oxy-acetylene-torch/) 181
7.2 Examples of lapped joints 182
7.3 Shield metal arc welding (https://www.fabtechexpo.com/blog/2018/01/04/shie lded-metal-arc-welding-basics) 185
7.4 Shield metal arc welding (https://www.jasic.co.uk/guide-to-mma-welding) 185
7.5 Submerged arc welding (https://www.cwbgroup.org/sites/default/files/imgs/ saw-fig1.png) 186
7.6 Welding symbols (Gorenc et al., 2015) 188
7.8 Weld all around welds (Corgan, 2017) 188
7.7 Examples of use of welding symbols (Gorenc et al., 2015) 189
7.9 Examples of weld all around welds (Corgan, 2017) 190
7.10 Examples of continuous welds (Corgan, 2017) 190
7.11 Examples of continuous welds (Corgan, 2017) 190
7.12 Weld length specified on welding symbol between extension lines (unit: inch) (Corgan, 2017) 191
7.13 Weld length specified on welding symbol between extension lines with section lines representing the weld area (unit: inch) (Corgan, 2017) 191
7.14 Example of intermittent welds (unit: inch) (Corgan, 2017) 191
7.15 Example of chain intermittent welds (unit: inch) (Corgan, 2017) 192
7.16 Example of staggered intermittent welds (unit: inch) (Corgan, 2017) 192
7.17 Contour symbols (Corgan, 2017) 192
7.18 Example of a welding symbol for a fillet weld (unit: inch) (Corgan, 2017) 193
7.19 Fillet weld size (unit: inch) (Corgan, 2017) 193
7.20 Unequal leg fillet with detail drawing (unit: inch) (Corgan, 2017) 193
7.21 Unequal leg fillets that could be shown without detail (unit: inch) (Corgan, 2017) 194
7.22 Welding symbol example for a groove weld (unit: inch) (Corgan, 2017) 194
7.23 Example of a groove/butt weld (unit: inch) (Corgan, 2017) 195
7.24 Welding symbol with melt-through (unit: inch) (Corgan, 2017) 195
7.25 Melt-through example (unit: inch) (Corgan, 2017) 196
$7.26 k_{r}$ as a function of l_{w} 199
7.27 Weld terminology (http://mdme.atspace.com/modules/7759G_Mechanical_Desi gn/welds/Welded_Joints.html) 199
7.28 Weld stress components (https://offshorestructures.wordpress.com/2014/11 /02/welded-lap-joints/) 200
7.29 Fillet weld with root gap 201
7.30 Block tear out of welded connection 203
7.31 Weld positions (https://weldguru.com/welding-positions/) 207
7.32 Weld distortion (https://weldinganswers.com/7-ways-to-control-distortio n-in-welding/) 208
7.33 Weld distortion (Hetnarski, 2014) 208
7.34 Back step weld (https://www.fabricatingandmetalworking.com/2013/02/how-t o-control-the-warping-of-parts-in-thin-sheet-metal/) 209
7.35 Weld sequence (https://axisfab.com/weld-shrinkage/) 209
7.36 Multiple pass fillet weld (https://www.mig-welding.co.uk/arc-fillet-joints.htm) 210
7.37 Susceptible and improved details (https://buildingfailures.com/2014/11/28/ov erview-of-lamellar-tearing-and-representative-case-studies/) 212
8.1 Decomposition of arbitrary force into x and y components 216
8.2 Equilibria of bolt forces 217
8.3 Stress distribution on reduced section 219
8.4 Illustration of ICR 222
8.5 Linear and nonlinear responses 223
8.6 Stress components of eccentrically loaded bolted connection 225
8.7 Stress components of weld element 227
8.8 Treating welds as lines (Roark, 2012) 228

List of Tables

1.1 Short-term ψ_{s}, long-term ψ_{l}, combination ψ_{c} and earthquake ψ_{E} factors 12
1.2 Suggested serviceability limit state criteria 13
2.1 Tensile test requirements for flats and sections 23
2.2 Tensile test requirements for cold-formed hollow sections 23
2.3 Tensile test requirements for plate and floor plate 23
2.4 Gauge lines for universal sections 34
2.5 Gauge lines for TFB and PFC 34
2.6 Gauge lines for structural Tees cut from universal sections 35
2.7 Gauge lines for welded sections 35
2.8 Gauge lines for angles 36
4.1 Values of α_{b} 72
4.2 Values of α_{c} as function of α_{b} and λ_{n} 73
4.3 Design load capacity table for UB members subject to axial compression buckling about strong axis (manually generated) 79
4.4 Design load capacity table for UB members subject to axial compression buckling about weak axis (manually generated) 80
4.5 Design load capacity table for UC members subject to axial compression buckling about strong axis (manually generated) 81
4.6 Design load capacity table for UC members subject to axial compression buckling about weak axis (manually generated) 81
4.7 Modifying factor β_{e} 96
5.1 Values of slenderness limits for flat elements 114
5.2 Parameters k_{t}, k_{l} and k_{r} for different end restraints 122
5.3 Design load capacity table for members subject to strong axis bending ($\alpha_{m}=1.0$) 146
5.4 Design load capacity table for members subject to strong axis bending ($\alpha_{m}=1.0$) 147
6.1 Dimensions of structural bolts 155
6.2 Minimum length of thread 156
6.3 Impact wrench sizes (Australian Steel Institute, 2016) 160
6.4 Impact wrench sizes (Australian Steel Institute, 2016) 160
6.5 Minimum Bolt tension for property class 8.8 bolts 163
6.6 Grade 4.6/S bolted connection strengths for each surface per shear plane 164
6.7 Grade 8.8 bolted connection strengths per shear plane 164
6.8 Strength reduction factor for bolted connections 164
7.1 Nominal tensile strength of weld metal $\left(f_{u w}\right)$ 196
7.2 Nominal tensile strength of weld metal $\left(f_{u w}\right)$ 198
7.3 Minimum size of fillet weld t_{w} 198
7.4 Maximum size of fillet weld t_{w} 198
7.5 Dependable capacities of equal leg fillet welds $\phi v_{w}\left(\mathrm{kN} \mathrm{mm}^{-1}\right)$ with $k_{r}=1.0$ 200

Preface

>0.1 Standards

This book refers to the following standards.

- AS/NZS 1170.0:2002 Structural design actions
- NZS 3404.1\&2:1997 Steel structures standard
- AS/NZS 3679.1\&2:2016 Structural steel
- AS/NZS 3678:2016 Structural steel - Hot-rolled plates, floorplates and slabs
- AS/NZS 1163:2016 Cold-formed structural steel hollow sections
- AS/NZS 4855:2007 Welding consumables - Covered electrodes for manual metal arc welding of non-alloy and fine grain steels - Classification
- AS/NZS 1252.1:2016 High-strength steel fastener assemblies for structural engineering - Bolts, nuts and washers
- ANSI/AISC 360-16 Specification for Structural Steel Buildings

Due to various factors, this book is not aimed to cover everything in structural steel design. It is in general a good practice to have additional references at hand. Readers shall frequently refer to those standards for additional figures, tables, equations, etc.

>0.2 Additional Resources

A number of distributors provide section properties. The most comprehensive ones are given here. Liberty Steel provides the manual for specifications of hot rolled structural steel sections manufactured in accordance with AS/NZS 3679.1\&2:2016 Structural steel.

- Liberty Steel Hot Rolled and Structural Steel Product This book is attached at the end of this document.

Fletcher Easysteel provides design charts of some section types.

- Structural Steel Properties \& Design Charts Book

AustubeMills provides design tables for hollow sections.

- Design Capacity Tables for Structural Steel Hollow Sections ${ }^{1}$

The Australian Steel Institute provides design capacity tables for structural steel (Australian Steel Institute, 2016).

- DESIGN CAPACITY TABLES FOR STRUCTURAL STEEL, VOL. 1: OPEN SECTIONS

Readers shall frequently refer to those documents for properties that could be used in design.
The following YouTube channels provide engineering related contents of good quality.

- The Efficient Engineer ${ }^{2}$

\$0.3 To Use This Book

If you are reading the digital copy of this book, you can check the additional links and worksheets provided.

Links coloured like this Gregory MacRae are made available in the document. These are not necessary for the course, but they may be of interest to readers. Readers are welcome to report any invalid links in this book.

Worksheets prepared in SMath Studio ${ }^{3}$ for some examples are provided in a digital folder named as 'WORKSHEET'. Readers may change parameters within the example if they wish. It must be noted that

- Assignments require handwritten submissions, but worksheets can be used to check the hand calculation.
- The worksheets have been configured for the particular examples only. If readers wish to use the worksheets for actual design, they need to ensure that all relevant code clauses are satisfied.

[^0]Readers need to install it so that by clicking the 'Worksheet' link, the corresponding worksheet can be automatically opened. Not all PDF readers support such a functionality. The feature-rich PDFXChange Viewer ${ }^{4}$ is recommended. Please use the following one to check if the current one can work properly.

Example 0.1 Worksheet \leftarrow Click this link to test.

>0.4 Additional Resources

The digital version of this book, along with other relevant documents, diagrams and worksheets, is available online via https://github.com/TLCFEM/introduction-to-structural-steel.

[^1]
Part I

Design

1> 1.1 Design Process

The typical design process is shown in Fig. 1.1.

1 1.2 Design Approaches

1.2.1 Design for Strength

The ultimate requirement can be summarised by the following inequality:

| FORCE DEMAND |
| :---: | :---: |
| (ACTIONS, LOADS) |$\leqslant \quad$ STRENGTH

There are two common design methods for this strength requirement.

ASD

It stands for Working Stress (or Allowable Stress) Design (ASD) (e.g., NZ Steel Codes pre-1984).
$\sum \underset{\text { FORCES }}{\text { WORKING }} \leqslant \begin{gathered}\text { PERMISSIBLE } \\ \text { STRENGTH }\end{gathered}$,

$$
\sum E_{i} \leqslant \frac{\text { Ultimate Strength }}{\text { Safety Factor }}=\frac{R}{\mathrm{SF}}
$$

The safety factor, SF is approximately equal to 1.7 and it allows for variation in loading and material strength. ASD was popular in NZ until the mid 1980s. In the USA, and some other countries, it is still used, especially for timber, and for some steel structures. It assumes that all types of loading have the same weighting. It cannot handle unusual loads well.

Figure 1.1: Typical design process

LSD, LRFD

It stands for Limit State Design, a.k.a., Load and Resistance Factor Design (LRFD) (e.g., many NZ Steel Codes post-1984).

A structure should be designed in such a way that it does not reach a critical limit state.

```
structural state}\leqslantlimit stat
```

A critical limit state for a structure may be governed by the following aspects:

- safety
- strength
- stability
- serviceability
- deformation
- vibration

NZ limit state design codes are written in a LRFD format recognizing the probabilistic variations in both applied forces and capacities.

The many advantages of LRFD are well-expressed by Beedle, whose listing is the basis of the following:

1. LRFD is another 'tool' for structural engineers to use in steel design. Why not have the same tools (variable overload factors and resistance factors) available for steel design as are available for concrete design?
2. Adoption of LRFD is not mandatory but provides a flexibility of options to the designer. The marketplace will dictate whether or not LRFD will become the sole method.
3. ASD is an approximate way to account for what LRFD does in a more rational way. The use of plastic design concepts in ASD has made ASD such that it no longer may be called an 'elastic design' method.
4. The rationality of LRFD has always been attractive, and becomes an incentive permitting the better and more economical use of material for some load combinations and structural configurations. It will also likely lead to having safer structures in view of the arbitrary practice under ASD of combining dead and live loads and treating them the same.
5. Using multiple load factor combinations should lead to economy.
6. LRFD will facilitate the input of new information on loads and load variations as such information becomes available. Considerable knowledge of the resistance of steel structures is available. On the other hand our knowledge of loads and their variation is much less. Separating the loading from the resistance allows one to be changed without the other if that should be desired.
7. Changes in overload factors and resistance factors ϕ are much easier to make than to change the allowable stress in ASD.
8. LRFD makes design in all materials more compatible. The variability of loads is actually unrelated to the material used in the design. Future specifications not in the limit states format for any material will put that material at a disadvantage in design.
9. LRFD provides the framework to handle unusual loads that may not be covered by the specification. The design may have uncertainty relating to the resistance of the structure, in which case the resistance factors may be modified. On the other hand, the uncertainty may relate to the loads and different overload factors may be used.
10. Future adjustments in the calibration of the method can be made without much complication. Calibration for LRFD was done for an average situation but might be adjusted in the future.
11. Economy is likely to result for low live load to dead load ratios. For high live load to dead load ratios there will be diseconomy but a low amount.
12. Safer structures may result under LRFD because the method should lead to a better awareness of structural behaviour.

LRFD equation has the following typical form:

$$
\begin{align*}
\sum \gamma_{i} E_{i} & \leqslant \phi R_{n} \tag{1.2}\\
\text { Forces } & \leqslant \text { Resistance }, \tag{1.3}
\end{align*}
$$

where
$\gamma_{i}=$ load factor for specific action E_{i}
$E_{i}=$ load/action due to specific loading condition i (e.g., wind, live load)
$\gamma_{i} E_{i}=$ factored load for specific loading type i
$\sum \gamma_{i} E_{i}=$ total factored loads
$\phi=$ resistance factor or strength reduction factor
$R_{n}=$ nominal resistance or ideal resistance against a particular limit state (e.g., yield, fracture)
$\phi R_{n}=$ dependable resistance

The factor ϕ reflects the likely variation in

- material stress-strain characteristics,
- cross-section properties,
- structural deterioration due to corrosion or fatigue,
- consequences of reaching limit state.

For example, for steel members, $\phi=0.9$ for tension, compression bending, shear and combined actions. The value of ϕ is different for bolts, pins or welded connections (NZS 3404.1\&2:1997 Table 3.3(1)).

Figure 1.2: Univariate Gaussian distribution

The factor γ_{i} allows for

- possibility of overload,
- accuracy of analysis,
- load duration.

It has values of up to 1.5.
Factors γ_{i} and ϕ are chosen to have a low and uniform probability of failure for all loads.

Figure 1.3: Bivariate Gaussian distribution

The basic combinations for the ultimate limit states ($\sum \gamma_{i} E_{i}$) used in checking strength shall be as follows (AS/NZS 1170.0:2002 § 4.2.2):

- $1.35 G$ - permanent action only
- $1.2 G+1.5 Q-$ permanent and imposed action
- $1.2 G+1.5 \psi_{l} Q-$ permanent and long-term imposed action
- $1.2 G+W_{u}+\psi_{c} Q-$ permanent, wind and imposed action
- $0.9 G+W_{u}-$ permanent and wind action reversal
- $G+E_{u}+\psi_{E} Q$ - permanent, earthquake and imposed action
- $1.2 G+S_{u}+\psi_{c} Q$ - permanent action, actions given in AS/NZS 1170.0:2002 § 4.2.3 and imposed action

The maximum combination will govern the design. The live load factor ψ depends on the load duration as shown below (AS/NZS 1170.0:2002 Table 4.1).

Table 1.1: Short-term ψ_{s}, long-term ψ_{l}, combination ψ_{c} and earthquake ψ_{E} factors

	ψ_{s}	ψ_{l}	ψ_{c}	ψ_{E}
distributed imposed action, Q				
floors				
residential and domestic	0.7	0.4	0.4	0.3
offices	0.7	0.4	0.4	0.3
parking	0.7	0.4	0.4	0.3
retail	0.7	0.4	0.4	0.3
storage	1.0	0.6	0.6	0.6
other	1.0	0.6	0.6	0.6
roofs				
roofs used for floor type activities	0.7	0.4	0.4	0.3
all other roofs	0.7	0.0	0.0	0.0
concentrated imposed actions (including balusrades), Q				
floors	1.0	0.6	as of	0.3
floors of domenstic housing	1.0	0.4	distributed	0.3
roofs used for floor type activities	1.0	0.6	floor actions	0.3
all other roofs	1.0	0.0	0.0	0.0
balustrades	1.0	0.0	0.0	0.0
long-term installed machinery, tare weight	1.0	1.0	1.2	1.0

1.2.2 Design for Serviceability

Serviceability checks are always carried out under service (or working) loads, ($\sum E_{i}$) using a combination of: $G, \psi_{s} Q, \psi_{l} Q, W_{s}, E_{s}$ and other appropriate values.

The methods are the same for Allowable Stress Design (ASD) and Limit State Design (LRFD). Suggested serviceability limit state criteria are shown in Table 1.2. For relevant notes, readers shall refer to AS/NZS 1170.0:2002 Table C1.
Table 1.2: Suggested serviceability limit state criteria

Element	Phenomenon controlled	Serviceability parameter	Applied action	Element response (see Notes 1 and 2)
Roof cladding				
Metal roof cladding	Indentation	Residual deformation	$Q=1 \mathrm{kN}$	Span/600 but < 0.5 mm
	De-coupling	Mid-span deflection	$G+\psi_{s} Q$	Span/120
Concrete or ceramic roof cladding	Cracking	Mid-span deflection	$G+\psi_{s} Q$	Span/400
Roof-supporting elements				
Roof members (trusses, rafters, etc.)	Sag	Mid-span deflection	$G+\psi_{l} Q$	Span/300
Roof elements supporting brittle claddings	Cracking	Mid-span deflection	$G+\psi_{s} Q$ or W_{s}	Span/400
Ceiling and ceiling supports				
Ceilings with matt or gloss paint finish	Ripple	Mid-span deflection	G	Span/500 (seet Note 3)
Ceilings with textured finish	Ripple	Mid-span deflection	G	Span/300
Suspended ceilings	Ripple	Mid-span deflection	G	Span/360
Ceiling support framing	Sag	Mid-span deflection	G	Span/360
Ceilings with plaster finish	Cracking	Mid-span deflection	$G+\psi_{s} Q$ or W_{s}	Span/200
Wall elements				
Columns	Side sway	Deflection at top	W_{s}	Height/500
Portal frames (frame racking action)	Roof damage	Deflection at top	W_{s} or E_{s}	Spacing/200 (see Note 4)
Lintel beams (vertical sag)	Doors/windows jam	Mid-span deflection	W_{s}	Span/240 but $<12 \mathrm{~mm}$ (see Note 5)
Walls - General (face loaded)	Discerned movement	Mid-height deflection	W_{s}	Height/150
	Impact: soft body (neighbours notice)	Mid-height deflection	$Q=0.7 \mathrm{kN}$	Height/200 but < 12 mm (see Note 6)
	Supported elements rattle	Mid-height deflection	W_{s}	Height/1000
Walls - Specific claddings (see Note 7):	Supored			
Brittle cladding (ceramic) face loaded	Cracking	Mid-height deflection	W_{s}	Height/500
Masonry walls (in plane)	Noticeable cracking	Deflection at top	W_{s} or E_{s}	Height/600
Masonry walls (face loading)	Noticeable cracking	Deflection at top	W_{s} or E_{s}	Height/400
Plaster/gypsum walls (in plane)	Lining damage	Mid-height deflection	W_{s}	Height/300
Plaster/gypsum walls (face loading)	Lining damage	Mid-height deflection	W_{s} or E_{s}	Height/200
Movable partitions (soft body impact)	System damage	Deflection at top	$Q=0.7 \mathrm{kN}$	Height/160
Glazing systems	Bowing	Mid-span deflection	W_{s}	Span/400
Windows, facades, curtain walls	Facade damage	Mid-span deflection	W_{s} or E_{s}	Span/250
Fixed glazing systems	Glass damage	Deflection	W_{s} or E_{s}	$2 \times$ glass clearance (see Note 3)
Floors and floor supports				
	Sag			
Beams where line-of-sight is across soffit	Sag	Mid-span deflection	$G+\psi_{l} Q$	Span/250
Flooring	Ripple	Mid-span deflection	$G+\psi_{l} Q$	Span/300
Floor joists/beams	Sag	Mid-span deflection	$G+\psi_{l} Q$	Span/300
Floors	Vibration	Static mid-span deflection	$Q=1 \mathrm{kN}$	$<1 \mathrm{~mm}$ to 2 mm (see Note 10)
Normal floor systems	Noticeable sag	Mid-span deflection	$G+\psi_{l} Q$	Span/400
Specialist floor systems	Noticeable sag	Mid-span deflection	$G+\psi_{l} Q$	Span/600
Floors - Side-sway (acceleration)	Sway	Acceleration at floor	$W_{s}(P=5)$	<0.01g (see Note 11)
Floors - Supporting masonry walls	Wall cracking	Mid-span deflection	$G+\psi_{l} Q$	Span/500
Floors - Supporting plaster lined walls	Cracks in lining	Mid-span deflection	$G+\psi_{l} Q$	Span/300
Floors supporting existing masonry walls - Underpinning floors	Wall cracking	Mid-span deflection	$G+\psi_{l} Q$	Span/750
Floors - For access for working by operators and maintenance	Sag	Mid-span deflection	$Q=1 \mathrm{kN}$	Span/250
Handrails - Post and rail system	Side sway	Mid-span system deflection	$Q=1.5 \mathrm{kN} \mathrm{m}^{-1}$	Height/60+Span/240

Example 1.1 Worksheet Rod Under Tension

Assume the safety factor is $\mathrm{SF}=1.7$, a rod in tension is required to carry dead and live loads of $G=25 \mathrm{kN}$ and $Q=30 \mathrm{kN}$ respectively. The steel yield stress is $f_{y}=300 \mathrm{MPa}$. What diameter d should it have?

Solution 1.1

The resistance against axial tension yield is
$R=A_{g} f_{y}=\frac{\pi d^{2}}{4} f_{y}$.

- ASD

Allowable force: $R / \mathrm{SF}=A_{g} f_{y} / 1.7$. Working forces: $\sum E_{i}=G+Q=55 \mathrm{kN}$. ASD requires:

$$
\begin{aligned}
\sum E_{i} & \leqslant R / \mathrm{SF} \\
55 \mathrm{kN} & \leqslant \frac{\pi d^{2}}{4 \times 1.7} f_{y} \\
d & \geqslant \sqrt{\frac{55 \mathrm{kN} \times 4 \times 1.7}{300 \mathrm{MPa} \times \pi}}=19.9 \mathrm{~mm}
\end{aligned}
$$

- LRFD

LRFD requires:

$$
\begin{aligned}
\gamma_{G} E_{G}+\gamma_{Q} E_{Q} & \leqslant \phi R \\
1.2 \times 25 \mathrm{kN}+1.5 \times 30 \mathrm{kN} & \leqslant 0.9 \times \frac{\pi d^{2}}{4} f_{y} \\
d & \geqslant \sqrt{\frac{75 \mathrm{kN} \times 4}{0.9 \times 300 \mathrm{MPa} \times \pi}}=18.8 \mathrm{~mm}
\end{aligned}
$$

If rods come in 2 mm size increments, then in both cases a $\phi 20 \mathrm{~mm}$ rod is okay.

For handwritten homework, please follow the convention as shown in the example.

Figure 1.4: Sample handwritten solution

1> 1.3 Calculation Accuracy

Estimates of likely maximum forces (or actions) and resistances are generally very approximate in design. Also, the load factors and resistance factors are not provided with great precision. For this reason, using more than three significant digits is seldom necessary and three significant digits is generally used. (Care must be taken though because in some cases, such as when similar size numbers are subtracted more accuracy is required.)

Because the computed result contains a lot of uncertainty, it may not be necessary to follow the calculation results too rigidly. However, because we may need to defend our calculations in a court of law, we must make sure that our recommendations, based on our calculations are totally defensible.

Gregory MacRae suggests the following guidelines:

- If the demand is greater than the capacity by less than $\mathbf{1 \%}$, then the difference is usually within the range of usual round-off errors. It can usually be argued that greater than nominal material strengths and strain hardening will guarantee that the demand is greater than the capacity. A note of this sort should be made in the calculations.
- If the demand is greater than the capacity by less than $\mathbf{5 \%}$, then the design should only be accepted if it can be argued that the design is satisfactory for some reason which is not considered in the calculations used in the design approach. The reason for accepting the design should be stated in the calculations, and the engineer should be able to produce more refined calculations to justify the decision if required at a later date.
- If the demand is greater than the capacity by more than $\mathbf{5 \%}$, then the design should not be accepted, or a revised set of calculations should be carried out to show that the design works.

It should be noted that different groups have different approaches to accuracy and it is prudent to check the policy of the company you are working for.

Material

\$2.1 Sustainability and Steel Structures

The issue of sustainability is becoming important in both NZ and worldwide policy and its consideration will affect choices made in the future.

The World Commission on Environment and Development in their 1986 report 'Our Common Future' called for: a form of sustainable development which meet the needs of the present without compromising the needs of future generations to meet their own needs.

Sustainability is commonly measured by the triple bottom line - social, economic, and environmental priorities. For buildings, this is important because:

- social
- we spend about 90% of our time in buildings,
- buildings affect our life quality,
- economic
- buildings affect our productivity,
- construction is about 10% GDP and employs many people,
- environmental
- construction consumes many resources,
- about one half of all energy is consumed in buildings,
- construction and demolition generate huge amounts of waste each year.

Life cycle assessment (LCA) is a tool commonly used to assess environmental impacts of the built environment. The UK Building Research Establishment (BRE) has developed an environmental assessment methodology (EAM) for structures (BREEAM). A typical energy life cycle is given (from SSC) in Fig. 2.1.

Figure 2.1: Energy life cycle for an office building over 60 years

It may be seen that the embodied energy of the structure is only a small part of the total cost and that operational energy is the most significant. Embodied energy and end-of-life energy effects are minimized in structures with long lives.

Greater energy efficiency in buildings is generally achieved by a combination of the following measures:

- reducing primary heat losses through the building envelope, and cooling loads,
- introducing energy saving measures in the operation of the building, e.g., energy efficient electrical appliances,
- installing energy creation systems, such as photovoltaic panels and combined heat and power plants
- improving natural lighting.

In the future, it is expected that structures will be built using not only one material, but a combination of materials. The REI Flagship store (Seattle) ${ }^{1}$ is a good example of this.

Figure 2.2: Admittance of normal and lightweight concrete remains unchanged beyond depths of 100 mm (https://www.steelconstruction.info/File:CSD126_N7.jpg)

[^2]A typical slab in a steel building (75 mm to 100 mm thick) provides almost the maximum admittance (i.e., ability of the building element to store and release heat) in a naturally ventilated building as shown below. Adding concrete mass solely for passive 'fabric energy storage' is therefore not effective (SSC).

Steel structures are known for:

- A high structural efficiency, i.e., a small amount of material provides considerable strength \& stiffness.
- 'Lean' construction, i.e., highly planned construction with little waste.
- Flexibility and adaptability. For example, long spans mean that internal configurations may easily be changed without any major work; extensions are also relatively easy; web openings or cellular beams allow easy service integration. This extends the building life and allows greater value to be extracted from the resources invested in it.
- Durability and Maintenance. Steel components are durable and require little maintenance in a well designed environment.
- Recyclability. Steel is almost 100% recyclable so it does not fill the waste dumps reducing end of life impacts. Much is currently recycled.

A 2006 BRANZ study indicated that whole of life costs for steel, timber and concrete options for two particular government buildings were within 5% of each other. The study mentions that some recycling advantages of steel and concrete buildings, which may affect the final decision about what type of building should be used, were not included.

>2.2 Structural Steel

Structural steel is an alloy of icon and carbon plus small amount of other elements, e.g., silicon (Si), manganese (Mn), magnesium (Mg), copper (Cu). Check this video: Understanding Metals ${ }^{2}$.

Common types include:

- carbon steels - typical $f_{y}=200 \mathrm{MPa}$ to 350 MPa

The name comes from the reality that they contain a very small amount of other alloying elements. More carbon causes

- high strength
- lower ductility
- less weldability
- high strength low alloy (HSLA) steels - typical $f_{y}=280 \mathrm{MPa}$ to 500 MPa

They provide better mechanical properties or greater resistance to corrosion than carbon steels.

- alloy steels - typical $f_{y}=550 \mathrm{MPa}$ to 800 MPa

They are alloyed with a variety of elements in total amounts from 1% to 50% by weight to improve its mechanical properties.

[^3]- heat treated (heated to $900^{\circ} \mathrm{C}$) and cooled rapidly in water (quenched) to make a hard, strong and brittle structure), then it is reheated to $620^{\circ} \mathrm{C}$ and cooled slowly (tempered) reducing strength and increasing toughness and ductility
- no distinct yield point, 0.2% offset strain is used

2.2.1 Material Properties

The following typical values are used for material properties of structural steel.

Young's modulus (elastic modulus)	E	200 GPa
shear modulus	G	$\approx 80 \mathrm{GPa}$
Poisson's ratio	ν	≈ 0.3
density	ρ	$7850 \mathrm{~kg} / \mathrm{m}^{3}$
coefficient of thermal expansion at $20^{\circ} \mathrm{C}$	α	$11.7 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$

2.2.2 Material Attributes

Attributes	Benefits
High Strength	long spans in bridges and buildings
Uniformity	quality is generally consistent strength does not change with loading direction
Linear Elasticity	previous cycles of elastic loading generally make no difference to behaviour stiffness may be calculated (e.g., EI, EA) creep is not generally a problem strength does not generally change with time
Ductility	can reach high strain before fracture local yielding at stress concentration causes spreading of load and avoids fracture deforms slowly over time when overloaded
Toughness	absorbs a large amount of energy
Connectability	solid connections with welds or bolts
Prefabrication Ability	can be erected fast with high quality good for fast-track construction, standardization
High Strength-to-Cost Ratio	economy
UV Resistant	does not generally become brittle with time
Recyclable	

Steel, like concrete, timber and composite materials is affected by environmental factors. Unprotected steel may corrode in a hostile environment, while concrete may have 'concrete cancer', timber may rot or be attacked by bugs, and composite materials may be UV sensitive. Because corrosion occurs on
the surface of steel, it is often observed easily and treated. All of steel, concrete, timber and composite materials are affected by fatigue and fire too.

2.2.3 Typical Mechanical Behaviour

The typical mechnical response of structural steel shown in Fig. 2.3 consists of three stages: elastic range, yield plateau and strain hardening range. Since the upper yield stress is not reliable, the lower yield stress conservatively used as the design yield stress.

Figure 2.3: Typical strain-stress response of steel

Depending on different strain/stress measures, the response may be different. Sometimes engineers use true strain and true stress (instead of engineering strain and stress) to characterise material response. The difference could be significant when deformation is large, interested readers can check this video: Understanding True Stress and True Strain ${ }^{3}$.

[^4]

Figure 2.4: Nominal and true area

For idealised response, often the upper yield stress is ignored, resulting in the following idealised curves as shown in Fig. 2.5. For alloy steel, since there is no explicit yielding point, often it is set to the stress corresponds to 0.2% offset strain.

Figure 2.5: Idealised strain-stress responses of various types of steel

2.2.4 Common Grades

The most common type of Australasian structural steel grades for hot-rolled structural steel bars and sections (including universal sections, taper flange beams, angles and channels) are given below. All of these grades are weldable and come with subgrades of L 0 and L 15 indicating low (27 J at $0^{\circ} \mathrm{C}$) and high (27 J at $-15^{\circ} \mathrm{C}$) Charpy V-notch ${ }^{4}$ toughnesses respectively. For a UB or UC section, coupons to determine the yield stress of a section are to be taken from the flange.

[^5]Table 2.1: Tensile test requirements for flats and sections

grade	minimum yield stress $f_{y}(\mathrm{MPa})$ thickness (mm)				minimum tensile strength f_{u} MPa	minimum elongation $\%$
300, 300L0	320	300	$\geqslant 17$ and <40	$\geqslant 40$	280	280
300L15, 300S0	320	300	280	280	440	240
350, 350L0	360	340	340	330	480	22
350S0, 350L15	360	340	340	330	480	20

Please refer to AS/NZS 3679.1\&2:2016 Table 14 for notes and details.

Table 2.2: Tensile test requirements for cold-formed hollow sections

grade	minimum yield stress f_{y} MPa	minimum tensile strength f_{u} MPa
C250, C250L0	250	320
C350, C350L0	350	430
C450, C450L0	450	500
Please refer to	AS/NZS 1163.2016	

Please refer to AS/NZS 1163:2016 Table 7 for notes and details.

Table 2.3: Tensile test requirements for plate and floor plate

grade	$\begin{gathered} \text { minimum } f_{y}(\mathrm{MPa}) \\ \text { thickness } t(\mathrm{~mm}) \end{gathered}$								$\begin{gathered} \operatorname{minimum} f_{u}(\mathrm{MPa}) \\ \text { thickness } t(\mathrm{~mm}) \end{gathered}$		
		> 8	> 12	>20	>32	>50	>80	> 150		>20	>150
	$\leqslant 8$	$\leqslant 12$	$\leqslant 20$	$\leqslant 32$	$\leqslant 50$	$\leqslant 80$	$\leqslant 150$	$\leqslant 200$	$\leqslant 20$	$\leqslant 150$	$\leqslant 200$
200	200	200							300	300	290
250	280	260	250	250	250	240	230	220	410	410	400
300	320	310	300	280	280	270	260	250	430	430	420
350	360	360	350	340	340	340	330	320	450	450	450
400	400	400	380	360	360	360			480	480	
450	450	450	450	420	400				520	500	
WR350	340	340	340	340	340	340			450	450	

Please refer to AS/NZS 3678:2016 Table 8 for notes and details.

\$2.3 Design Yield Stress for Sections

For members of uniform thickness (such as plates, angles, etc.), the yield stress may be obtained directly for the appropriate material grade. However, a number of different member types do not have uniform thickness. This includes I-sections, C-sections, etc., where the thickness of flanges is generally greater than that of webs. While the different strengths of the different components (e.g., webs, flanges.) could be used in the calculations, this is usually too cumbersome for routine design, and the increase in accuracy is generally small. It is therefore reasonable to use the following rules:

- For bending (flexural) strength (about both strong and weak axes, see sketches below), use $\boldsymbol{f}_{\boldsymbol{y}}=$ $f_{y, f l a n g e}$ as flanges are the main contributors to resistance.

- For axial strength, use $f_{\boldsymbol{y}}=f_{y, f l a n g e}$ as both web and flanges contribute to resistance but $\boldsymbol{f}_{\boldsymbol{y}, \text { flange }}$ is often smaller, which leads to conservative design.

- For shear strength associated with strong-axis bending, use $f_{y}=f_{y, w e b}$ as web is the main contributor to resistance.

- For shear strength associated with weak-axis bending, use $f_{y}=f_{y, \text { flange }}$ as flanges are the main contributors to resistance.

\$2.4 Structural Shapes

Common types include:

- hot-formed

Steel is formed into the shape of the section while it is still hot. Many kinds of working, including rolling, forging, extrusion and drawing, can be done with hot metal.

- cold-formed

Thin plate steel is shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc.

- built-up

Steel is formed by welding together plates to form various section shapes.

We will not use cold-formed sections in this course. For availability, readers can refer to specification manual provided by Liberty Steel.

2.4.1 Hot-Rolled Products

1. Universal Beams (UB) AS/NZS 3679.1\&2:2016

Different names may be used in other codes. For example, I-Beam - NZ/AU/UK; H-Section - Japan; WF-Beam - USA; IPE, HE, HL, HD - EU. A typical designation consists of three components.

460	UB	74.6
approx.	universal	linear
depth	beam	density (mm)
		$\left(\mathrm{kg} \mathrm{m}^{-1}\right)$

Linear density is the mass per unit length. The depth is greater than the flange width.

- high flexural strength to area ratio
- high flexural stiffness to area ratio

- high moment capacity due to high lever arm
- flanges and webs are easy to bolt (flat)
- thickness of flange/web selected to limit buckling

2. Universal Columns (UC) AS/NZS 3679.1\&2:2016

Similar to UB, a typical designation consists of three components.

$\mathbf{2 5 0}$	UC	$\mathbf{7 2 . 9}$
approx.	universal	linear
depth	column	density
(mm)		$\left(\mathrm{kg} \mathrm{m}^{-1}\right)$

The geometry of UC sections differ from UB sections with wider flanges in order to limit lateral buckling. The depth is similar to the flange width.

The radius of gyration $r_{y}=\sqrt{\frac{I_{y}}{A}}$ about weak axis is often larger than that of UB sections.
3. Universal Bearing Piles (UBP), a.k.a., H sections

A typical designation:

$\mathbf{3 1 0}$	UBP	$\mathbf{1 4 9}$
approx.	universal	linear depth
bearing piles	density	
(mm)		$\left(\mathrm{kg} \mathrm{m}^{-1}\right)$

UBP sections are similar to UC sections but have uniform thickness for both web and flanges.
4. Parallel Flange Channels (PFC)

A typical designation:

$\mathbf{2 0 0}$	PFC
section	parallel
depth	flange channel
(mm)	

5. Tapered Flange Beams (TFB)

Sometimes TFB is also called Rolled Steel Joinst (RSJ), M, S sections. A typical designation:

$$
\begin{array}{cc}
\mathbf{1 2 5} & \text { TFB } \\
\text { section } & \text { tapered } \\
\text { depth } & \text { flange beam } \\
(\mathrm{mm}) &
\end{array}
$$

TFBs are traditional sections. However, there are deemed as inefficient structural member. Sloping washers are needed for flange connections.
6. Taper Flange Channels (TFC)

Traditionally often used for framing around door opening, or for built-up lattices members. Seldom used now.

7. Equal Angles (EA)

Angles are commonly used as tension bracing or for builtup members.
A typical designation:

$$
\begin{array}{cccccc}
125 & \times & \mathbf{1 2 5} & \times & \mathbf{1 6} & \text { EA } \\
a(\mathrm{~mm})
\end{array} ~ \begin{array}{cc}
b(\mathrm{~mm})
\end{array} \begin{aligned}
& t(\mathrm{~mm})
\end{aligned}
$$

It is also denoted as $\mathrm{L} 125 \times 125 \times 16$ or $125 \times 16 \mathrm{EA}$.
8. Unequal Angles (UA)

Angles are commonly used as tension bracing or for builtup members.
A typical designation:

It is also denoted as L125 $\times 75 \times 12 \mathrm{UA}$.
9. Structural Tees (T)

They can be made by splitting UC or UB sections and used for chord members in steel trusses, flanges in plate girders or hangers.

10. Rectangular Hollow Sections (RHS)

A typical designation:

$$
\begin{array}{cccccc}
75 & \times & \mathbf{2 5} & \times & \mathbf{2 . 5} & \text { RHS } \\
d(\mathrm{~mm}) & & b(\mathrm{~mm}) & & t(\mathrm{~mm}) &
\end{array}
$$

11. Circular Hollow Sections (CHS)

A typical designation:

$$
\begin{array}{cccc}
165.1 & \times & \mathbf{3 . 0} & \text { CHS } \\
d_{0}(\mathrm{~mm}) & & t(\mathrm{~mm}) &
\end{array}
$$

12. Plates

Common thicknesses include: $5 \mathrm{~mm}, 6 \mathrm{~mm}, 8 \mathrm{~mm}, 10 \mathrm{~mm}, 12 \mathrm{~mm}, 16 \mathrm{~mm}, 20 \mathrm{~mm}, 25 \mathrm{~mm}$. Common widths include: $20 \mathrm{~mm}, 25 \mathrm{~mm}, 32 \mathrm{~mm}, 40 \mathrm{~mm}, 50 \mathrm{~mm}, 65 \mathrm{~mm}, 75 \mathrm{~mm}, 90 \mathrm{~mm}, 100 \mathrm{~mm}$, $110 \mathrm{~mm}, 130 \mathrm{~mm}, 150 \mathrm{~mm}$.
e.g., $12 \times 200 \times 300$ plate.
13. Bars

Flat bars, commonly also referred to as 'flats', commonly have widths ranging from 10 mm to 90 mm .
e.g., $12 \times 24 \times 300$ bar.

Sections may also be described in terms of being non-symmetric, singly symmetric or doubly symmetric. For example,

Figure 2.6: Examples of non-symmetric, singly symmetric and doubly symmetric sections

2.4.2 Cold-Formed Products

Figure 2.7: Profiled sheets and linear trays (Dubina et al., 2012)

Figure 2.8: Single open sections (Dubina et al., 2012)

Figure 2.9: Channel sections (Dubina et al., 2012)

2.4.3 Standard Welded Products

Welded sections are often welded together plates. They can be welded on either one side only or both sides.

1. Welded Beams (WB)

A typical designation:

$\mathbf{9 0 0}$	WB	$\mathbf{2 1 8}$
d	welded	linear
height	beam	density
(mm)		$\left(\mathrm{kg} \mathrm{m}^{-1}\right)$

2. Welded Columns (WC)

A typical designation:

$\mathbf{4 0 0}$	WC	$\mathbf{2 7 0}$
d	welded	linear
height	column	density
(mm)		$\left(\mathrm{kg} \mathrm{m}^{-1}\right)$

Non-prismatic sections can be used to reduce cost and improve efficiency, e.g.,

Figure 2.10: Non-prismatic sections by plates welded together

>2.5 Steel Availability

Some general guidance is available from mills which may be relevant to Australasia (e.g., Liberty Steel Hot Rolled and Structural Steel Product).

SCNZ recommends chartered distributor for sources compliant structural steel. Distributors have limited members so it is best to call the check availability.

\$2.6 Standard Tolerance

Sections, as well as members, must satisfy code dimension requirements (NZS 3404.1\&2:1997 § 14.4). Deformations must arise as parts of members cool at different rates and residual stresses are developed.

Figure 2.11: Tolerances on a cross section

Typical tolerance for camber and sweep is $L / 1000$ (NZS 3404.1\&2:1997 Table 14.4.5). For I sections with a flange width less than 150 mm , the tolerance of sweep can be as large as $L / 500$.

Figure 2.12: Measurement of camber and sweep

\$2.7 Undesirable Steel Behaviour

2.7.1 Brittle Fracture

Brittle fracture affects strength.

Figure 2.13: Brittle fracture

2.7.2 Buckling

Structural members may fail under buckling, the material strength is not fully utilised under buckling. To learn more, check this video: Understanding Buckling ${ }^{5}$.

Figure 2.14: Buckling

[^6]
2.7.3 Excessive Deformation/Vibration

It affects serviceability.

- bouncy floor
- ponding

Figure 2.15: Ponding on roof

>2.8 Standard Gauge

The following tables are generated according to tables from Table 10.2-1 to Table 10.2-5 provided by ASI design capacity tables (Australian Steel Institute, 2016). Please refer to ASI manual for notes.

Table 2.4: Gauge lines for universal sections

| Section | Flange $s_{g f}$ | | | | Web $s_{g w}$ | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | M20 | | M 24 | | | M20 | | | M24 | |
| 610UB | 140 | 90 | 140 | 90 | 140 | 90 | 70 | 140 | 90 | 70 |
| 530UB | 140 | 90 | 140 | 90 | 140 | 90 | 70 | 140 | 90 | 70 |
| 460UB | 90 | 140 | 90 | | 90 | 70 | 140 | 90 | 70 | 140 |
| 410UB | 90 | 70 | 90 | 90 | 70 | 140 | 90 | 70 | 140 | |
| 360UB,310UB | 90 | 70 | 90 | 90 | 70 | 140 | 90 | 70 | 140 | |
| 310UB32.0 | 70 | | b | 90 | 70 | 140 | 90 | 70 | 140 | |
| 250UB | 70 | 90 | b | 70 | 90 | 140 | 70 | 90 | | |
| 250UB25.7 | 70^{*} | | b | 70 | 90 | | 70 | 90 | | |
| 200UB | 70 | | b | | 70 | 90 | | 70 | 90 | |
| 200UB18.2 | 60^{*} | | b | | 70 | 90 | | 70 | | |
| 180UB | $50^{* *}$ | | b | | 70 | | | 70 | | |
| 150UB | c | | b | | 60^{*} | | | b | | |
| 310UC | 140 | 90 | 140 | 90 | 90 | 70 | 140 | 90 | 70 | 140 |
| 250UC | 140 | 90 | 140 | 90 | 90 | 70 | 140 | 90 | 70 | |
| 200UC | 140 | 90 | 140 | 90 | 90 | 70 | | 90 | 70 | |
| 150UC | 90 | 70 | 90 | | 60^{*} | | | b | | |
| 100UC | 60^{*} | | b | | c | | | b | | |
| Preference | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 3 |

* Gauge listed are for M16 bolts.
** Gauge listed are for M12 bolts.
b indicates that the flange or web cannot accommodate this size of bolt.
c indicates that the flange or web cannot accommodate two lines of bolts
with a gauge of 50 mm or more for M12 or larger bolts.
All dimensions are in mm.

Table 2.5: Gauge lines for TFB and PFC

Section	Flange $s_{g f}$			Web $s_{g w}$								
	M16	M20	M24	M16			M20			M24		
125TFB	b,b1	b	b	50			50			c		
100 TFB	b,b1	b	b	c			c			c		
380 PFC	55	55	55	140	90	70	140	90	70	140	90	70
300 PFC	55	55	55	140	90	70	140	90	70	140	90	70
250PFC	55	55	55	140	90	70	140	90	70	140	90	70
230PFC	45	45	45	140	90	70	90	70		90	70	
200PFC	45	45	45	90	70		90	70		90	70	
180PFC	45	45	45	70			70			c		
150PFC	45	45	45	50			50			c		
125PFC	35	35	b	50			c			c		
100PFC	30	b	b	c			c			c		
75PFC	b,b1	b	b	c			c			c		
Preference	1	1	1	1	2	3	1	2	3	1	2	3

b indicates that the flange cannot accommodate this size of bolt.
b1 indicates that the flange cannot accommodate M12 bolt. c indicates that the web cannot accommodate two lines of bolts with a gauge of 50 mm or more.

All dimensions are in mm .

Table 2.6: Gauge lines for structural Tees cut from universal sections

Section	Flange $s_{g f}$				Web $s_{g w}$					
	M20		M24		M20			M24		
305BT	140	90	140	90	140	90	70	140	90	70
265BT	140	90	140	90	140	90	70	140	90	70
230BT	90	140	90		90	70	140	90	70	
205BT	90	70	90		90	70		90	70	
180BT	90	70	90		90	70		70		
155BT	90	70	90		70					
155BT16.0	70		b		70					
125BT	70	90	b		50 **			b		
125BT12.9	70^{*}		b		50**			b		
100BT	70		b		c			b		
100BT9.1	60*		b		c			b		
90BT	50**		b		c			b		
75BT	c		b		c			b		
155CT	140	90	140	90	60			b		
125CT	140	90	140	90	50**			b		
100CT	140	90	140	90	c			b		
75CT	90	70	90		c			b		
50CT	60*		b		c			b		
Preference	1	2	1	2	1	2	3	1	2	3

* Gauge listed are for M16 bolts.
** Gauge listed are for M12 bolts.
b indicates that the flange or web cannot accommodate this size of bolt.
c indicates that the flange or web cannot accommodate two lines of bolts
with a gauge of 50 mm or more for M12 or larger bolts.
All dimensions are in mm .

Table 2.7: Gauge lines for welded sections

Section	M20							M24					
	$s_{g f 1}$		$s_{g f 2}$		$s_{g w}$			$s_{g f 1}$		$s_{g f 2}$	$s_{g w}$		
1200WB455-392	140	90	280	420	140	90	70	140	90	280	140	90	70
1200WB342-278	140	90	280		140	90	70	140	90	280	140	90	70
1200WB249	140	90	b		140	90	70	140	90	b	140	90	70
1000WB322-258	140	90	280		140	90	70	140	90	280	140	90	70
1000WB215	140	90	b		140	90	70	140	90	b	140	90	70
900WB282-218	140	90	280		140	90	70	140	90	280	140	90	70
900 WB 175	140	90	b		140	90	70	140	90	b	140	90	70
800 WB	140	90	b		140	90	70	140	90	b	140	90	70
700 WB	140	90	b		140	90	70	140	90	b	140	90	70
500WC	140		280	420	140	90	70	140		280	140	90	70
400WC	140		280		140	90	70	140		280	140	90	70
350WC	140		280		140	90	70	140		b	140	90	70
Preference	1	2	1	2	1	2	3	1	2	1	1	2	3

b indicates that the flange cannot accommodate this size of bolt.
All dimensions are in mm.

Table 2.8: Gauge lines for angles

Nominal leg length	$s_{g 1}$	$s_{g 2}$	$s_{g 3}$	Bolt
200	$65(75)$	$70(75)$	100	M 24
150	$50(55)$	$60(55)$	75	M 24
125	45	50	$65(62)$	M 24
100			50	M 20
90				
75		$40(38)$	M 20	$s_{g, 3}$

1> 2.9 Special Considerations Affecting Steel Properties

- corrosion

Corrosion is an electrochemical process resulting in reduction of the steel cross sectional area.
The following treatments can be applied to protect steel from corrosion:

- weathering steels: special alloy steels corrode and the corrosion forms a protective coating reducing the rate of future corrosion
- separating steel from the atmosphere (e.g., painting)
- galvanizing with a more reactive metal (e.g., zinc)

Figure 2.16: Galvanic activity (https://www.jlconline.com/how-to/exteriors/separating-gal vanic-metals_o)

- temperature

Metals become brittle under low temperature and ductile/softening under high temperature. It is necessary to provide an environment where the steel does not get too hot nor too cold by, for example:

- provide adequate ventilation, reduce fuel, e.g., parking structures
- cover steel surface by using concrete, timber, plaster, chemical foam, mineral fibres, special paints, etc.

Figure 2.17: Steel strength decreases with temperature (Espinos et al., 2015)

- residual stress

Residual stresses may occur in steel members/elements as a result of nonuniform cooling of the section. It may occur due to rolling or welding. For the section shown below, it will cool fastest at the extremities, where there is less additional steel to maintain its temperature. Once the extremities cool, they become solid. Then, as the core (away from the extremities) cools, it tries to shorten. As it does this it pulls on the extremities, so that they shorten too. However, as the extremities are solid, they do not shorten. Instead, they become subject to a compressive force as they resist the shortening. Also, the core remains in tension as it is unable to cause the extremities to shorten. Therefore, in general, extremities are in compression, while the core is in tension. Welded sections may have significantly different behaviour.
hot - steel directly from furnace
cooling - extremities cool first, hot centre moves with extremitirs
cooled - centre cools and wants to shorten
but it is restrained by stiff cooled extremities

This puts extremities into compression and central regions into tension.
Figure 2.18: Residual stress from cooling member

Although the section as whole is in equilibrium, due to residual stresses, some regions are in compression while some in tension. When loaded, the section yields non-uniformly. The tension force displacement curve of a member becomes rounded as the stress approaches the yield value, but the peak tensile strength does not change. However, in the case of compression force, the rounded stress-strain curve implies a lower member axial stiffness. Since the buckling load is related to the stiffness, the compressive strength can decrease. This affects members of intermediate slenderness (as stocky members do not buckle, and slender members buckle before the residual stresses affect the response).

Figure 2.19: Stress-strain curve considering residual stress

Depending on different geometries/configurations, different residual stress patterns may appear as shown in the following figure.

Parabolic type
Figure 2.20: Residual stress patterns of hot-rolled sections (https://www.lajss.org/index.php/LA JSS/article/view/176)

- steel detailing

Rapid changes in cross section shape can cause stress concentrations.

Figure 2.21: Stress concentration due to sharp change of geometry (Katsivalis et al., 2018)

Figure 2.22: Crack in connections (Qu et al., 2017)

- steel quality

Poor quality steel is more likely to be brittle. Brittle behaviour is possible as a result of:

- large dimension ($t>20 \mathrm{~mm}$)
- defects (inclusions, air pockets, etc.) in steel
- weak lamellar bonds

Figure 2.23: Illustration of lamellar tearing in thick steel plates (http://sainsmechanical.blogspot .com/2011/12/hot-working-of-metals.html)

Figure 2.24: Gain reshaped due to rolling

- cold working

Possibility of fracture is increased after cold working, thus one shall be careful if reusing steels.

Figure 2.25: Strain hardening by cold working

- strain ageing

Strain aged steel is stronger but more brittle.
Steel is initially loaded to point A for some time then unloaded. When reloaded, it can reach point B and follow the corresponding path as shown in the figure.

Figure 2.26: Strain ageing

- repeated loading

As the material sustains many elastic load reversals it may lead to brittle failure characterised by fatigue. Fatigue fracture is dependent on magnitude of stress reversal as well as the number of cycles applied. It is most significant when there are sharp discontinuities in the material shape. It is not usually a concern in buildings, but can be a problem due to traffic on bridges.

Figure 2.27: Cyclic loads

Figure 2.28: Stress-life curve for a brittle aluminium (https://upload.wikimedia.org/wikipedia /commons/d/d2/BrittleAluminium320MPa_S-N_Curve.svg)

- impact loading

High speed loading can lead to more brittle failure. This is often indicated by Charpy V-notch ${ }^{6}$ test.

High impact resistance is important for structures subject to earthquake shaking.
The mass is released from specified height. The angle θ the mass moves to after breaking specimen is recorded as a measure of ductility. Often low θ, indicating more energy is absorbed by the specimen, is desired.

[^7]

Figure 2.29: Charpy V-notch test apparatus (https://www.totalmateria.com/page.aspx?ID=Chec kArticle\&site=kts\&NM=534)

- triaxial loading

Depending on loading direction, triaxial loading conditions may lead to an increase or decrease in strength. An increase in strength is generally associated with a decrease in ductility.

Figure 2.30: von Mises yielding criterion (https://upload.wikimedia.org/wikipedia/commons/c /cc/Yield_surfaces.svg)

Tension Members

Tension members are commonly used as bracing in trusses and elsewhere. They may be wires, rods, bars, structural shapes, etc.

>3.1 Strength Design Concept

The LRFD equation possesses the following form (NZS 3404.1\&2:1997 § 7.1):

$$
\begin{equation*}
N^{*} \leqslant \phi N_{t} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
N^{*} & =\text { factored summation of forces } \\
N_{t} & =\text { nominal (ideal) tensile strength } \\
\phi & =\text { strength reduction factor, for tension } \phi_{t}=0.9
\end{aligned}
$$

Failure is considered to occur as a result of either:

- Excessive elongation: yield over the gross area A_{g} In this case, N_{t} is determined by the gross area:

$$
\begin{equation*}
N_{t}=A_{g} f_{y} \tag{3.2}
\end{equation*}
$$

where
$A_{g}=$ gross cross section area
$f_{y}=$ yield strength

- Sudden strength decrease: facture over the net area A_{n} In this case, N_{t} is determined by the net area:

$$
\begin{equation*}
N_{t}=0.85 k_{t e} A_{n} f_{u} \tag{3.3}
\end{equation*}
$$

where
$k_{t e}=$ the correction factor for distribution of forces
$A_{n}=$ net cross section area
$f_{u}=$ tensile (ultimate) strength

Figure 3.1: Fracture over net area

Thus, to design a member in tension, one shall use the following criterion.

$$
\begin{equation*}
N^{*} \leqslant \min \left(\phi A_{g} f_{y}, \phi 0.85 k_{t e} A_{n} f_{u}\right) \tag{3.4}
\end{equation*}
$$

Figure 3.2: Definitions of gross and net areas

3.1.1 Definition of Net Area

The net area of the section considers the gross areas of holes used in the member. For bolted members, the standard hole size d_{h} is a function of the bolt diameter d_{f} (NZS 3404.1\&2:1997 § 14.3.5.2.1).

$$
d_{h}= \begin{cases}d_{f}+2 \mathrm{~mm}, & d_{f} \leqslant 24 \mathrm{~mm} \tag{3.5}\\ d_{f}+3 \mathrm{~mm}, & d_{f}>24 \mathrm{~mm}\end{cases}
$$

Unstaggered Holes

According to NZS 3404.1\&2:1997 § 9.1.10.2, for holes that are not staggered, the area to be deducted shall be the maximum summation of the areas of the holes in any cross sections that are perpendicular to the direction of the design action. For a cross section with n holes of size $d_{h, i}$ of a plate of thickness t, the net area can be computed as

$$
\begin{equation*}
A_{n}=A_{g}-\sum_{i=1}^{n} d_{h, i} t_{i} \tag{3.6}
\end{equation*}
$$

The calculated net area is indeed the minimum 'net' area.

Staggered Holes

According to NZS 3404.1\&2:1997 § 9.1.10.3, for staggered holes, the area to be deducted shall be the greater of:

1. the deduction of non-staggered holes,
2. the summation of the areas of all holes in any zig-zag line extending progressively across the member or part of the member.

For a zig-zag line with n holes and m diagonal line segments, the net area shall be computed as follows.

$$
\begin{equation*}
A_{n}=A_{g}-\sum_{i=1}^{n} d_{h, i} t_{i}+\sum_{j=1}^{m} \frac{s_{p, j}^{2} t_{j}}{4 s_{g, j}} \tag{3.7}
\end{equation*}
$$

in which
$s_{p}=$ staggered pitch, distance between hole centers measured parallel to the force direction
$s_{g}=$ gauge length, distance between hole centers measured perpendicular to the force direction

Figure 3.3: Definition of gauge length and pitch

Eq. (3.6) is the simplified case of Eq. (3.7) with no diagonal line segments. For staggered layouts, the third term in Eq. (3.7) must be used. For any given bolt layouts, the governing net area shall be the minimum of all staggered and unstaggered cases. This is due to the fact that in a staggered layout, depending on pitch and gauge, an unstaggered section may have smaller net area than a staggered section.

If all holes have the same size $d_{h, i}=d_{h}$, and the plate thickness is uniform $t_{i}=t_{j}=t$, then it is possible to express the net area as $A_{n}=L t$ with $L=b-n d_{h}+\sum_{j=1}^{m} \frac{s_{p, j}^{2}}{4 s_{g, j}}$. The main task is to find the length of critical fracture line L.

Example 3.1 For the plate shown, assume the thickness is $t=12 \mathrm{~mm}$ and the diameter of bolts is 20 mm , to compute the critial fracture line, both staggered and unstaggered cases need to be considered.

Solution 3.1

The standard hole size $d_{h}=20 \mathrm{~mm}+2 \mathrm{~mm}=22 \mathrm{~mm}$. The width $b=355 \mathrm{~mm}$. The four cases considered are:

- Line ABDG - Unstaggered

$$
L_{A B D G}=b-2 d_{h}=355 \mathrm{~mm}-2 \times 22 \mathrm{~mm}=311 \mathrm{~mm} .
$$

- Line ABDEF - Staggered

There are three bolts and one diagonal line DE, for which $s_{p}=50 \mathrm{~mm}$ and $s_{g}=100 \mathrm{~mm}$.

$$
\begin{aligned}
L_{A B D E F} & =b-3 d_{h}+\frac{s_{p}^{2}}{4 s_{g}} \\
& =355 \mathrm{~mm}-3 \times 22 \mathrm{~mm}+\frac{(50 \mathrm{~mm})^{2}}{4 \times 100 \mathrm{~mm}}=295.3 \mathrm{~mm}
\end{aligned}
$$

- Line ABCDG - Staggered

There are three bolts and two diagonal lines. For BC, $s_{p}=50 \mathrm{~mm}$ and $s_{g}=100 \mathrm{~mm}$. For
$\mathrm{CD}, s_{p}=50 \mathrm{~mm}$ and $s_{g}=75 \mathrm{~mm}$.

$$
\begin{aligned}
L_{A B C D G} & =b-3 d_{h}+\sum \frac{s_{p}^{2}}{4 s_{g}} \\
& =355 \mathrm{~mm}-3 \times 22 \mathrm{~mm}+\frac{(50 \mathrm{~mm})^{2}}{4 \times 100 \mathrm{~mm}}+\frac{(50 \mathrm{~mm})^{2}}{4 \times 75 \mathrm{~mm}}=303.6 \mathrm{~mm}
\end{aligned}
$$

- Line ABCDEF - Staggered

There are four bolts and three diagonal lines: BC, CD and DE .

$$
\begin{aligned}
L_{A B C D E F} & =b-4 d_{h}+\sum \frac{s_{p}^{2}}{4 s_{g}} \\
& =355 \mathrm{~mm}-4 \times 22 \mathrm{~mm}+\frac{2 \times(50 \mathrm{~mm})^{2}}{4 \times 100 \mathrm{~mm}}+\frac{(50 \mathrm{~mm})^{2}}{4 \times 75 \mathrm{~mm}}=287.8 \mathrm{~mm}
\end{aligned}
$$

The governing case leads to the minimum net area $A_{n}=L_{A B C D E F} t=287.8 \mathrm{~mm} \times 12 \mathrm{~mm}=$ $3454 \mathrm{~mm}^{2}$. In this example, since the plate is resisting N^{*} applied on the right side, there is no need to consider cases such as ABCEF in which bolt at D has provided some resistance. The design of bolted connection will be introduced in Chapter 6.

Angle Connection

For angle connection, the gauge s_{g} shall be taken as the sum of the back marks to each hole, less the leg thickness (NZS 3404.1\&2:1997 Fig. 9.1.10.3(2)).

Figure 3.4: Illustration of gauge of staggered layout in an angle

Essentially, the distance measured at the centre of thickness is evaluated. That is,

$$
\begin{equation*}
s_{g}=s_{g, 1}+s_{g, 2}-\frac{t_{1}+t_{2}}{2} \tag{3.8}
\end{equation*}
$$

3.1.2 Determination of Distribution Factor

A correction factor $k_{t e}$ is used to account for the concept of shear lag, or plane sections not remaining plane. This concept may be seen from the following examples.

In other connections, the same effect can be seen. Factors affecting shear lag are

- proportion of section connected;

It may be seen that the stress flow lines change direction and move together concentrating stress.

- length of weld or number of connects, more shear lag is expected with fewer connectors;

- change in direction of stress due to section shape, e.g., angle connected with fillet welds on both sides of one leg.

Figure 3.5: Shear lag in welded angle specimen (Dhanuskar and Gupta, 2021)

Figure 3.6: Shear lag in bolted angle specimen

The determination of $k_{t e}$ is explained in NZS 3404.1\&2:1997 § 7.3.

Some codes define an effective net area $A_{e}=k_{t e} A_{n}$. We will use the AISC recommendations, because they are clearer, and more reasonable than the AS/NZS approach. They are given in Fig. 3.7 (ANSI/AISC 360-16 Table D3.1), where $U=k_{t e}$.

>3.2 Tension Member Slenderness Limitations

Most codes do not have any requirements for slenderness. However, undesired flutter (or vibration) of slender tension members have been observed in some situations. The AISC-LRFD code makes the following recommendations (ANSI/AISC 360-16 § D1): For members designed on the basis of tension, the slenderness ratio, L / r, preferably should not exceed 300. This suggestion does not apply to rods or hangers in tension.

Example 3.2 Worksheet Axial Tension Example - Slender UC
Choose a 8 m long UC section to carry $G=880 \mathrm{kN}$ and $Q=1200 \mathrm{kN}$ respectively with Grade 300 steel.

Solution 3.2

| Case | Description of Element | Shear Lag Factor, \boldsymbol{U} |
| :---: | :--- | :---: | :---: |

Figure 3.7: Shear lag factors for connections to tension members

Assume $f_{y}=280 \mathrm{MPa}$, the factored tension force is given by the critical load combination,

$$
\begin{aligned}
N_{t}^{*}=\sum \gamma_{i} E_{i} & =1.2 G+1.5 Q \\
& =1.2 \times 880 \mathrm{kN}+1.5 \times 1200 \mathrm{kN} \\
& =2856 \mathrm{kN}
\end{aligned}
$$

LRFD requires the following for material yielding on the gross area.

$$
\begin{aligned}
N_{t}^{*} & \leqslant \phi N_{t} \\
& \leqslant \phi A_{g} f_{y} \\
A_{g} & \geqslant \frac{N_{t}^{*}}{\phi f_{y}}=11330 \mathrm{~mm}^{2}
\end{aligned}
$$

Try 250UC89.5,

$$
A_{g}=11400 \mathrm{~mm}^{2}>11330 \mathrm{~mm}^{2}
$$

Check slenderness requirement, considering the minimum r value:

$$
\frac{L}{r_{\min }}=\frac{L}{r_{y}}=\frac{8000}{65.5}=122.7<300, \quad \text { Okay }
$$

Since $t_{f}=17.3 \mathrm{~mm}>17 \mathrm{~mm}$, the assumed yield stress $f_{y}=280 \mathrm{MPa}$ is correct, see, Table 2.1. Thus, a 250 UC 89.5 section works. Alternatively, the next section, 310UC96.8, also works but its heavier.

Note:

- The critical loading actions need to be combined for ultimate limit states (left hand side of the equation).
- Remember slenderness may impose additional requirements.

Example 3.3 Worksheet Axial Tension Example - Staggered Bolt Connection

Assuming Grade 300 steel and $\phi 12 \mathrm{~mm}$ bolts, the thickness of top plate is 12 mm , what is the maximum factored force (or design strength) in tension of the top plate shown below?

Solution 3.3

A member subjected to an axial tension force shall satisfy:

$$
N^{*} \leqslant \min \left(\phi A_{g} f_{y}, \phi 0.85 k_{t e} A_{n} f_{u}\right)
$$

In this case, $k_{t e}=1$. The overall width b is

$$
b=2 \times 50 \mathrm{~mm}+2 \times 65 \mathrm{~mm}=230 \mathrm{~mm}
$$

The standard hole size is

$$
d_{h}=12 \mathrm{~mm}+2 \mathrm{~mm}=14 \mathrm{~mm}
$$

Because $t=12 \mathrm{~mm}>11 \mathrm{~mm}$, for Grade 300 steel, $f_{y}=310 \mathrm{MPa}$ and $f_{u}=430 \mathrm{MPa}$.
For gross area,

$$
A_{g} f_{y}=b t f_{y}=230 \mathrm{~mm} \times 12 \mathrm{~mm} \times 310 \mathrm{MPa}=855.6 \mathrm{kN}
$$

For net area, find critical fracture line first. When fracture line is $A B F G$,

$$
L_{A B F G}=b-2 d=230 \mathrm{~mm}-2 \times 14 \mathrm{~mm}=202 \mathrm{~mm} . \quad \rightarrow \quad \text { critical }
$$

When fracture line is $A B D F G$,

$$
L_{A B D F G}=230 \mathrm{~mm}+2 \times \frac{(70 \mathrm{~mm})^{2}}{4 \times 65 \mathrm{~mm}}-3 \times 14 \mathrm{~mm}=225.7 \mathrm{~mm}
$$

Thus,

$$
A_{n}=L_{A B F G} t=202 \mathrm{~mm} \times 12 \mathrm{~mm}=2424 \mathrm{~mm}^{2}
$$

Then,

$$
0.85 k_{t e} A_{n} f_{u}=0.85 \times 1 \times 2424 \mathrm{~mm}^{2} \times 430 \mathrm{MPa}=886 \mathrm{kN}
$$

The maximum factored force is then

$$
N^{*} \leqslant \min (0.9 \times 855.6 \mathrm{kN}, 0.9 \times 886 \mathrm{kN})=770 \mathrm{kN}
$$

For connected members, both failure mechanisms need to be calculated. This applies to not only bolted
connection with area reduction, but also other types of connections.

Example 3.4 Worksheet Axial Tension Example - Angle Connection

Use Grade 300 steel, design a 2.7 m single angle tension member connected to a plate with one leg (long leg if UA) using 5 M20 ($\phi 20 \mathrm{~mm}$) class 8.8 bolts in a line, with one at each section. Let $G=130 \mathrm{kN}$ and $Q=190 \mathrm{kN}$.

Solution 3.4

The critical combination is

$$
N_{t}^{*}=\max (1.35 G, 1.2 G+1.5 Q)=441 \mathrm{kN}
$$

Assume $f_{y}=320 \mathrm{MPa}$, the minimum gross area is

$$
A_{g} \geqslant \frac{N_{t}^{*}}{\phi f_{y}}=\frac{441 \mathrm{kN}}{0.9 \times 320 \mathrm{MPa}}=1531 \mathrm{~mm}^{2}
$$

According to case 8 in Fig. 3.7, $k_{t e}=0.8$, the minimum net area is

$$
A_{n} \geqslant \frac{N_{t}^{*}}{\phi 0.85 k_{t e} f_{u}}=\frac{441 \mathrm{kN}}{0.9 \times 0.85 \times 0.8 \times 440 \mathrm{MPa}}=1638 \mathrm{~mm}^{2}
$$

Thus the net area governs. Try the following sections.

Section	A_{g}	t	$r_{\min }$	A_{n}	
$125 \times 75 \times 10 \mathrm{UA}$	1810	9.5	16.2	1601	N.G.
$100 \times 100 \times 10 \mathrm{EA}$	1810	9.5	19.6	1601	N.G.
$125 \times 90 \times 8 \mathrm{UA}$	1820	7.8	19.7	1648.4	Okay
$125 \times 125 \times 8 \mathrm{EA}$	1900	7.8	24.8	1728.4	Okay
$125 \times 90 \times 10 \mathrm{UA}$	2200	9.5	19.6	1991	Okay
$100 \times 100 \times 12 \mathrm{EA}$	2260	12	19.5	1996	Okay

Thus use $125 \times 90 \times 8$ UA. The thickness is smaller than 11 mm , thus the assumed yield stress is appropriate for Grade 300 steel.

Example 3.5 Worksheet Axial Tension Example - Bolted Flange UC

Find the size of UC member carrying axial loads $G=270 \mathrm{kN}, Q=400 \mathrm{kN}$ and $W=45 \mathrm{kN}$ using Grade 300 steel. The spacing of bolts is 80 mm along the direction of axial force. Note bolted connections apply to both sides of the member.

Solution 3.5

The demand can be obtained via combinations.

$$
\begin{aligned}
N_{t}^{*} & =\max \left(1.35 G, 1.2 G+1.5 Q, 1.2 G+\psi_{c} Q+W\right) \\
& =\max (364.5 \mathrm{kN}, 924 \mathrm{kN}, 529 \mathrm{kN}) \\
& =924 \mathrm{kN}
\end{aligned}
$$

Assume $f_{y}=320 \mathrm{MPa}$, for yielding on gross area,

$$
A_{g} \geqslant \frac{N_{t}^{*}}{\phi f_{y}}=\frac{924 \mathrm{kN}}{0.9 \times 320 \mathrm{MPa}}=3208 \mathrm{~mm}^{2}
$$

Try 150UC30.0, $A_{g}=3860 \mathrm{~mm}^{2}$ and $t_{f}=9.4 \mathrm{~mm}$. Since for each net section, there are 2 bolts
per flange, totalling 4, the net area is

$$
A_{n}=A_{g}-4 t_{f} d_{h}=3860 \mathrm{~mm}^{2}-4 \times 9.4 \mathrm{~mm} \times 22 \mathrm{~mm}=3033 \mathrm{~mm}^{2}
$$

Since there are three bolts in a line and $b_{f}>\frac{2}{3} d$, from Fig. 3.7, $k_{t e}=0.9$ according to case 7 . Thus for fracture on net area,

$$
\phi 0.85 k_{t e} A_{n} f_{y}=0.9 \times 0.85 \times 0.9 \times 3033 \mathrm{~mm}^{2} \times 440 \mathrm{MPa}=919 \mathrm{kN}
$$

The difference is only 0.5%. Considering the ultimate strength would be greater, 150 UC 30.0 is okay.

Use case 2 in Table 3.7 to recheck the example, from which,

$$
k_{t e}=1-\frac{\bar{x}}{l}
$$

Since bolts are in both flanges, axial forces from half section goes to bolts on each side. Consider half section only, find eccentricity \bar{x},

$$
\begin{aligned}
\bar{x} & =\frac{\sum x_{i} A_{i}}{\sum A_{i}} \\
& =\frac{\left(b_{f}-t_{w}\right) \cdot t_{f} \cdot t_{f} / 2+t_{w} \cdot d / 2 \cdot d / 4}{A_{g} / 2} \\
& =\frac{(153-6.6) \cdot 9.4 \cdot 4.7+6.6 \cdot 78.8 \cdot 39.4}{1930} \mathrm{~mm} \\
& =13.97 \mathrm{~mm}
\end{aligned}
$$

The total length of connection is $l=2 \times 80 \mathrm{~mm}=$ 160 mm ,

$$
\begin{aligned}
k_{t e} & =1-\frac{\bar{x}}{l} \\
& =1-\frac{13.97 \mathrm{~mm}}{160 \mathrm{~mm}} \\
& =0.913
\end{aligned}
$$

Thus,

$$
\phi 0.85 k_{t e} A_{n} f_{u}=0.9 \times 0.85 \times 0.913 \times 3033 \mathrm{~mm}^{2} \times 440 \mathrm{MPa}=932 \mathrm{kN}>924 \mathrm{kN}
$$

The general method (case 2) is less conservative than the specific one (case 7) in this case.

Example 3.6 Sag rods, threaded over their whole length, are to be designed to support purlins parallel to the roof surface as shown below. This is because purlins are strong in bending about their major axis, but they are weak about their minor axis. To prevent possible rod damage during construction, use a minimum diameter of 16 mm and to prevent flutter, use $L / d<500$. Assume Grade 300 steel.

Solution 3.6

The rods are to be threaded such that $A_{n}=0.75 A_{g}=0.75 \times \frac{\pi d^{2}}{4}$. Since they are threaded over
their whole length we only need to consider fracture,

$$
\phi N_{t}=0.9 \times 0.95 \times k_{t e} A_{n} f_{u} \geqslant N_{t}^{*}
$$

This gives

$$
\begin{aligned}
d(\text { in } \mathrm{m}) & \geqslant \sqrt{\frac{4 \times N_{t}^{*}}{0.9 \times 0.85 \times k_{t e} \times f_{u} \times 0.75 \times \pi}} \\
& =\sqrt{\frac{4 \times N_{t}^{*}}{0.9 \times 0.85 \times 1 \times 440 \mathrm{MPa} \times 0.75 \times \pi}}=7.102 \times 10^{-5} \sqrt{N_{t}^{*}(\text { in } \mathrm{N})}
\end{aligned}
$$

We proceed to find N^{*} on the member.

1. Clay roofing: 800 Pa on flat roof, ie., on flat roof, weight is 800 Pa . On sloping roof, the weight per horizontal distance is

$$
\frac{800 \mathrm{~Pa}}{\cos \alpha}=\frac{\sqrt{10}}{3} \times 800 \mathrm{~Pa}=843.3 \mathrm{~Pa}
$$

2. Snow pressure: 1600 Pa (vertical)
3. Purlin equivalent force: 150 PFC has a linear density of $17.7 \mathrm{~kg} \mathrm{~m}^{-1}$, the horizontal spacing is 1.8 m , this gives

$$
\frac{17.7 \mathrm{~kg} \mathrm{~m}^{-1} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}}{1.8 \mathrm{~m}}=96.5 \mathrm{~Pa}
$$

Collecting those terms, the design action

$$
\begin{aligned}
N_{v, P a}^{*} & =1.2 G+S \\
& =1.2 \times(843.3 \mathrm{~Pa}+96.5 \mathrm{~Pa})+1600 \mathrm{~Pa}=2728 \mathrm{~Pa}
\end{aligned}
$$

The equivalent total vertical force acting on sag rod is computed by accounting for tributary area. This leads to

$$
N_{v, k N}^{*}=2728 \mathrm{~Pa} \times 10.8 \mathrm{~m} \times 6.6 \mathrm{~m} / 3=64.8 \mathrm{kN}
$$

The critical tension force in sag rod is

$$
N_{t}^{*}=N_{v, k N}^{*} \sin \alpha=64.8 \mathrm{kN} \times \frac{1}{\sqrt{10}}=20.5 \mathrm{kN}
$$

Thus the minimum diameter is

$$
d=7.102 \times 10^{-5} \sqrt{20500}=1.017 \times 10^{-2} \mathrm{~m}=10.17 \mathrm{~mm} \leq 16 \mathrm{~mm}
$$

Try $\phi 16 \mathrm{~mm}$ rod

Check flutter.

$$
\begin{equation*}
\frac{L}{d}=\frac{10.8 \mathrm{~m} / 6 \times \frac{\sqrt{10}}{3}}{16 \mathrm{~mm}}=118.6<500 \tag{3.9}
\end{equation*}
$$

Check force in top tie rod.

$$
N_{t, t o p}^{*}=N_{t}^{*} \times \cos \alpha=21.6 \mathrm{kN}
$$

The minimum diameter becomes 10.44 mm . Thus the chosen 16 mm rod is still okay.

Compression Members

Compression members include columns, truss members, braces, etc. Unlike tension members, their compressive strength is affected by multiple factors which are summarised below. They usually have more stocky sections than tension members to prevent premature strength loss due to buckling.

$$
N^{*} \longrightarrow \square N^{*}
$$

\$4.1 Factors Affecting Compressive Strength

4.1.1 Elastic Buckling

Consider the elastic member buckling in axial compression below.

Figure 4.1: Elastic buckling of a pinned-pinned column

From the free body diagram, the deflection $u(x)$ of an elastic column of length L under axial load P is
related to the bending moment M such that

$$
P u=M \quad \longrightarrow \quad M=-E I \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}} \quad \longrightarrow \quad E I \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+P u=0
$$

This is a homogeneous second order ODE. Techniques learnt in EMTH 210 and ENCN 304 can be applied to solve it subject to different boundary conditions. The general solution can be found as

$$
u(x)=A \cos (\eta x)+B \sin (\eta x)
$$

where $\eta=\sqrt{\frac{P}{E I}}$ (the conventional λ is retained to define other quantity), A and B are two constants.
For pinned-pinned member, $u(0)=u(L)=0, \eta$ can be found as

$$
\eta=\frac{n \pi}{L}
$$

with $n=0,1,2,3, \cdots$. Thus,

$$
P_{n}=\frac{n^{2} \pi^{2} E I}{L^{2}}
$$

Figure 4.2: First three modes of buckling loads (https://en.wikipedia.org/wiki/Euler\'s_crit ical_load)

For non-trivial solution, the buckling load $P_{c r}$ would be the lowest possible load, which is

$$
P_{c r}=P_{1}=\frac{\pi^{2} E I}{L^{2}}
$$

For other boundary conditions, similar procedures can be carried out.
In general, the buckling strength $N_{o m}$ of a column is expressed as

$$
N_{o m}=P_{c r}=\frac{\pi^{2} E I}{\left(k_{e} L\right)^{2}}=\frac{\pi^{2} E I}{L_{e}^{2}}
$$

where k_{e} is the effective length factor with can be obtained by the above procedure for different boundary conditions, $L_{e}=k_{e} L$ is known as the effective length. It is the distance between buckling points of inflection for a flexural member. The following are a few examples.

Figure 4.3: Illustration of effective length

Dividing $N_{o m}$ by cross section area, we define buckling stress $f_{o m}$ as

$$
f_{o m}=\frac{N_{o m}}{A}=\underbrace{E}_{\text {material }} \cdot \underbrace{\frac{I}{A}}_{\text {section }} \cdot \underbrace{\frac{\pi^{2}}{\left(k_{e} L\right)^{2}}}_{\text {length }} .
$$

Noting that the radius of gyration r is defined as $r=\sqrt{I / A}$, then

$$
f_{o m}=\frac{\pi^{2} E}{\left(k_{e} L / r\right)^{2}}
$$

Given elastic modulus E is a constant, $f_{o m}$ is essentially a function of $k_{e} L / r$, we define the slenderness ratio λ as

$$
\lambda=\frac{k_{e} L}{r}
$$

so that

$$
f_{o m}=\frac{\pi^{2} E}{\lambda^{2}}
$$

- Example 4.1 Theoretical Buckling

Find the theoretical buckling load of a column with bottom end fixed and top end pinned. The length of column is L. The flexural rigidity is $E I$.

Solution 4.1

The problem is equivalent to find the particular solution for the ODE

$$
E I \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+P u=0
$$

subjected to boundary conditions

$$
\begin{aligned}
& u(0)=0, \quad \longrightarrow \quad \text { displacement is zero at top, } \\
& u(L)=0, \quad \longrightarrow \quad \text { displacement is zero at bottom, } \\
& \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}(0)=0, \quad \longrightarrow \quad \text { moment is zero at top, } \\
& \frac{\mathrm{d} u}{\mathrm{~d} x}(L)=0, \quad \longrightarrow \quad \text { rotation is zero at bottom } .
\end{aligned}
$$

The critical load P is the smallest value of the solved solution.

Since in this particular problem, second order derivative appears in BC, more advanced techniques (casting to a fourth order ODE) are needed to find the general solution, which can eventually be expressed as

$$
u(x)=A \cos (\eta x)+B \sin (\eta x)+C x+D
$$

Using $u(0)=0$ and $\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}(0)=0$,

$$
\begin{aligned}
& u(0)=A+D=0, \quad \longrightarrow \quad A=-D \\
& \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}(0)=-A \eta^{2}=0, \quad \longrightarrow \quad A=D=0
\end{aligned}
$$

Since $\eta \neq 0$ for non-trivial solution. The general solution after apply two BCs can be expressed as

$$
u(x)=B \sin (\eta x)+C x
$$

Now apply $\frac{\mathrm{d} u}{\mathrm{~d} x}(L)=0$,

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}(L)=B \eta \cos (\eta L)+C=0, \quad \longrightarrow \quad C=-B \eta \cos (\eta L)
$$

Apply the last BC,

$$
u(L)=B \sin (\eta L)+C L=0, \quad \longrightarrow \quad B(\sin (\eta L)-\eta L \cos (\eta L))=0
$$

In order to solve for non-trivial solution, B cannot be zero otherwise all A, B, C and D would be zeros, leads to trivial solution. Thus,

$$
\sin (\eta L)-\eta L \cos (\eta L)=0, \quad \longrightarrow \quad \tan (\eta L)=\eta L
$$

This is a transcendental equation. The approximate solution can be found via numerical, analytical approximations, or graphical methods.

The first non-trivial solution is $\eta L \approx 4.4934$. This gives

$$
P_{c r}=\frac{4.4934^{2} E I}{L^{2}}=\frac{\pi^{2} E I}{(0.699 L)^{2}}, \quad \longrightarrow \quad k_{e}=0.699
$$

For this case, k_{e} is often taken as 0.7 .

For elastic material, the critical stress $f_{c r}$ is simply $f_{o m}$, which approaches infinity when λ approaches zero (i.e., very short columns). If one plots $f_{c r}$ with regard to λ, the following graph can be obtained.

Figure 4.4: Theoretical governing region for $f_{c r}$ for elastic material

4.1.2 Compressive Strength

However, for real life situations, no matter how small λ is, a $f_{o m}$ greater than yield strength f_{y} is meaningless. The yield strength f_{y} is often considered as a material property that does not vary with λ. The critical stress $f_{c r}$ shall be the minimum of f_{y} and $f_{o m}$. If one draws $f_{c r}$ against λ, the following graph can be obtained. It affects short members.

Figure 4.5: Theoretical governing region for $f_{c r}$

4.1.3 Local Buckling

Section can buckle under complex stress conditions. The buckling of web/flanges would further reduce section compression capacity. If often depends on flange/web slenderness (b_{f} / t_{f} and d / t_{w}). It affects short members.

Figure 4.6: Governing region considering local buckling

4.1.4 Residual Stress

All members contain residual stresses due to uneven cooling. These result in earlier yielding and a reduction in elastic modulus.

Due to residual stresses, the tangent stiffness E_{T} decreases gradually so that $E_{T}<E$. Recall $f_{\text {om }}=$ $\frac{\pi^{2} E}{\lambda^{2}}$, when E decreases, $f_{o m}$ would decease accordingly as $\frac{\pi^{2} E_{T}}{\lambda^{2}}<\frac{\pi^{2} E}{\lambda^{2}}$.

Figure 4.7: Stress-strain curve considering residual stress

The effect is most significant on members of moderate slenderness, where the strength is reduced.

Figure 4.8: Governing region considering residual stress

4.1.5 Initial Out-of-Straightness and Eccentrical Loading

An eccentricity $e=L / 1500$ is commonly assumed. This is less than the maximum out-of-straightness camber of $L / 1000$. The eccentricity introduces non-zero section moment ever if the member is axially loaded. This additional moment would lower theoretical critical buckling force.For straight members, the loading behaviour follows $O \rightarrow A \rightarrow B$ but the actual behaviour due to eccentricity is the dashed line.

Figure 4.9: Effect of initial out-of-straightness on column behaviour

Figure 4.10: Eccentrical loading

The eccentrical loading has a similar effect to out-of-straightness and thus can be taken into account in a similar way. Both out-of-straightness and eccentrical loading affect slender members in a similar way.

Figure 4.11: Governing region considering initial OOS and eccentric loading

1> 4.2 Strength Design Concept

The LRFD equation for columns has a similar form NZS 3404.1\&2:1997 § 6.1 to that of tension members.

$$
\begin{equation*}
N^{*} \leqslant \phi N_{c}=\phi \alpha_{c} N_{s}, \tag{4.1}
\end{equation*}
$$

where
$\phi=$ strength reduction factor, 0.9
$N_{s}=$ nominal section capacity
$N_{c}=$ nominal member capacity

The design member strength ϕN_{c} requires calculation of the section capacity N_{s}, and the member slenderness factor α_{c}.

4.2.1 Section Capacity

The nominal section capacity N_{s} is determined as:

$$
\begin{equation*}
N_{s}=k_{f} A_{n} f_{y} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
k_{f} & =\text { form factor } \\
A_{n} & =\text { net area } \\
f_{y} & =\text { yield stress }
\end{aligned}
$$

The form factor k_{f} accounts for local buckling. It is defined to be the ratio between the effective area A_{e} and gross area A_{g}.

$$
k_{f}=\frac{A_{e}}{A_{g}}
$$

where $A_{e}=\sum b_{e, i} t_{i}$ and $b_{e, i}$ and t_{i} are the effective width and thickness of each individual element. For a flat plate with thickness of t and clear width of b (outstand from the face of the supporting plate element, or between the faces of the supporting plate elements), the effective width b_{e} can be computed as

$$
\begin{equation*}
b_{e}=\min \left(b, \lambda_{e y} t \sqrt{\frac{250 \mathrm{MPa}}{f_{y}}}\right) \tag{4.3}
\end{equation*}
$$

in which $\lambda_{e y}$ is the yield slenderness limit. For an I-section, values of b_{i} and t_{i} are shown below. There are 7 elements in total, 4 belong to flange which are one-edge supported while 1 belongs to web which is both-edge supported. Note the corresponding $b_{e, i}$ may be smaller than the physical length b_{i}.

Figure 4.12: Five flat elements in a typical I section

If the slenderness for any element, $\lambda_{e, i}$, exceeds the yield limit $\lambda_{e y, i}$, the excess width is neglected when calculated the effective width $b_{e, i}$ for that element. Some universal beam sections have k_{f} values slightly less than one. For flat plates, NZS 3404.1\&2:1997 Table 6.2.4 gives the following limits shown in Fig. 4.13.

An element, which has the same slenderness as the yield limit $\lambda_{\text {ey }}$, should just reach the yield stress before local buckling occurs. Elements which have higher levels of residual stresses from rolling and welding will reach the yield stress earlier and therefore have lower values of $\lambda_{e y}$.

The allowable slenderness of stiffened elements is much greater than that for unstiffened elements.

longitudinal edges supported	residual stresses	$\lambda_{e y}$
	SR	16
one	HR	16
	LW, CF	15
	HW	14
	SR	45
both	HR	45
	LW, CF	40
	HW	35
SR - stress relived		
HR - hot-rolled		
CF - cold-formed		
LW - lightly welded longitudinally		
HW - heavily welded longitudinally		

Figure 4.13: Yield slenderness limits of flat plate elements

Often k_{f} is provided with section parameters in the product specification manual.
Example 4.2 Assume Grade 300 steel, find the section capacity N_{s} of a 310UB32.0 section.

Solution 4.2

This is a hot-rolled section. Now compute the effective area A_{e}. For flanges, only one side is supported. Thus, $\lambda_{e y, f}=16$.

$$
b_{e, f}=16 \times 8 \mathrm{~mm} \times \sqrt{\frac{250}{320}}=113.14 \mathrm{~mm} .
$$

This is greater than the clear width $b=\frac{b_{f}-t_{w}}{2}=71.75 \mathrm{~mm}$, hence $b_{e, f}=b=71.75 \mathrm{~mm}$. Hence for flange alone, $k_{f}=1$. For web, both sides are supported. Thus, $\lambda_{e y, w}=45$.

$$
b_{e, w}=45 \times 5.5 \mathrm{~mm} \times \sqrt{\frac{250}{320}}=218.76 \mathrm{~mm} .
$$

This is smaller than $d_{1}=282 \mathrm{~mm}$. Hence for web alone, $k_{f}<1$.

The effective area is then

$$
\begin{aligned}
A_{e} & =\sum b_{e, i} t_{i}=\underbrace{218.76 \mathrm{~mm} \times 5.5 \mathrm{~mm}}_{\text {web, blue }}+\underbrace{4 \times 71.75 \mathrm{~mm} \times 8 \mathrm{~mm}}_{\text {flange, red }} \\
& +\underbrace{2 \times 5.5 \mathrm{~mm} \times 8 \mathrm{~mm}}_{\text {connection, green }}=3587.18 \mathrm{~mm}^{2} .
\end{aligned}
$$

The gross area is

$$
A_{g}=2 \times b_{f} \times t_{f}+d_{1} \times t_{w}=3935 \mathrm{~mm}^{2}
$$

This value is smaller than the value listed in Liberty catalogue $\left(4080 \mathrm{~mm}^{2}\right)$ because the transition radii are not considered in the computation here.

The form factor $k_{f}=A_{e} / A_{g}=0.912$, which is smaller than the value listed (see the table in Liberty catalogue) of 0.915 . Since there is no area reduction, $A_{n}=A_{g}$.
*** If the area of transition regions is taken as the difference between two gross areas, that is $4080 \mathrm{~mm}^{2}-3935 \mathrm{~mm}^{2}=145 \mathrm{~mm}^{2}$, adding it to both numerator and denominator, k_{f} can be computed as

$$
k_{f}=\frac{A_{e}}{A_{g}}=\frac{3587.18 \mathrm{~mm}^{2}+145 \mathrm{~mm}^{2}}{4080 \mathrm{~mm}^{2}}=0.915
$$

which agrees with the value shown in tables.
To compute section capacity, we use the listed values such that

$$
N_{s}=k_{f} A_{g} f_{y}=0.915 \times 4080 \mathrm{~mm}^{2} \times 320 \mathrm{MPa}=1195 \mathrm{kN}
$$

4.2.2 Member Capacity

Before we introduce how to calculate member capacity, the concept of modified slenderness ratio λ_{n} shall be discussed.

Since buckling plays a vital role in compression members, we can no more use the full length to compute slenderness ratio, instead, the effective length L_{e} shall be used.

$$
\begin{equation*}
L_{e}=k_{e} L \tag{4.4}
\end{equation*}
$$

where k_{e} is the member effective length factor (NZS 3404.1\&2:1997 Fig. 4.8.3.2).
The modified slenderness ratio λ_{n} is defined as

$$
\begin{equation*}
\lambda_{n}=\lambda \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{L_{e}}{r} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}} \tag{4.5}
\end{equation*}
$$

If $f_{y}=250 \mathrm{MPa}$ and $k_{f}=1$, then

$$
\lambda_{n}=\lambda=\frac{L_{e}}{r}
$$

The nominal member capacity N_{s} is associated with the nominal section capacity N_{c} via a reduction factor α_{c} :

$$
\begin{equation*}
N_{c}=\alpha_{c} N_{s} \tag{4.6}
\end{equation*}
$$

in which,

$$
\alpha_{c}=\xi\left(1-\sqrt{1-\left(\frac{90}{\xi \lambda^{\prime}}\right)^{2}}\right), \quad \xi=\frac{\left(\frac{\lambda^{\prime}}{90}\right)^{2}+1+\eta}{2\left(\frac{\lambda^{\prime}}{90}\right)^{2}}
$$

with

$$
\lambda^{\prime}=\lambda_{n}+\alpha_{a} \alpha_{b}, \quad \eta=\max \left(0.00326\left(\lambda^{\prime}-13.5\right), 0\right), \quad \alpha_{a}=\frac{2100\left(\lambda_{n}-13.5\right)}{\lambda_{n}^{2}-15.3 \lambda_{n}+2050}
$$

and α_{b} is the compression member section constant which are shown in Table 4.1 that characterises sectional residual stress effects (also refer to NZS 3404.1\&2:1997 Table 6.3.3(1)). For a given α_{b}, α_{c} is a

Table 4.1: Values of α_{b}

section type	k_{f}	α_{b}
UB and UC sections, hot-rolled $\left(t_{f} \leqslant 40 \mathrm{~mm}\right)$, Box sections, welded	$\leqslant 1.0$	0.0
UB and UC sections, hot-rolled $\left(t_{f}>40 \mathrm{~mm}\right)$	$\leqslant 1.0$	1.0
RHS and CHS, hot-formed	$=1.0$	-1.0
RHS and CHS, cold-formed (stress relieved $)$	<1.0	-0.5
RHS and CHS, cold-formed (non-stress relieved $)$	$\leqslant 1.0$	-0.5
H and I sections, welded from flame cut plate $\left(t_{f} \leqslant 40 \mathrm{~mm}\right)$	$=1.0$	0.0
	<1.0	0.5
H and I sections, welded from flame cut plate $\left(t_{f}>40 \mathrm{~mm}\right)$	$=1.0$	0.0
	<1.0	1.0
H and I sections, welded from as-rolled plate $\left(t_{f} \leqslant 40 \mathrm{~mm}\right)$	$\leqslant 1.0$	0.5
H and I sections, welded from as-rolled plate $\left(t_{f}>40 \mathrm{~mm}\right)$	$\leqslant 1.0$	1.0
Tee sections, flame cut from universal sections, Angles, Channels, hot-rolled	$=1.0$	0.5
	<1.0	1.0

function of λ_{n}, it can be plotted as shown in Fig. 4.14.
It can be inferred that since α_{c} accounts for buckling, residual stress, OOS, etc., it has a shape resembles the theoretical curve as seen previously.

Figure 4.14: α_{c} as a function of λ_{n}

Performing such a computation is somehow tedious, in practice, engineers can refer to the pre-compiled table NZS 3404.1\&2:1997 Table 6.3.3(2), as well as Table 4.2, to find the proper value to be used.

Table 4.2: Values of α_{c} as function of α_{b} and λ_{n}

λ_{n}	-1	-0.5	$\begin{gathered} \alpha_{b} \\ 0 \end{gathered}$	0.5	1	λ_{n}	-1	-0.5	$\begin{gathered} \alpha_{b} \\ 0 \end{gathered}$	0.5	1	λ_{n}	-1	-0.5	$\begin{gathered} \alpha_{b} \\ 0 \end{gathered}$	0.5	1
0	1.000	1.000	1.000	1.000	1.000												
2	1.000	1.000	1.000	1.000	1.000	102	0.646	0.586	0.528	0.474	0.426	202	0.190	0.181	0.173	0.165	0.158
4	1.000	1.000	1.000	1.000	1.000	104	0.630	0.571	0.515	0.463	0.416	204	0.186	0.178	0.170	0.163	0.156
6	1.000	1.000	1.000	1.000	1.000	106	0.615	0.557	0.502	0.452	0.407	206	0.182	0.174	0.167	0.160	0.153
8	1.000	1.000	1.000	1.000	1.000	108	0.599	0.542	0.489	0.441	0.398	208	0.179	0.171	0.164	0.157	0.151
10	1.000	1.000	1.000	1.000	1.000	110	0.584	0.528	0.477	0.431	0.389	210	0.176	0.168	0.161	0.154	0.148
12	1.000	1.000	1.000	1.000	1.000	112	0.568	0.515	0.465	0.421	0.381	212	0.172	0.165	0.158	0.152	0.146
14	1.000	0.999	0.998	0.997	0.997	114	0.553	0.501	0.454	0.411	0.372	214	0.169	0.162	0.156	0.149	0.144
16	1.000	0.996	0.992	0.987	0.983	116	0.539	0.488	0.442	0.401	0.364	216	0.166	0.159	0.153	0.147	0.141
18	1.000	0.992	0.985	0.977	0.970	118	0.524	0.476	0.431	0.392	0.356	218	0.163	0.156	0.150	0.145	0.139
20	1.000	0.989	0.978	0.967	0.956	120	0.510	0.463	0.421	0.383	0.348	220	0.160	0.154	0.148	0.142	0.137
22	0.999	0.985	0.971	0.957	0.943	122	0.496	0.451	0.410	0.374	0.341	222	0.157	0.151	0.145	0.140	0.135
24	0.998	0.981	0.965	0.947	0.929	124	0.483	0.439	0.400	0.365	0.334	224	0.154	0.148	0.143	0.138	0.133
26	0.996	0.977	0.958	0.937	0.916	126	0.470	0.428	0.390	0.357	0.327	226	0.152	0.146	0.141	0.136	0.131
28	0.994	0.973	0.951	0.927	0.902	128	0.457	0.417	0.381	0.349	0.320	228	0.149	0.143	0.138	0.133	0.129
30	0.991	0.968	0.943	0.917	0.888	130	0.445	0.406	0.372	0.341	0.313	230	0.146	0.141	0.136	0.131	0.127
32	0.988	0.963	0.936	0.907	0.874	132	0.433	0.396	0.363	0.333	0.306	232	0.144	0.139	0.134	0.129	0.125
34	0.985	0.958	0.928	0.896	0.860	134	0.421	0.386	0.354	0.325	0.300	234	0.141	0.136	0.132	0.127	0.123
36	0.981	0.952	0.921	0.886	0.846	136	0.410	0.376	0.346	0.318	0.294	236	0.139	0.134	0.130	0.125	0.121
38	0.977	0.946	0.913	0.875	0.832	138	0.399	0.367	0.337	0.311	0.288	238	0.137	0.132	0.128	0.123	0.119
40	0.973	0.940	0.905	0.865	0.818	140	0.389	0.357	0.330	0.304	0.282	240	0.134	0.130	0.126	0.122	0.118
42	0.968	0.934	0.896	0.854	0.804	142	0.378	0.349	0.322	0.298	0.276	242	0.132	0.128	0.124	0.120	0.116
44	0.962	0.927	0.888	0.842	0.789	144	0.369	0.340	0.314	0.291	0.270	244	0.130	0.126	0.122	0.118	0.114
46	0.957	0.920	0.879	0.831	0.775	146	0.359	0.332	0.307	0.285	0.265	246	0.128	0.124	0.120	0.116	0.113
48	0.951	0.913	0.870	0.820	0.761	148	0.350	0.324	0.300	0.279	0.260	248	0.126	0.122	0.118	0.115	0.111
50	0.944	0.905	0.861	0.808	0.747	150	0.341	0.316	0.293	0.273	0.255	250	0.124	0.120	0.116	0.113	0.110
52	0.938	0.897	0.851	0.796	0.732	152	0.332	0.309	0.287	0.267	0.250	252	0.122	0.118	0.115	0.111	0.108
54	0.931	0.889	0.841	0.784	0.718	154	0.324	0.301	0.281	0.262	0.245	254	0.120	0.116	0.113	0.110	0.107
56	0.923	0.880	0.830	0.771	0.704	156	0.316	0.294	0.274	0.256	0.240	256	0.118	0.115	0.111	0.108	0.105
58	0.915	0.871	0.820	0.759	0.690	158	0.308	0.287	0.268	0.251	0.235	258	0.116	0.113	0.110	0.107	0.104
60	0.907	0.862	0.809	0.746	0.676	160	0.301	0.281	0.263	0.246	0.231	260	0.115	0.111	0.108	0.105	0.102
62	0.899	0.852	0.797	0.733	0.662	162	0.294	0.274	0.257	0.241	0.226	262	0.113	0.110	0.107	0.104	0.101
64	0.890	0.842	0.785	0.720	0.649	164	0.287	0.268	0.252	0.236	0.222	264	0.111	0.108	0.105	0.102	0.099
66	0.881	0.832	0.773	0.707	0.635	166	0.280	0.262	0.246	0.231	0.218	266	0.110	0.106	0.104	0.101	0.098
68	0.871	0.821	0.761	0.694	0.622	168	0.274	0.257	0.241	0.227	0.214	268	0.108	0.105	0.102	0.099	0.097
70	0.861	0.809	0.748	0.680	0.609	170	0.267	0.251	0.236	0.222	0.210	270	0.106	0.103	0.101	0.098	0.096
72	0.851	0.797	0.735	0.667	0.596	172	0.261	0.246	0.231	0.218	0.206	272	0.105	0.102	0.099	0.097	0.094
74	0.840	0.785	0.722	0.653	0.583	174	0.255	0.240	0.227	0.214	0.202	274	0.103	0.101	0.098	0.095	0.093
76	0.829	0.772	0.708	0.639	0.570	176	0.250	0.235	0.222	0.210	0.199	276	0.102	0.099	0.097	0.094	0.092
78	0.817	0.759	0.695	0.626	0.558	178	0.244	0.230	0.218	0.206	0.195	278	0.100	0.098	0.095	0.093	0.091
80	0.805	0.746	0.681	0.612	0.545	180	0.239	0.225	0.213	0.202	0.192	280	0.099	0.096	0.094	0.092	0.089
82	0.792	0.732	0.667	0.599	0.533	182	0.233	0.221	0.209	0.198	0.188	282	0.097	0.095	0.093	0.091	0.088
84	0.779	0.718	0.653	0.586	0.522	184	0.228	0.216	0.205	0.195	0.185	284	0.096	0.094	0.092	0.089	0.087
86	0.766	0.704	0.638	0.572	0.510	186	0.224	0.212	0.201	0.191	0.182	286	0.095	0.092	0.090	0.088	0.086
88	0.752	0.689	0.624	0.559	0.499	188	0.219	0.208	0.197	0.187	0.178	288	0.093	0.091	0.089	0.087	0.085
90	0.737	0.675	0.610	0.547	0.487	190	0.214	0.203	0.193	0.184	0.175	290	0.092	0.090	0.088	0.086	0.084
92	0.723	0.660	0.596	0.534	0.477	192	0.210	0.199	0.190	0.181	0.172	292	0.091	0.089	0.087	0.085	0.083
94	0.708	0.645	0.582	0.521	0.466	194	0.206	0.196	0.186	0.178	0.169	294	0.090	0.088	0.086	0.084	0.082
96	0.692	0.630	0.568	0.509	0.456	196	0.201	0.192	0.183	0.174	0.167	296	0.089	0.087	0.085	0.083	0.081
98	0.677	0.615	0.554	0.497	0.445	198	0.197	0.188	0.179	0.171	0.164	298	0.087	0.085	0.084	0.082	0.080
100	0.661	0.600	0.541	0.485	0.435	200	0.194	0.185	0.176	0.168	0.161	300	0.086	0.084	0.082	0.081	0.079

The most conservative curve is that with $\alpha_{b}=1$. The European codes, like NZS 3404.1\&2:1997 Steel structures standard, have five curves for α_{b}. The Canadian code has 3 curves for different residual stress conditions, while the US code has just one curve for all residual stress conditions.

Example 4.3 What is the maximum stress that can be applied to a hot-rolled compact Grade 300 column (no holes) with $t_{f}<11 \mathrm{~mm}$ and $\lambda=100$?

Solution 4.3

Since it is compact section, shear lag is often not a problem. It can be safely assumed that $k_{f}=1$. Since there are no holes, $A_{n}=A_{g}$. From Table 4.1, $\alpha_{b}=0$ for hot-rolled section. For $t_{f}<11 \mathrm{~mm}$, assume $f_{y}=320 \mathrm{MPa}$ for Grade 300 steel.

The modified slenderness ratio

$$
\lambda_{n}=\lambda \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=100 \times \sqrt{1} \times \sqrt{\frac{320}{250}}=113.1
$$

α_{c} can be computed (or found from Table 4.2, or Fig. 4.14) as 0.459 . Thus, the maximum stress is

$$
f_{\max }=\frac{N^{*}}{A_{n}} \leqslant \frac{\phi N_{c}}{A_{n}}=\phi \alpha_{c} k_{f} f_{y}=0.9 \times 0.459 \times 1 \times 320 \mathrm{MPa}=132.2 \mathrm{MPa}
$$

Example 4.4 A 10 m long 310UB32.0 beam is braced laterally (pinned) at its ends for buckling about its strong axis, and braced (pinned) at the ends and at the quarter points for buckling about its weak axis. Find the maximum axial compressive force it can carry.

Solution 4.4

Both strong axis and weak axis need to be considered. For a 310UB32 section, the following properties can be found: $\alpha_{b}=0, A_{n}=A_{g}=4080 \mathrm{~mm}^{2}, f_{y}=320 \mathrm{MPa}, k_{f}=0.915, r_{x}=124 \mathrm{~mm}$, $r_{y}=32.9 \mathrm{~mm}$.

- strong axis (x-axis)

Since it is pinned at both ends, $L_{e}=10 \mathrm{~m}$, the modified slenderness ratio is

$$
\lambda_{n}=\frac{L_{e}}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{10 \mathrm{~m}}{124 \mathrm{~mm}} \times \sqrt{0.915} \times \sqrt{\frac{320}{250}}=87.3
$$

Then, $\alpha_{c}=0.629$. The maximum compressive force is then

$$
\phi N_{c, x}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.629 \times 0.915 \times 4080 \mathrm{~mm}^{2} \times 320 \mathrm{MPa}=676.6 \mathrm{kN}
$$

This value is also given in Table 4.3.

- weak axis (y-axis)

Since it is pinned at quarter points, $L_{e}=0.25 \times 10 \mathrm{~m}=2.5 \mathrm{~m}$ the modified slenderness ratio is

$$
\lambda_{n}=\frac{L_{e}}{r_{y}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{2.5 \mathrm{~m}}{32.9 \mathrm{~mm}} \times \sqrt{0.915} \times \sqrt{\frac{320}{250}}=82.2
$$

Then, $\alpha_{c}=0.665$. The maximum compressive force is then

$$
\phi N_{c, y}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.665 \times 0.915 \times 4080 \mathrm{~mm}^{2} \times 320 \mathrm{MPa}=715.0 \mathrm{kN}
$$

This value is also given in Table 4.4.

The governing maximum compressive force shall be the minimum of two, thus $\phi N_{c}=676.6 \mathrm{kN}$. In practice, always check both axes for capacity.

Note, if $L_{e}=0 \mathrm{~m}$, then $\phi N_{c}=\phi N_{s}=0.9 \times 0.915 \times 4080 \mathrm{~mm}^{2} \times 320 \mathrm{MPa}=1075.2 \mathrm{kN}$, which are given by both tables for strong- and weak-axis buckling.

4.2.3 Development and Use of Design Chart/Table

By varying the effective length L_{e}, for a typical section, the corresponding member section capacities can be computed and compiled into design charts/tables. A typical design chart may look like the following.

To use those charts, for a given N^{*} and a given L_{e}, locate this point on the chart and pick the lightest section/column above.

Always check both axes for capacity.

>4.3 Design Procedure

Any column that satisfies all strength and serviceability criteria will be a satisfactory design.
The most economical satisfactory design for a given situation will be dictated by fabrication costs for the whole frame and by architectural considerations. A rolled section will usually be cheaper than a fabricated section. A tubular section will usually require a smaller area than an I section, but a RHS will be more expensive to buy than an I section and more expensive to connect. Fabricated tubes are relatively expensive to make, but may be used for heavier loads.

In general, for a column of the given cross section, the lightest column is likely to be the most economic because it uses the least steel material.

Design of compression members may be carried out by the following approaches.

Trial and Error

A number of section sizes are chosen, and evaluated to determine the best (safe and economical) solution. The following steps may be useful for rolled shapes:

1. compute the factored compression force N^{*}
2. assume flange yield stress f_{y} (e.g., $280 \mathrm{MPa}, 300 \mathrm{MPa}$.) and form factor $k_{f}=1$
3. assume a proper gyration radius r (around 50 mm) and compute the modified slenderness ratio λ_{n}
4. compute α_{c}
5. compute the minimum net area $A_{n, \min }=\frac{N^{*}}{\phi \alpha_{c} k_{f} f_{y}}$
6. select a section
7. update k_{f} and λ_{n} according to section properties
8. compute ϕN_{c}
(a) if $N^{*}<\phi N_{c}$, check if a smaller section would work in order to obtain the most economical section
(b) if $N^{*}>\phi N_{c}$, select a larger section and repeat the previous steps

Tables and Charts

Design capacity tables and charts may be developed for specific sections to speed up the design. Given that effective length L_{e} may affect member capacity, for all designations, it is possible to calculate and compile the corresponding capacities under different L_{e} values. Fig. 4.15 and Fig. 4.16 are two examples. Similar charts/tables can be seen in design books and other references.

Alternatively, by using property table, similar design tables can be generated. Table 4.3, Table 4.4, Table 4.5 and Table 4.6 are examples.
GRADE 300 STEEL

Figure 4.15: Design load capacity table for members subject to axial compression buckling about weak axis

Design Member Capacity in Axial Compression $\phi N_{C}(\mathrm{kN})$

Table 4.3: Design load capacity table for UB members subject to axial compression buckling about strong axis (manually generated)

Grade 300																										
	$\left\|\phi N_{s}(\mathrm{kN})\right\|$													N_{c}												
$L_{e}(\mathrm{~m})$	0	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	11	12	13	14	15	16	17	18
610UB125	3830.4	3830.4	3830.4	3830.4	3817.6	3791.1	3764.5	3737.7	3710.7	3683.3	3655.5	3627.2	3598.3	3568.8	3538.7	3507.7	3475.9	3443.2	3374.7	3301.6	3223.5	3139.9	3050.6	2955.7	2855.5	2750.5
113	3383.6	3383.6	3383.6	3383.6	3372.4	3349.0	3325.6	3301.9	3278.0	3253.8	3229.3	3204.3	3178.9	3152.8	3126.2	3098.9	3070.8	3042.0	2981.5	2917.0	2848.1	2774.4	2695.6	2611.9	2523.5	2430.9
101	3116.9	3116.9	3116.9	3116.9	3102.0	3079.8	3057.5	3034.9	3012.2	2989.1	2965.7	2941.8	2917.4	2892.5	2866.9	2840.6	2813.5	2785.6	2727.0	2664.4	2597.3	2525.4	2448.5	2366.9	2280.9	2191.2
530UB92.4	2956.6	2956.6	2956.6	2945.9	2921.8	2897.7	2873.3	2848.6	2823.5	2797.8	2771.6	2744.7	2717.0	2688.4	2658.8	2628.2	2596.5	2563.5	2493.5	2417.8	2336.0	2248.3	2155.2	2057.6	1957.0	1855.1
82.0	2557.2	2557.2	2557.2	2547.3	2526.5	2505.5	2484.3	2462.8	2440.9	2418.6	2395.8	2372.4	2348.3	2323.4	2297.7	2271.0	2243.4	2214.6	2153.6	2087.6	2016.2	1939.7	1858.6	1773.6	1686.1	1597.5
460UB82.1	2775.5	2775.5	2767.0	2740.3	2713.3	2686.1	2658.3	2629.9	2600.8	2570.7	2539.6	2507.2	2473.5	2438.4	2401.6	2363.0	2322.6	2280.3	2189.7	2091.2	1985.8	1875.4	1762.2	1649.1	1538.4	1432.3
74.6	2436.7	2436.7	2431.2	2408.1	2384.8	2361.3	2337.4	2313.0	2287.9	2262.1	2235.4	2207.7	2178.9	2148.8	2117.4	2084.5	2050.1	2014.1	1936.9	1853.0	1763.1	1668.4	1571.0	1473.0	1376.7	1283.8
67.1	2135.9	2135.9	2131.4	2111.2	2090.9	2070.3	2049.4	2028.1	2006.2	1983.7	1960.4	1936.2	1911.1	1884.9	1857.5	1828.9	1798.9	1767.5	1700.3	1627.2	1548.8	1466.3	1381.2	1295.6	1211.3	1129.9
410UB59.7	1934.9	1934.9	1920.1	1899.6	1878.9	1857.8	1836.3	1814.1	1791.1	1767.2	1742.4	1716.3	1689.0	1660.3	1630.0	1598.2	1564.7	1529.6	1454.4	1373.5	1288.6	1202.0	1116.1	1033.2	954.6	881.5
53.7	1811.7	1811.7	1794.3	1774.3	1754.1	1733.5	1712.4	1690.6	1667.9	1644.4	1619.7	1593.8	1566.5	1537.7	1507.4	1475.5	1441.8	1406.5	1331.1	1250.6	1167.1	1083.1	1001.0	922.7	849.6	782.2
360UB56.7	1947.0	1939.4	1915.4	1891.3	1866.6	1841.2	1814.9	1787.5	1758.8	1728.6	1696.6	1662.7	1626.7	1588.5	1548.1	1505.3	1460.5	1413.7	1315.6	1214.5	1114.2	1018.1	928.4	846.3	772.1	705.5
50.7	1682.3	1676.5	1656.1	1635.4	1614.3	1592.7	1570.3	1546.9	1522.5	1496.8	1469.6	1440.9	1410.3	1378.0	1343.7	1307.5	1269.5	1229.7	1146.3	1060.0	973.9	891.1	813.5	742.2	677.6	619.5
44.7	1532.0	1524.7	1505.5	1486.1	1466.2	1445.8	1424.6	1402.5	1379.3	1354.7	1328.8	1301.2	1271.9	1240.7	1207.8	1173.0	1136.5	1098.4	1019.2	938.0	858.2	782.3	712.0	648.0	590.4	539.0
310UB46.2	1586.7	1569.3	1546.9	1524.0	1500.4	1475.9	1450.1	1422.9	1393.9	1362.9	1329.8	1294.4	1256.5	1216.3	1173.8	1129.4	1083.5	1036.6	942.4	851.2	766.3	689.3	620.7	560.2	507.1	460.4
40.4	1428.5	1411.2	1390.6	1369.5	1347.7	1325.0	1301.2	1275.8	1248.9	1220.0	1189.1	1155.9	1120.5	1082.9	1043.2	1001.9	959.4	916.2	829.9	747.3	671.0	602.4	541.7	488.3	441.5	400.6
32.0	1075.2	1061.0	1045.1	1028.9	1012.1	994.5	976.0	956.4	935.4	912.8	888.7	862.8	835.1	805.7	774.8	742.7	709.8	676.6	610.7	548.3	491.1	440.1	395.1	355.8	321.4	291.4
250UB37.3	1368.0	1333.8	1309.1	1283.3	1256.1	1227.0	1195.5	1161.4	1124.2	1083.8	1040.2	993.7	944.9	894.5	843.7	793.4	744.4	697.4	611.1	536.0	471.7	417.1	370.7	331.1	297.3	268.3
31.4	1154.9	1123.7	1102.1	1079.5	1055.6	1029.9	1002.1	971.8	938.6	902.6	863.8	822.6	779.6	735.6	691.5	648.3	606.6	567.0	494.9	432.9	380.2	335.7	298.0	266.0	238.6	215.2
25.7	893.7	870.6	854.3	837.2	819.1	799.8	778.8	756.0	731.2	704.2	675.1	644.1	611.6	578.2	544.7	511.5	479.4	448.7	392.5	343.9	302.4	267.2	237.4	212.0	190.3	171.6
200UB29.8	1100.2	1053.8	1028.1	1000.5	970.3	936.9	899.9	858.9	814.0	766.0	716.0	665.5	615.9	568.5	524.0	482.8	445.1	410.9	351.8	303.5	263.9	231.3	204.1	181.4	162.2	145.8
25.4	930.2	889.2	866.8	842.7	816.2	786.9	754.2	718.1	678.6	636.5	593.1	549.5	507.2	467.0	429.5	395.1	363.8	335.4	286.7	247.0	214.6	187.9	165.8	147.3	131.7	118.3
22.3	826.6	790.2	770.3	748.9	725.5	699.4	670.5	638.4	603.4	566.1	527.6	488.9	451.3	415.6	382.3	351.7	323.8	298.6	255.2	219.9	191.1	167.4	147.7	131.2	117.2	105.4
18.2	661.5	630.5	614.0	596.1	576.4	554.4	529.9	502.8	473.3	442.0	410.1	378.5	348.1	319.6	293.2	269.2	247.4	227.8	194.3	167.2	145.1	127.0	112.0	99.4	88.8	79.8
180UB22.2	812.2	763.9	740.0	713.5	683.7	649.9	612.0	570.5	526.8	482.6	439.7	399.5	362.5	329.2	299.4	272.9	249.4	228.6	193.6	165.7	143.3	125.0	110.0	97.5	87.0	78.1
18.1	662.4	622.0	602.2	580.1	555.1	526.8	495.1	460.5	424.2	387.7	352.6	319.8	289.8	262.9	238.9	217.6	198.8	182.1	154.1	131.9	114.0	99.4	87.5	77.5	69.1	62.1
16.1	587.5	551.1	533.3	513.5	491.0	465.5	436.9	405.8	373.3	340.7	309.5	280.4	253.9	230.2	209.1	190.4	173.8	159.2	134.7	115.2	99.6	86.9	76.4	67.7	60.4	54.2
150UB18.0	662.4	609.9	585.1	556.8	524.0	486.7	445.9	403.7	362.4	323.8	289.0	258.2	231.4	208.0	187.6	170.0	154.5	141.0	118.7	101.1	87.2	75.9	66.6	58.9	52.5	47.1
14.0	512.6	470.0	450.0	426.9	400.2	369.8	337.0	303.4	271.0	241.3	214.7	191.4	171.2	153.7	138.5	125.4	113.9	103.9	87.3	74.4	64.1	55.7	48.9	43.3	38.6	34.6

¢＇غI	ti	I＇SI	91	$\angle 1$	¢ 81	02	¢＇ız	¢z		Lz	0¢	\＆	9ε	¢＇0ヵ	\％＇st	os	$\varepsilon \cdot L S$	2＇s9	S＇ワL	L＇98	101	（1）	6＇ゅぁ！	94	＇zIs	0＇ti
\％＇81	†＇61	L＇0z	I＇zz	L＇\＆z	¢＇Gz	$\varepsilon \angle L$	¢ 62	6^{6} I	9＇7¢	L＇L8	\＆＇Lゅ	\＆¢ $¢$	OS	†＇SS	8 ＇19	\＆＇69	Z＇8L	068	201	ع 8 IL	¢8¢I	1＇t9	6.961	¢＇6¢z	ゅ＇299	088tgnosı
8 zz	\＆゙ゅ	8 cz	9 Lz	¢ 68	L＇t $¢$	1＇t\＆	98	L＇6¢	「¢¢	69	ε＇ts	$\varepsilon 95$	＇29	$9 \cdot 89$	＋92	¢＇¢8	\＆＇96	\＆＇60t	0 0¢zı	「＇tt！	$9 \mathrm{C9I}$	L＇96I	8＇z¢z	－LL	c． 289	［91
て＇92	6 LZ	L＇62	L＇ı ε	6 ＇$¢$	¢＇98	I＇68	でてぃ	9 ¢¢	67	6 ¢¢	689	ゅ9	＇LL	8.84	L＇L8	2：86	9015	¢＇¢z1	†＇\＆b	2＇991	1761	¢¢zz	¢＇992	L＇918	†＇299	
L＇z¢	8＇も	L\＆	968	よで	¢＇s \ddagger	$8 \square$	L＇zs	Ls	19	\＆ 29	$¢^{\prime} \varepsilon L$	L＇08	6.88	86	＇601	221	－8¢	－9SI	8LI	90	¢68z	－082	\＆	C＇\＆6¢	て＇218	z＇zzqn085
¢08	て＇z\＆	\＆＇t	9.98	z＇	0 \％	て＇S¢	L＇8t	9 zs	［＇LS	I＇z9	8.49	よ＇tL	$6 \cdot 18$	9.06	L．001	9 yd	L＇921	$¢ ¢$	L¢¢9	$1 \cdot 881$	8＇LIz	0＇t¢z	8.462	96 ± 8	¢＇199	281
8．LL	て＇9L	I＇18	¢ 98	¢＇z6	686	901	でわu	て¢と	$\varepsilon \cdot \varepsilon \varepsilon 1$	L＇taI	¢ $\angle \mathrm{LSI}$	0 \％LI	¢＇881	ゅLOZ	0.682	0 0tcz	L 788	8 ¢18	¢¢¢	0.668	ct	L6t	－0ss	zo	9.98	\＆＇z\％
866	L＇\＄8	206	［＇96	L＇zor	0001	811	$0 \cdot \angle Z 1$	$0 \cdot \angle \varepsilon$	¢8¢	6.091	I＇SLI	\＆＇161	L＇602	80¢z	6 ＇tsz	L＇z8\％	8＇गIE	8＇tce	¢＇t68	8 8てぁ	$696 \pm$	＇scs	6S19	6＇t 29	て＇0¢6	
¢001	¢．901		8.021	0621	T＇8¢	2＇8ıI	ゅ＇6St	6． ILI	0．98I	L＇02	¢6tz	$968 z$	¢ 292	9.882	c．8te	8＇zse	て＇768	† \llcorner ¢	$068{ }^{\text {b }}$	「Lts	I＇L	\＆＇6L9	cist	6.18	z＇00It	8＇6zgn00z
9	6.02	¢＇SL	¢08	$0 \cdot 98$	Z＇76	066	¢＇901	0＇SLI	¢＇¡てI	て＇çL		I＇191	8＇9LI	6 601	L＇sız	$868 z$	6.29	900	8＇8\＆	¢88	6＇\＆¢	6067	z＇zs	－t	L＇868	L＇Sz
s ＇sil	9＇zz1	¢ $0 ¢ \mathrm{~s}$	0681	c．8t	6.851	s．0L	$\varepsilon ¢ 85$	$9 \cdot L 61$	¢	¢＇tız	$9{ }^{\text {¢ }}$ ¢S	¢＇ゅLz	\＆00\％	L＇6z¢	\＆＇\＆9\％	$\mathrm{c}^{\text {ctot }}$	て＇stt	L＇t6t	coss	て＇Z19	88.9	0 ¢ 51	よ＇918	L．088	6＇tcil	চ＇ 1 ¢
s＇stl	よ＇t¢	2＇t91	0 ＇SLI	6.981	6661	ザゅして	†＇0¢z	ε ¢ 8 tz	ع＇89z	9.062		でゅを	¢＇9LE	してしゅ	I＇tSt	て＇tos	s＇tss	9＇もL9	9＇189	$6{ }^{\text {b }}$ L L	Lz¢8	I＇zi6	¢＇686	ゅ＇1905	0－898ı	\＆Lદ¢поsz
L＇EL	－0zI	\＆：82I	8＇9¢1	0.971	2＇9SI	¢ 491	L＇085	I＇t6	L＇60z	でடzz	8.972	$1 \cdot 692$	て＇も62	Lzz\＆	I＇cce	0 0＇68	L＇\＆\＆币	$608 t$	¢ ¢ ¢ ¢	［＇t6s	\％ 299	－＇sIL	［9LL	6 \％\％	て＇ç0I	078
¢．\＆ 61	¢ ¢ 02	I＇8L2	て＇z\＆z	Lくもて	L＇ャ9z	¢ ¢88	て＇キ0¢	でLz¢	L＇z¢¢	て＇18¢	0 －¢L	¢ 8 ¢t	¢ $88{ }^{\text {¢ }}$	8＇z¢s	¢ 785	$9 . L \varepsilon 9$	†＇869	\＆＇t9L	¢＇te8	［＇06	L＇6L6	L＇6t01	「し	－$¢<11$	¢ 8 8てt	†＇0ヵ
†＇Lzz	て＇しゃて	て＇9¢z	L＇ZLZ	8.062	9018	cz\＆	L＇9¢\＆	†＇\＆8¢	「址	で9tt	0＇88t	0 0\％2s	8＇695	L＇0z9	\＆ 129	L＇6\＆	8＇L08	＇188	0.856	9＇9801	て＇tul	て＇88II	c．992I	818	L＇98S！	て＇9ヵ¢ ${ }^{\text {a }}$
6 ＇002	†＇LLZ	0＇İz	0＇972	†＇292	†＇082	£ 00¢	£＇zz¢	L＇97¢	$8 \cdot \varepsilon L \varepsilon$	I＇t00	6 LED	L＇SLD	0815	\＆＇s9s	\＆819	て＇LL9	「でてL	8 7 18	て＇888	¢＇996	0＇Sto	021	L6	＇cszt	0 0 \％¢S	L＇t
く＇tız	t＇9sz	†＇てLZ	6.682	1608	て＇0¢¢	†¢¢¢	1＇6L8	$9.20 t$	1＇6¢ヵ	でゅしも	ε \＆¢ LS	6．9ss	¢＇s09	9699	$961 /$	8.584	I＇858	L＇¢¢6	\＆゙LIOT	¢ 000 L	$9 \mathrm{z8L}$	8．092I	－¢ ¢ ¢	†＇86¢t	¢＇2891	LOS
L＇LLZ	9 9\％62	0 －¢1¢	I $¢ ¢ \varepsilon$	I＇ç¢	ゅ＇6LE	2＇90才	L＇¢¢t	¢＇89¢	L＇tos	I＇StS	${ }^{\text {r }} 0665$	\＆079	£＇969	L－8S \angle	0.888	$\mathrm{s}^{\text {²0 }} 06$	0886	6．LLOI	ZLIL	I＇692I	－ 59	SSt	Ot	919	0＇L66I	L＇9¢¢ ${ }^{\text {cos }}$
6.858	9 T ＇tZ	L＇I6Z	¢018	0＇t¢\＆	$9 ¢ ¢ \varepsilon$	9＇8LE	I＇90t	998t	も0くも	［＇80S	0＇0SS	8＇96S	68ヶ9	0．LOL	c＇ILL	Lてゅ8	c．076	00	601	6＇18LI	L＇OLZI	†＇SçI	9 9¢¢しI	${ }^{\text {tost }}$	＇LI8	L＇¢
9^{9}＇0¢	L＇61E	¢＇68¢	て＇I98	6 6＇88	0＇LIt	L＇6¢t	£＇LL	z＇90S	$6{ }^{6} \mathrm{t}$ ¢ 5	L＇L8S	¢＇¢¢9	I＇889	9.972	ゆ＇L18	¢＇788	Z＇096	8＇Eb01	でZ\＆し	ャ६zzI	tel	80t	＇98t	¢¢S	¢＇z¢91	6＇ャ¢61	L＇6sgnoit
I＇z98	8 888	ち＇LOt	「＇¢£t	$\varepsilon^{\prime \prime} 59$	て＇z6t	Z＇92S	¢＇¢9¢	L＇t09	z＇0s9	¢00L	$8 \mathrm{Sc} /$	0.218	†＇588	2＇856	L8801		İLIz	＇てİ	て＇60tI	ع＇tosi	\＆＇56S	6 69	\＆$\angle S$	マ＇Lz8	$6 \cdot \mathrm{ScLz}$	［＇L9
¢＇としゃ	z＇8Et	2＇s9t	9＇ャ6t	8.975	I＇z9s	6009	¢＇¢ ¢ 9	S．069	もでてL	L＇66L	0 －$¢ 98$	${ }^{6} 2 \varepsilon 6$	8＇600	I＇ゅ601	6.5815	L＇t821	¢＇6881	886	¢＇809	691	＇0z8	LI61	2＇5002	8＇780	L＇9¢	9 ${ }^{\text {² }}$
¢＇99\％	て＇86t	9 ¢ $¢ \mathrm{c}$	L＇9¢S	0 \％ 865	8＇z¢9	929	L＇ゅZL	L＇LLL	¢＇9¢8	$0{ }^{\text {a }} 06$	9＇zL6	$9{ }^{\text {a }}$ LSOL	－8¢LI	เ¢z1	8¢¢	St	02	＇G691	†＇tz8！	96	\＆＇c90Z	99LIZ	82	0L	¢＇s LLz	I＇z89n09\％
S＇t6r	L＇EZS	†＇¢¢S	$0 \cdot 065$	8 LZ9	1＇699	て＇すLL	L＇E9L	$0 \cdot 818$	9 $\angle 148$	6 276	も＇tiol	$9 \mathrm{z601}$	¢＇LLIL	＇692I	－L981	0Lt	＇9LSt	＋89	062	＇＇768	88	LO	\＆LS	¢0¢zz	z＇LScz	028
$8 \mathrm{Z8S}$	I＇LI9	S＇ts9	て＇S69	S＇6EL	$0 \cdot 884$	0＇ti8	0668	9796	¢ Z¢01	L80LI	z＇z6II	\＆＇\＆82I	0 0881	ع＇88ちI	S＇091	z＇OZLI	¢ 2781	＇S961	$9 \cdot 9802$	¢ Cozz	でしİ	¢したて	Lzosz	L＇c85	9＇9562	†＇z6qnoss
［＇00L	I－8tL	† 762	9＇078	0 ¢ 68	6.676	6＇LI	†＇6LOI	8 ＇ZSIL	¢z\＆z	061	てした	LZISI	$9 \mathrm{Cl91}$	¢ $2 ¢<1$	＇6885	I＇6961	0.6802	90zz	†＇6IEz	＇SZさて	9＇もてSZ	¢＇S192	9×862	$8^{\prime} \downarrow \angle L$	6.91	101
8 ＇1z8	6898	$8{ }^{8} 616$	「＇¢L6	6＇teo	66601	ち＇0LI	8＇9ちてI	9＇6281	1＇6ItI	9 SISI	619	Z＇6ZLI	†＇¢ヶ81	9961	6060	¢＇9ız	0ヶ	09\％	9 G ¢¢	¢8	28	†L8	－85	6＇S\＆0¢	$9 \times 88 \varepsilon$	£LI
†＇686	I＇\＆66	¢＇tsot	£゙ゅし！	¢ z 8 LI	9＇9¢zı	$6 \cdot 98 \varepsilon$	6 ¢ $¢$ ¢	L－8ISI	66191	¢＇6ZLI	8．9781	L＇TL6I	て＇801z	0＇0ヶてz	z＇08\＆z	¢＇tzsz	$0{ }^{\text {a }} 19$	「96LZ	L＇ゅて6Z	I＇Gt0¢	$9 \cdot 9$	6¢88	9 ¢ $¢$	c．0tti	$\downarrow^{\square} 088 \varepsilon$	sztgnot9
8	GL＇L	S＇L	SZ＇L	4	SL＇9	¢＇9	S2＇9	9	SL＇s	c ＇s	sz＇s	$\begin{gathered} \mathrm{G} \\ (\mathrm{NY})^{\circ} N \end{gathered}$	$\begin{aligned} & \text { GL'ஏ } \\ & V^{\phi} \end{aligned}$	$s^{\prime \prime} \hbar$	รでャ		$\varsigma L^{\prime} \varepsilon$				$\varsigma L^{\prime} Z$		sz＇z		$\left\|\begin{array}{c} 0 \\ (\mathrm{~N} Y)^{s} \mathrm{~N}^{2} \phi \end{array}\right\|$	（u）${ }^{3} \mathrm{~T}$

Table 4.5: Design load capacity table for UC members subject to axial compression buckling about strong axis (manually generated)

Grade 300 Steel UC Section Subject to Axial Compression Strong Axis Buckling																										
	$\phi N_{s}(\mathrm{kN})$													ϕN_{c}												
$L_{e}(\mathrm{~m})$	0	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	11	12	13	14	15	16	17	18
310UC158	5065.2	5036.0	4971.4	4905.9	4838.8	4769.7	4697.9	4622.7	4543.6	4460.0	4371.3	4276.9	4176.6	4069.9	3956.9	3837.7	3712.9	3583.2	3314.1	3040.9	2774.5	2523.3	2292.1	2082.9	1895.5	1728.6
137	4410.0	4381.3	4324.2	4266.2	4206.9	4145.6	4081.8	4014.9	3944.5	3869.9	3790.6	3706.3	3616.4	3520.9	3419.8	3313.2	3201.7	3086.1	2847.2	2606.2	2372.9	2154.2	1954.1	1773.7	1612.7	1469.6
118	3780.0	3754.0	3704.6	3654.5	3603.2	3550.2	3494.9	3437.0	3375.9	3311.2	3242.4	3169.1	3091.0	3008.0	2920.1	2827.4	2730.7	2630.4	2423.7	2215.9	2015.4	1828.0	1657.0	1503.2	1366.1	1244.5
96.8	3348.0	3316.1	3270.1	3223.2	3175.0	3124.9	3072.5	3017.3	2958.7	2896.3	2829.6	2758.4	2682.4	2601.6	2516.1	2426.4	2333.4	2237.9	2044.0	1853.8	1674.5	1510.4	1363.0	1232.1	1116.7	1015.0
250UC89.5	2872.8	2820.9	2774.7	2727.1	2677.4	2624.9	2569.1	2509.2	2444.7	2375.1	2299.9	2219.2	2133.3	2042.9	1949.1	1853.3	1757.1	1661.9	1479.5	1313.4	1166.4	1038.3	927.5	831.8	749.2	677.6
72.9	2516.4	2463.8	2421.3	2377.4	2331.2	2282.3	2229.9	2173.4	2112.2	2045.9	1974.4	1897.6	1816.3	1731.3	1644.0	1556.0	1468.6	1383.3	1222.9	1079.7	954.9	847.4	755.2	676.1	608.1	549.4
200UC59.5	2057.4	1981.4	1936.8	1889.3	1838.0	1781.7	1719.8	1651.3	1576.3	1495.2	1409.4	1320.8	1231.9	1144.8	1061.4	982.9	910.0	842.8	725.4	628.1	547.6	480.8	425.1	378.2	338.5	304.6
52.2	1798.2	1730.8	1691.4	1649.6	1604.2	1554.5	1499.6	1439.1	1372.6	1300.9	1225.1	1147.1	1068.9	992.5	919.6	851.1	787.5	729.1	627.1	542.8	473.1	415.3	367.1	326.5	292.2	262.9
46.2	1593.0	1531.9	1496.6	1459.0	1418.1	1373.3	1323.8	1269.1	1209.1	1144.4	1076.2	1006.2	936.4	868.5	803.8	743.3	687.3	635.9	546.4	472.6	411.7	361.3	319.3	284.0	254.1	228.6
150UC37.2	1277.1	1195.2	1155.3	1110.8	1060.2	1002.7	938.3	868.6	796.3	724.6	656.4	593.4	536.5	485.7	440.7	400.9	365.8	334.8	283.0	241.9	209.0	182.2	160.2	142.0	126.6	113.6
30.0	1111.7	1034.2	997.1	955.2	907.2	852.6	791.8	726.9	661.0	597.1	537.6	483.6	435.5	393.1	355.8	323.1	294.4	269.1	227.0	193.8	167.3	145.7	128.1	113.4	101.1	90.7
23.4	858.2	794.4	764.1	729.6	690.0	644.8	594.9	542.4	490.0	440.2	394.5	353.7	317.6	286.1	258.5	234.4	213.3	194.8	164.2	140.0	120.8	105.1	92.4	81.7	72.9	65.3
100UC14.8	544.3	454.7	411.4	360.6	307.9	259.4	218.2	184.5	157.2	135.2	117.3	102.6	90.5	80.3	71.7	64.5	58.2	52.8	44.1	37.3	32.0	27.8	24.3	21.4	19.1	17.0

Table 4.6: Design load capacity table for UC members subject to axial compression buckling about weak axis (manually generated)
Grade 300 Steel UC Section Subject to Axial Compression Weak Axis Buckling

	$\phi N_{s}(\mathrm{kN})$	$\phi N_{C}(\mathrm{kN})$																								
$L_{e}(\mathrm{~m})$	0	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	6.75	7	7.25	7.5	7.75	8
310UC158	5065.2	4835.6	4774.8	4711.9	4646.4	4578.1	4506.5	4431.1	4351.7	4267.8	4179.2	4085.7	3987.3	3884.0	3776.2	3664.3	3548.9	3430.9	3311.1	3190.6	3070.4	2951.2	2834.0	2719.5	2608.3	2500.7
137	4410.0	4206.4	4152.8	4097.4	4039.7	3979.4	3916.1	3849.5	3779.2	3704.9	3626.5	3543.7	3456.5	3365.1	3269.7	3170.7	3068.9	2964.8	2859.4	2753.5	2648.0	2543.7	2441.3	2341.4	2244.5	2151.0
118	3780.0	3602.2	3555.7	3507.6	3457.5	3405.1	3350.1	3292.1	3230.9	3166.2	3097.8	3025.5	2949.5	2869.8	2786.7	2700.6	2612.0	2521.7	2430.4	2338.9	2247.8	2157.9	2069.9	1984.2	1901.1	1821.1
96.8	3348.0	3175.6	3132.0	3086.6	3039.2	2989.4	2936.9	2881.4	2822.5	2760.2	2694.1	2624.4	2551.1	2474.4	2394.8	2312.8	2229.1	2144.4	2059.6	1975.4	1892.5	1811.5	1732.8	1656.8	1583.9	1514.0
250UC89.5	2872.8	2683.9	2639.4	2592.5	2542.8	2490.0	2433.6	2373.3	2309.0	2240.5	2168.2	2092.2	2013.3	1932.2	1849.8	1767.1	1685.0	1604.5	1526.3	1450.8	1378.5	1309.6	1244.3	1182.5	1124.3	1069.6
72.9	2516.4	2336.7	2295.1	2251.1	2204.1	2154.0	2100.3	2042.7	1981.2	1915.9	1847.0	1775.2	1701.1	1625.6	1549.8	1474.6	1400.9	1329.4	1260.6	1194.9	1132.5	1073.5	1018.0	965.8	916.8	871.0
200UC59.5	2057.4	1841.2	1793.0	1740.6	1683.5	1621.4	1554.4	1483.0	1408.3	1331.5	1254.2	1177.9	1104.0	1033.3	966.5	904.0	845.9	792.0	742.3	696.5	654.3	615.4	579.7	546.7	516.3	488.2
52.2	1798.2	1608.0	1565.6	1519.4	1469.1	1414.5	1355.5	1292.7	1227.0	1159.5	1091.8	1025.0	960.2	898.5	840.2	785.6	735.0	688.0	644.8	604.9	568.2	534.4	503.3	474.6	448.2	423.8
46.2	1593.0	1421.6	1383.4	1341.8	1296.5	1247.1	1193.9	1137.3	1078.2	1017.8	957.2	897.7	840.3	785.6	734.1	686.0	641.4	600.2	562.2	527.3	495.2	465.6	438.4	413.4	390.3	369.0
150UC37.2	1277.1	1054.4	1003.0	946.2	884.9	821.0	756.8	694.3	635.3	580.8	531.1	486.2	445.9	409.7	377.4	348.5	322.6	299.3	278.3	259.4	242.2	226.7	212.6	199.7	188.0	177.2
30.0	1111.7	902.7	854.2	800.7	743.8	685.3	627.6	572.6	521.5	474.9	432.9	395.3	361.8	332.0	305.4	281.6	260.4	241.4	224.3	209.0	195.1	182.5	171.0	160.6	151.1	142.4
23.4	858.2	685.1	644.6	600.4	553.9	507.0	461.6	419.0	380.1	345.0	313.6	285.8	261.1	239.3	219.9	202.6	187.2	173.4	161.0	149.9	139.9	130.8	122.6	115.1	108.2	102.0
100UC14.8	544.3	323.0	280.5	242.5	209.9	182.5	159.6	140.4	124.4	110.8	99.3	89.4	80.9	73.5	67.1	61.5	56.6	52.2	48.3	44.8	41.7	38.9	36.4	34.1	32.0	30.1

Grade $\mathbf{3 0 0}$ UB Strong Axis Compression

610UB125
610UB113
610UB101

530UB92.4
530UB82
460UB82.1
460UB74.6
460UB67.1

410UB59.7
460UB53.7
360UB56.7
360UB50.7

Grade $\mathbf{3 0 0}$ UC Strong Axis Compression

Example 4.5 Axial Compression Example - UC

Using Grade 300 steel, find the lightest UC without holes for $G=400 \mathrm{kN}$ and $Q=700 \mathrm{kN}$ with $L_{e}=5 \mathrm{~m}$.

Solution 4.5

For all hot-rolled UC sections, $t_{f}<40 \mathrm{~mm}$, thus $k_{f}=1$ and $\alpha_{b}=0$. Assume $f_{y}=300 \mathrm{MPa}$.

Load combination gives

$$
N^{*}=1.2 G+1.5 Q=1.2 \times 400 \mathrm{kN}+1.5 \times 700 \mathrm{kN}=1530 \mathrm{kN}
$$

For the identical L_{e} along both axes, clearly the weak axis governs. Assume a moderate $r_{y} \approx$ 60 mm , this leads to

$$
\lambda_{n}=\frac{L_{e}}{r_{y}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{5 \mathrm{~m}}{50 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{300}{250}}=91.3
$$

Then $\alpha_{c}=0.601$.

$$
A_{n, \min }=\frac{N^{*}}{\phi \alpha_{c} k_{f} f_{y}}=\frac{1530 \mathrm{kN}}{0.9 \times 0.601 \times 1 \times 300 \mathrm{MPa}}=9430 \mathrm{~mm}^{2}
$$

This gives us a reasonable reference value of A_{n}, we then try designations that have similar A_{n}.
Try 250UC89.5, update all quantities,

$$
f_{y}=280 \mathrm{MPa}, \quad r_{y}=65.2 \mathrm{~mm}, \quad \lambda_{n}=81.2, \quad \alpha_{c}=0.673, \quad A_{n, \min }=8420 \mathrm{~mm}^{2}
$$

Since $A_{n}=11400 \mathrm{~mm}^{2}>8420 \mathrm{~mm}^{2}, 250 \mathrm{UC} 89.5$ works.
Try 250UC72.9, update all quantities,

$$
f_{y}=300 \mathrm{MPa}, \quad r_{y}=64.5 \mathrm{~mm}, \quad \lambda_{n}=84.9, \quad \alpha_{c}=0.646, \quad A_{n, \min }=8772 \mathrm{~mm}^{2}
$$

Since $A_{n}=9320 \mathrm{~mm}^{2}>8772 \mathrm{~mm}^{2}, 250 \mathrm{UC} 72.9$ works.
Try 200UC59.5, update all quantities,

$$
f_{y}=300 \mathrm{MPa}, \quad r_{y}=51.7 \mathrm{~mm}, \quad \lambda_{n}=105.9, \quad \alpha_{c}=0.502, \quad A_{n, \min }=11280 \mathrm{~mm}^{2}
$$

Since $A_{n}=7620 \mathrm{~mm}^{2}<11280 \mathrm{~mm}^{2}$, 200UC59.5 does not work.
The lightest designation would be 250UC72.9. By using $N^{*}=1530 \mathrm{kN}$, the optimal section is 250UC72.9 from Fig. 4.15.

Example 4.6 A 18 m long beam is braced laterally (pinned) at its ends for buckling about its strong axis, and braced (pinned) at the ends and at the quarter points for buckling about its weak axis. Find the lightest I section to carry $N^{*}=700 \mathrm{kN}$. Use Grade 300 steel.

Solution 4.6

The effective lengths are

$$
\begin{aligned}
& L_{e, y}=18 \mathrm{~m} / 4=4.5 \mathrm{~m} \\
& L_{e, x}=18 \mathrm{~m}
\end{aligned}
$$

An efficient member shall have similar L_{e} / r about both axes. This leads to $r_{x} / r_{y} \approx 4$. UC sections often have $r_{x} / r_{y} \approx 1.6$ to 1.8 . UB sections often have $r_{x} / r_{y} \approx 3.5$ to 5.5 . Thus use UB sections will be more efficient. From Table 4.3 and Table 4.4,

Section	$\phi N_{c, x}$ at 18 m	$\phi N_{c, y}$ at 4.5 m	
410UB59.7	881.5	811.4	Okay
53.7	782.2	707.0	Okay
360UB56.7	705.5	758.7	Okay
50.7	619.5	659.6	N.G.

Thus the lightest section is 410UB53.7.

4.3.1 Consideration of Effective Length

Individual Member

NZS 3404.1\&2:1997 § 4.8.3.2 recommends the following values for k_{e} as shown in Fig. 4.17 for individual sway and braced members that are designed for load combinations that do not include earthquake loads. Those values are larger than the theoretical values because it is assumed that no connections are ideal, connections at member ends normally have some flexibility. It is worth noting that those values may be different in other codes.

Figure 4.17: Effective length factor k_{e}

Frame Member

There are two types of frame members.

- Braced Frame Member

In these frames, lateral stability is provided by structural walls, diagonal bracing or other similar means within the storey considered. For braced members, $1.0 \geqslant k_{e} \geqslant 0.5$.

- Sway Frame Member

In these frames, lateral stability is provided by bending stiffness of rigidly connected beams or columns. The upper supports can also move down the same amount on each side. For sway members, $k_{e} \geqslant 1.0$.

Whether the beams are braced results in different rotation constraints on beam-column joints. Besides, the illustrations in Fig. 4.18 only show the cases when the far ends of beams are pinned. The fixity condition of beam far end also has an impact on the degree of rotation constraint offered. This will be discussed later.

In order to compute member capacities, two methods are available, namely the stability function and the γ-factor method.

Figure 4.18: Illustration of different types of frame members with theoretical k_{e} shown

Stability Functions In the general case of different $E I$ in the beams at the top and bottom of the frame, stability functions can be used to evaluate the buckling force in the member without needing to consider the effective lengths. These are included in computer programs but are not studied here.

The γ-Factor Method Alternatively, for frame members, the effective length factor k_{e} can be determined by a simplified method via stiffness ratios. The following assumptions of idealized conditions,
which seldom exist in real structures, are adopted (ANSI/AISC 360-16 § 7.2):

- all members have constant cross section,
- all joints are rigid,
- joint restraint is distributed to the column above and below the joint in proportion to $E I / L$ of the two columns,
- for braced frames, rotations at opposite ends of the beams are of equal magnitude, producing single curvature bending,
- for sway frames, rotations at opposite ends of the restraining beams are of equal magnitude, producing reverse curvature bending,
- the stiffness parameters $L \sqrt{\frac{P}{E I}}$ of all columns are equal,
- all columns buckle simultaneously,
- behaviour is purely elastic,
- no significant axial compression force exists in the girders,
- shear deformations are neglected.

For each compression member, it is possible to compute the stiffness ratios of two ends respectively via the following expression.

$$
\begin{equation*}
\gamma=\frac{\sum_{\text {columns }} \frac{E I}{L}}{\sum_{\text {beams }} \frac{\beta_{e} E I}{L}}=\frac{\sum_{\text {columns }} \frac{I}{L}}{\sum_{\text {beams }} \frac{\beta_{e} I}{L}} \tag{4.7}
\end{equation*}
$$

in which

- $\underline{\text { NZS } 3404.1 \& 2: 1997} \S$ 4.8.3.4.2 $\sum_{\text {columns }} \frac{I}{L}$ shall be calculated from the sum of the stiffnesses, in the plane of bending, of all the compression members rigidly connected at the end of the member under consideration, including the member itself.
- NZS 3404.1\&2:1997 \S 4.8.3.4.3 $\sum_{\text {beams }} \frac{\beta_{e} I}{L}$ shall be calculated from the sum of the stiffnesses, in the plane of bending, of all the beams rigidly connected at the end of the member under consideration. The contributions of any beams pin-connected to the member shall be neglected.
- β_{e} is a modification factor to account for different beam far end conditions. This will be introduced later. For the moment, assume $\beta_{e}=1$.

With γ_{1} and γ_{2} (for two ends) at hand, k_{e} can be calculated by one of the following methods:

1. The exact solution for the assumptions above may be found using the following equations. These are transcendental functions that can be solved by numerical methods.

- braced member

$$
\frac{\gamma_{1} \gamma_{2}}{4}\left(\frac{\pi}{k_{e}}\right)^{2}+\frac{\gamma_{1}+\gamma_{2}}{2}\left(1-\frac{\pi / k_{e}}{\tan \left(\pi / k_{e}\right)}\right)+\frac{2 \tan \left(0.5 \pi / k_{e}\right)}{\pi / k_{e}}=1.0
$$

- sway member

$$
\left(\gamma_{1} \gamma_{2}\left(\frac{\pi}{k_{e}}\right)^{2}-36\right) \tan \left(\frac{\pi}{k_{e}}\right)=6\left(\gamma_{1}+\gamma_{2}\right) \frac{\pi}{k_{e}}
$$

2. US Alignment Charts. These charts used in ANSI/AISC 360-16 Specification for Structural Steel Buildings give the graphical solutions to the two equations above. They are shown in Fig. 4.19 in which G_{A} and G_{B} correspond to γ_{1} and γ_{2}. Additional copies are provided at the end of this chapter.

Figure 4.19: Alignment chart for k_{e}
3. AU/NZ Alignment Charts. These charts used in NZS 3404.1\&2:1997 Fig. 4.8.3.3 are essentially identical to the ones used in the US code but presented in a different format. Fig. 4.20 shows those charts.

Figure 4.20: k_{e} for braced and sway members (Gorenc et al., 2015)
4. French Equations. These are used in the French code and they are an approximation to the two equations above. They give answers to an accuracy of better than 1% to the true answer and any error results in a slightly conservative answer. This is better than the readability of the design charts.

- braced member

$$
\begin{equation*}
k_{e}=\frac{3 \gamma_{1} \gamma_{2}+1.4\left(\gamma_{1}+\gamma_{2}\right)+0.64}{3 \gamma_{1} \gamma_{2}+2\left(\gamma_{1}+\gamma_{2}\right)+1.28} \tag{4.8}
\end{equation*}
$$

- sway member

$$
\begin{equation*}
k_{e}=\sqrt{\frac{1.6 \gamma_{1} \gamma_{2}+4\left(\gamma_{1}+\gamma_{2}\right)+7.5}{\gamma_{1}+\gamma_{2}+7.5}} \tag{4.9}
\end{equation*}
$$

The French method is probably the best for practical usage, although any of the methods above would be acceptable.

Examples of Alignment Charts

To use the alignment charts, one shall calculate γ_{1} and γ_{2} first. Draw a straight line defined by γ_{1} and γ_{2}, the intersection gives the value of k_{e}.

Braced Individual Member Since both ends are fixed,

$$
\gamma_{t o p}=\gamma_{b o t}=0
$$

From the chart, $k_{e}=0.5$.

Braced Frame Member The top end is connected to two beams,

$$
\gamma_{t o p}=\frac{1}{1.5 / 0.8+1.5 / 1.5}=0.348, \quad \gamma_{b o t}=0
$$

From the chart, $k_{e} \approx 0.57$. The French equation gives $k_{e}=0.5704$.

$\mathrm{G}_{\text {A }}$	κ	G_{B}
$50.0{ }^{\circ} \mathrm{O}$	T ${ }^{1.0}$	${ }^{-1} 50.0$
10.0-	-	- 10.0
5.0 4.0		E5:0
$3.0=$	-0.9	- 3.0
2.0-		-2.0
	$L_{0} .8$	
${ }_{0} .8 .8$		- 0.9
${ }_{0}^{0.7} \mathbf{0}=$		-0.7
$0.6-$		-0.6
$0.5-$		-0.5
$0.4-$		-0.4
$\begin{aligned} & 0.3-1 \\ & 0.2-1 . \end{aligned}$		-0.3
		-0.2
		0.2
$0.1-$		-0.1
	-0.5	

Sway Individual Member Since the top end is a free end and the bottom end is fixed,

$$
\gamma_{t o p}=\infty, \quad \gamma_{b o t}=0
$$

From the chart, $k_{e}=2.0$.

Sway Frame Member The top end is connected to two beams,

$$
\gamma_{t o p}=\frac{1}{1.5 / 0.8+1.5 / 1.5}=0.348, \quad \gamma_{b o t}=0
$$

From the chart, $k_{e} \approx 1.05$. The French equation gives $k_{e}=1.0644$.

Remark

The stiffness ratio γ characterises the rotation ability of an end. A sufficiently large $\gamma \rightarrow \infty$ represents a pinned connection while a sufficiently small $\gamma \rightarrow 0$ represents a fixed connection. However, those are idealised assumptions, in real world those perfect connections do not exist. Thus, γ is often taken as 1 for fully fixed connection and 10 for perfectly pinned connection.

- Example 4.7 Worksheet Axial Compression Example - Frame

For the frame shown, find axial compression capacity of column when the frame is a) braced and b) unbraced. Assume the out-of-plane buckling is fully prevented and in-plane deformations cause strong axis member bending. Use Grade 300 steel.

Solution 4.7

In this simple case, $\beta_{e}=1$. The stiffness ratios can be computed as

$$
\gamma_{1}=\gamma_{t o p}=\frac{I_{c} / L_{c}}{\beta_{e} I_{b} / L_{b}}=4.15, \quad \gamma_{2}=\gamma_{b o t}=10
$$

Note for the pinned connection, 10 is used.

- braced frame

By the French equation,

$$
k_{e}=\frac{3 \gamma_{1} \gamma_{2}+1.4\left(\gamma_{1}+\gamma_{2}\right)+0.64}{3 \gamma_{1} \gamma_{2}+2\left(\gamma_{1}+\gamma_{2}\right)+1.28}=0.941 .
$$

The modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{0.941 \times 5 \mathrm{~m}}{213 \mathrm{~mm}} \times \sqrt{0.902} \times \sqrt{\frac{300}{250}}=22.97 .
$$

Thus $\alpha_{c}=0.968$,

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.968 \times 0.902 \times 10500 \mathrm{~mm}^{2} \times 300 \mathrm{MPa}=2475 \mathrm{kN} .
$$

- sway frame

By the French equation,

$$
k_{e}=\sqrt{\frac{1.6 \gamma_{1} \gamma_{2}+4\left(\gamma_{1}+\gamma_{2}\right)+7.5}{\gamma_{1}+\gamma_{2}+7.5}}=2.455 .
$$

The modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{2.455 \times 5 \mathrm{~m}}{213 \mathrm{~mm}} \times \sqrt{0.902} \times \sqrt{\frac{300}{250}}=59.95 .
$$

Thus $\alpha_{c}=0.809$,

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.809 \times 0.902 \times 10500 \mathrm{~mm}^{2} \times 300 \mathrm{MPa}=2069 \mathrm{kN} .
$$

4.3.2 Modifications to γ-Factor Method

Effect of Beam End Conditions

Recall Fig. 4.18 and Eq. (4.7),

$$
\gamma=\frac{\sum_{\text {columns }} \frac{E I}{L}}{\sum_{\text {beams }} \frac{\beta_{e} E I}{L}}=\frac{\sum_{\text {columns }} \frac{I}{L}}{\sum_{\text {beams }} \frac{\beta_{e} I}{L}} .
$$

NZS 3404.1\&2:1997 § 4.8.3.4.3 uses a modifying factor β_{e} to account for various conditions at the far ends of the beams, which may affect the magnitude of moment on the joint. This corresponds to ANSI/AISC 360-16 Eq. C-A-7-4.

Table 4.7: Modifying factor β_{e}

fixity at far end of beam	beam restraining a braced member	beam restraining a sway member
pinned	1.5	0.5
rigidly connected to a column	1.0	1.0
fixed	2.0	0.67

Figure 4.21: Far end of beam conditions

Member Yielding

Stocky columns which are subject to high axial forces may yield as a result of the residual stress. This reduces the elastic modulus, so the column has a 'close to' pinned connection at the yield end. This can lead to a saving of material.

We will not study this in this class, and it is not important for $f<0.5 f_{y}$.

Total Storey Sidesway

The design charts are based on the assumption that all columns buckle simultaneously and that the sidesway load for the storey can be obtained from the sidesway load of one column.

In gravity frames the resistance of one column to sidesway may be greater than that of other columns due to its loading or stiffness. It is assumed columns are axially rigid.

For design against sidesway, the gravity load which a frame can support may be split up in any proportion. An example is shown as follows.

Figure 4.22: Transfer of vertical loads

However, the maximum load in any column must not exceed the maximum load that a column could support if it were braced against sidesway $\left(k_{e}=1.0\right)$.

For the following frame, assume the braced and sway capacities for each column are listed as follows.

For the sway mechanism, $\sum_{i=1}^{3} N_{i}^{*}=N^{*} \leqslant \sum_{i=1}^{3} \phi N_{c, s}^{i}=1100 \mathrm{kN}$. For each column, the maximum load shall not exceed its braced capacity, that is

$$
N_{1}^{*} \leqslant \phi N_{c, b}^{1}=500 \mathrm{kN}, \quad N_{2}^{*} \leqslant \phi N_{c, b}^{2}=600 \mathrm{kN}, \quad N_{3}^{*} \leqslant \phi N_{c, b}^{3}=400 \mathrm{kN}
$$

Now consider the following two cases.

- The loads for columns 1 and 2 are given as $N_{1}^{*}=400 \mathrm{kN}$ and $N_{2}^{*}=500 \mathrm{kN}$, what is the maximum load of column 3?
Knowing that $N^{*} \leqslant 1100 \mathrm{kN}$ to prevent sway mechanism, $N_{3}^{*} \leqslant 1100 \mathrm{kN}-400 \mathrm{kN}-500 \mathrm{kN}=$ 200 kN . Thus the maximum load of column 3 should be $N_{3}^{*}=\min (200 \mathrm{kN}, 400 \mathrm{kN})=200 \mathrm{kN}$.
- The loads for columns 1 and 2 are given as $N_{1}^{*}=300 \mathrm{kN}$ and $N_{2}^{*}=300 \mathrm{kN}$, what is the maximum load of column 3?
Knowing that $N^{*} \leqslant 1100 \mathrm{kN}$ to prevent sway mechanism, $N_{3}^{*} \leqslant 1100 \mathrm{kN}-300 \mathrm{kN}-300 \mathrm{kN}=$ 500 kN . Thus the maximum load of column 3 should be $N_{3}^{*}=\min (500 \mathrm{kN}, 400 \mathrm{kN})=400 \mathrm{kN}$.

Use of Effective Length Factor - Practical Considerations

For columns in braced frames, it is always conservative to use $k_{e}=1$. This has been recommended by Yura (1971). Based on this, and the uncertainty in assessing some of these connection stiffness, we will
use $k_{e}=1$ for the braced case consideration for columns in

1. sway frames, and
2. braced frames, where there is loading along the beam length causing column moment.

For columns in braced frames with no moment from the beams, k_{e} can be computed as being less than 1 using the techniques described above.

- Example 4.8 Worksheet Axial Compression Example - Sway Frame

For the frame shown, the columns are supported out-of-plane at top, centre and bottom, find 1) the maximum value of axial load each column can carry and 2) the maximum value of $N_{1}^{*}+N_{2}^{*}$ the frame can carry. Note the out-of-plane (weak axis) buckling should be checked as well. Use Grade 300 steel.

Solution 4.8

- For sway capacity.

- Left Column

Find stiffness ratios. $\gamma_{b o t}=\gamma_{2}=1$.

$$
\gamma_{t o p}=\gamma_{1}=\frac{I_{c} / L_{c}}{\beta_{e} I_{b} / L_{b}}=\frac{143 \times 10^{6} \mathrm{~mm}^{6} / 5 \mathrm{~m}}{1 \times 188 \times 10^{6} \mathrm{~mm}^{6} / 7 \mathrm{~m}}=1.065
$$

From French equation, $k_{e}=1.351$. Thus, the modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L_{x}}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{1.351 \times 5 \mathrm{~m}}{112 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{280}{250}}=63.84 .
$$

Thus $\alpha_{c}=0.786$,

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.786 \times 1 \times 11400 \mathrm{~mm}^{2} \times 280 \mathrm{MPa}=2259 \mathrm{kN}
$$

Alternatively, $L_{e}=k_{e} L_{x}=6.76 \mathrm{~m}$ could be used to get 2259 kN by linear interpolation from Table 4.5.

- Right Column

Find stiffness ratios. $\gamma_{b o t}=\gamma_{2}=1$.

$$
\gamma_{t o p}=\gamma_{1}=\frac{I_{c} / L_{c}}{\beta_{e} I_{b} / L_{b}}=\frac{114 \times 10^{6} \mathrm{~mm}^{6} / 5 \mathrm{~m}}{1 \times 188 \times 10^{6} \mathrm{~mm}^{6} / 7 \mathrm{~m}}=0.849
$$

From French equation, $k_{e}=1.319$. Thus, the modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L_{x}}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{1.319 \times 5 \mathrm{~m}}{111 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{300}{250}}=65.06
$$

Thus $\alpha_{c}=0.779$,

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.779 \times 1 \times 9320 \mathrm{~mm}^{2} \times 300 \mathrm{MPa}=1961 \mathrm{kN}
$$

Alternatively, $L_{e}=k_{e} L_{x}=6.60 \mathrm{~m}$ could be used to get 1961 kN by linear interpolation from Table 4.5.

Thus the total $N^{*}=\sum N_{i}^{*}=2259 \mathrm{kN}+1961 \mathrm{kN}=4220 \mathrm{kN}$.

- For braced capacity.

One can use French equation to find the corresponding k_{e} as shown before. For braced columns in a sway frame, use $k_{e}=1$.

- Left Column

The modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L_{x}}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{1 \times 5 \mathrm{~m}}{112 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{280}{250}}=47.25
$$

Thus, $\alpha_{c}=0.874$.

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.874 \times 1 \times 11400 \mathrm{~mm}^{2} \times 280 \mathrm{MPa}=2509 \mathrm{kN}
$$

- Right Column

The modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L_{x}}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{1 \times 5 \mathrm{~m}}{111 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{300}{250}}=49.34
$$

Thus, $\alpha_{c}=0.864$.

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.864 \times 1 \times 9320 \mathrm{~mm}^{2} \times 300 \mathrm{MPa}=2173 \mathrm{kN}
$$

From α_{c}, one can tell the braced capacity shall be greater than the sway capacity.

- For weak axis buckling.

Again, we choose $k_{e}=1$ for a conservative design. Since the columns are supported every half the length, $L_{y}=2.5 \mathrm{~m}$.

- Left Column

The modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L_{y}}{r_{y}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{1 \times 2.5 \mathrm{~m}}{65.2 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{280}{250}}=40.58
$$

Thus, $\alpha_{c}=0.902$.

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.902 \times 1 \times 11400 \mathrm{~mm}^{2} \times 280 \mathrm{MPa}=2592 \mathrm{kN}
$$

- Right Column

The modified slenderness ratio,

$$
\lambda_{n}=\frac{k_{e} L_{y}}{r_{y}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{1 \times 2.5 \mathrm{~m}}{64.5 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{300}{250}}=42.46
$$

Thus, $\alpha_{c}=0.895$.

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.895 \times 1 \times 9320 \mathrm{~mm}^{2} \times 300 \mathrm{MPa}=2251 \mathrm{kN}
$$

The results match the capacity table well.
To sum up, the following design criteria shall be met.

$$
\begin{aligned}
& N_{1}^{*} \leqslant \min (2509 \mathrm{kN}, 2592 \mathrm{kN})=2509 \mathrm{kN} \\
& N_{2}^{*} \leqslant \min (2173 \mathrm{kN}, 2251 \mathrm{kN})=2173 \mathrm{kN} \\
& N_{1}^{*}+N_{2}^{*} \leqslant 4220 \mathrm{kN}
\end{aligned}
$$

If $N_{1}^{*}=2500 \mathrm{kN}$, the frame fails with a sway mode when

$$
N_{2}^{*}=\min \left(2173 \mathrm{kN}, 4220 \mathrm{kN}-N_{1}^{*}\right)=1720 \mathrm{kN}
$$

Example 4.9 Worksheet Axial Compression Example - Braced Frame

Same as the previous example but the frame is now braced.

Solution 4.9

Since now the frame is braced, we use French equation to obtain k_{e} for strong axis buckling.

- Column 1.

Given that $\gamma_{1}=1.065$ and $\gamma_{2}=1$, from French equation,

$$
k_{e}=\frac{3 \gamma_{1} \gamma_{2}+1.4\left(\gamma_{1}+\gamma_{2}\right)+0.64}{3 \gamma_{1} \gamma_{2}+2\left(\gamma_{1}+\gamma_{2}\right)+1.28}=0.782 .
$$

Then,

$$
\lambda_{n}=\frac{k_{e} L_{x}}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{0.782 \times 5 \mathrm{~m}}{112 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{280}{250}}=36.93 .
$$

Thus $\alpha_{c}=0.917$,

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.917 \times 1 \times 11400 \mathrm{~mm}^{2} \times 280 \mathrm{MPa}=2635 \mathrm{kN} .
$$

- Column 2.

Given that $\gamma_{1}=0.849$ and $\gamma_{2}=1$, from French equation,

$$
k_{e}=\frac{3 \gamma_{1} \gamma_{2}+1.4\left(\gamma_{1}+\gamma_{2}\right)+0.64}{3 \gamma_{1} \gamma_{2}+2\left(\gamma_{1}+\gamma_{2}\right)+1.28}=0.768 .
$$

Then,

$$
\lambda_{n}=\frac{k_{e} L_{x}}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{0.768 \times 5 \mathrm{~m}}{111 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{300}{250}}=37.87 .
$$

Thus $\alpha_{c}=0.913$,

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.913 \times 1 \times 9320 \mathrm{~mm}^{2} \times 300 \mathrm{MPa}=2298 \mathrm{kN} .
$$

The weak-axis buckling capacities are the same as in the previous example. The design criteria considering both strong and weak axis buckling are

$$
\begin{aligned}
& N_{1}^{*} \leqslant \min (2635 \mathrm{kN}, 2592 \mathrm{kN})=2592 \mathrm{kN}, \\
& N_{2}^{*} \leqslant \min (2298 \mathrm{kN}, 2251 \mathrm{kN})=2251 \mathrm{kN} .
\end{aligned}
$$

If the frame is braced, in this particular case, the weak axis buckling governs.

4.3.3 Leaning Columns

Moment connections are expensive so frames often have two types of connections:

- moment connections that develop frame action (transfer moments) (Fully Restrained, FR)
- 'simple’ connections (Partially Restrained, PR)

Figure 4.23: Connection types

Figure 4.24: Destabilizaing effect of leaning columns

The FR frame provides a stabilizing effect for all of the columns, NZS 3404.1\&2:1997 Steel structures standard requires that destabilizing effect of 'leaning columns' be accounted for. For 'leaning columns',
use $k_{e}=1$.

Example 4.10 Worksheet Use Grade 300 steel. For the following sway frame, assume axial rigidity and out-of-plane buckling restrained. Design columns using UC sections.

Solution 4.10

For exterior columns, the total force to be carried is

$$
\sum N^{*}=2 \times(1500 \mathrm{kN}+1900 \mathrm{kN})=6800 \mathrm{kN}
$$

Try 310UC158, $f_{y}=280 \mathrm{MPa}$ and $r_{x}=139 \mathrm{~mm}$,

$$
\begin{aligned}
\gamma_{t o p} & =\gamma_{1}
\end{aligned}=\frac{I_{c} / L_{c}}{\beta_{e} I_{b} / L_{b}}=\frac{388 \times 10^{6} \mathrm{~mm}^{6} / 5 \mathrm{~m}}{0.5 \times 761 \times 10^{6} \mathrm{~mm}^{6} / 10 \mathrm{~m}}=2.039,
$$

Note the far end of the beam is pinned and sway is allowed, from Table 4.7, $\beta_{e}=0.5$. From French equation, $k_{e}=2.126$. Thus,

$$
\lambda_{n}=\frac{k_{e} L}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{2.126 \times 5 \mathrm{~m}}{139 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{280}{250}}=80.92
$$

This leads to $\alpha_{c}=0.674$,

$$
\phi N_{c}=\phi \alpha_{c} k_{f} A_{n} f_{y}=0.9 \times 0.674 \times 1 \times 20100 \mathrm{~mm}^{2} \times 280 \mathrm{MPa}=3415 \mathrm{kN}
$$

Thus, the total capacity of two columns is

$$
\sum \phi N_{c}=2 \times 3415 \mathrm{kN}=6830 \mathrm{kN}>6800 \mathrm{kN}
$$

For interior leaning columns, assume $f_{y}=280 \mathrm{MPa}$, try $r_{x}=100 \mathrm{~mm}$,

$$
\lambda_{n}=\frac{k_{e} L}{r_{x}} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{1 \times 5 \mathrm{~m}}{100 \mathrm{~mm}} \times \sqrt{1} \times \sqrt{\frac{280}{250}}=52.92
$$

Thus $\alpha_{c}=0.846$,

$$
A_{n} \geqslant \frac{N^{*}}{\phi \alpha_{c} k_{f} f_{y}}=\frac{1900 \mathrm{kN}}{0.9 \times 0.846 \times 1 \times 280 \mathrm{MPa}}=8909 \mathrm{~mm}^{2}
$$

Thus choose 250UC72.9 for interior columns. It can be checked 250UC72.9 satisfies the design criterion by updating all quantities while the next designation 200UC59.5 does not. The braced capacity is greater than the sway capacity.

In conclusion, choose 250UC72.9 for interior columns and 310UC158 for exterior columns.

- Example 4.11 Loading Dock

A loading dock is supported by four columns. It is braced in one direction and unbraced in the other. Find the column strength for different combinations of beam (310UB46.2 and 610UB125) and column (250UC89.5 and 310UC158) sections. The columns are oriented so that the weak axis direction is braced.

Solution 4.11

For all cases, $\beta_{e}=1$. Using the French equations, the effective lengths for each combination can be found as follows.

beam	column		$\gamma_{b o t}$	$\gamma_{t o p}$	k_{e}	L_{e}
310UB46.2	250UC89.5	braced (weak axis)	10	0.65	0.83	3.75
		310 UC 158	unbraced (strong axis)	10	1.91	2.10
			10	1.67	0.90	4.04
	unbraced (strong axis)	10	5.17	2.58	11.61	
610UB125	250 UC 89.5	braced (weak axis)	10	0.07	0.71	3.21
		310 UC 158	unbraced (strong axis)	10	0.19	1.70
			10	0.17	0.75	3.36
		unbraced (strong axis)	10	0.52	1.79	8.07

By looking up the design tables, the critical loads can be found.

beam	column	total weight kg	braced capacity kN	unbraced capacity kN	critical kN	load/weight kN kg
310UB46.2	250UC89.5	2719.80	2310.07	1766.14	1766.14	2.60
310UB46.2	310 UC 158	3952.80	4254.20	3146.73	3146.73	3.18
610UB125	250UC89.5	4611.00	2441.89	2103.52	2103.52	1.82
610UB125	310UC158	5844.00	4472.80	4054.05	4054.05	2.77

Frame stiffness and therefore buckling capacity depend on stiffness of beams and columns. A proper combination shall be chosen to optimise the design (maximise load carried per weight).

4.3.4 Design of Columns in Frames

In the previous discussion it is assumed that the columns are axially stiff.

- When columns are not axially stiff and loading is asymmetric, axial shortening occurs which leads to sidesway and moments.
- When frame is not symmetric and columns are not axially stiff, sidesway and moments would be induced.
- When member loads and lateral forces are present, moments develop in members.

Figure 4.25: Sidesway due to non-rigid columns

Figure 4.26: Moment developed in columns due to horizontal loads

If moments occur in conjunction with axial force, then he member shall be designed for both moment and axial force. Furthermore, axial force will enhance moment ($P-\Delta$ and $P-\delta$ effects). We will discuss this in design of bending members.

(a) alignment chart for k_{e} for braced members

Bending Members

Beams are generally horizontal members supporting vertical loads and sometimes also frame lateral effects (e.g., from wind and earthquakes).

>5.1 Limit States

The limit states of a bending member may consist of the following aspects.

- strength
- flexural
* section
- yielding
- local buckling
* member lateral buckling
- FLT buckling with residual stress
- FLT buckling with warping
- shear
* yielding
* buckling
- concentrated load
* yielding
* buckling
- serviceability
- excessive deflection
- excessive vibration

Interaction may occur between limit states (e.g., beam yielding and local buckling). Such interactions should be considered in design. The only requirement for a well designed beam is that: The capacity must be greater than the demands for each limit state.

The most efficient beams to carry flexure are those with the areas of steel in tension and compression as far apart as possible. The limit states above, and constructability/installation/cost issues give limit the practical sizes that can be used.

We will look at the limit states in turn.

Figure 5.1: Critical areas for consideration of web stiffeners (Gorenc et al., 2015)

>5.2 Section Flexural Yielding Strength

We often adopt the elastic perfectly plastic idealisation for steel material response.

Figure 5.2: Idealisation of steel response

The development of plasticity of a rectangular section subject to increasing bending can thus be illustrated as follows. The material responses of extreme fibres, that correspond to four states, are labelled in the above figure as well.

Figure 5.3: Development of plasticity of a rectangular section

Figure 5.4: Development of plasticity of a rectangular section in a beam

Denote the height and width of the section to be h and b, the yield moment M_{y} and plastic moment M_{p} can be computed as

$$
M_{y}=\frac{b h^{2}}{6} f_{y}=Z f_{y}, \quad M_{p}=\frac{b h^{2}}{4} f_{y}=S f_{y}
$$

where Z and S are elastic and plastic section moduli. Note in ANSI/AISC 360-16 Specification for Structural Steel Buildings, S is used for elastic section modulus and Z is used for plastic section modulus, in Eurocode 3, $W_{e l}$ and $W_{p l}$ are used. No matter which convention is used, the plastic section modulus is always greater than the elastic section modulus.

The moduli Z and S for each section are given in the specification manual. Like form factor k_{f}, there is no need to calculate them in practice. The ratio between S and Z is defined as the shape factor.

$$
\mathrm{SF}=\frac{S}{Z}
$$

For rectangular sections, $\mathrm{SF}=1.5$. The value of shape factor would vary between 1 and 1.5 depending on different section shapes. As the shape factor increases, more of the length of the beam yields resulting in less concentration of the inelastic rotation, but a higher likelihood of element buckling instability.

If one plots section curvature versus moment, the following response can be obtained.

Figure 5.5: Section response

If the section does not buckle and is ductile, then the section strength is closer to M_{p} than to M_{y}. The fact that we have strain hardening in the steel means that M_{p} can easily be obtained in actual members, although M_{p} implies an infinite curvature with the steel model chosen.

5.2.1 Calculation of Plastic Modulus

The plastic modulus S for random sections with uniform yield stress is essentially its first moment of area.

$$
S_{x}=\int_{A}|y| \mathrm{d} A, \quad S_{y}=\int_{A}|x| \mathrm{d} A
$$

where x and y are the perpendicular distances (lever arms) to the centroid of element $\mathrm{d} A$ from the corresponding plastic neutral axes.

The plastic neutral axis coincides with the centroid of section which splits the area into two equal halves.

It should be emphasised that the above statements are only valid for sections with uniform yield stress.

>5.3 Strength Considering Local Buckling

Sections with high element slendernesses are likely to buckle before the plastic moment capacity is reached.

The slenderness of any flat element i of the section for flexure, $\lambda_{e, i}$, is obtained in a similar way as it
is for compression members (NZS 3404.1\&2:1997 § 5.2.2.1):

$$
\lambda_{e, i}=\frac{b_{i}}{t_{i}} \sqrt{\frac{f_{y, i}}{250 \mathrm{MPa}}},
$$

where b_{i} is again the clear width of the element outstand from the face of the supporting plate element or the clear width of the element between the faces of supporting plate elements and t_{i} is the element thickness.

Figure 5.6: Flat elements in different sections

The slenderness for the whole section λ_{s} is set to λ_{e} for the element with the greatest ratio of $\lambda_{e} / \lambda_{e y}$. Similarly, the slenderness limits for the whole section $\lambda_{s p}$ and $\lambda_{s y}$ are taken as $\lambda_{e p}$ and $\lambda_{e y}$ for the element with the greatest ratio of $\lambda_{e} / \lambda_{e y}$. The element slenderness limits $\lambda_{e p}$ and $\lambda_{e y}$ are given in Table 5.1 (NZS 3404.1\&2:1997 Table 5.2).

Table 5.1: Values of slenderness limits for flat elements

longitudinal edges supported	compression distribution	residual stress	$\lambda_{e p}$	$\lambda_{e y}$	$\lambda_{e d}$
one	uniform	SR	10	16	35
		HR	9	16	35
		LW, CF	8	15	35
		HW	8	14	35
	gradient	SR	10	25	
		HR	9	25	
		LW, CF	8	22	
		HW	8	22	
both	uniform	SR	30	45	90
		HR	30	45	90
		LW, CF	30	40	90
		HW	30	35	90
	gradient	Web of RHS and SHS	45	60	
		Other	85	130	

The following are some examples on different cases of supported edges and compression distributions.

- For flanges of I sections subject to strong axis bending, only one edge is supported, both ends
experience the same magnitude of normal stress, thus the compression distribution pattern is uniform. For HR sections, $\lambda_{e p}=9$ and $\lambda_{e y}=16$.

- For web of I sections subject to strong axis bending, both edges are supported, one end experiences compression while the other experiences tension, thus the compression distribution pattern is gradient. For HR sections, $\lambda_{e p}=85$ and $\lambda_{e y}=130$.

- For flanges of I sections subject to weak axis bending, only one edge is supported, but one end experiences compression/tension while the other has zero normal stress, thus the compression distribution pattern is gradient. For HR sections, $\lambda_{e p}=9$ and $\lambda_{e y}=25$.

- For flanges of RHS/SHS sections subject to strong axis bending, both edges are supported, both ends experience the same magnitude of normal stress, thus the compression distribution pattern is uniform. For HW sections, $\lambda_{e p}=30$ and $\lambda_{e y}=35$.

- For webs of RHS/SHS sections subject to strong axis bending, both edges are supported, one end experiences compression while the other experiences tension, thus the compression distribution pattern is gradient. Thus, $\lambda_{e p}=45$ and $\lambda_{e y}=60$.

Sections of different slendernesses are defined in the following way:

- $\lambda_{s} \leqslant \lambda_{s p}$ - compact
- $\lambda_{s p}<\lambda_{s} \leqslant \lambda_{s y}$ - non-compact
- $\lambda_{s y}<\lambda_{s}-$ slender

The real behaviour of different types of sections, accounting for plastic material response, can be described in the following figure.

Figure 5.7: Flexural behaviour of different types of sections

The nominal section moment capacity M_{s} shall be calculated as

$$
\begin{equation*}
M_{s}=f_{y} Z_{e} \tag{5.1}
\end{equation*}
$$

where Z_{e} is the effective section modulus which shall be determined by section type and section slenderness ratio.

Compact Section ($M=M_{c}$)

When section slenderness ratio is smaller than the section plasticity limit, $\lambda_{s} \leqslant \lambda_{s p}$, the section is compact, reaching a strength of $M_{c}=\min \left(M_{p}, 1.5 M_{y}\right)$. NZS 3404.1\&2:1997 §5.2.3 defines Z_{e} to be the compact modulus Z_{c} for compact sections, which shall be the smaller of S and $1.5 Z$. The compactness is given along with other section specifications.

$$
\begin{equation*}
Z_{e}=Z_{c}=\min (S, 1.5 Z) \tag{5.2}
\end{equation*}
$$

When holes exist, S and Z shall be recomputed considering holes (NZS 3404.1\&2:1997 § 5.2.7).

Non-compact Section ($M_{y} \leqslant M \leqslant M_{c}$)

When section slenderness ratio is between the section plasticity and yield limits, $\lambda_{s p}<\lambda_{s} \leqslant \lambda_{s y}$, the section is non-compact. Then effective section modulus Z_{e} shall be calculated via linear interpolation (NZS 3404.1\&2:1997 § 5.2.4).

$$
\begin{equation*}
Z_{e}=Z+\frac{\lambda_{s y}-\lambda_{s}}{\lambda_{s y}-\lambda_{s p}}\left(Z_{c}-Z\right), \tag{5.3}
\end{equation*}
$$

where Z_{c} is the compact modulus defined in Eq. (5.2).

Slender Section ($M<M_{y}$)

When section slenderness ratio is greater than the section yield limit, $\lambda_{s}>\lambda_{s y}$, the section is slender. For slender sections, many cases shall be considered. For simplicity, one can use the following expression (NZS 3404.1\&2:1997 § 5.2.5.2) to calculate Z_{e} as a conservative design.

$$
\begin{equation*}
Z_{e}=Z\left(\frac{\lambda_{s y}}{\lambda s}\right)^{2} . \tag{5.4}
\end{equation*}
$$

It shall be noted that slender sections are often not economical thus generally avoided.
If one plots M_{s} against λ_{s}, the curve has a similar shape as seen in compression members in which elastic buckling is expected for slender sections, and residual stress effects control the behaviour. The effective section moduli Z_{e} for both axes are also given in the specification.

Figure 5.8: Section capacity as a function of slenderness

>5.4 Strength Considering Member Buckling

A bending member, like a compression member, may undergo lateral buckling. However, only the part of the section in compression has the tendency to buckle.

compression

Figure 5.9: Compression develops in the upper part of a beam

Beam buckling over its length is generally called Flexural Lateral Torsional (FLT) buckling. Because part of the section is in tension, and doesn't tend to buckle, it restrains the total connection.

Figure 5.10: Components of FLT buckling

The amount of FLT buckling depends on

- slenderness of compression part of section
- orientation of section
- member length
- member bracing type and positions
- type and location of loading

Interested readers can check this ${ }^{1}$ video.

5.4.1 Orientation Effect

I sections bending about their strong axis with an unbraced compression flange are susceptible to buckling. However, strengths of other sections are not always affected by buckling. Lateral buckling is not generally significant in the following members.

[^8]

Figure 5.11: Sections less sensitive to lateral buckling

5.4.2 Uniform Moment

Reference Moment

From the mechanics of materials, it can be shown that the elastic buckling moment of a beam bending about its strong axis subject to a constant moment over its length, sometimes called the reference buckling moment, M_{o}, is given by (NZS 3404.1\&2:1997 Eq. 5.6.1.1(4))

$$
\begin{equation*}
M_{o}=\underbrace{\sqrt{\frac{\pi^{2} E I_{y}}{L_{e}^{2}}}}_{\text {lateral }} \underbrace{\sqrt{G J+\frac{\pi^{2} E I_{w}}{L_{e}^{2}}}}_{\text {torsional }}, \tag{5.5}
\end{equation*}
$$

where
$E=$ elastic modulus, 200 GPa
$G=$ shear modulus, 80 GPa
$I_{y}=$ the second moment of area about weak axis
$J=$ torsion constant
$I_{w}=$ warping constant
$L_{e}=$ effective length of the beam segment considered

The lateral buckling term, $E I_{y}$, indicates that the compressive part of the section wants to move sideways.

There are two sources of twist,

- pure torsion (Saint Venant), related to term $G J$;
- warping torsion, related to term $E I_{w}$.

The $G J$ term (i.e., St. Venant term) is for twist assuming plane sections remain plane.

Warping refers to the deformation that plane sections do not remain plane. If warping deformation is restrained, warping stress would be developed. When there is no warping effect, $I_{w}=0$,

$$
\begin{equation*}
M_{o}=\frac{\pi}{L_{e}} \sqrt{E I_{y} G J} \tag{5.6}
\end{equation*}
$$

Warping is important for shorter members.
What is this thing called warping? Warping is the deformation such that plane sections do not remain plane.

For a simply supported member subjected to end torsion, plane sections do not remain plane at ends. There are warping deformations but no warping stresses. In such a configuration, torsion is resisted by St. Venant effects only. The M_{0} is a function of $G J$.

If one end is restrained, plane sections remain plane at end, which means warping deformations are restrained but warping stresses/forces exist. In such a configuration, end rotation is less and member is stronger. The M_{0} is a function of both $E I_{w}$ and $G J$.

Circular sections are free from warping. All other sections warp. Hollow sections have low warping deformation and angles have low warping stress but high warping deformation.

Based on this fact, for angles, rectangular/square/circular hollow sections, narrow rectangular sections
and T sections, one shall use Eq. (5.6) to calculate M_{o} (NZS 3404.1\&2:1997 Cl. 5.6.1.3 to Cl. 5.6.1.6). For all other sections, one shall use Eq. (5.5) to compute reference moment.

The most significant warping stress is often developed in open sections with several legs with all elements not framing into one point. For example, I and C sections. If readers want to learn more about warping, check this ${ }^{2}$ video.

To calculate M_{o}, the effective length of a segment of the member L_{e} shall be defined. It is found as follows (NZS 3404.1\&2:1997 § 5.6.3.1).

$$
\begin{equation*}
L_{e}=k_{t} k_{l} k_{r} L \tag{5.7}
\end{equation*}
$$

where

$$
\begin{aligned}
L= & \text { the beam segment or subsegment length between (partial }(\mathrm{P}), \text { full }(\mathrm{F}), \text { or lateral }(\mathrm{L})) \\
& \text { restraints } \\
k_{t}= & \text { the twist restraint factor } \\
k_{l}= & \text { the load height factor } \\
k_{r}= & \text { the rotation restraint factor }
\end{aligned}
$$

A segment or subsegment may also be between the unrestrained (U) end of a cantilever and an adjacent section that is fully or partially restrained.
PLAN

Segment 1
$\mathrm{F}=$ Lateral and torsional restraint — full \quad LO $=$ Lateral only — lateral $P=$ Lateral and torsional restraint - partial $U=$ Unrestrained

> ELEVATION
F or

Moment shape for Segment 1 and subsegment 1-2 (between bold lines)

Figure 5.12: The division of a beam into segments and subsegments (Gorenc et al., 2015)

[^9]The factor k_{t} is for twist about z-axis (beam chord) at segment ends. It depends on the segment end restraint which may be categorised as F, L, P and U.

Figure 5.13: Definition of local axes

The factor k_{l} is the height of load abobe the neutral axis. Depending on where the load is applied, some cases are more likely to buckle.

Figure 5.14: Loads applied to different heights

The k_{r} factor considers warping. If warping restraint exists, $k_{r}<1$, segments become more rigid, then warping deformation is limited so that beam can carry more load.

The determination of k_{t}, k_{l} and k_{r} is summarised in Table 5.2.
Table 5.2: Parameters k_{t}, k_{l} and k_{r} for different end restraints

end restraint	k_{t}	k_{l} load height position			k_{r} ends with minor axis rotation restraints		
		shear centre	top flange				
			load within segment	$\begin{gathered} \text { load at } \\ \text { segment end } \end{gathered}$	none	one	both
FF	1.0	1.0	1.4	1.0	1.0	0.9	0.7
FL	1.0	1.0	1.4	1.0	1.0	1.0	1.0
LL	1.0	1.0	1.4	1.0	1.0	1.0	1.0
FU	1.0	1.0	2.0	2.0	1.0	1.0	1.0
FP	Eq. (5.8)	1.0	1.4	1.0	1.0	0.9	0.7
PL	Eq. (5.8)	1.0	1.4	1.0	1.0	1.0	1.0
PU	Eq. (5.8)	1.0	2.0	2.0	1.0	1.0	1.0
PP	Eq. (5.9)	1.0	1.4	1.0	1.0	0.9	0.7

Details and other considerations can be found in NZS 3404.1\&2:1997 Table 5.6.3. The following two
expressions are used in Table 5.2.

$$
\begin{align*}
& k_{t}=1+\frac{d}{8 n_{w} L}\left(\frac{t_{f}}{t_{w}}\right)^{3}, \tag{5.8}\\
& k_{t}=1+\frac{d}{4 n_{w} L}\left(\frac{t_{f}}{t_{w}}\right)^{3}, \tag{5.9}
\end{align*}
$$

in which,
$d=$ depth of section
$L=$ segment length
$n_{w}=$ number of webs
$t_{f}=$ thickness of critical flange (the flange in compression)
$t_{w}=$ thickness of web

Segment End Restraint Type

For the definitions and classifications of restraints, readers can refer to NZS 3404.1\&2:1997 § 5.4.2. Here some illustrations of each type are presented. Coloured flange denotes the critical flange - the flange in compression.

Unrestrained (U) There is no critical flange lateral restraint nor twist restraint in the following cases.

Partially Restrained (P) There is either non-critical flange lateral restraint or partial twist restraint in the following cases.

Laterally Restrained (L) There is critical flange lateral restraint but no twist restraint in the following case.

Fully Restrained (F) The following cases have critical flange lateral restraint and effective twist restraint.

C

The following cases have non-critical flange lateral restraint and effective twist restraint.

Design of Restraints

The lateral restraint at any cross section considered to be fully, partially or laterally restrained, is designed to resist a transverse force acting on the critical flange of 2.5% of the maximum force in the critical flanges.

Effect of Section Yielding on Beam Strength

With M_{o}, now we could define the critical bending strength $M_{c r}$ under uniform flexure.

$$
\begin{equation*}
M_{c r}=\alpha_{s} M_{s} \tag{5.10}
\end{equation*}
$$

where α_{s} is the slenderness reduction factor to account for residual stresses and section yielding. It shall be computed computed as (NZS 3404.1\&2:1997 Eq. 5.6.1.1(3))

$$
\begin{equation*}
\alpha_{s}=0.6\left(\sqrt{\left(\frac{M_{s}}{M_{o}}\right)^{2}+3}-\frac{M_{s}}{M_{o}}\right) . \tag{5.11}
\end{equation*}
$$

When $M_{s} \ll M_{o}, \alpha_{s}=0.6 \times \sqrt{3}=1.03 \approx 1$. As $M_{s} / M_{o} \rightarrow \infty, M_{c r}$ is less than M_{o}.

Figure 5.15: Critical moment as a function of effective length

5.4.3 Effect of Loading Type

The critical strength $M_{c r}$ is obtained under uniform moment. However, not all members are subjected to uniform moment. To account for non-uniform moment, an additional factor α_{m} is used so that the nominal member moment capacity M_{b} can be calculated as

$$
\begin{equation*}
M_{b}=\min \left(\alpha_{m} M_{c r}, M_{s}\right)=\min \left(\alpha_{m} \alpha_{s} M_{s}, M_{s}\right)=\min \left(\alpha_{m} \alpha_{s}, 1\right) \cdot M_{s} \tag{5.12}
\end{equation*}
$$

where α_{m} can be taken as 1 , but this is in general too conservative in many situations.
Alternatively, it can be calculated from the maximum member moment M_{m}^{*}, which is taken as positive, and the moments at the quarter points of the target segments, M_{2}^{*}, M_{3}^{*} and M_{4}^{*} as

$$
\begin{equation*}
\alpha_{m}=\min \left(2.5, \frac{1.7 M_{m}^{*}}{\sqrt{\left(M_{2}^{*}\right)^{2}+\left(M_{3}^{*}\right)^{2}+\left(M_{4}^{*}\right)^{2}}}\right) \tag{5.13}
\end{equation*}
$$

NZS 3404.1\&2:1997 § 5.6.1.1.1 also gives other methods to compute α_{m}.
For a segment that does not contain a plastic hinge and is fully laterally braced, then $\alpha_{m}=1$ and $M_{s} / M_{o} \rightarrow 0$, this leads to $\alpha_{s} \approx 1$, thus $M_{b} \approx M_{s}$.

For exmaple, for a segment of a beam:

- For uniform bending, $M_{m}^{*}=M_{2}^{*}=M_{3}^{*}=M_{4}^{*}$, this leads to $\alpha_{m}=0.98 \approx 1$. The uniform moment is indeed the critical case as all sections are subjected to the same magnitude of load which is easier to buckle.

- For members under UDL, $\alpha_{m}=\frac{1.7 \times 1}{\sqrt{0.75^{2}+1^{2}+0.75^{2}}}=1.17$.

- For half span of members under UDL, $\alpha_{m}=\frac{1.7 \times 1}{\sqrt{\left(\frac{7}{16}\right)^{2}+\left(\frac{3}{4}\right)^{2}+\left(\frac{15}{16}\right)^{2}}}=1.33$.

1

- For members under mid-span point load, $\alpha_{m}=\frac{1.7 \times 1}{\sqrt{0.5^{2}+1^{2}+0.5^{2}}}=1.39$.

- For half span of members under mid-span point load, $\alpha_{m}=\frac{1.7 \times 1}{\sqrt{0.25^{2}+0.5^{2}+0.75^{2}}}=1.82$.

1

- For members under reverse curvature, $\alpha_{m}=\frac{1.7 \times 1}{\sqrt{0.5^{2}+0^{2}+0.5^{2}}}=2.40$.

A member, which does not contain a plastic hinge, is fully laterally braced if $M_{b}=M_{s}$.

Design capacity tables and charts may be used for analysis and design. These are generally provided with $\alpha_{m}=1$. To find the strength of a member with a certain L_{e}, it is necessary to:

1. look up ϕM_{s} and $\phi \alpha_{s} M_{s}$ from tables and charts,
2. compute α_{m} according to bending moment diagram,
3. find member strength $\phi M_{b}=\min \left(\phi \alpha_{m} \alpha_{s} M_{s}, \phi M_{s}\right)$.

The following is a review of hand calculation of bending moment diagrams.

Example 5.1 Worksheet Strong Axis Bending Example - Simply Supported Beam
Determine the maximum factored moment M^{*} that a 3 m long simply supported 310UB32.0 Grade 300 steel beam can carry when fully laterally restrained.

3 m

Solution 5.1

- Member Slenderness

From property table, $t_{f}=8 \mathrm{~mm}, t_{w}=5.5 \mathrm{~mm}, b_{f}=149 \mathrm{~mm}$ and $d=298 \mathrm{~mm}$.

- flange

$$
\begin{aligned}
& \lambda_{e, f}=\frac{b_{f}-t_{w}}{2 t_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{149 \mathrm{~mm}-5.5 \mathrm{~mm}}{2 \times 8 \mathrm{~mm}} \times \sqrt{\frac{320}{250}}=10.15 \\
& \lambda_{e, f} / \lambda_{e y, f}=0.634
\end{aligned}
$$

- web

$$
\begin{aligned}
& \lambda_{e, w}=\frac{d_{1}}{t_{w}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=\frac{282 \mathrm{~mm}}{5.5 \mathrm{~mm}} \times \sqrt{\frac{320}{250}}=58.01, \\
& \lambda_{e, w} / \lambda_{e y, w}=0.446
\end{aligned}
$$

Thus flange governs, $\lambda_{s}=\lambda_{e, f}=10.15, \lambda_{s y}=\lambda_{e y, f}=16$ and $\lambda_{s p}=\lambda_{e p, f}=9$.

- Section Capacity

Since $\lambda_{s p}<\lambda_{s}<\lambda_{s y}$, this is a non-compact section. Compute compact section modulus.

$$
\begin{aligned}
Z_{c} & =\min (S, 1.5 Z) \\
& =\min \left(475 \times 10^{3} \mathrm{~mm}^{3}, 1.5 \times 424 \times 10^{3} \mathrm{~mm}^{3}\right) \\
& =475 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

Then,

$$
\begin{aligned}
Z_{e} & =Z+\frac{\lambda_{s y}-\lambda_{s}}{\lambda_{s y}-\lambda_{s p}}\left(Z_{c}-Z\right) \\
& =424 \times 10^{3} \mathrm{~mm}^{3}+\frac{16-10.15}{16-9}\left(475 \times 10^{3} \mathrm{~mm}^{3}-424 \times 10^{3} \mathrm{~mm}^{3}\right) \\
& =466.6 \mathrm{~cm}^{3}
\end{aligned}
$$

Thus,

$$
M_{s}=f_{y} Z_{e}=320 \mathrm{MPa} \times 466.6 \mathrm{~cm}^{3}=149.3 \mathrm{kNm}, \quad \phi M_{s}=134.4 \mathrm{kN} \mathrm{~m}
$$

- Member Capacity

Since the beam is fully laterally restrained, $\alpha_{s}=1, \alpha_{m}=1$, then

$$
M^{*} \leqslant \phi M_{b}=\phi M_{s}=134.4 \mathrm{kN} \mathrm{~m}
$$

This agrees with the design capacity table.

Example 5.2 Worksheet Same as in the previous example. Now the beam is only fully braced at its ends, find the maximum M^{*}. Assume a uniform moment over the beam length and loads are applied at beam ends.

Solution 5.2

Since the moment is uniform, $\alpha_{m}=1$. There is one segment of length 3 m , the factors can be found to be

$$
k_{t}=1.0, \quad k_{l}=1.0, \quad k_{r}=1.0
$$

Thus, $L_{e}=3 \mathrm{~m}$. The reference moment is

$$
\begin{aligned}
M_{o} & =\sqrt{\frac{\pi^{2} E I_{y}}{L_{e}^{2}}} \sqrt{\left(G J+\frac{\pi^{2} E I_{w}}{L_{e}^{2}}\right)} \\
& =\sqrt{\frac{\pi^{2} \cdot 200 \mathrm{GPa} \times 442 \mathrm{~cm}^{4}}{3 \mathrm{~m} \times 3 \mathrm{~m}}\left(80 \mathrm{GPa} \times 8.65 \mathrm{~cm}^{4}+\frac{\pi^{2} \cdot 200 \mathrm{GPa} \times 92900 \mathrm{~cm}^{6}}{3 \mathrm{~m} \times 3 \mathrm{~m}}\right)} \\
& =162.7 \mathrm{kN} \mathrm{~m} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\alpha_{s} & =0.6\left(\sqrt{\left(\frac{M_{s}}{M_{o}}\right)^{2}+3}-\frac{M_{s}}{M_{o}}\right) \\
& =0.6\left(\sqrt{\left(\frac{149.3 \mathrm{kN} \mathrm{~m}}{162.7 \mathrm{kN} \mathrm{~m}}\right)^{2}+3}-\frac{149.3 \mathrm{kN} \mathrm{~m}}{162.7 \mathrm{kN} \mathrm{~m}}\right)=0.6254 .
\end{aligned}
$$

The member capacity is

$$
\begin{aligned}
M_{b} & =\min \left(\alpha_{m} \alpha_{s} M_{s}, M_{s}\right) \\
& =\min (1 \times 0.6254 \times 149.3 \mathrm{kN} \mathrm{~m}, 149.3 \mathrm{kN} \mathrm{~m})=93.38 \mathrm{kN} \mathrm{~m} \\
M^{*} \leqslant \phi M_{b} & =84.05 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

The design table gives the same value.

Example 5.3 Worksheet Same as the previous example. But now the beam is subjected to reverse curvature, find the maximum M^{*}.

Solution 5.3

The α_{m} has been calculated previously, which is

$$
\alpha_{m}=\frac{1.7 \times 1}{\sqrt{0.5^{2}+0^{2}+0.5^{2}}}=2.4 .
$$

Factor α_{s} remains the same. Thus,

$$
\begin{aligned}
M_{b} & =\min \left(\alpha_{m} \alpha_{s} M_{s}, M_{s}\right) \\
& =\min (2.4 \times 0.6254 \times 149.3 \mathrm{kN} \mathrm{~m}, 149.3 \mathrm{kN} \mathrm{~m})=149.3 \mathrm{kN} \mathrm{~m}, \\
M^{*} \leqslant \phi M_{b} & =134.4 \mathrm{kN} \mathrm{~m} .
\end{aligned}
$$

\$5.5 Strength Design Concept

5.5.1 Strong Axis Bending

A bending member bent about the strong axis which is analysed by the elastic method with/without redistribution shall satisfy (NZS 3404.1\&2:1997 § 5.1.1)

$$
\begin{equation*}
M_{x}^{*} \leqslant \phi M_{b x} \tag{5.14}
\end{equation*}
$$

Unlike the compression members, in which N_{b} can never be greater than N_{s}, for bending members, $M_{b x}$ can be either smaller than or equal to $M_{s x}$. In design, it is necessary to first compute $M_{s x}$.

To design a member, the following approaches can be used.

- Use iterative method. In this procedure involves choosing sizes, and evaluating whether it meets the code criteria. Many sizes may have to be tried to find the most economical safe size.
- Use tables and charts via the following steps:

1. find α_{m} from BMD and compute M^{*} / α_{m},
2. look up a proper section in design capacity table/chart $\left(\alpha_{m}=1\right)$ so that $\phi \alpha_{s} M_{s}>M^{*} / \alpha_{m}$,

3. check if the selected section satisfies $\phi M_{s}>M^{*}$, if not, choose another section.

5.5.2 Weak Axis Bending

A bending member bent about the weak axis which is analysed by the elastic method with/without redistribution shall satisfy (NZS 3404.1\&2:1997 § 5.1.2)

$$
\begin{equation*}
M_{y}^{*} \leqslant \phi M_{s y} \tag{5.15}
\end{equation*}
$$

Since FLT buckling does not occurs about weak axis, the member capacity is simply its section capacity.

Example 5.4 Strong Axis Bending Example

A beam is braced at 3 m centers. In the critical section, the bending moment pattern increases linearly from 60 kN m to 100 kN m over that range. Based on flexural strength alone, what Grade 300 beam is satisfactory?

100
$M_{M_{2}^{*}=70}^{\sim} M_{3}^{*}=80$

Solution 5.4

The α_{m} can be computed as

$$
\alpha_{m}=\frac{1.7 \times 100 \mathrm{kN} \mathrm{~m}}{\sqrt{(70 \mathrm{kN} \mathrm{~m})^{2}+(80 \mathrm{kN} \mathrm{~m})^{2}+(90 \mathrm{kN} \mathrm{~m})^{2}}}=1.2205
$$

This lead to

$$
\frac{M^{*}}{\alpha_{m}}=\frac{100 \mathrm{kN} \mathrm{~m}}{1.2205}=81.9 \mathrm{kN} \mathrm{~m}
$$

From the design capacity table, 310 UB 32.0 gives $\phi M_{b}=84.1 \mathrm{kN} \mathrm{m}$ for $L_{e}=3 \mathrm{~m}$. Check if section capacity is satisfied.

$$
\phi M_{s}=134.5 \mathrm{kN} \mathrm{~m}>M^{*}=100 \mathrm{kN} \mathrm{~m}
$$

Thus 310UB32.0 satisfies the demand.

Example 5.5 Strong Axis Bending Example

A beam is braced at 3 m centers. In the critical section, the bending moment pattern increases linearly from -60 kN m to 100 kN m over that range. Based on flexural strength alone, what Grade 300 beam is satisfactory?

Solution 5.5

The α_{m} can be computed as

$$
\alpha_{m}=\frac{1.7 \times 100 \mathrm{kN} \mathrm{~m}}{\sqrt{(20 \mathrm{kN} \mathrm{~m})^{2}+(20 \mathrm{kN} \mathrm{~m})^{2}+(60 \mathrm{kN} \mathrm{~m})^{2}}}=2.5628>2.5,
$$

use $\alpha_{m}=2.5$. This leads to

$$
\frac{M^{*}}{\alpha_{m}}=\frac{100 \mathrm{kN} \mathrm{~m}}{2.5}=40 \mathrm{kN} \mathrm{~m} .
$$

From the design capacity table, 200UB25.4 gives $\phi M_{b}=46.0 \mathrm{kN} \mathrm{m}$ for $L_{e}=3 \mathrm{~m}$. Check if section capacity is satisfied.

$$
\phi M_{s}=74.6 \mathrm{kN} \mathrm{~m}<M^{*}=100 \mathrm{kN} \mathrm{~m} .
$$

Thus need to pick a larger section. Eventually, 250UB31.4 is chosen.

>5.6 Design for Shear

5.6.1 Shear Flow On Thin-Walled Sections

The shear stress is not uniform. There are two types of shear stresses on thin-walled sections: vertical shear and horizontal shear. Consider a I section under strong axis bending, the section is subjected to compression/tension and shear forces.

Horizontal Shear

The shear stress on the longitudinal cut (light grey) needs to equilibrate the normal stress on the free body. According to stress equilibrium of a 2D plane, the shear stress on the section (dark grey) is assumed to be equal to that on the longitudinal cut (light grey).

The horizontal shear stress is mostly in flanges. Due to symmetry, it is self-equilibrating. The horizontal shear stress on web is often negligible for thin-walled sections.

Figure 5.16: Horizontal shear of free body cut on flange

Vertical Shear

For vertical shear stress, similar analysis can be performed.

Figure 5.17: Vertical shear of free body cut on flange

Figure 5.18: Vertical shear of free body cut on web

The vertical shear in the web carries almost all of the applied shear force to a section. The flanges carry the majority of the bending (normal stress). The vertical shear stress distribution is depicted in Fig. 5.19. Interested readers can check this ${ }^{3}$ video for more elaborations.

[^10]

Figure 5.19: Vertical shear distribution in an I section

5.6.2 Shear Capacity

In practical design, we mainly consider the vertical shear acting on web. It is further assumed the vertical shear is uniform/constant over the depth. The shear stress can be computed using the following expression.

$$
q=\frac{V Q}{I b}
$$

A flat plate unstiffened web in an I section shall satisfy

$$
\begin{equation*}
V^{*} \leqslant \phi V_{v} \tag{5.16}
\end{equation*}
$$

The nominal shear capacity V_{v} shall be determined as

$$
\begin{equation*}
V_{v}=\min \left(V_{w}, V_{b}\right) \tag{5.17}
\end{equation*}
$$

The shear capacity associated with web yielding V_{w} (NZS 3404.1\&2:1997 § 5.11.4.1) is,

$$
\begin{equation*}
V_{w}=0.6 f_{y w} A_{w}=0.6 f_{y w} d t_{w} \tag{5.18}
\end{equation*}
$$

where $f_{y w}$ is the yield shear stress. For an unstiffened web, $A_{w}=d t_{w}$ is the area of web.
The shear capacity associated with web buckling V_{b} (NZS 3404.1\&2:1997 § 5.11.5.1) is,

$$
\begin{equation*}
V_{b}=V_{w}\left(\frac{82}{\frac{d_{p}}{t_{w}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}}\right)^{2}=0.6 f_{y} A_{w}\left(\frac{82}{\frac{d_{p}}{t_{w}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}}\right)^{2} \tag{5.19}
\end{equation*}
$$

where d_{p} is the depth of the deepest web panel, this is equal to the distance between the insides of the flanges, d_{1}, for a web without horizontal stiffening plates.

Also, NZS 3404.1\&2:1997 Cl. 5.10.1.1 imposes the maximum web slenderness ratio as

$$
\begin{equation*}
\frac{d_{p}}{t_{w}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}} \leqslant 180 \tag{5.20}
\end{equation*}
$$

Figure 5.20: Design region of shear capacity

5.6.3 Interaction Between Bending and Shear

For the majority of practical situations, we can ignore a reduction in bending strength due to shear, or a reduction in shear strength due to bending also being carried by the section. This is because the bending is carried mainly by the flanges of an I beam bending about its strong axis, the shear is resisted mainly by the web. However, for cases in which both V^{*} is close to ϕV_{v} and M^{*} is close to ϕM_{s}, a reduction in strength should be considered. Interested readers can refer to Joint Committee of the Welding Research Council and ASCE (1971) for elaborations.

To account for such an interaction, to design a web under shear in the presence of bending moment, it shall satisfy (NZS 3404.1\&2:1997 § 5.12.2)

$$
\begin{equation*}
V^{*} \leqslant \phi V_{v m} \tag{5.21}
\end{equation*}
$$

where

$$
V_{v m}= \begin{cases}V_{v}, & \text { for } \frac{M^{*}}{\phi M_{s}} \leqslant 0.75 \tag{5.22}\\ V_{v}\left(2.2-1.6 \frac{M^{*}}{\phi M_{s}}\right), & \text { for } 0.75<\frac{M^{*}}{\phi M_{s}} \leqslant 1\end{cases}
$$

To illustrate, the following graph can be used.

Figure 5.21: Interaction between shear and moment

Example 5.6 Determine the maximum factored UDL, ω^{*}, that can be applied to the previous fully restrained 310UB32.0 beam using Grade 300 steel.

Solution 5.6

- flexure

Given that $M^{*} \leqslant \phi M_{b}$ and the maximum moment at midspan

$$
M^{*}=\frac{\omega^{*} l^{2}}{8}
$$

the maximum ω^{*} can be computed as

$$
\begin{aligned}
& \frac{\omega^{*} l^{2}}{8} \leqslant \phi M_{b} \\
& \omega^{*} \leqslant \frac{8}{l^{2}} \phi M_{b}=\frac{8}{3 \mathrm{~m} \times 3 \mathrm{~m}} \times 134.4 \mathrm{kN} \mathrm{~m}=119.5 \mathrm{kN} \mathrm{~m}^{-1}
\end{aligned}
$$

- shear

Check the factor,

$$
\frac{82}{\frac{d_{p}}{t_{w}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}}=\frac{82}{\frac{282 \mathrm{~mm}}{5.5 \mathrm{~mm}} \sqrt{\frac{320 \mathrm{MPa}}{250 \mathrm{MPa}}}}=1.41>1
$$

Thus yield capacity governs, that is

$$
V_{v}=0.6 f_{y} A_{w}=0.6 \times 320 \mathrm{MPa} \times 298 \mathrm{~mm} \times 5.5 \mathrm{~mm}=314.7 \mathrm{kN}
$$

Then the maximum shear at ends shall satisfy

$$
\begin{aligned}
& \frac{\omega^{*} l}{2}=V^{*} \leqslant \phi V_{v} \\
& \omega^{*} \leqslant \frac{2}{l} \phi V_{v}=\frac{2}{3 \mathrm{~m}} \times 0.9 \times 314.7 \mathrm{kN}=188.8 \mathrm{kN} \mathrm{~m}^{-1}
\end{aligned}
$$

Thus flexure governs, the maximum ω^{*} is $119.5 \mathrm{kN} \mathrm{m}^{-1}$. It is noted that shear tends to govern in very short members.

1> 5.7 Design for Bearing

Modes of failure near a concentrated load are web buckling and web yielding. To compute either we need to know how the force is transferred into the web of the beam.

The design froce R^{*} on a web shall then satisfy (NZS 3404.1\&2:1997 § 5.13.2)

$$
\begin{equation*}
R^{*} \leqslant \phi R_{b}=\min \left(\phi R_{b y}, \phi R_{b b}\right) \tag{5.23}
\end{equation*}
$$

where R_{b} shall be the smaller of $R_{b y}$ and $R_{b b}$ as defined below.

5.7.1 Force Dispersion

Point load is an idealised concept that does not exist in practice. All loads are applied to regions of finite areas. NZS $3404.1 \& 2: 1997 \S 5.13 .1$ requires the dispersion of load through the flange shall be taken at a slope of 1:2.5 to the surface of the flange while the dispersion of load to the flange shall be taken at a slope of 1:1 through solid material.

(a) Force dispersion at end bearing points.

(b) General force dispersion in I-section flange and web

Figure 5.22: Web bearing and the load dispersion method (Gorenc et al., 2015)

Figure 5.23: Interior force

Figure 5.24: End force

If loading is applied from another section, then the way the force should be computed on the beam being designed in shown below.

Figure 5.25: Ineffective regions are ignored

5.7.2 Yielding

Web yielding will occur over the area $b_{b f} t_{w}$ when there is either high load or small area. The nominal bearing yield capacity of a web shall be calculated as (NZS 3404.1\&2:1997 § 5.13.3.1)

$$
\begin{equation*}
R_{b y}=1.25 b_{b f} t_{w} f_{y} \tag{5.24}
\end{equation*}
$$

The factor 1.25 considers the following aspects:

- potential higher strength under compression,
- Poisson's ratio,
- force distribution may be conservative, and
- triaxial stresses from flange.

5.7.3 Buckling

Web buckling is assumed to occur following the pattern as shown in absence of web stiffeners.

Figure 5.26: Web buckling due to bearing

The critical stress is at centre (mid height) of beam web over the area $b_{b} t_{w}$. The nominal bearing buckling capacity $R_{b b}$ is determined as the axial compression capacity using $\alpha_{b}=0.5$ and $k_{f}=1$ with slenderness ratio $L_{e} / r=2.5 d_{1} / t_{w}$ (NZS 3404.1\&2:1997 § 5.13.4).

$$
\begin{equation*}
R_{b b}=\alpha_{c} N_{s}=\alpha_{c} b_{b} t_{w} f_{y} \tag{5.25}
\end{equation*}
$$

It shall be noted $f_{y}=f_{y, w e b}$ shall be taken as the yield strength of web. The slenderness ratio $L_{e} / r=$ $2.5 d_{1} / t_{w}$ is equivalent to considering $L_{e} \approx 0.72 d_{1}$. For web with size $t_{w} \times d_{1}$, the radius of gyration is

$$
\begin{equation*}
r=r_{y}=\sqrt{\frac{I_{y}}{A}}=\sqrt{\frac{t_{w}^{3} d_{1}}{12 t_{w} d_{1}}}=\frac{t_{w}}{\sqrt{12}} \tag{5.26}
\end{equation*}
$$

this leads to

$$
\begin{equation*}
\frac{L_{e}}{r}=\frac{0.72 d_{1}}{t_{w} / \sqrt{12}} \approx 2.5 \frac{d_{1}}{t_{w}} . \tag{5.27}
\end{equation*}
$$

The above is valid for I sections. Different equations are needed for other sections. Interested readers can refer to NZS 3404.1\&2:1997 § 5.14.

5.7.4 Web Stiffener

If the requirements for yielding or buckling above are not satisfied then load bearing stiffeners must be provided. They can be provided in one or both sides, should fit tightly, and may or may not extend over the whole depth.

Figure 5.27: Web stiffeners

Web Yielding

The design force R^{*} shall satisfy (NZS 3404.1\&2:1997 5.14.1)

$$
\begin{equation*}
R^{*} \leqslant \phi R_{s y}, \tag{5.28}
\end{equation*}
$$

where

$$
R_{s y}=\text { nominal yield capacity of the stiffened web }
$$

The nominal yield capacity of the stiffened web shall be computed as

$$
\begin{equation*}
R_{s y}=R_{b y}+A_{s} f_{y s}, \tag{5.29}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{b y} & =\text { nominal bearing yield capacity } \\
A_{s} & =\text { area of the stiffener in contact with the flange } \\
f_{y s} & =\text { yield stress of the stiffener }
\end{aligned}
$$

Web Buckling

The design force R^{*} shall satisfy (NZS 3404.1\&2:1997 5.14.2)

$$
\begin{equation*}
R^{*} \leqslant \phi R_{s b}, \tag{5.30}
\end{equation*}
$$

where $R_{s b}$ is the nominal buckling capacity of the stiffened web which shall be determined in a way similar to compression members as follows.

$$
\begin{equation*}
R_{s b}=\alpha_{c} N_{s}=\alpha_{c} k_{f} A_{n} f_{y} \tag{5.31}
\end{equation*}
$$

In which, α_{c} shall be computed according to $\S 4.2 .2$ with modified slenderness ratio λ_{n} be

$$
\begin{equation*}
\lambda_{n}=\frac{L_{e}}{r} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}, \tag{5.32}
\end{equation*}
$$

using $k_{f}=1, \alpha_{b}=0.5, r$ be the radius of gyration about the neutral axis of A_{n} parallel to web, L_{e} be

- $0.7 d_{1}$ where flanges are restrained against rotation in plane of stiffener, or
- d_{1} where flanges are not restrained against rotation in plane of stiffener.

The net area A_{n} can be taken as the summation of the gross area of the stiffener(s) plus the effective area of the web as shown.

Figure 5.28: Plan view at web buckling surface

The effective width b_{e} of each side of the stiffener(s) centreline shall be the smaller of $17.5 t_{w} \sqrt{\frac{250 \mathrm{MPa}}{f_{y}}}$ and $s / 2$ where s is the stiffener spacing.

The width to thickness ratio of any stiffener element should also satisfy

$$
\begin{equation*}
\frac{b_{e s}}{t_{s}} \sqrt{\frac{f_{y s}}{250 \mathrm{MPa}}} \leqslant 15, \tag{5.33}
\end{equation*}
$$

where $b_{e s}$ is the width of stiffener, t_{s} is the thickness of stiffener and $f_{y s}$ is the yield strength of stiffener.
It is easiest to prevent buckling problems by providing a sufficiently large support.

Example 5.7 Worksheet Bearing Design

If a 3 m long Grade $300310 U B 32.0$ beam subject to UDL of $\omega=119 \mathrm{kN} \mathrm{m}^{-1}$ is supported on a 100 mm wide plate at either end, and if the beam continues 120 mm beyond the centre of the support, is it satisfactory?

Solution 5.7

For force dispersion,

$$
\begin{aligned}
& b_{b f}=b_{s}+5 t_{f}=100 \mathrm{~mm}+5 \times 8 \mathrm{~mm}=140 \mathrm{~mm} \\
& b_{b w}
\end{aligned}=\frac{d_{1}}{2}=141 \mathrm{~mm}, ~ 子 \begin{aligned}
b_{0} & =120 \mathrm{~mm}-0.5 \times 140 \mathrm{~mm}=50 \mathrm{~mm} \\
b_{b} & =\min \left(b_{b f}+2 b_{b w}, b_{b f}+b_{b w}+b_{0}\right) \\
& =\min (140 \mathrm{~mm}+2 \times 141 \mathrm{~mm}, 140 \mathrm{~mm}+141 \mathrm{~mm}+50 \mathrm{~mm}) \\
& =331 \mathrm{~mm}
\end{aligned}
$$

The shear demand is

$$
V^{*}=\frac{\omega L}{2}=\frac{119 \mathrm{kN} \mathrm{~m}^{-1} \times 3 \mathrm{~m}}{2}=178.5 \mathrm{kN}
$$

For web yielding,

$$
\begin{aligned}
\phi R_{b y} & =\phi 1.25 b_{b f} t_{w} f_{y} \\
& =0.9 \times 1.25 \times 140 \mathrm{~mm} \times 5.5 \mathrm{~mm} \times 320 \mathrm{MPa} \\
& =277.2 \mathrm{kN}>V^{*}=178.5 \mathrm{kN}
\end{aligned}
$$

For web buckling,

$$
\begin{aligned}
& \frac{L_{e}}{r}=2.5 \frac{d_{1}}{t_{w}}=2.5 \times \frac{282}{5.5} \\
&=128.2 \\
& \lambda_{n}=\frac{L_{e}}{r} \sqrt{k_{f}} \sqrt{\frac{f_{y}}{250 \mathrm{MPa}}}=128.2 \times 1 \times \sqrt{\frac{320 \mathrm{MPa}}{250 \mathrm{MPa}}}=145
\end{aligned}
$$

Using $\alpha_{b}=0.5$, one can obtain $\alpha_{c}=0.288$. Thus,

$$
\begin{aligned}
\phi R_{b b} & =\phi \alpha_{c} b_{b} t_{w} f_{y} \\
& =0.9 \times 0.288 \times 331 \mathrm{~mm} \times 5.5 \mathrm{~mm} \times 320 \mathrm{MPa} \\
& =151.0 \mathrm{kN}<V^{*}=178.5 \mathrm{kN}
\end{aligned}
$$

It can be seen than web buckling governs and $V^{*}>\phi R_{b b}$. One can increase b_{s}, extend beam, or add stiffener to avoid buckling failure.

>5.8 Biaxial Loading

The biaxial bending can be decomposed into strong axis and weak axis components.

Figure 5.29: Decomposition of biaxial moment into x and y components

In absence of axial force, NZS 3404.1\&2:1997 Cl. 8.4.5.1 requires

$$
\begin{equation*}
\left(\frac{M_{x}^{*}}{\phi M_{c x}}\right)^{1.4}+\left(\frac{M_{y}^{*}}{\phi M_{c y}}\right)^{1.4} \leqslant 1.0 \tag{5.34}
\end{equation*}
$$

where major axis bending occurs about the x-axis and minor axis bending ocurs about the y-axis. Furthermore, $M_{c x}=\min \left(M_{s x}, M_{b x}\right)$ for the major (strong) axis and $M_{c y}=M_{s y}$ for the minor (weak) axis. FLT buckling does not occur for bending about weak axis.

Figure 5.30: Envelop of biaxial moments

Example 5.8 Biaxial Design

The factored moments on a beam, including self-weight, are $M_{x}^{*}=200 \mathrm{kN} \mathrm{m}$ and $M_{y}^{*}=50 \mathrm{kN} \mathrm{m}$. Select a Grade 300 UB section to resist these moments assuming full lateral support of the compression flange.

Solution 5.8

Try 460UB74.6,

$$
\begin{aligned}
& \left(\frac{M_{x}^{*}}{\phi M_{c x}}\right)^{1.4}+\left(\frac{M_{y}^{*}}{\phi M_{c y}}\right)^{1.4} \\
= & \left(\frac{M_{x}^{*}}{\phi M_{s x}}\right)^{1.4}+\left(\frac{M_{y}^{*}}{\phi M_{s y}}\right)^{1.4} \\
= & \left(\frac{200 \mathrm{kN} \mathrm{~m}}{448.2 \mathrm{kN} \mathrm{~m}}\right)^{1.4}+\left(\frac{50 \mathrm{kN} \mathrm{~m}}{70.7 \mathrm{kN} \mathrm{~m}}\right)^{1.4} \\
= & 0.939<1.0
\end{aligned}
$$

Since the member is fully supported, $M_{c x}=M_{s x}$ and $M_{c y}=M_{s y}$.

For unbraced members, $M_{c x}=M_{b x}$ which depends on α_{m}, unbraced length, etc.

$8 \cdot \varepsilon$	$0{ }^{\circ} \pm$	$z^{\prime} \downarrow$	ゅ＇	L＇t	0 s	\dagger ¢	8.5	z＇9	$8{ }^{\prime} 9$	$\mathrm{c}^{\prime} \stackrel{L}{ }$	8.4	27	L＇8	2%	$8{ }^{6}$	ゅ．01	I＇I	0 \％	6.21	0＇ゅ	z＇si	991	\＆\％	I＇0z	z＇zz	ゅ＇ャて	L＇S	†＇62	0＇tignost
$\downarrow \cdot 9$	L＇9	I＇L	ゅ゙	6.4	\pm ¢	68	96	\＆ 0	て＇し	I＇zI	ĽI	$\varepsilon ¢ 1$	0 ¢	ぐゅ	¢si	¢91	ゅ＇LI	81	L＇61	0．tz	c＇zz	でも	2＇92	\＆ 88	908	\＆	L 4	6.88	$0 \cdot 8$
$\varepsilon \varsigma$	9.5	6.5	$\varepsilon 9$	L＇9	I＇L	94	2＇8	68	L＇6	L＇01	ε^{\prime} ！	$6 \cdot 1$	9 zi	¢ 1	£＇も	$\varepsilon ¢ \varsigma$	£．91	LI	161	80z	L＇zz	8゙も	$\stackrel{\cdot L}{ }$	＇62	ゅ＇飞	¢ $¢$	278	L＇68	85
L＇9	I 2	c＇L	6.4	ち＇8	68	96	\＆0I	I＇I	I＇z		$6 \cdot \varepsilon 1$	L＇ti	s＇st	¢＇91	†＇LI	¢ 81	861	＇ı	8 zz	く＇もて	L＇92	062	I	＇ε	L¢	－0t	$\dagger^{\text {¢ }} 6$	\％＇st	－8tgnost
0.01	$\mathrm{c}^{\circ} \mathrm{ot}$	I＇II	L＇u	¢てI	z＇¢	0 ¢ ${ }^{\text {d }}$	0 ¢ ${ }^{\text {c }}$	2＇91	¢ $¢ 1$	I＇61	$0 \cdot 0$	602	0 \％	I＇\＆z	ゅ＇ャ	8 s ¢	$\varepsilon \angle Z$	$0 \cdot 62$	$6 \cdot 08$	0 －ε	$\varepsilon ¢ \varepsilon$	$6 . L \varepsilon$	L＇0t	L＇\＆	$0 \cdot \angle \square$	2：0s	L＇IL	\％＇9s	z＇zzяก08！
$6 \cdot 9$	z＇L	94	［8	98	$2 \% 6$	6.6	LOI	L＇IL	8 81	I＇t	6 \％ 1	8 SI	8.91	6.21	161	¢．0z	「＇z	6 ＇$¢$	$6 \cdot \mathrm{Sz}$	2：8	8.08	9 $¢ \varepsilon$	L＇98	－0t	＇¢币	－9t	$6 \cdot 6$	$8 \cdot \mathrm{Ts}$	002
L＇ı	†＇て	I＇\＆1	0 0	6 ＇t	$0 \cdot 91$	2＇LI	981	\＆ 02	¢＇zz	9 9\％	$0 \cdot 92$	¢ $\angle Z$	I＇62	608	8.78	＇s¢	\＆＇L¢	8＇68	¢＇zt	＇Gt	†＇8t	c＇ts	＇ts	LS	－09	＇29	$\dagger^{\circ} \mathrm{LI}$	†＇S9	002
ガゅ	z＇si	$0 \cdot 91$	$0 \cdot L$	［81	\＆ 61	8.02	†＇zz	\＆＇ゅて	9.92	2：6z	L＇0¢	†て¢	て＇ゅを	Z＇98	$\varepsilon \cdot 8 \varepsilon$	LOD	て＇¢ь	0＇9t	$6 \cdot 8$	I＇zs	†＇SS	8.85	\＆ 29	L＇s9	$8 \cdot 89$	L＇TL	861	9＇ャL	ゅ＇szanooz
¢02	も゙tて	9 zz	6＇\＆z	¢＇sz	$0 \cdot L z$	8.82	0° ¢ ε	¢ ¢ ε	2＇98	†＇68	でした	て＇¢ь	$\varepsilon \subseteq \square$	$9{ }^{\circ} \mathrm{LD}$	I 0 ¢	8 zs	8.59	6.85	z＇z9	$8 \cdot ¢ 9$	¢＇69	ε ¢ ε	て＇LL	0 ＇18	9＇ゅ8	6.48	6 ＇tz	$0 \cdot 16$	86zan00z
6 6 $¢$	L＇t	9 9¢	9.91	L＇LI	061	¢ 02	ε ¢	よもて	$6 \cdot 92$	6.62	9 9＇ε	¢ $¢ \varepsilon$	L＇s¢	I＇88	LOt	L¢¢	697	Sos	Sts	885	†＇¢9	：89	＇\llcorner	－ 81	L＇z8	$6 \cdot 98$	$8 \cdot$	6.16	＜＇szanosz
ゅ＇して	9 zz	0ヵぇ	c ¢ $¢$	$\varepsilon L Z$	\＆＇6r	9 ＇1 ε	\＆＇t	¢＇LE	「じ	¢＇st	$0 \cdot 87$	8.05	8 8¢	0 LS	9.09	ゅ＇t9	9.89	0 0 \＆	9.4	c＇z8	¢ 48	$9 \mathrm{z6}$	$9 . L 6$	ゅ＇zol	8901	0ı	$\varepsilon 9 \%$	8 8 ¢ L	か＇t\＆gnosz
608	9 cz	S＇t	S＇9¢	$8 \cdot 8$	¢＇ti	S＇t	6 LD	6 ＇IS	t＇9s	8＇19	8＇79	I＇89	$9.1 /$	\dagger ¢ $¢$	S＇6L	6 ¢ 8	988	9 9． 6	686	ヤ＇ロ	toll	6 ¢SIL	¢＇LZI	0＇LZI	7¢1	＇9¢	†＇¢	000tI	$\varepsilon<L \varepsilon ¢ \cap 0 ร z$
8^{\prime} Iz	て＇¢z	Lヵぇ	よ＇92	¢＇82	${ }^{9} 08$	$\varepsilon \varepsilon \varepsilon$	†＇98	I 0	S＇tt	6.67	6 zs	\＆\％9	0.09	I＇t9	S．89		c． 81	1゙ャ8	0.06	「96	ゅ＇zo	L＇801	8＇tu	0zI	921	－0¢t	$0 \cdot \mathrm{sz}$	¢＇t¢	0＇z\＆яก01を
$0 \cdot 88$	2＇0t	くで	9.95	8 8\％	s＇zs	L＇9s	9.19	† 49	I＇tL	$6 \cdot 18$	\＆＇98	0.16	Z＇96	＜＇IoI	¢ LOI	8＇¢L	\＆0zI	でLZ	\＆＇も¢	¢゙した	8．8tI	6 ¢SI	L＇z9	I＇691	6＇tL	66LI	$0 \cdot 0$	¢ 781	ャ．0ヶgnote
ワ＇8ヵ	I＇ts	I＇ts	†＇LS	I＇19	†＇c9	z：0L	L＇GL	$0{ }^{\circ} 8$	2＇68	$9 \mathrm{L6}$	z＇zor	z＇LOL	ゅてしI	$0 \cdot 811$	0 0ヵてI	z＇0¢1	8．9¢L	9 ¢ $¢$	90sı	L＇LSI	8＇791	L＇LLI	$8 L 1$	－$\ddagger 1$	06 I	2＇661	0 ＇ta	8.961	て＇9tgnote
¢＇Lも	I＇t	「LT	$\mathrm{S}^{\prime \prime} \mathrm{OS}$	\＆＇ts	8.85	0 ＇t9	002	I＇LL	¢＇s8	Ғ＇¢6	0＇tor	「＇LOI	$9{ }^{9}$ ¢ 1	902 L	z：821	1＇9¢L	¢＇もぁ	\＆๕SI	\＆＇z91	＇tLI	¢ 081	＋681	6 L61	8 ＇s0z	8てLZ	8 tz	\＆ 0	8＇Lz\％	L＇t¢gno9e
T¢¢	$\varepsilon 95$	865	$8 \cdot \varepsilon 9$	¢．89	¢ ¢ ¢	¢ 64	¢98	\＆＇t6	9 ¢01	\＆゙ち	ع．0zI	＜＇92I	9 9 \＆¢	0＇tul	88	0＇LSI	9 c	†LI	¢ $¢ 81$	＇261	8^{\prime} L0z	Lotz	2＇6Lz	0＇Lzz	I＇も¢	Oぇて	†＇St	ででて	L＇0sgno9e
$\mathrm{s}^{\prime} \mathrm{s} 9$	2＇69	ε ¢ $\varepsilon<$	$6 . \angle L$	z＇88	1＇68	6.96	9 q 01	9 zLI	8＇zzI	L＇T\＆	でしょ	で8tI	－ScI	¢91	「てL	608 L	2061	－661	¢ 602	\％ 62	て＇6zz	－88z	¢ Lちて	－95z	「92	80Lz	I＇zs	L̇ZLZ	L＇9sqno9\％
$\mathrm{s}^{\circ} \mathrm{LS}$	て＇19	†＇S9	て＇0L	L＇S \angle	$0^{\prime} 78$	\＆＇68	$6 \angle 6$	I＇801	002I	0 ＂\ddagger L	$6{ }^{\circ} \mathrm{Lt}$	t＇ost	9.651	＋＇691	8．6LI	6.061	ゅてOZ	よりして	L＇9zz	$068 z$	て＇ısz	İ¢9\％	サ＇tLZ	6．782	て＇t62	て＇zos	867	ε ¢ 08	L＇Esçoit
6．1L	2＇9L	I＇18	L＇98	$0 \cdot$ \％	2001	＋＇801	$0 \cdot 811$	0621	61tit	L＇9¢I	6＇791	8 8 ¢ 1	z＇¢8L	－¢61	$9{ }^{9}$ ¢0z	9＇もして	1＇9zz	$8 . L \varepsilon z$	8\％ちて	－192	¢ ¢ ¢	0 ＇s88	¢ G 62	8＇508	＇tie	¢ 27ε	8＇ts	0＇ŋて¢	L＇6sgnoit
I＇L	L＇z6	066	I＇901	\＆＇tI	9 ＇$¢ 1$	¢	8＇9tI	Z＇t91	6 LLI	「＇L61	L＇LOZ	0612	0＇t 1 z	＇\＆ャて	6．99z	90Lz	8＇¢82	2＇662	L＇ELE	「878	でてもを	csc	\％898	6628	－068	668	I＇29	9668	「＇L9Gn09才
\＆＇901	8＇ZIL	0．021	て＇82I	c＇LEL	「8ち1	て＇091	I＇tLI	－06I	†＇802	¢＇6zz	0° リサて	\＆＇¢¢z	\＆＇992	6622	て＇t6々	1608	£＇๖て¢	668ε	c＇sce	LLE	£＇98¢	$600 t$	がt	でくで	88t	6 LTD	L＇0L	て＇8ちゅ	9＇ャLGก09\％
8 ¢ 5 I	I＇\＆\＆1	$\varepsilon \varepsilon^{\prime \prime}$ L！	s．osi	6091	L＇ZLI	－＇981	＋＇02	6 612	6 ＇8¢z	$9{ }^{\text {－} 192}$	I＇†LZ	$\varepsilon \angle 8 \%$	$\varepsilon{ }^{\prime} 10 \varepsilon$	6 ¢ 518	$\varepsilon \cdot 1 \varepsilon \varepsilon$	でLIE	¢ $¢ 9 \varepsilon$	2088	$0 \cdot L 6 \varepsilon$	－としゃ	00¢t	8 StT	909\％	¢＇t $\angle t$	†＇98t	8＇96t	8.84	$8.96{ }^{\circ}$	I＇z8Gn09t
$0 \cdot L Z I$	¢＇¢¢1	1＇St	0.95	†＇891	9＇z8I	661	8LLZ	¢z	92	\＆ 262	＇LOE	8 8¢ $¢ 8$	$8.0 \dagger \varepsilon$	SE	$8{ }^{\circ} 9 \mathrm{LE}$	9 9 968	8＇ぢゅ	\＆t	I＇\＆¢¢	LLt	6.68 万	LOS	£zS	－LES	OSS	－85s	$0 \cdot 84$	685s	0＇289n0¢s
6.6 SI	6691	\＆＇t8L	0＇t61	c＇802	0 ＇szz	8 8¢Ъて	て＇992	9682	†＇LIE	L＇8t¢	L＇S9¢	¢ ¢ $¢ 8 \varepsilon$	て $70 \downarrow$	L＇LZゅ	L＇Itt	\＆ $29 t$	て＇\＆8ち	＇tos	I＇szs	＇StS	\＆＇s9S	$0{ }^{\text {T }} 8 \mathrm{~S}$	¢＇09	£ LL9	İ9	6689	\＆＇z6	6689	†＇Z6¢n0¢s
$\varepsilon ¢ ¢ 61$	9802	9 9 ¢ \％	90†て	6Sz	182	908	て＇¢\＆E	£＇L98	¢0t	8＇E币	¢＇99	0：88ち	\＆＇LLS	c\＆s	－6¢G	S＇88S	－609	＇†\＆9	¢＇859	I89	て＇ワ0L	\＆＇¢zL	ゅちL	I＇z9L	†＇LLL	＇\＆8	て＇キ01	0＇\＆8	ıotgnot9
†＇8¢z	†＇\＆¢Z	て＇0LZ	I＇682	£018	l＇t¢	6098	6.068	S＇ちで	L＇I9t	$\mathrm{S}^{\prime} \mathrm{ZOS}$	Z＇ZZS	L＇9才¢	8＇695	†＇86S	\＆＇LI9	S＇tı9	9 9 99	S＇689	8＇ZIL	†¢¢	6．99L	「＇LLL	9＇S6L	＇Z18	6978	1＇678	L＇\＆LI	［＇628	とLLgnot9
$8^{\circ} 988$	6 ＇zos	$6 \cdot 178$	I＇¢ヵ¢	L＇998	て＇\＆6¢	Lてz才	L＇SSt	†て6t	8＇Z¢S	0 LLS	¢ 000	S＇そて9	\＆＇679	L＇t 29	†＇00L	†＇92L	\＆zSL	6 LLL	0＇808	\＆L L \％	cos8	て＇Z28	¢＇768	ع016	［＇976	†＇L26	8621	¢＇276	szignot9
00．01	0S＇6	$00 \% 6$	0S＇8	00%	0G＇L	$00^{\circ} \mathrm{L}$	os＇9	00°	os＇s	$00^{\circ} \mathrm{s}$		$\begin{aligned} & 0 S^{\prime} t \\ & (N y) \end{aligned}$		$\phi^{0 s_{0} t}$	$s L^{\prime} \varepsilon$	$0 \varsigma^{\prime} \varepsilon$	$9 z \varepsilon$	$00^{\circ} \varepsilon$	$s_{L} \cdot z$	$0 S^{\prime} z$	sz＇z	00°		$0 S^{\prime} \mathrm{I}$	Sz＇I	$00^{\prime} \mathrm{I}$	$\left\|\begin{array}{c} 00^{\circ} 0 \\ (\mathrm{NY})^{n s} \mathrm{~N} \phi \end{array}\right\|$	$\left\|\begin{array}{c} 00^{\circ} 0 \\ (\mathrm{NY})^{x s} N \phi \end{array}\right\|$	（u）${ }^{2} T$

Table 5.4: Design load capacity table for members subject to strong axis bending ($\alpha_{m}=1.0$)

Grade 300 UC Strong Axis Bending ($\left.\alpha_{m}=1.0\right)$																										
	$\phi M_{s x}(\mathrm{kN})$	$\left\|\phi M_{s y}(\mathrm{kN})\right\|$												$\alpha_{s} \phi M^{\prime}$	$M_{s}(\mathrm{kN})$											
$L_{e}(\mathrm{~m})$	0.00	0.00	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00
310UC158	675.4	304.9	675.4	675.4	672.9	659.2	644.3	628.7	612.8	597.0	581.4	551.4	523.3	497.0	472.7	450.2	429.2	409.8	391.8	375.0	359.4	344.9	331.3	318.6	306.7	295.6
137	579.6	262.1	579.6	579.6	576.7	564.2	550.5	536.0	521.2	506.3	491.5	463.0	436.3	411.6	388.9	368.0	348.8	331.3	315.1	300.2	286.5	273.8	262.1	251.2	241.1	231.7
118	493.9	222.3	493.9	493.9	490.7	479.4	466.9	453.6	439.8	425.8	412.0	385.1	359.9	336.7	315.6	296.5	279.1	263.4	249.1	236.0	224.2	213.3	203.3	194.2	185.8	178.0
96.8	421.2	187.4	421.2	421.2	416.8	406.2	394.3	381.4	368.0	354.3	340.6	314.1	289.4	266.9	246.8	228.8	212.9	198.8	186.2	174.9	164.8	155.8	147.6	140.2	133.5	127.3
250UC89.5	310.0	142.9	310.0	310.0	302.9	294.0	284.5	274.7	264.9	255.4	246.1	228.7	213.0	198.8	186.0	174.5	164.1	154.7	146.3	138.6	131.5	125.1	119.3	113.9	108.9	104.3
72.9	266.2	122.6	266.2	265.8	258.3	249.5	240.1	230.2	220.3	210.6	201.2	183.7	168.1	154.4	142.4	131.8	122.5	114.4	107.1	100.7	94.9	89.7	85.0	80.8	76.9	73.4
200UC59.5	177.1	80.7	177.1	173.6	167.0	159.8	152.6	145.5	138.7	132.2	126.2	115.2	105.6	97.3	90.0	83.6	78.0	73.0	68.5	64.5	60.9	57.7	54.8	52.1	49.7	47.5
52.2	153.9	70.2	153.9	150.6	144.5	137.9	131.0	124.3	117.9	111.8	106.1	95.8	87.0	79.5	73.0	67.4	62.5	58.2	54.4	51.1	48.1	45.4	43.0	40.9	38.9	37.1
46.2	133.4	60.2	133.4	130.3	124.8	118.8	112.5	106.3	100.3	94.6	89.3	79.9	71.9	65.2	59.5	54.6	50.4	46.7	43.5	40.7	38.3	36.1	34.1	32.3	30.7	29.3
150UC37.2	83.7	37.0	83.0	79.0	74.6	70.3	66.2	62.3	58.8	55.5	52.6	47.3	42.9	39.1	35.9	33.1	30.7	28.6	26.7	25.1	23.6	22.3	21.1	20.0	19.1	18.2
30.0	72.0	31.7	71.0	67.0	62.6	58.1	53.9	50.0	46.4	43.2	40.4	35.5	31.6	28.4	25.7	23.5	21.6	20.0	18.6	17.3	16.2	15.3	14.4	13.7	13.0	12.4
23.4	50.7	21.2	49.9	46.9	43.5	39.9	36.5	33.4	30.6	28.1	25.9	22.3	19.5	17.3	15.5	14.0	12.8	11.8	10.9	10.2	9.5	8.9	8.4	7.9	7.5	7.2
100UC14.8	21.4	9.9	20.0	18.3	16.7	15.3	14.0	12.9	12.0	11.1	10.4	9.1	8.1	7.3	6.6	6.0	5.5	5.1	4.7	4.4	4.1	3.9	3.7	3.5	3.3	3.2

Bolted Connections

\$6.1 Connection Types

Because of experiences in the NZ construction industry, it is common practice not to conduct major structural welding at the construction site. Instead, the preferred method used is 'shop welding and site bolting'. This method has advantages in terms of construction speed, simplicity and quality control that are not enjoyed in other countries. However, proper planning is necessary to ensure that the building will fit together properly at the construction site.

Different connections can put different demands on the bolts.

- Axial Tension - all bolts have the same tension

- Shear - all bolts have the same shear

- Uniform Tension and Shear - all bolts have the same force

- Eccentric Shear

- Combined Tension and Shear

>6.2 Connector Types

Standard connection types are now available in the Steel Connect ${ }^{1}$. This means that connections can be specified rapidly using standard notation, and every element of the connection does not need to be designed independently. It is the purpose of this chapter to explain how connections should be designed.

- Pins

Used in 'zero moment' connections in truss joints.

- Rivets
- Hot steel is deformed into shape
- Shrinks as it cools giving high pretensioning
- Labour intensive

[^11]

Figure 6.1: Installing a rivet

- Bolts

Different head markings also exist depending on the mill, whether it is metric or imperial, and the preference of the mill. It is important to purchase bolts through an SCNZ approved distributor to ensure quality control.
Bolts should be specified according to the grade and standard. (E.g, other grade 8.8 bolts are used for machinery, and these have different properties.) Most structural bolts are galvanised (rather than Zinc coated, or black).

- Ordinary

- High Strength (HS)

\$6.3 Bolt Strength

The types of bolts used in NZ for general structural use are of two types.

Grade	Tensile Strength, $f_{u f}$	Yield Strength, $f_{y f}$	Type	Standard
Grade 4.6	400 MPa	240 MPa	Ordinary or Mild Steel	AS 1111.1
Grade 8.8	830 MPa	660 MPa	High Strength or HSFG	AS/NZS 1252

HSFG stands for High Strength Friction Grip.

For Grade X.Y bolts, the ultimate strength $f_{u f}$ is about $100 \times X \mathrm{MPa}$, the yield strength $f_{y f}$ is about $10 \times X \times Y \mathrm{MPa}$.

Grade 4.6 bolts are mode of low carbon steel (similar to Grade 250 steel) and they are used mostly in secondary members.

Grade 8.8 bolts are make of medium carbon steel using quenching and tempering to enhance the properties. They are used in main framing.

Almost all bolts currently used in Australasia are now made in China.

\$6.4 Washer Size

Washers are useful to spread load from the bolt head or nut onto the material being clamped. Also, as washers have similar characteristics, they provide a relatively consistent coefficient of friction during rotation of the nut relative to the bolt when tightening during installation.

The acceptable dimension ranges for flat round washers for high strength structural bolting are given in AS/NZS 1252.1:2016 Fig. 4.1. In this class, a washer thickness of 3.5 mm for computations for all bolt sizes may be used as this value satisfies the dimensional criteria. In practice, the possible range of dimensions should be considered.

\$6.5 Bolt Dimension

The bolt dimensions are shown in Table 6.1.
Table 6.1: Dimensions of structural bolts

Type	shank diameter E	head height C	core area A_{c}	tensile area A_{s}	shank area A_{o}	width A	Grade width B	$\text { e } 4.6$ nut height	width A	Grad width B	$\text { e } 8.8$ nut height	thread pitch
M12	12	8	76.2	84.3	113	18	20	11				1.75
M16	16	11	144	157	201	24	26	15	27	31	17	2.0
M20	20	13	225	245	314	30	33	18	34	39	21	2.5
M24	24	16	324	353	452	36	40	22	41	47	24	3.0
M30	30	20	519	561	706	46	51	26	50	58	31	3.5
M36	36	24	759	817	1016	55	61	31	60	69	37	4.0

All numbers are in mm or mm^{2}, values are taken from AS 1111.1 and AS/NZS 1252.1:2016

The shank area is computed as $A_{o}=\pi \frac{E^{2}}{4}$. The core area is computed as $A_{c}=\pi \frac{D^{2}}{4}$. The tensile area is computed by using pitch diameter which includes threads thus is smaller than E (major diameter) but greater than D (minor diameter).

Figure 6.2: Bolt diameters (https://www.kelstonactuation.com/imagelibrary/screw-thread-p rinciple.jpg)

If not given, the width across corners can be computed according to the width across flats.

$$
\begin{equation*}
B \approx \frac{2}{\sqrt{3}} A \approx 1.1547 A \tag{6.1}
\end{equation*}
$$

Figure 6.3: Bolt dimensions

Bolt length is generally measured from the inside of the head of the bolt to the end of the bolt. Some bolts are threaded along their whole length. The minimum length of threaded bolt is shown as follows.

Table 6.2: Minimum length of thread

Nominal Length of Bolt, L	Minimum Length of Thread, T
$L \leqslant 125 \mathrm{~mm}$	$2 D+6$
$125 \mathrm{~mm} \leqslant L \leqslant 200 \mathrm{~mm}$	$2 D+12$
$200 \mathrm{~mm} \leqslant L$	$2 D+25$

According to NZS 3404.1\&2:1997 14.3.6.1.2, a bolt should have

- At least one clear thread above the nut after tightening, and
- The following minimum number of threads beneath the nut after tightening
- for snug tightened bolts: one clear thread
- for tensioned bolts (i.e., proof loaded bolts) with diameter, d_{b} :

bolt length between bolt head and nut, l_{g}	No. threads
$l_{g} \leqslant 4 d_{b}$	5
$4 d_{b}<l_{g} \leqslant 8 d_{b}$	7
$4 d_{b}<l_{g}$	10

Note: The term "grip length" or "grip" of a bolt is defined differently in NZS 3404.1\&2:1997 Append. K1.2.4, AS/NZS 1252.1:2016 § 2.3.5 and international standards. Sometimes it includes the distance between the bolt head and nut, and other times it is this minus the thickness of washer(s). Full definition is required when using this term.

Figure 6.4: Bolt, washer and nut

>6.6 Installation of Bolts

Bolts may be installed in two ways:

- Grade 4.6 Bolts
- Snug Tightened (4.6/S)
- Grade 8.8 Bolts
- Snug Tightened (8.8/S)
- Proof Loaded (8.8/T)

Snug tightening ensures that the bolt is in full contact with the material. It is defined as 'the full effort of one man on a hand wrench tightening the bolt'. It is assumed that the surfaces are clean and flat.

Proof loading may be carried out by any of the following methods.

1. Torque wrench

The torque to turn the bolt is measured giving an indication of the bolt tensile force. It must be calibrated. Clean and flat surfaces are assumed.

2. Specified nut rotation method, a.k.a. turn-of-nut method

Snug tighten is initially performed. Then the nut is turned a specified amount relative to the bolt as shown.

Figure 6.5: Steps of turn-of-nut method

The amount of turn required depends on the bolt type. This method is

- cheap,
- less dependent on surface conditions, and
- easy to inspect.

To fully tension (i.e., proof load) a bolt, the number of turns of the nut relative to the bolt after snug tightening to achieve the desired bolt tension, where surfaces beneath the bolt head and nut are parallel, should be the following for different bolt diameters, d_{b} (NZS 3404.1\&2:1997 Table 14.3.6.1.2).

bolt length between underside of bolt head and end of bolt, l	rotations
$l \leqslant 4 d_{b}$	$1 / 3$ turn
$4 d_{b}<l \leqslant 8 d_{b}$	$1 / 2$ turn
$8 d_{b}<l$	$2 / 3$ turn

3. Direct tension indicator (DTI)

Tightening on washers with protrusions.

Figure 6.6: Direct tension indicator and protrusion

This method is

- less dependent on surface conditions,
- easy to inspect, and
- hard to cheat with.

4. Tension Control Bolts

Fracture of bolt end occurs at the notch when proof load is reached.

Figure 6.7: Steps of installing TC bolts

This method is

- fast and easy to inspect, and
- dependent on surface conditions.

All of the proof loading methods above require the bolt to sustain some permanent deformation. Therefore, after proof loading they should not be reused.

>6.7 Erection Tolerances

In design of bolts, one shall consider the size of tools used.

Figure 6.8: Definition of impact wrench sizes (Australian Steel Institute, 2016)

Table 6.3: Impact wrench sizes (Australian Steel Institute, 2016)

Impact wrench type	B mm	A mm
Normal	to 370	55
Heavy	some to 600	65

Table 6.4: Impact wrench sizes (Australian Steel Institute, 2016)

Nominal	Sockets 20 mm drive			Sockets 25 mm drive											
Bolt												Clearance			Clearance
Diameter	C	D	E	C	D	E									
mm	mm	mm	mm	mm	mm	mm									
16	54	48	30	60	58	35									
20	57	58	35	63	58	35									
24	58	61	35	70	68	40									

If extension bar and/or universal joint are used, their dimensions shall also be considered.

Figure 6.9: Dimension of extension bar and universal joint (Australian Steel Institute, 2016)

\$6.8 Modes of Carrying Shear Force

6.8.1 Shear Planes

Bolts can be in single (one shear plane) or double (two shear planes) shear as shown below. Threads may be iNcluded (N) or eXcluded (X) from the shear plance (e.g., M20X bolt).

Two shear planes

Figure 6.10: Illustration of number of shear planes (https://commons.wikimedia.org/wiki/File: Bolt-in-shear.svg)

6.8.2 Snug Tightening

Shear forces are transferred through shear in the bolt. The following illustration shows two shear planes.

Figure 6.11: Snug tighten bolts (McMullin et al., 2018)

6.8.3 Proof Loading

This involves tightening the bolt in such a way that it provides a large compressive force on the elements it connects. Force is transferred through friction in the plates. Friction resistance is dependent on both axial (bolt) force P and surface condition (friction coefficient μ). No slip occurs until friction is overcome. When the friction force is overcome, shear force is transferred through both bolt shear and friction.

Figure 6.12: Proof loading bolts (McMullin et al., 2018)

There are two types of 8.8/T bolts.

- 8.8/TB - Tension Bearing
- 8.8/TF - Tension Friction

These are identical expect that the /TF bolting has treatment of the mating surfaces such that the friction is increased.

Figure 6.13: Behaviour of high-strength structural bolts. Slip load 1 applies to tension-controlled HS structural bolts (i.e., proof loaded bolts) using a slip factor of 0.35 . Slip load 2 applies to snug-tight bolts. (Gorenc et al., 2015)

\$6.9 Minimum Bolt Proof Loads

It is necessary to tighten the bolt to obtain its 'proof load' in order to get the maximum benefit from it.
Proof loading the bolt is tightening it such as it stretches until it applies at least the 'proof load', P_{L}. The bolt is then in tension applying a compressive force of P_{L} to the plates. The compression causes friction between the plates and minimizes deformation.

The minimum proof load for specific bolts is specified in the following table (NZS 3404.1\&2:1997 Table 15.2.5.1).

Table 6.5: Minimum Bolt tension for property class 8.8 bolts

Nominal diameter of bolt	Minimum bolt tension (proof load, kN)
M16	95
M20	145
M22	180
M24	210
M30	335
M36	490

The axial force of a proof loaded bolt should be as high as possible without causing a risk of major bolt deformation or fracture. The minimum bolt proof load in old standards was determined by a mixed consideration of the following:

- 0.2% offset strain,
- 0.5% extension under load,
- 70% of f_{u}.

It is now being changed to simply be $0.7 f_{u}$.

Figure 6.14: Proof load

\$6.10 Strengths of Different Bolt Types

Table 6.6: Grade 4.6/S bolted connection strengths for each surface per shear plane

Size	Shear $(\mathrm{eXcluded})$ $\phi V_{f x}(\mathrm{kN})$	Shear $($ iNcluded $)$ $\phi V_{f n}(\mathrm{kN})$	Axial Tension $\phi N_{f}(\mathrm{kN})$
M12	22.4	15.1	27
M16	39.9	28.6	50.2
M20	62.3	44.6	78.4
M24	89.7	64.3	113
M30	140	103	180
M36	202	151	261

Table 6.7: Grade 8.8 bolted connection strengths per shear plane

Size	Strength /S or /T	Serviceability $/ \mathrm{T}$						
	Shear	Shear	Axial	Proof	Axial	Shear $\phi V_{s f}(\mathrm{kN})$ for $\mu=0.35$		
	$(\mathrm{eXcluded})$	$(\mathrm{iNcluded})$	Tension	Load	Tension	Standard	Short	Long
	$\phi V_{f x}(\mathrm{kN})$	$\phi V_{f n}(\mathrm{kN})$	$\phi N_{f}(\mathrm{kN})$	$N_{t f}(\mathrm{kN})$	$\phi N_{t f}(\mathrm{kN})$	$k_{h}=1.0$	$k_{h}=0.85$	$k_{h}=0.7$
M16	82.7	59.3	104	95	66.5	23.3	19.8	16.3
M20	129	92.6	163	145	101.5	35.5	30.2	24.9
M24	186	133	234	210	147	51.5	43.7	36.0
M30	291	214	373	335	234.5	82.1	69.8	57.5
M36	419	312	542	490	343	120.1	102.0	84.0

6.11 Strength Design

The strength reduction factor ϕ shall be taken as follows for bolted connections.
Table 6.8: Strength reduction factor for bolted connections

Design capacity	Section	ϕ	Location
(ULS) bolt in shear	$\underline{\text { NZS 3404.1\&2:1997 § 9.3.2.1 }}$	0.8	in bolt
(ULS) bolt in tension	$\underline{\text { NZS 3404.1\&2:1997 } \S 9.3 .2 .2}$	0.8	in bolt
(ULS) bolt in combined shear and tension	$\underline{\text { NZS 3404.1\&2:1997 §9.3.2.3 }}$	0.8	in bolt
(ULS) ply in bearing	$\underline{\text { NZS 3404.1\&2:1997 } \S 9.3 .2 .4 ~}$	0.9	on steel
(ULS) bolt group	$\underline{\text { NZS 3404.1\&2:1997 §9.4 }}$	0.8	in bolt
(SLS) friction type	$\underline{\text { NZS 3404.1\&2:1997 } § 9.3 .3}$	0.7	between steel

6.11.1 Connection Behaviour

Load is initially carried by only one bolt due to inaccurate hole placement. After it yields, other bolts can carry loads. The concept is illustrated in the following figure. The shear force in a connection is often assumed to be carried equally by each of the bolts. Bearing connections are used when slip is not important.

Initially left bolt is loaded.

After left bolt yields, right bolt can also carry load.

Figure 6.15: Actual deformation of bolted single shear tension connection (http://fgg-web.fgg.uni -lj.si/~/pmoze/esdep/master/wg11/l0310.htm)

6.11.2 Yield on Plate Gross Area

This was discussed in § 3.1, see Eq. (3.2).

6.11.3 Fracture on Plate Net Area

This was discussed in § 3.1, see Eq. (3.3).

6.11.4 Bolt Shear Failure

The design strength of bolts in shear is affected by the ultimate shear strength of the steel, the bolt net area, the mode by which shear force is carried, the distribution of force among bolts in a connection.

The core area of the bolt, A_{c}, is used when the shear plane passes through the threaded area. A_{c} is given in Table 6.1 and it is often $0.75 A_{o}$ to $0.8 A_{o}$ where A_{o} is the shank area.

Figure 6.16: Bolt shear failure

Experiments show that

- the ultimate shear stress in bolts is $\tau_{u} \approx 0.62 f_{u}$. The value of 0.62 is close to $\tau_{y} / f_{y}=1 / \sqrt{3}=$ 0.577 given by von Mises yielding criterion of steel;
- in connections which are more than 1300 mm long, the forces are not shared evenly over all bolts, so bolts should be designed to resist a greater shear force;
- a bolt in double shear can carry twice as much shear force as one in single shear (as long as they both have the same shear area).

The design shear force V_{f}^{*} for a bolt shall satisfy (NZS 3404.1\&2:1997 § 9.3.2.1)

$$
\begin{equation*}
V_{f}^{*} \leqslant \phi V_{f}=\phi 0.62 k_{r} f_{u f}\left(n_{n} A_{c}+n_{x} A_{o}\right), \tag{6.2}
\end{equation*}
$$

where
$\phi=$ strength reduction factor, 0.8
$k_{r}=$ reduction factor
$f_{u f}=$ minimum tensile strength of the bolt
$n_{n}=$ number of shear planes iNcluding threads intercepting the shear plane
$A_{c}=$ minor diameter area of the bolt
$n_{x}=$ number of shear planes eXcluding threads intercepting the shear plane
$A_{o}=$ nominal plain shank area of the bolt

The factor k_{r} shall be taken as 1.0 for lap connections with lengths up to 300 mm and 0.75 for lap connections with lengths over 1300 mm . Linear interpolation shall be used for lengths between 300 mm and 1300 mm . For all other connections, $k_{r}=1.0$.

It can be alternatively expressed as

$$
\begin{equation*}
V_{f}=n_{n} V_{f n}+n_{x} V_{f x} \tag{6.3}
\end{equation*}
$$

with

$$
\begin{align*}
V_{f n} & =0.62 k_{r} f_{u f} A_{c} \tag{6.4}\\
V_{f x} & =0.62 k_{r} f_{u f} A_{o} \tag{6.5}
\end{align*}
$$

The nominal capacity V_{f} is the summation of capacities of all shear planes of two types.

6.11.5 Plate Bearing and Tearing Failure Beside Bolts

For bolts to develop their strength, the material around bolts must be strong enough to resist bolt forces. That is, the plate material should not fail in bearing, and if bolts are near the side or edge of the plate or if bolt holes near other holes, then the possibility of plate yielding or facture should be considered in the assessment of the maximum force that the bolt can carry. Different values of edge distance are given for holes of different sizes and shapes.

Bearing causes deformation and elongation of the plate beside the hole. Strength loss will occur due to plate fracture as discussed later.

Figure 6.17: Bearing failure

Codes generally have an allowable resistance, R_{n}, greater than $A_{b} f_{u}$. This is due to the following reasons.

- The part of the plate in bearing is subject to compressive force.
- The ultimate strength f_{u} is found from a tension test.
- In compression, the strength is larger (see Fig. 2.3).
- Swelling of the plate (Poisson's effect) causes an increase in bolt compressive forces. This cause a triaxial loaded state which leads to higher strength.
- Collapse does not occur as a result of bearing failure.

If the strength of bolt is less than the strength of plate, then design for bearing of the bolt should be carried out.

Bolt tear out failure occurs when the distance between bolt hole and the edge of plate, or the distance between adjacent bolt holes in the line of force is small.

Figure 6.18: Tear out failure

Edge failure due to bolt loading in a direction which is not in the line of force should also be considered.

Figure 6.19: Edge failure of plate

Oversize holes may require special edge distance and bearing design because loading may be more concentrated.

According to NZS 3404.1\&2:1997 § 9.3.2.4.1, a ply subject to a design bearing force V_{b}^{*} due to bolt in shear shall satisfy

$$
\begin{equation*}
V_{b}^{*} \leqslant C_{1} \phi V_{b} \tag{6.6}
\end{equation*}
$$

For non-seismic design, $C_{1}=1.0$. For seismic design, $C_{1}<1.0$. It could be as low as 0.6 for seismic design according to NZS 3404.1\&2:1997 § 12.9.4.3. Also, using $C_{1}=0.6$ is a good default for all NZ connections as it will reduce the bolt hole deformation, and the possibility of significantly pinched hysteretic behaviour causing large impacts during earthquake shaking. The nominal bearing capacity V_{b} of a ply shall be the smaller of the following two.

1. Ply bearing failure beside bolt (Eq. 9.3.2.4(1))

$$
\begin{equation*}
V_{b}=3.2 d_{f} t_{p} f_{u p} \tag{6.7}
\end{equation*}
$$

where
$d_{f}=$ bolt diameter
$t_{p}=$ ply thickness
$f_{u p}=$ ply ultimate strength
2. Bolt tearing out failure (Eq. 9.3.2.4(2))

$$
\begin{equation*}
V_{b}=a_{e} t_{p} f_{u p} \tag{6.8}
\end{equation*}
$$

where
$a_{e}=$ minimum distance from hole edge to edge of ply in direction of force plus half of d_{f}

Figure 6.20: Illustration of a_{e}

The following requirements shall be met to avoid potential failure modes.

Figure 6.21: Illustration of minimum pitch s and edge distance e

1. Bolt spacing failure

The minimum pitch s (the distance between centres of bolt holes)

- in any direction shall be at least $2.5 d_{f}$. (NZS 3404.1\&2:1997 § 9.6.1)

$$
\begin{equation*}
s \geqslant 2.5 d_{f} \tag{6.9}
\end{equation*}
$$

- in the direction of force, the computation of s should be such that Eq. (6.8) is satisfied. Here, to compute a_{e}, the 'minimum distance from hole edge to edge of ply in direction of force plus half of d_{f} ' is taken as 'the clear distance between bolt holes in the direction of the component of force plus half of d_{f} '.

2. Bolt side failure

NZS 3404.1\&2:1997 § 9.6.2.1 defines the edge distance to be the distance from the nearer edge of the hole to the physical edge of the plate or rolled section plus half of d_{f}. The edge distance $a_{e}=e+d_{f} / 2$ shall meet the following minimum values for different cases:

- $1.75 d_{f}$ for sheared or hand flame cut edge
- $1.5 d_{f}$ for rolled plate, flat bar or section: machine flame cut, sawn or planed edge
- $1.25 d_{f}$ for rolled edge of a rolled flat bar or section

3. Corrosion between plates

NZS 3404.1\&2:1997 § 9.6.4 requires the maximum distance from the centre of any bolt hole to the edge of the plate to be the smaller of $12 t_{p}$ and 150 mm .

$$
\begin{equation*}
s \leqslant \min \left(12 t_{p}, 150 \mathrm{~mm}\right) . \tag{6.10}
\end{equation*}
$$

6.11.6 Block Tearing Failure

Block shear/tearing failure is not explicitly considered in NZS 3404.1\&2:1997 Steel structures standard. However, it has caused connection failures in the past.

Figure 6.22: Illustration of block tearing failure

Similar to tension members, in this course, we the following expression to determine capacity when tension stress is uniform.

$$
\begin{equation*}
N^{*} \leqslant \phi 0.95\left(0.6 A_{e v} f_{u}+A_{n t} f_{u}\right) \tag{6.11}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi & =\text { strength reduction factor, } 0.9 \\
A_{e v} & =\text { effective area subject to shear } \\
A_{n t} & =\text { net area subject to tension }
\end{aligned}
$$

The effective shear area is taken as the average of net and gross shear areas.

$$
\begin{equation*}
A_{e v}=\frac{1}{2}\left(A_{g v}+A_{n v}\right) \tag{6.12}
\end{equation*}
$$

where $A_{n v}$ and $A_{g v}$ have been introduced previously and are also illustrated in the following figure.

Figure 6.23: Definition of net and gross areas

Figure 6.24: Failure surface of block shear/tearing (https://m2ukblog.wordpress.com/2016/05/2 8/block-shear-failure-in-tension-members/)

6.11.7 Bolt Tension Failure

Figure 6.25: Bolt tension failure

NZS 3404.1\&2:1997 9.3.2.2 requires

$$
\begin{equation*}
N_{t f}^{*} \leqslant \phi N_{t f}=\phi A_{s} f_{u f} \tag{6.13}
\end{equation*}
$$

where
$\phi=$ strength reduction factor, 0.8
$N_{t f}=$ nominal tension capacity of a bolt
$A_{s}=$ tensile stress area of a bolt
$f_{u f}=$ minimum tensile strength of a bolt

6.11.8 Bolt Combined Failure

NZS 3404.1\&2:1997 9.3.2.3 requires

$$
\begin{equation*}
\left(\frac{V_{f}^{*}}{\phi V_{f}}\right)^{2}+\left(\frac{N_{t f}^{*}}{\phi N_{t f}}\right)^{2} \leqslant 1.0 \tag{6.14}
\end{equation*}
$$

Figure 6.26: Envelop of axial force versus shear

6.11.9 Bending Failure of Bolts

Bending failure is not usually aa problem expect for very long bolts. Standard methods can be used.

Figure 6.27: Bending failure of bolts

6.11.10 Fatigue Failure of Bolts

The strength of bolts is reduced by fatigue and methods are available for design.

6.11.11 Prying

Prying forces, Q, act on the flange of an I or T section when the web is in tension and the flange stiffness is moderate. The prying forces cause a) larger bolt forces, and b) greater flange moments. The actual size of Q is difficult to assess. However, it can be significant. A design method is described by Salmon et al. (2009).

Figure 6.28: T section hanger connection (Smith and Smith, 1996)

Figure 6.29: Prying failure modes (https://www.structures-simplified.com/2020/08/why-pryin g-force-is-important.html)

- Example 6.1 Worksheet Double Angle Bolted Connection

Assume connection length is smaller than 300 mm , find the lightest pair of Grade 300 angles with long legs back-to-back to carry $N^{*}=320 \mathrm{kN}$. Using bearing type M16 Grade 8.8N bolts, a bolt spacing $s=40 \mathrm{~mm}$ and an end distance of 30 mm .

Solution 6.1

1. Determine the number of bolts required.

The connection length is smaller than $300 \mathrm{~mm}, k_{r}=1.0$. The shear capacity per bolt shall be calculated as

$$
\begin{aligned}
\phi V_{f} & =\phi 0.62 k_{r} f_{u f}\left(n_{n} A_{c}+n_{x} A_{o}\right) \\
& =\phi 0.62 k_{r} f_{u f} n_{n} A_{c} \\
& =0.8 \times 0.62 \times 1 \times 830 \mathrm{MPa} \times 2 \times 144 \mathrm{~mm}^{2} \\
& =118.6 \mathrm{kN}
\end{aligned}
$$

The above value can also be computed as $2 \times 59.3 \mathrm{kN}=118.6 \mathrm{kN}$, see Table 6.7.
The number of bolts is then

$$
n \geqslant \frac{N^{*}}{\phi V_{f}}=2.70
$$

Thus use 3 bolts.
2. Check bearing on angle.

The bearing force on each bolt is

$$
V_{b}^{*}=\frac{320 \mathrm{kN}}{3 \times 2}=53.3 \mathrm{kN}
$$

The bearing capacity of each bolt shall be greater than force,

$$
\phi 3.2 d_{f} t_{p} f_{u p}=\phi V_{b} \geqslant V_{b}^{*}
$$

This leads to

$$
t_{p} \geqslant \frac{53.3 \mathrm{kN}}{0.9 \times 3.2 \times 16 \mathrm{~mm} \times 440 \mathrm{MPa}}=2.63 \mathrm{~mm}
$$

3. Check end distance.

$$
\phi a_{e} t_{p} f_{u p}=\phi V_{b} \geqslant V_{b}^{*}
$$

This gives

$$
t_{p} \geqslant \frac{53.3 \mathrm{kN}}{0.9 \times 29 \mathrm{~mm} \times 440 \mathrm{MPa}}=4.64 \mathrm{~mm}
$$

4. Check yielding on gross area.

Assume $f_{y}=320 \mathrm{MPa}$ and $f_{u}=440 \mathrm{MPa}$,

$$
A_{g} \geqslant \frac{1}{2} \frac{N^{*}}{\phi f_{y}}=\frac{1}{2} \frac{320 \mathrm{kN}}{0.9 \times 320 \mathrm{MPa}}=555.6 \mathrm{~mm}^{2}
$$

5. Check fracture on net area.

It can be looked up $k_{t e}=1.0$.

$$
A_{e} \geqslant \frac{1}{2} \frac{N^{*}}{\phi 0.85 k_{t e} f_{u}}=\frac{1}{2} \frac{320 \mathrm{kN}}{0.9 \times 0.85 \times 1 \times 440 \mathrm{MPa}}=475.3 \mathrm{~mm}^{2}
$$

The gross area should satisfy

$$
A_{g} \geqslant 475.3 \mathrm{~mm}^{2}+18 t_{p}
$$

6. Check edge distance in any direction.
(a) The minimum distance:

$$
L_{e, \min }=1.25 d_{f}=1.25 \times 16 \mathrm{~mm}=20 \mathrm{~mm}
$$

This is equivalent to 21 mm to bolt centre.
(b) The maximum distance:

$$
\begin{aligned}
L_{e, \max } & =\min \left(150 \mathrm{~mm}, 12 t_{p}\right)=60 \mathrm{~mm} \\
\text { assuming } t_{p} & =5 \mathrm{~mm}
\end{aligned}
$$

A quick summary, the desired section shall meet the following requirements:

1. $t_{p} \geqslant 4.64 \mathrm{~mm}$
2. $A_{g} \geqslant 555.6 \mathrm{~mm}^{2}$
3. $A_{g} \geqslant 475.3 \mathrm{~mm}^{2}+18 t_{p}$
4. $21 \mathrm{~mm} \leqslant$ Edge Distance $\leqslant 60 \mathrm{~mm}$

Try $65 \times 50 \times 5 \mathrm{UA}, A_{g}=512 \mathrm{~mm}^{2}$. This does not satisfy the requirement.
Try $75 \times 50 \times 5 \mathrm{UA}, A_{g}=560 \mathrm{~mm}^{2}>555.6 \mathrm{~mm}^{2}$, okay. Check net area, $A_{g, \min }=475.3 \mathrm{~mm}^{2}+$ $18 \mathrm{~mm} \times 5 \mathrm{~mm}=565.3 \mathrm{~mm}$. The difference is 0.9%, okay.

Check bolt spacing, $s=40 \mathrm{~mm} \geqslant 2.5 d_{f}=2.5 \times 16 \mathrm{~mm}=40 \mathrm{~mm}$.

$$
\begin{aligned}
\phi V_{b} & =\phi a_{e} t_{p} f_{u p} \\
& =0.9 \times\left(40 \mathrm{~mm}-18 \mathrm{~mm}+\frac{16 \mathrm{~mm}}{2}\right) \times 5 \mathrm{~mm} \times 440 \mathrm{MPa} \\
& =59.4 \mathrm{kN}>53.3 \mathrm{kN}
\end{aligned}
$$

According to Table 2.8, choose a gauge length of 40 mm . Thus try the following layout.

Check block tearing.

$$
\begin{aligned}
& A_{g v}=2 \times 110 \mathrm{~mm} \times 5 \mathrm{~mm}=1100 \mathrm{~mm}^{2} \\
& A_{g t}=2 \times 35 \mathrm{~mm} \times 5 \mathrm{~mm}=350 \mathrm{~mm}^{2} \\
& A_{n t}=2 \times(35 \mathrm{~mm}-0.5 \times 18 \mathrm{~mm}) \times 5 \mathrm{~mm}=260 \mathrm{~mm}^{2} \\
& A_{n v}=2 \times(110 \mathrm{~mm}-2.5 \times 18 \mathrm{~mm}) \times 5 \mathrm{~mm}=650 \mathrm{~mm}^{2}
\end{aligned}
$$

Use Eq. (6.11),

$$
\begin{aligned}
& \phi 0.95\left(0.6 A_{e v} f_{u}+A_{n t} f_{u}\right) \\
= & 0.9 \times 0.95 \times\left(0.6 \times \frac{1100 \mathrm{~mm}^{2}+650 \mathrm{~mm}^{2}}{2} \times 440 \mathrm{MPa}+260 \mathrm{~mm}^{2} \times 440 \mathrm{MPa}\right) \\
= & 295 \mathrm{kN}<N^{*}=320 \mathrm{kN} .
\end{aligned}
$$

Block tearing is the controlling mode and must be considered. Therefore, to keep lightest angles, the spacing of bolts must be increased. The following spacing is satisfactory.

\$6.12 Serviceability Design

For the serviceability conditions, serviceability loads must be used.

6.12.1 Shear Slip

NZS 3404.1\&2:1997 § 9.3.3.1 requires a bolt subjected only to a design shear force $V_{s f}^{*}$ in the plane of the interfaces to satisfy

$$
\begin{equation*}
V_{s f}^{*} \leqslant \phi V_{s f}=\phi \mu_{s} n_{e i} N_{t i} k_{h} \tag{6.15}
\end{equation*}
$$

where
$\phi=$ strength reduction factor, 0.7
$V_{s f}=$ nominal shear capacity of a bolt
$\mu_{s}=$ slip factor
$=0.35$ for clean as-rolled surfaces
$=0.48$ for flame cleaned surfaces
$=0.53$ for grit-blasted surfaces
$=0.18$ for galvanized surfaces as received
$=0.30$ for galvanized surfaces as lightly sandblasted
$=$ test values for other conditions
$n_{e i}=$ number of effective interfaces
$N_{t i}=$ minimum bolt tension at installation (NZS 3404.1\&2:1997 Table 15.2.5.1)
$k_{h}=$ factor for different hole types
$=1.0$ for standard holes
$=0.85$ for short slotted and oversize holes
$=0.70$ for long slotted holes

Figure 6.30: Friction force

6.12.2 Gap Opening (Tension Behaviour)

$$
\begin{equation*}
N_{t f}^{*} \leqslant \phi N_{t f}=\phi N_{t i} \tag{6.16}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi & =\text { strength reduction factor, } 0.7 \\
N_{t f} & =\text { nominal tension capacity } \\
N_{t i} & =\text { minimum bolt tension at installation }
\end{aligned}
$$

6.12.3 Shear Slip Under Tension

In combined shear and tension, a bolt shall satisfy

$$
\begin{equation*}
\frac{V_{s f}^{*}}{\phi V_{s f}}+\frac{N_{t f}^{*}}{\phi N_{t f}} \leqslant 1.0 \tag{6.17}
\end{equation*}
$$

Figure 6.31: Envelop of tension versus shear

Example 6.2 Redesign the connection in the previous example as a slip-critical (or friction type) connection without special treatment of the steel given that the dead load force is one quarter of the live load force.

Solution 6.2

Knowing $V_{L}=4 V_{D}$,

$$
\begin{aligned}
V^{*} & =1.2 V_{D}+1.5 V_{L} \\
& =1.8 V_{L}=320 \mathrm{kN} \\
V_{L} & =177.8 \mathrm{kN}
\end{aligned}
$$

Then the serviceability combination is

$$
V_{s f}^{*}=1.2 V_{D}+0.4 V_{L}=124.4 \mathrm{kN}
$$

Determine the number of bolts. The capacity per bolt is

$$
\begin{aligned}
\phi V_{s f} & =\phi \mu_{s} n_{e i} N_{t i} k_{h} \\
& =0.7 \times 2 \times 0.35 \times 1 \times 95 \mathrm{kN} \\
& =46.6 \mathrm{kN}
\end{aligned}
$$

This leads to

$$
n \geqslant \frac{V_{s f}^{*}}{\phi V_{s f}}=\frac{124.4 \mathrm{kN}}{46.6 \mathrm{kN}}=2.67
$$

Thus use $3 \mathrm{M} 16 / \mathrm{N} 8.8 / \mathrm{TB}$ bolts as before.

All other checks for strength are the same as before. The maximum resistance of the 3 bolt connection is $3 \times 46.6 \mathrm{kN}=139.8 \mathrm{kN}$.

Welded Connections

\$7.1 Basic Types of Welded Joint

Figure 7.1: Basic types of welded joints (https://www.flight-mechanic.com/welded-joints-usi ng-oxy-acetylene-torch/)

Lapped joints are the most common. Here are some examples.

Figure 7.2: Examples of lapped joints

\$7.2 Weld Categories and Types

NZS 3404.1\&2:1997 Steel structures standard permits the use of two weld categories.

- GP - General Purpose (for design $\phi=0.6$) For general welds where demand is less than the weld capacity.
- SP - Structural Purpose (for design $\phi=0.8$ but $\phi=0.9$ for butt welds)

For welds:

- where demand is greater than GP weld capacity;
- subject to high cycle fatigue loading; or
- in main framing subjecting to earthquake loading.

GP welds allow larger imperfections than SP welds do.

NZS 3404.1\&2:1997 Steel structures standard deals with six types of welds as shown below.

- Complete penetration butt/groove weld
Name
- Incomplete penetration butt/groove weld (not at a corner or T-joint)

Single sided full penetration butt weld

- Fillet weld

- Concave:-
as above, but with a reduced design throat thickness.

- Compound weld

- Plug weld

- Slot weld

>7.3 Weld Process

Welding is a materials joining process which produces coalescence of materials by heating the to suitable temperatures.

Heat is used to melt the base material and a filler material in order that flow of material will occur and that fusion will take place.

Several welding processes are available. The most common are

- Shield Metal Arc Welding (SMAW)

Figure 7.3: Shield metal arc welding (https://www.fabtechexpo.com/blog/2018/01/04/shielded -metal-arc-welding-basics)

Figure 7.4: Shield metal arc welding (https://www.jasic.co.uk/guide-to-mma-welding)

This includes

- Manual Metal Arc Welding (MMAW)

Welding with a stick electrode with flux coating. The shielding may perform the following functions.

* Produce a gaseous shield to exclude air and stabilize the arc.
* Introduce other materials, e.g., deoxidizers to refine grain structure of weld metal.
* Produce a slag blanket to protect it from air and retard cooling.

It is slow (expensive) but versatile.

- Gas Metal Arc Welding (GMAW)

Welding with a steel wire fed through a gun with gas (e.g., $\mathrm{CO}_{2}, \mathrm{Ar}, \mathrm{O}_{2}$) shielding.
It is faster but wind dependent - not for field welding.

- Flux Cored Arc Welding (FCAW)

Welding with a hollow steel wire filled with flux fed through a gun - sometimes inert shielding as is used too.
It is fast but needs good access.

- Submerged Arc Welding (SAW)

Figure 7.5: Submerged arc welding (https://www.cwbgroup.org/sites/default/files/imgs/sa w-fig1.png)

The flux is the special feature of this method. The granular flux is usually laid out automatically along the seam ahead of the advancing weld. It

- provides a cover which allows the weld to be made without splatter, sparks or smoke;
- protects the weld from the atmosphere; and
- produces better welds of higher consistent quality.

SAW is usually used in welding shops (not at the job site) with automatic equipment and long runs of weld.

\$7.4 Standard Weld Symbols

Some additional notes shall be explained.

- The letters CP in the tail of the arrow indicate a complete penetration butt weld.
- The tail should be omitted if no reference T is required.
- The size of a fillet weld shall be to the left of the symbol. The vertical line on the fillet weld symbol is always on the left.
- For an incomplete penetration butt weld, the design throat thickness hsall be to the left of the symbol. Where no design throat thickness is shown, a complete penetration butt weld is assumed required.
- Arrow side and other side welds are made the same size unless otherwise dimensioned.
- Symbols only apply between abrupt changes in direction of welding unless governed by the 'weld all round' symbol or otherwise dimensioned.

Weld symbols are summarized in the following table.

Location significance	Fillet	Plug orslot	Arc seam or arc spot	Butt welds				
				Square	v	Bevel	U	J
$\begin{aligned} & \text { Arrow } \\ & \text { Side } \end{aligned}$	\cdots	\sum	T-	\because	π	$\xrightarrow{\wedge}$	\checkmark	T
Other Side	T	\bigcirc	-1	$\xrightarrow{4}$	$\checkmark \checkmark$	Σ_{k}	\sim	$\checkmark \bar{\nu}$
Both Sides	\rightarrow -	Not Used	Not Used	\#	∇_{*}	$\stackrel{\text { K }}{ }+$	そ	厄H

Supplementary symbols

Figure 7.6: Welding symbols (Gorenc et al., 2015)

The following are some examples of welding symbols taken from (Corgan, 2017) on drawings and their physical meanings. All units are inches.

Figure 7.8: Weld all around welds (Corgan, 2017)
Continuous, one-sided fillet weld of 6 mm leg size along the length of
the line indicated by arrow. Fillet weld is on the arrow side of the joint.

Figure 7.7: Examples of use of welding symbols (Gorenc et al., 2015)

Figure 7.9: Examples of weld all around welds (Corgan, 2017)

Continuous Weld as Shown on the Drawing

Figure 7.10: Examples of continuous welds (Corgan, 2017)

Figure 7.11: Examples of continuous welds (Corgan, 2017)

Figure 7.12: Weld length specified on welding symbol between extension lines (unit: inch) (Corgan, 2017)

Figure 7.13: Weld length specified on welding symbol between extension lines with section lines representing the weld area (unit: inch) (Corgan, 2017)

Figure 7.14: Example of intermittent welds (unit: inch) (Corgan, 2017)

Figure 7.15: Example of chain intermittent welds (unit: inch) (Corgan, 2017)

Intermittent Fillet Weld as Shown on the Drawing

Means This (Top or Plan View)

Figure 7.16: Example of staggered intermittent welds (unit: inch) (Corgan, 2017)

Figure 7.17: Contour symbols (Corgan, 2017)

Figure 7.18: Example of a welding symbol for a fillet weld (unit: inch) (Corgan, 2017)

Note: When a fillet weld is measured, the measurement is taken at the location where it is the smallest.

This Shown on the Drawing

Largest Right Triangle That Can Be Formed Within the Weld

Figure 7.19: Fillet weld size (unit: inch) (Corgan, 2017)

Figure 7.20: Unequal leg fillet with detail drawing (unit: inch) (Corgan, 2017)

Figure 7.21: Unequal leg fillets that could be shown without detail (unit: inch) (Corgan, 2017)

Figure 7.22: Welding symbol example for a groove weld (unit: inch) (Corgan, 2017)

This Shown on
the Drawing

Means This
Figure 7.23: Example of a groove/butt weld (unit: inch) (Corgan, 2017)

Figure 7.24: Welding symbol with melt-through (unit: inch) (Corgan, 2017)

This Shown on the
Drawing

Means This
Figure 7.25: Melt-through example (unit: inch) (Corgan, 2017)

\$7.5 Electrodes Used for Welding

Table 7.1: Nominal tensile strength of weld metal $\left(f_{u w}\right)$

MMAW	SAW, FCAW, GMAW	$f_{u w}$
E41XX	W40X	410 MPa
E48XX	W50X	480 MPa

The values of ' X ' represent the usage, or they are related to the Charpy impact test. All of these welds may be used with Grade 250 to Grade 350 steel. This system is used in this book.

A new system of weld specification is available according to AS/NZS 4855:2007 Welding consumables - Covered electrodes for manual metal arc welding of non-alloy and fine grain steels - Classification.

Table 7.2: Nominal tensile strength of weld metal $\left(f_{u w}\right)$

	Symbol	$f_{u w}$
	A-E35	440 MPa
System A	A-E38	470 MPa
	A-E42	500 MPa
	$\mathrm{A}-E 46$	530 MPa
	$\mathrm{A}-E 50$	560 MPa
	$\mathrm{B}-\mathrm{E} 43$	430 MPa
System B	B-E49	490 MPa
	B-E55	550 MPa
	B-E57	570 MPa

System A is used in Europe (based on yield stress), while System B is based on ultimate stress and is more common in Australasia.

The industry standard welding strength is $f_{u w}=490 \mathrm{MPa}$, so this should be specified in practice (where possible).

>7.6 Weld Size and Strength

- Butt Weld

Complete penetration butt weld should be the same thickness as the material they are connecting. By using an electrode of sufficient strength $\left(f_{u w} \geqslant f_{u}\right)$ and an SP weld, the effect of the weld can be ignored since the weld strength does not limit the member strength.

- Fillet Weld

- Preferred Sizes

Preferred sizes of a fillet weld with t_{w} less than 15 mm are $2 \mathrm{~mm}, 4 \mathrm{~mm}, 5 \mathrm{~mm}, 6 \mathrm{~mm}, 8 \mathrm{~mm}$, 10 mm and 12 mm (NZS 3404.1\&2:1997 § 9.7.3.2).

- Minimum Length

The minimum length l_{w} is $4 t_{w}$ to ensure good fusion.

- Minimum Size

Table 7.3: Minimum size of fillet weld t_{w}

Thickness of thickest part joined $t(\mathrm{~mm})$	$t_{w}(\mathrm{~mm})$
$t \leqslant 7$	3
$7<t \leqslant 10$	4
$10<t \leqslant 15$	5
$15<t$	6

- Maximum Size

Table 7.4: Maximum size of fillet weld t_{w}

Thickness of material alongside which fillet weld is to be made $t(\mathrm{~mm})$	$t_{w}(\mathrm{~mm})$
$t<6$	t
$6 \leqslant t$	$t-1$

This is necessary to a) prevent yielding of base material and b) indicate actual throat thickness.

The weld strength per unit length shall satisfy (NZS 3404.1\&2:1997 § 9.7.3.10)

$$
\begin{equation*}
v_{w}^{*} \leqslant \phi v_{w}=\phi 0.6 f_{u w} t_{t} k_{r} \tag{7.1}
\end{equation*}
$$

where
$\phi=$ strength reduction factor

$$
=0.8 \text { for } \mathrm{SP}
$$

$$
=0.6 \text { for } \mathrm{GP}
$$

$v_{w}^{*}=$ vectorial summation of design force per unit length on weld effective area
$v_{w}=$ nominal capacity of a fillet weld per unit length
$f_{u w}=$ nominal tensile strength of weld material
$0.6 f_{u w}=$ nominal shear strength of weld material
$t_{t}=$ design throat thickness, usually equal to $t_{w} / \sqrt{2}$ where t_{w} is the leg length, or fillet weld size
$k_{r}=$ reduction factor for welded lap connection (otherwise $k_{r}=1.0$)
$=1.00$ if $l_{w} \leqslant 1.7 \mathrm{~m}$
$=1.10-0.06 L_{w}$ if $1.7 \mathrm{~m}<l_{w} \leqslant 8.0 \mathrm{~m}$
$=0.62$ if $l_{w}>8.0 \mathrm{~m}$

Figure 7.26: k_{r} as a function of l_{w}

Figure 7.27: Weld terminology (http://mdme.atspace.com/modules/7759G_Mechanical_Design/w elds/Welded_Joints.html)

Fillet welds can be loaded with components of force in shear ($\left.\tau_{y} \approx \sigma_{y} / \sqrt{3}\right)$ and tension/compression $\left(\sigma_{y}\right)$. Design conservatively considers that the strength is based on $\tau_{y} \approx 0.6 \sigma_{y}$ for all components of loading.

Figure 7.28: Weld stress components (https://offshorestructures.wordpress.com/2014/11/02/ welded-lap-joints/)

The vectorial summation of design force per unit length can be associated with the stress components shown as follows. This is considered in some other standards with the strengths in each component direction (e.g., shear or tension).

$$
\begin{equation*}
v_{w}^{*}=t_{t} \sqrt{\sigma_{\perp}^{2}+\tau_{\perp}^{2}+\tau_{\|}^{2}} \tag{7.2}
\end{equation*}
$$

Table 7.5: Dependable capacities of equal leg fillet welds $\phi v_{w}\left(\mathrm{kN} \mathrm{mm}^{-1}\right)$ with $k_{r}=1.0$

t_{w} $(\mathrm{~mm})$	GP Welds			SP Welds		
3	0.313	0.367	0.374	0.417	0.489	0.499
4	0.417	0.489	0.499	0.557	0.652	0.665
5	0.522	0.611	0.624	0.696	0.815	0.832
6	0.626	0.733	0.748	0.835	0.978	0.998
8	0.835	0.978	0.998	1.113	1.303	1.330
10	1.044	1.222	1.247	1.392	1.629	1.663
12	1.252	1.466	1.497	1.670	1.955	1.996

For example, for $t_{w}=3 \mathrm{~mm}$, SP with E41XX electrodes, the dependable strength per unit length of weld is

$$
\begin{aligned}
\phi v_{w} & =0.8 \times 0.6 \times 410 \mathrm{MPa} \times \frac{3 \mathrm{~mm}}{\sqrt{2}} \times 1.0 \\
& =0.417 \mathrm{kN} \mathrm{~mm}^{-1}
\end{aligned}
$$

When using SP longitudinal fillet welds to RHS with $t<3 \mathrm{~mm}$, SP capacities should be multiplied by $0.7 / 0.8$ to account for the different ϕ factors.

Welds greater than 8 mm require multiple passes and tend to be less economical.

>7.7 Fillet Weld Root Gaps

Where there is a separation/gap between plates (i.e., root gaps), the fillet weld size, t_{w}, is given by the inscribed triangle (which does not include the root gap) as shown (NZS 3404.1\&2:1997 § 9.7.3.1 and AS/NZS 5131 § 7.5.8).

Figure 7.29: Fillet weld with root gap

Fabrication tolerances are given in AS/NZS 5131 § 7.5.8 Appendix F and NZS 3404.1\&2:1997 § 14.4. Design/construction documentation should be clear as to how root gaps are considered (e.g., by the designer accounting for the tolerances with an increased t_{w}, or by the fabricator).

\$7.8 Good Practice for Welded Members

Although not shown in NZS 3404.1\&2:1997 Steel structures standard, the following are some good practice for welded members.

- It is good practice to use end returns. The effective length L_{e} includes returns.

- For flat bars with only longitudinal fillet welds, make $L>W$, to minimise stress concentration.

- For weld placement in connections subject to repeated stress, center of weld resistance should coincide with member centroid unless special allowance is made for the eccentricity.

- For plug and slotted holes, make ends rounded to avoid stress concentration.

Good

Bad

\$7.9 Member Design Considerations

7.9.1 Yielding on Gross Area

This has been previously studied, see Eq. (3.2).

$$
\begin{equation*}
N^{*} \leqslant \phi A_{g} f_{y} \tag{7.3}
\end{equation*}
$$

7.9.2 Fracture on Effective Net Area

This has been previously studied, see Eq. (3.3).

$$
\begin{equation*}
N^{*} \leqslant \phi 0.85 k_{t e} A_{n} f_{u} \tag{7.4}
\end{equation*}
$$

7.9.3 Block Tearing Failure

Connections connected by welds should be checked for block tearing failure as for the bolted connections, see § 6.11.6.

Figure 7.30: Block tear out of welded connection

Since there is no need to distinguish between gross and net areas for welded connections, assuming the plate has a uniform thickness t_{p}, it is possible to denote $A_{v}=A_{g v}=A_{n v}=l_{v} t_{p}$ and $A_{t}=A_{g t}=$ $A_{n t}=l_{t} t_{p}$, then Eq. (6.11) becomes

$$
\begin{equation*}
N^{*} \leqslant \phi 0.95\left(0.6 l_{v}+l_{t}\right) t_{p} f_{u} \tag{7.5}
\end{equation*}
$$

$\phi=$ strength reduction factor, 0.9
$l_{v}=$ weld length subject to shear
$l_{t}=$ weld length subject to tension
$t_{p}=$ plate thickness

Example 7.1 Fillet Weld Analysis

Find the strength of the connection shown if Grade 300 steel and E41XX electrodes are used for GP welds.

Solution 7.1

1. The effective throat thickness is

$$
t_{t}=\frac{\sqrt{2}}{2} \times t_{w}=7.07 \mathrm{~mm}
$$

Weld capacity per unit length

$$
\begin{aligned}
\phi V_{w} & =\phi 0.6 f_{u w} t_{t} k_{r} \\
& =0.6 \times 0.6 \times 410 \mathrm{MPa} \times 7.07 \mathrm{~mm} \times 1 \\
& =1.044 \mathrm{kN} \mathrm{~mm}^{-1}
\end{aligned}
$$

This value can be seen in Table 7.5. The total capacity is then

$$
1.044 \mathrm{kN} \mathrm{~mm}^{-1} \times 500 \mathrm{~mm}=521.8 \mathrm{kN}
$$

2. Check yielding of plate,

$$
\phi A_{g} f_{y}=0.9 \times 12 \mathrm{~mm} \times 200 \mathrm{~mm} \times 310 \mathrm{MPa}=669.6 \mathrm{kN}
$$

3. Check fracture of plate,

$$
\phi 0.85 k_{t e} A_{n} f_{u}=0.9 \times 0.85 \times 1 \times 12 \mathrm{~mm} \times 200 \mathrm{~mm} \times 430 \mathrm{MPa}=789.5 \mathrm{kN}
$$

4. Check block tearing, note block tearing can only happen for PL20×300 plate,

$$
\begin{aligned}
& \phi 0.95\left(0.6 l_{v}+l_{t}\right) t_{p} f_{u} \\
= & 0.9 \times 0.95 \times(0.6 \times 300 \mathrm{~mm}+200 \mathrm{~mm}) \times 20 \mathrm{~mm} \times 430 \mathrm{MPa} \\
= & 2794 \mathrm{kN}
\end{aligned}
$$

Thus weld strength governs, $N^{*} \leqslant 521.8 \mathrm{kN}$.

Example 7.2 Determine the size and length of fillet weld for the lap joint of two Grade 300 steel plates with $N^{*}=640 \mathrm{kN}$ as shown. Assume plate yield and fracture requirements are satisfied, check block tearing.

Solution 7.2

The maximum size of fillet weld is $t_{w}=t-1 \mathrm{~mm}=15 \mathrm{~mm}$.

The minimum size of fillet weld is $t_{w}=6 \mathrm{~mm}$.

Try 6 mm W40X SP weld, $L_{\min }=4 \times t_{w}=24 \mathrm{~mm}$. Assume $k_{r}=1.0$, the capacity per unit length is

$$
\begin{aligned}
\phi v_{w} & =\phi 0.6 f_{u w} t_{t} k_{r} \\
& =0.8 \times 0.6 \times 410 \mathrm{MPa} \times \frac{6 \mathrm{~mm}}{\sqrt{2}} \times 1 \\
& =0.835 \mathrm{kN} \mathrm{~mm}^{-1}
\end{aligned}
$$

This value can be seen in Table 7.5.

The weld length required is

$$
L_{\text {min }}=\frac{640 \mathrm{kN}}{0.835 \mathrm{kN} \mathrm{~mm}}{ }^{-1}=766.5 \mathrm{~mm} .
$$

Possible weld placements are the follows.

Which one is better?
Check block tearing using the first placement,

$$
\begin{aligned}
& \phi 0.95\left(0.6 l_{v}+l_{t}\right) t_{p} f_{u} \\
= & 0.9 \times 0.95 \times(0.6 \times 591.5 \mathrm{~mm}+175 \mathrm{~mm}) \times 16 \mathrm{~mm} \times 430 \mathrm{MPa} \\
= & 3111 \mathrm{kN}>N^{*}=640 \mathrm{kN}
\end{aligned}
$$

Check block tearing using the second placement,

$$
\begin{aligned}
& \phi 0.95\left(0.6 l_{v}+l_{t}\right) t_{p} f_{u} \\
= & 0.9 \times 0.95 \times 0.6 \times 766.5 \mathrm{~mm} \times 16 \mathrm{~mm} \times 430 \mathrm{MPa} \\
= & 2705 \mathrm{kN}>N^{*}=640 \mathrm{kN}
\end{aligned}
$$

Example 7.3 Design fillet welds to develop the full strength of the angle below considering that it is subject to repeated loading. Use FCAW and Grade 350 steel.

Note that if no load is specified, then design connection to resist angle capacity.

Solution 7.3

1. Angle Capacity

$$
\begin{aligned}
& \phi A_{g} f_{y}=0.9 \times 2300 \mathrm{~mm}^{2} \times 360 \mathrm{MPa}=745 \mathrm{kN} \\
& \phi 0.85 k_{t e} A_{n} f_{u}=0.9 \times 0.85 \times 0.85 \times 2300 \mathrm{~mm}^{2} \times 480 \mathrm{MPa}=718 \mathrm{kN}
\end{aligned}
$$

Thus, $\phi N_{t}=718 \mathrm{kN}$.
2. Weld Length

The maximum size of fillet weld is $t_{w}=t-1 \mathrm{~mm}=9 \mathrm{~mm}$.
The minimum size of fillet weld is $t_{w}=4 \mathrm{~mm}$.
Try 4 mm W50X FCAW SP weld, $L_{\min }=4 \times t_{w}=16 \mathrm{~mm}$. Assume $k_{r}=1.0$, the capacity per unit length is

$$
\begin{aligned}
\phi v_{w} & =\phi 0.6 f_{u w} t_{t} k_{r} \\
& =0.8 \times 0.6 \times 480 \mathrm{MPa} \times \frac{4 \mathrm{~mm}}{\sqrt{2}} \times 1 \\
& =0.652 \mathrm{kN} \mathrm{~mm}^{-1}
\end{aligned}
$$

The weld length required is

$$
L_{\min }=\frac{718 \mathrm{kN}}{0.652 \mathrm{kN} \mathrm{~mm}^{-1}}=1101.6 \mathrm{~mm}
$$

3. Position of Welds

Balance welds so that there is no eccentricity.

Assume the top length is $L_{w 1}$, take moment about N.A. of angle section,

$$
\begin{aligned}
\underbrace{L_{w 1} \times(150 \mathrm{~mm}-48.1 \mathrm{~mm})}_{\text {top segment }} & +\underbrace{150 \mathrm{~mm} \times(150 \mathrm{~mm} / 2-48.1 \mathrm{~mm})}_{\text {vertical segment }} \\
& =\underbrace{\left(1101.6 \mathrm{~mm}-L_{w 1}-150 \mathrm{~mm}\right) \times 48.1 \mathrm{~mm}}_{\text {bottom segment }}
\end{aligned}
$$

this gives

$$
\begin{array}{ll}
L_{w 1}=278.2 \mathrm{~mm}, & \text { use } \quad L_{w 1}=280 \mathrm{~mm} \\
L_{w 2}=673.4 \mathrm{~mm}, & \text { use } \quad L_{w 2}=680 \mathrm{~mm}
\end{array}
$$

Check block tearing, $l_{v}=L_{w 1}+L_{w 2}$,

$$
\begin{aligned}
& \phi 0.95\left(0.6 l_{v}+l_{t}\right) t_{p} f_{u} \\
= & 0.9 \times 0.95 \times(0.6 \times 960 \mathrm{~mm}+150 \mathrm{~mm}) \times 10 \mathrm{~mm} \times 480 \mathrm{MPa} \\
= & 2980 \mathrm{kN}>\phi N_{t}=717.9 \mathrm{kN}
\end{aligned}
$$

All weld lengths are greater than $L_{\text {min }}$. Final layout.

>7.10 Quality of Welded Connection

The quality of welded connections depends on

- weldability of steel

This is a measure of the ability to produce a crack-free and sound structural joint.

- proper preparation of the welded connections

This involves cleanliness and alignment.

- proper procedures
- good welding positions

Figure 7.31: Weld positions (https://weldguru.com/welding-positions/)

- control of distortion of the welded member

Figure 7.32: Weld distortion (https://weldinganswers.com/7-ways-to-control-distortion-i n-welding/)

Figure 7.33: Weld distortion (Hetnarski, 2014)

- welding sequences to limit distortion

Figure 7.34: Back step weld (https://www.fabricatingandmetalworking.com/2013/02/how-to-c ontrol-the-warping-of-parts-in-thin-sheet-metal/)

SEquence NELDS

Figure 7.35: Weld sequence (https: //axisfab.com/weld-shrinkage/)

- minimum weld thickness
- few passes

Figure 7.36: Multiple pass fillet weld (https://www.mig-welding.co.uk/arc-fillet-joints.htm)

- correct current and voltage for weld material, correct rate of welding, etc.
- correct electrode for type of steel chosen

If weld material is much stronger than plate material then plate failure may occur. An electrode matching plate material is required.

\$7.11 Possible Weld Defects

Welds need to be inspected by ultrasound or other techniques to ensure that the performance of the connection will be adequate.

Interested readers can refer to this page ${ }^{1}$ for full version.

- Incomplete Fusion

These types of welding defects occur when there is a shortage of suitable fusion between the metal and weld. It may also be visible between adjacent weld beads. This produces a gap inside the joint that is not filled with molten metal.

- Incomplete Penetration

In these types of welding defects, penetration is defined as the distance from the uppermost surface of the base plate to the maximum extent of the weld nugget.

[^12]Incomplete penetration happens when the metal groove is not entirely filled, which means that the weld metal does not fully spread through the joint thickness.

- Porosity and Blowhole

Porosity is a group of small bubbles and blowholes are relatively large hidden holes or pores. They are mainly caused by trapped gases. Porosity is a result of weld metal contamination.

- Undercut

Undercut in welding makes imperfection, it is the formation of grooves in the weld toe, which decreases the cross-sectional thickness of the base metal. As a result of this weld and workpiece get weakened.

- Slag Inclusion

Slag inclusion is welding defects that are usually visible in welds. The slag is a dangerous substance that appears as a product of stick welding, flux-core arc welding, and submerged arc welding.
It is can occur when the flux, which is a solid shielding material applied when welding, melts in the weld or on the surface of the weld region. Slag inclusion decreases the strength of the joint and hence makes it weaker.

- Weld Crack

These are the most dangerous types of welding defects. It is almost not allowed by all standards
in the production. It can appear on the surface, in the weld metal, or in an area affected by strong heat.

\$7.12 Possible Plate Defects

Figure 7.37: Susceptible and improved details (https://buildingfailures.com/2014/11/28/over view-of-lamellar-tearing-and-representative-case-studies/)

Part II

Eccentric Connections

\$8.1 Types of Connections

Some of the principles of bolted steel connections are similar. We will treat them together in this section.

\$8.2 Eccentric Bolted Connections

Bolts are subject to different shear forces, two design methods exist, namely,

- Elastic Design Method - simple, slightly conservative
- Ultimate Strength Method - manuals

8.2.1 Elastic Design Method

Figure 8.1: Decomposition of arbitrary force into x and y components

Basis for Elastic Computation

Assumption Basic assumptions for elastic computations are made as follows.

- Connector plate is rigid.
- Fasteners deform elastically.
- Fastener forces can be split into direct shear and torsional shear forces with appropriate vectorial components.

Notation The following notations will be used in the analysis.
$B_{i}=$ fastener direct shear force
$B_{i, x}=$ fastener direct shear force component in x direction
$B_{i, y}=$ fastener direct shear force component in y direction
$P=$ applied force
$P_{x}=$ applied force component in x direction
$P_{y}=$ applied force component in y direction
$r_{i}=$ (positive) distance from c.r. (centre of rigidity) to fastener i
$k_{i}=$ fastener stiffness
$e=$ eccentricity
$\theta=$ plate rotation
$\delta_{i}=$ fastener deformation due to plate rotation θ
$x_{c r}=x$ coordinate of c.r. in the appropriate coordinate system
$y_{c r}=y$ coordinate of c.r. in the appropriate coordinate system
$T_{i}=$ fastener force due to applied torque

Equilibrium In-plane forces shall satisfy statics equilibrium equations.

$$
\begin{array}{ll}
\sum F_{x}=0, & \quad \\
\sum \sum_{i=1}^{n} B_{i, x}=P_{x} \\
\sum F_{y}=0, & \quad \tag{8.3}\\
\sum \quad \sum_{i=1}^{n} B_{i, y}=P_{y} \\
\sum=0, & \quad \sum_{i=1}^{n} T_{i} r_{i}=P e
\end{array}
$$

Figure 8.2: Equilibria of bolt forces

Kinematics/Compatibility

$$
\begin{equation*}
\theta=\frac{\delta_{i}}{r_{i}} \tag{8.4}
\end{equation*}
$$

Constitutive Relationship

$$
\begin{equation*}
T_{i}=k_{i} \delta_{i}, \quad \delta_{i}=\frac{T_{i}}{k_{i}} \tag{8.5}
\end{equation*}
$$

Direct Shear Force Assume $k=k_{i}$,

$$
\begin{equation*}
B_{i, x}=P_{x} \frac{k_{i}}{\sum_{i=1}^{n} k_{i}}=\frac{P_{x}}{n}, \quad B_{i, y}=P_{y} \frac{k_{i}}{\sum_{i=1}^{n} k_{i}}=\frac{P_{y}}{n} . \tag{8.6}
\end{equation*}
$$

Torque Due to equilibrium,

$$
\begin{equation*}
P e=\sum_{i=1}^{n} T_{i} r_{i}, \quad \text { about c.r. } \tag{8.7}
\end{equation*}
$$

Knowing that $T_{i}=k_{i} \delta_{i}=k_{i} r_{i} \theta$, assume $k=k_{i}$,

$$
\begin{equation*}
P e=\sum_{i=1}^{n} k_{i} \theta r_{i}^{2}=k \theta \sum_{i=1}^{n} r_{i}^{2}, \quad \longrightarrow \quad \theta=\frac{P e}{k \sum_{i=1}^{n} r_{i}^{2}} \tag{8.8}
\end{equation*}
$$

Then,

$$
\begin{equation*}
T_{i}=k r_{i} \frac{P e}{k \sum_{i=1}^{n} r_{i}^{2}}=P e \frac{r_{i}}{\sum_{i=1}^{n} r_{i}^{2}} \tag{8.9}
\end{equation*}
$$

The bolt force due to torsion, T_{i}, needs to be resolved into components in x and y directions ($T_{i, x}$ and $\left.T_{i, y}\right)$ and added to the direction x and y forces $\left(B_{i, x}\right.$ and $\left.B_{i, y}\right)$.

The total bolt force may be found from the forces in each direction,

$$
\begin{equation*}
V_{f, i}^{*}=\sqrt{\left(B_{i, x}+T_{i, x}\right)^{2}+\left(B_{i, y}+T_{i, y}\right)^{2}} \tag{8.10}
\end{equation*}
$$

This is discussed further in the procedure below.

Elastic Analysis Procedure

Assume all n fasteners are of the same size $\left(k=k_{i}, A=A_{i}\right)$ and load is vertical, viz., $P_{x}=0$.

1. Determine centre of rigidity of fastener group

$$
\begin{aligned}
& x_{c r}=\frac{\sum_{i=1}^{n} x_{i} k_{i}}{\sum_{i=1}^{n} k_{i}}=\frac{\sum_{i=1}^{n} x_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}=\frac{\sum_{i=1}^{n} x_{i}}{n} \\
& y_{c r}=\frac{\sum_{i=1}^{n} y_{i} k_{i}}{\sum_{i=1}^{n} k_{i}}=\frac{\sum_{i=1}^{n} y_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}=\frac{\sum_{i=1}^{n} y_{i}}{n}
\end{aligned}
$$

where

$$
\begin{aligned}
x_{i} & =\text { signed } x \text { distance from c.r. of fastener } i \\
y_{i} & =\text { signed } y \text { distance from c.r. of fastener } i
\end{aligned}
$$

2. Calculate distance to c.r. for each fastener

$$
r_{i}=\sqrt{x_{i}^{2}+y_{i}^{2}}
$$

3. Determine polar moment of distance

$$
J=\sum_{i=1}^{n} r_{i}^{2}
$$

4. Determine fastener direct shear force

$$
B_{i, y}=P_{y} \frac{A_{i}}{\sum_{i=1}^{n} A_{i}}=\frac{P_{y}}{n}
$$

5. Determine torsional shear force on critical fastener

$$
T_{i}=P_{y} e \frac{r_{i}}{J}
$$

6. Resolve T_{i} into $T_{i, x}$ and $T_{i, y}$

$$
\begin{aligned}
T_{i, x} & =T_{i} \frac{y_{i}}{r_{i}} \\
T_{i, y} & =T_{i} \frac{x_{i}}{r_{i}}
\end{aligned}
$$

7. Find the critical shear on fastener

$$
V_{f, i}^{*}=\sqrt{\left(B_{i, y}^{2}+T_{i, y}^{2}\right)+T_{i, x}^{2}}
$$

8. Select bolt size

$$
V_{f, \max }^{*} \leqslant \phi V_{f}
$$

Bracket Capacity Check

The effective area should be used to obtain Z_{x} and A_{v} for strength calculation.

Figure 8.3: Stress distribution on reduced section

$$
\begin{equation*}
M^{*} \leqslant \phi M_{n}=\phi Z_{x} f_{y} \tag{8.11}
\end{equation*}
$$

In which Z_{x} accounts for the holes in plate.

$$
\begin{equation*}
V^{*} \leqslant \phi V_{n}=\phi A_{v} f_{y}=0.9 \cdot \sum d_{t} t_{i} \cdot \frac{2}{3} \cdot 0.6 f_{y} \tag{8.12}
\end{equation*}
$$

The factor $2 / 3$ accounts for averaged shear stress.
Example 8.1 Determine the size of Grade 8.8/N/S bolts in the bearing type connection below using Grade 300 steel.

P Solution 8.1

Bolt No.	x_{i} $(\mathrm{~mm})$	y_{i} $(\mathrm{~mm})$	r_{i} $(\mathrm{~mm})$	r_{i}^{2} $\left(\mathrm{~mm}^{2}\right)$	V_{y} (kN)	T_{i} (kN)	$T_{i, x}$ (kN)	$T_{i, y}$ (kN)	B_{i} (kN)
1	-80	-90	120.42	14500	20	61.23	-45.76	-40.68	50.22
2	-80	0	80.00	6400	20	40.68	0.00	-40.68	20.68
3	-80	90	120.42	14500	20	61.23	45.76	-40.68	50.22
4	80	-90	120.42	14500	20	61.23	-45.76	40.68	76.00
5	80	0	80.00	6400	20	40.68	0.00	40.68	60.68
6	80	90	120.42	14500	20	61.23	45.76	40.68	76.00

The critical bolts are are bolt 4 and 6 . A M20/8.8N bolt has a capacity of 92.6 kN (see Table 6.7). Thus use six M20/8.8N bolts.

- Example 8.2 Find the maximum factored load, P^{*} and the maximum service load, P, that can be carried in the connection in the previous example.

P Solution 8.2

- Factored force P^{*}

Since the behaviour is linear,

$$
P^{*}=\frac{92.6 \mathrm{kN}}{76.0 \mathrm{kN}} \times 120 \mathrm{kN}=146.2 \mathrm{kN}
$$

- Service load P

Similarly,

$$
P=\frac{35.5 \mathrm{kN}}{76.0 \mathrm{kN}} \times 120 \mathrm{kN}=56.1 \mathrm{kN}
$$

This method is quite conservative to compute P, since it assumes that bolt force increases linearly with distance from the centroid. For friction bolts (/TF and /TB), all bolts may be at the proof force at the same time.

Example 8.3 Check the plate strength in bending and shear in the previous example.

Solution 8.3

Using parallel axis theorem,

$$
\begin{aligned}
A_{v} & =2 \times(12 \times 39+12 \times 68) \\
& =2568 \mathrm{~mm}^{2} \\
I_{x} & =2 \times\left(\frac{12 \times 39^{3}}{12}+12 \times 39 \times 120.5^{2}+\frac{12 \times 68^{3}}{12}+12 \times 68 \times 45^{2}\right) \\
& =17643256 \mathrm{~mm}^{4} \\
Z_{x} & =\frac{I_{x}}{y_{\max }}=\frac{17643256 \mathrm{~mm}^{4}}{140 \mathrm{~mm}} \\
& =1.26 \times 10^{5} \mathrm{~mm}^{3}
\end{aligned}
$$

The moment applied on the section is

$$
\begin{aligned}
M^{*} & =P e \\
& =120 \mathrm{kN} \times(300 \mathrm{~mm}-80 \mathrm{~mm}) \\
& =26.4 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

The moment capacity is

$$
\begin{aligned}
\phi M_{n} & =\phi Z_{x} f_{y} \\
& =0.9 \times 1.26 \times 10^{5} \mathrm{~mm}^{3} \times 310 \mathrm{MPa} \\
& =35.2 \mathrm{kN} \mathrm{~m}>M^{*}=26.4 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

The shear capacity is

$$
\begin{aligned}
\phi V_{n} & =\phi A_{v} f_{y}=0.9 \cdot \sum d_{t} t_{i} \cdot \frac{2}{3} \cdot 0.6 f_{y} \\
& =0.9 \times 2568 \mathrm{~mm}^{2} \times \frac{2}{3} \times 0.6 \times 310 \mathrm{MPa} \\
& =286.6 \mathrm{kN}>V^{*}=120 \mathrm{kN}
\end{aligned}
$$

It is necessary to check other possible failure modes, for example,

- bolt bearing
- bolt tear out
- edge distance
- block tearing, etc.

8.2.2 Ultimate Strength Method

Many countries use the ultimate strength method to estimate the strength of a connection. This method uses the concept of the instantaneous centre of rotation (ICR).

Figure 8.4: Illustration of ICR

According to this method, the deformation of each fastener (or part of a weld) is assumed to be proportional to its distance from the ICR. The connection fails when on of the fasteners reaches the maximum deformation $\Delta_{\max }$. Accordingly, the maximum resistance is denoted as $R_{u l t}$.

It is also necessary to know the force deformation relationship for each bolt. A linear relationship can be expressed as

$$
\begin{equation*}
R_{i}=R_{u l t} \frac{\Delta_{i}}{\Delta_{\max }} \tag{8.13}
\end{equation*}
$$

where $R_{\text {ult }}$ is the ultimate dependable resistance of a bolt in shear.
This relationship does not have to be linear. For example, according to AISC tables, the deformation relationship is given by the following exponential equation.

$$
\begin{equation*}
R_{i}=R_{\text {ult }}\left(1-e^{-0.394 \Delta_{i}}\right)^{0.55} \tag{8.14}
\end{equation*}
$$

Figure 8.5: Linear and nonlinear responses

The procedure is iterative.

- Assume location of $\operatorname{ICR}\left(r_{0}\right)$
- Check equilibrium

For vertical P only, there are

$$
\begin{array}{ll}
\sum F_{x}=0, & \rightarrow \sum R_{i} \frac{y_{i}}{r_{i}}=0, \quad \text { Since there is only vertical applied load. } \\
\sum F_{y}=0, & \rightarrow \sum R_{i} \frac{x_{i}}{r_{i}}=P_{u 1} \\
\sum M=0, & \rightarrow \sum R_{i} \frac{r_{i}}{e+r_{0}}=P_{u 2} \tag{8.17}
\end{array}
$$

where $R_{i}=R_{i}\left(\Delta_{i}\right)$ is Eq. (8.14) (or Eq. (8.13)) and $\Delta_{i}=\frac{r_{i}}{r_{\max }} \Delta_{\max }$, in which

$$
r_{i}=\text { distance from ICR to bolt } i
$$

$r_{\max }=$ distnace to the farthest bolt
This assumes the farthest bolt(s) would reach the maximum deformation $\Delta_{\max }$.

- Iterate on r_{0} until $P_{u 1}=P_{u 2}$

Such iteration can be tedious so tables are often made for standard connections.

For friction-grip (slip critical) connections, the force R_{i} may be assumed to be constant for all fasteners. It is the dependable friction resistance per bolt.

Example 8.4 Ultimate Strength Method on Bolt Group
Use ultimate strength method to analyse the previous example.

Solution 8.4

From the previous example, the demand causes the maximum shear force 76 kN while the capacity per bolt is 92.6 kN , thus the maximum P^{*} is

$$
P^{*}=120 \mathrm{kN} \times \frac{92.6 \mathrm{kN}}{76 \mathrm{kN}}=146.2 \mathrm{kN}
$$

Knowing $\Delta_{\max }=8.6 \mathrm{~mm}, e=300 \mathrm{~mm}$ and $R_{u l t}=92.6 \mathrm{kN}$.

Try $r_{0}=39.33 \mathrm{~mm}$, using linear relationship Eq. (8.13),

Bolt No.	About c.r.		About ICR		$\begin{gathered} r \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \Delta_{i} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} R_{i} \\ \mathrm{kN} \end{gathered}$	$\begin{aligned} & P_{u 1} \\ & \mathrm{kN} \end{aligned}$	$\begin{aligned} & P_{u 2} \\ & \mathrm{kN} \end{aligned}$
	$\begin{gathered} x_{i} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} y_{i} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} x_{i} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} y_{i} \\ \mathrm{~mm} \end{gathered}$					
1	-80	-90	-40.67	-90	98.76	5.68	61.19	-25.19	17.81
2	-80	0	-40.67	0	40.67	2.34	25.19	-25.19	3.02
3	-80	90	-40.67	90	98.76	5.68	61.19	-25.19	17.81
4	80	-90	119.33	-90	149.47	8.60	92.60	73.93	40.79
5	80	0	119.33	0	119.33	6.87	73.93	73.93	26.00
6	80	90	119.33	90	149.47	8.60	92.60	73.93	40.79
				ma	149.47		\sum	146.21	146.21

It can be noted that this method is identical to standard elastic method since bolt deformation is linear elastic.

Try $r_{0}=62.76 \mathrm{~mm}$, using exponential relationship Eq. (8.14),

About c.r.															About ICR						
Bolt No.	x_{i}	y_{i}	x_{i}	y_{i}	r	Δ_{i}	R_{i}	$P_{u 1}$	$P_{u 2}$												
	mm	mm	mm	mm	mm	mm	kN	kN	kN												
1	-80	-90	-17.24	-90	91.64	4.67	84.20	-15.84	21.27												
2	-80	0	-17.24	0	17.24	0.88	47.11	-47.11	2.24												
3	-80	90	-17.24	90	91.64	4.67	84.20	-15.84	21.27												
4	80	-90	142.76	-90	168.76	8.60	90.87	76.87	42.27												
5	80	0	142.76	0	142.76	7.27	89.66	89.66	35.29												
6	80	90	142.76	90	168.76	8.60	90.87	76.87	42.27												

For exponential relationship, $P_{u}=164.61 \mathrm{kN}$ corresponds to 12% increase in strength due to nonlinearity. Inelastic ICR method can be used for welds too.

\$8.3 Eccentric Bolted Tension Shear Connections

These connections have complex behaviour and several methods have been proposed for design as described by Smith and Smith (1996). We consider proof loaded high strength bolts here and we will use the method (Salmon et al., 2009) where high strength bolt forces are used to prevent lift-off.

Figure 8.6: Stress components of eccentrically loaded bolted connection

The compressive stress due to $N^{*}=\sum N_{t f}^{*}$ can be computed as

$$
\begin{equation*}
f_{\text {bolt }}=\frac{\sum N_{t f}^{*}}{b d} . \tag{8.18}
\end{equation*}
$$

The tensile stress on the top bolt due to $M^{*}=V_{u}^{*} e$ can be computed as

$$
\begin{equation*}
f_{\text {plate }}=\frac{M^{*}}{I} y=\frac{V_{u}^{*} e}{b d^{3} / 12}\left(\frac{d}{2}-\frac{p}{2}\right)=6 V_{u}^{*} e \frac{d-p}{b d^{3}} . \tag{8.19}
\end{equation*}
$$

Bolt forces only increase significantly after the applied stress becomes greater than $f_{\text {bolt }}$ and lift-off occurs. The limit is

$$
f_{\text {bolt }} \geqslant f_{\text {plate }} \quad \longrightarrow \quad \frac{\sum N_{t f}^{*}}{b d} \geqslant 6 V_{u}^{*} e \frac{d-p}{b d^{3}} .
$$

Thus,

$$
\begin{equation*}
M^{*}=V_{u}^{*} e \leqslant \frac{\sum N_{t f}^{*}}{b d} \frac{1}{6} \frac{b d^{3}}{d-p}, \quad \longrightarrow \quad M^{*}=V_{u}^{*} e \leqslant \frac{\sum N_{t f}^{*}}{6} \frac{d^{2}}{d-p} . \tag{8.20}
\end{equation*}
$$

Noting that due to the presence of shear force $V_{u}^{*}, N_{t f}^{*}$ shall be reduced by considering combined action (see § 6.11.8 and § 6.12.3).

Example 8.5 Find P^{*} considering M20X/8.8/S bolts. Two $125 \times 75 \times 12 U A$ angles are used in the connection with short leg connected to beam and long leg connected to plate. A vertical force P^{*} is applied on bolt line connecting plate (75 mm from column surface).

Solution 8.5

$$
\begin{aligned}
M^{*}=P^{*} e & \leqslant \frac{\sum N_{t f}^{*}}{6} \frac{d^{2}}{d-p} \\
P^{*} & \leqslant \frac{1}{75 \mathrm{~mm}} \times \frac{8 N_{t f}^{*}}{6} \times \frac{320 \mathrm{~mm} \times 320 \mathrm{~mm}}{320 \mathrm{~mm}-80 \mathrm{~mm}}=7.59 N_{t f}^{*}
\end{aligned}
$$

Or, $N_{t f}^{*} \geqslant 0.132 P^{*}$.

$$
V_{f}^{*}=\frac{P^{*}}{n}=0.125 P^{*}
$$

For M20X/8.8/S bolts,

$$
\phi N_{t f}=163 \mathrm{kN}, \quad \phi V_{f}=129 \mathrm{kN} .
$$

Consider combined action,

$$
\begin{aligned}
\left(\frac{V_{f}^{*}}{\phi V_{f}}\right)^{2}+\left(\frac{N_{t f}^{*}}{\phi N_{t f}}\right)^{2} & \leqslant 1.0 \\
\left(\frac{0.125 P^{*}}{129 \mathrm{kN}}\right)^{2}+\left(\frac{0.132 P^{*}}{163 \mathrm{kN}}\right)^{2} & \leqslant 1.0 \\
P^{*} & \leqslant 792.3 \mathrm{kN}
\end{aligned}
$$

Using a friction-type connection (/TB), assume $k_{h}=1.0$, consider combined action,

$$
\begin{aligned}
\frac{V_{f}^{*}}{\phi V_{f}}+\frac{N_{t f}^{*}}{\phi N_{t f}} & \leqslant 1.0 \\
\frac{0.125 P^{*}}{35.5 \mathrm{kN}}+\frac{0.132 P^{*}}{101.5 \mathrm{kN}} & \leqslant 1.0 \\
P^{*} & \leqslant 207.5 \mathrm{kN}
\end{aligned}
$$

\$8.4 Welded Eccentric Shear Connections

8.4.1 Elastic Method

It is assumed that the connector plate is rigid, the welds do not deform, the forces result from direct shear and torsion. Rotation is assumed to occur about the weld centroid.

Figure 8.7: Stress components of weld element

Analysis Procedure

- Determine centroid of weld

$$
\bar{x}=\frac{\int x \mathrm{~d} A}{\int \mathrm{~d} A}=\frac{\sum A x}{\sum A}, \quad \bar{y}=\frac{\int y \mathrm{~d} A}{\int \mathrm{~d} A}=\frac{\sum A y}{\sum A} .
$$

- Calculate polar moment of inertia J

$$
J=\int r^{2} \mathrm{~d} A=\int\left(x_{i}^{2}+y_{i}^{2}\right) \mathrm{d} A=\int x_{i}^{2} \mathrm{~d} A+\int y_{i}^{2} \mathrm{~d} A=I_{x}+I_{y}
$$

where

$$
\begin{aligned}
x_{i} & =x-\bar{x}=x \text { distance measured from centroid } \\
y_{i} & =y-\bar{y}=y \text { distance measured from centroid }
\end{aligned}
$$

By parallel axis theorem,

$$
J=\sum I_{x 0}+\sum I_{y 0}+\sum A x_{i}^{2}+\sum A y_{i}^{2}
$$

where $I_{x 0}$ and $I_{y 0}$ are moment of inertia about the element's own axes.

- Calculate components of stress due to direct shear

$$
f_{x}^{\prime}=\frac{P_{u, x}^{*}}{A}=\frac{P_{u, x}^{*}}{t_{e} l_{w}}, \quad f_{y}^{\prime}=\frac{P_{u, y}^{*}}{A}=\frac{P_{u, y}^{*}}{t_{e} l_{w}}
$$

Outline of Welded Joint	Bending (About Horizontal Axis $x-x$), in 2	Twisting, in^{3}
$b=$ Width $\quad d=$ Depth		
	$S_{w}=\frac{d^{2}}{6}$	$J_{w}=\frac{d^{3}}{12}$
	$S_{w}=\frac{d^{2}}{3}$	$J_{w}=\frac{d\left(3 b^{2}+d^{2}\right)}{6}$
	$S_{w}=b d$	$J_{w}=\frac{b^{3}+3 b d^{2}}{6}$
	$\begin{gathered} S_{w}=\frac{4 b d+d^{2}}{6}=\frac{d^{2}(4 b+d)}{6(2 b+d)} \\ \text { top bottom } \end{gathered}$	$J_{w}=\frac{(b+d)^{4}-6 b^{2} d^{2}}{12(b+d)}$
	$S_{w}=b d+\frac{d^{2}}{6}$	$J_{w}=\frac{(2 b+d)^{3}}{12}-\frac{b^{2}(b+d)^{2}}{2 b+d}$
$N_{x}=\frac{d^{2}}{b+2 d} \times \cdot \overrightarrow{b-\cdots-1}$	$\begin{gathered} S_{w}=\frac{2 b d+d^{2}}{3}=\frac{d^{2}(2 b+d)}{3(b+d)} \\ \text { top bottom } \end{gathered}$	$J_{w}=\frac{(b+2 d)^{3}}{12}-\frac{d^{2}(b+d)^{2}}{b+2 d}$
	$S_{w}=b d+\frac{d^{2}}{3}$	$J_{w}=\frac{(b+d)^{3}}{6}$
	$\begin{gathered} S_{w}=\frac{2 b d+d^{2}}{3}=\frac{d^{2}(2 b+d)}{3(b+d)} \\ \text { top bottom } \end{gathered}$	$J_{w}=\frac{(b+2 d)^{3}}{12}-\frac{d^{2}(b+d)^{2}}{b+2 d}$
	$\begin{gathered} S_{w}=\frac{4 b d+d^{2}}{3}=\frac{4 b d^{2}+d^{3}}{6 b+3 d} \\ \text { top bottom } \end{gathered}$	$J_{w}=\frac{d^{3}(4 b+d)}{6(b+d)}+\frac{b^{3}}{6}$
	$S_{w}=b d+\frac{d^{2}}{3}$	$J_{w}=\frac{b^{3}+3 b d^{2}+d^{3}}{6}$
	$S_{w}=2 b d+\frac{d^{2}}{3}$	$J_{w}=\frac{2 b^{3}+6 b d^{2}+d^{3}}{6}$

Figure 8.8: Treating welds as lines (Roark, 2012)

- Calculate components of stress due to torsion

$$
f_{x}^{\prime \prime}=P_{u}^{*} e \frac{y_{i}}{J}, \quad f_{y}^{\prime \prime}=P_{u}^{*} e \frac{x_{i}}{J} .
$$

- Calculate components of stress due to any potential out-of-plane moment M^{*}

$$
f_{z}=M^{*} \frac{y_{i}}{I_{x}}+M^{*} \frac{x_{i}}{I_{y}} .
$$

- Calculate total stress

$$
f_{u}^{*}=\sqrt{\left(f_{x}^{\prime}+f_{x}^{\prime \prime}\right)^{2}+\left(f_{y}^{\prime}+f_{y}^{\prime \prime}\right)^{2}+f_{z}^{2}}
$$

- Find critical point(s) on the weld and ensure

$$
f_{u, \max }^{*} \leqslant \begin{cases}\phi_{\text {weld }} 0.6 f_{\text {weld }} & \text { weld strength } \\ \phi_{\text {steel }} 0.85 \frac{t_{p}}{t_{t}} 0.6 f_{u} & \text { plate block tearing }\end{cases}
$$

Design Procedure

- Select weld process, strength and weld lines
- Analyse the connection to find the required throat thickness t_{t} to resist P^{*}
- Calculate the weld leg size t_{w}
- Check shear and tension stresses in the base metal

Example 8.6 Worksheet Eccentrically Loaded Weld

A bracket is to be connected to both flanges of a 250UC89.5 Grade 300 column to transit a vertical factored force of 200 kN that is 200 mm from the column. Assume plate satisfies all necessary requirements. Use E48XX GP electrodes and find weld size.

Solution 8.6

Welds are subject to shear and torsion.

Since there are two sides, each side experiences $200 \mathrm{kN} / 2=100 \mathrm{kN}$ force.

- Determine centroid of weld

$$
\bar{x}=\frac{\sum A x}{\sum A}=\frac{2 \times 150 \mathrm{~mm} \times \frac{150 \mathrm{~mm}}{2}}{200 \mathrm{~mm}+2 \times 150 \mathrm{~mm}}=45 \mathrm{~mm}
$$

- Calculate polar moment of inertia J, ignoring any high order terms of t_{t},

$$
\begin{aligned}
J & =2 \times \underbrace{150 \mathrm{~mm} \times t_{t} \times(100 \mathrm{~mm})^{2}}_{A y_{i}^{2} \text { of horizontal elements }}+\underbrace{\frac{t_{t} \times(200 \mathrm{~mm})^{3}}{12}}_{I_{x} \text { of vertical element }} \\
& +2 \times \underbrace{\frac{t_{t} \times(150 \mathrm{~mm})^{3}}{12}}_{I_{y} \text { of horizontal elements }}+2 \times \underbrace{150 \mathrm{~mm} \times t_{t} \times(75 \mathrm{~mm}-45 \mathrm{~mm})^{2}}_{A x_{i}^{2} \text { of horizontal elements }} \\
& +\underbrace{200 \mathrm{~mm} \times t_{t} \times(45 \mathrm{~mm})^{2}}_{A x_{i}^{2} \text { of vertical element }} \\
& =\frac{14712500}{3} t_{t} \approx 4904166.7 t_{t} .
\end{aligned}
$$

The factor 4904166.7 can alternatively be computed via the formula provided in Fig. 8.8.

- Calculate components of stress due to direct shear

$$
f_{y}^{\prime}=\frac{P_{u, y}}{A}=\frac{200 \mathrm{kN} / 2}{500 t_{t}}=\frac{0.2}{t_{t}} .
$$

- Calculate components of stress due to torsion

The critical points are top and bottom right ends.

$$
\begin{aligned}
& f_{x}^{\prime \prime}=P_{u} e \frac{y_{i, \max }}{J}=200 \mathrm{kN} / 2 \times(200 \mathrm{~mm}+105 \mathrm{~mm}) \times \frac{100 \mathrm{~mm}}{4904166.7 t_{t}}=\frac{0.622}{t_{t}}, \\
& f_{y}^{\prime \prime}=P_{u} e \frac{x_{i, \max }}{J}=200 \mathrm{kN} / 2 \times(200 \mathrm{~mm}+105 \mathrm{~mm}) \times \frac{105 \mathrm{~mm}}{4904166.7 t_{t}}=\frac{0.653}{t_{t}} .
\end{aligned}
$$

- Calculate total stress

$$
\begin{aligned}
f_{u}^{*} & =\sqrt{\left(f_{x}^{\prime \prime}\right)^{2}+\left(f_{y}^{\prime}+f_{y}^{\prime \prime}\right)^{2}} \\
& =\sqrt{\left(\frac{0.622}{t_{t}}\right)^{2}+\left(\frac{0.2}{t_{t}}+\frac{0.653}{t_{t}}\right)^{2}} \\
& =\frac{1.056 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}}
\end{aligned}
$$

- Check capacity

$$
\frac{1.056 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}} \leqslant \phi_{\text {weld }} 0.6 f_{\text {weld }}, \quad \longrightarrow \quad t_{t} \geqslant \frac{1.056 \mathrm{kN} \mathrm{~mm}^{-1}}{0.6 \times 0.6 \times 480 \mathrm{MPa}}=6.11 \mathrm{~mm}
$$

- Check block tearing in plate

$$
\begin{aligned}
& \frac{1.056 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}} \leqslant \phi_{\text {steel }} 0.85 \frac{t_{p}}{t_{t}} 0.6 f_{u} \\
& \frac{1.056 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}} \leqslant 0.9 \times 0.85 \times \frac{12 \mathrm{~mm}}{t_{t}} \times 0.6 \times 440 \mathrm{MPa}=\frac{2.424 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}} .
\end{aligned}
$$

Thus required weld size is $t_{w}=\sqrt{2} \times 6.11 \mathrm{~mm}=8.64 \mathrm{~mm}$, try 10 mm weld. The minimum size is 5 mm . The maximum size is 11 mm . Use 10 mm E48XX GP fillet welds.

Example 8.7 Compute required size of W50X fillet weld. Assume that column and bracket do no govern. Assume the shear stress is uniform.

Solution 8.7

Compute stress due to shear force, assume shear stress is uniformly distributed.

$$
f_{y}^{\prime}=\frac{N^{*}}{A}=\frac{65 \mathrm{kN}}{2 \times 250 \times t_{t}}=\frac{0.13 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}}
$$

Compute stress due to moment.

$$
I_{x}=2 \times \frac{t_{t} \times(250 \mathrm{~mm})^{3}}{12}=2604166.7 t_{t}
$$

Thus,

$$
f_{z, \max }=M^{*} \frac{y_{\max }}{I_{x}}=65 \mathrm{kN} \times 150 \mathrm{~mm} \times \frac{125 \mathrm{~mm}}{2604166.7 t_{t}}=\frac{0.468 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}}
$$

The total stress is then

$$
f_{u}^{*}=\sqrt{\left(\frac{0.13 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}}\right)^{2}+\left(\frac{0.468 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}}\right)^{2}}=\frac{0.486 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}}
$$

Check capacity.

$$
\frac{0.486 \mathrm{kN} \mathrm{~mm}^{-1}}{t_{t}} \leqslant \phi_{\text {weld }} 0.6 f_{\text {weld }}, \quad \longrightarrow \quad t_{t} \geqslant \frac{0.486 \mathrm{kN} \mathrm{~mm}^{-1}}{0.6 \times 0.6 \times 480 \mathrm{MPa}}=2.81 \mathrm{~mm}
$$

Thus, $t_{w}=\sqrt{2} \times 2.81 \mathrm{~mm}=3.98 \mathrm{~mm}$. The minimum size is 5 mm . Use 5 mm W50X GP fillet welds.

Part III

Structural Steel Weld Specification and Implementation

Fabricators generally only stock a few types of welding consumable so it is recommended that the following be used in practice.

A. Specification for Engineers for Construction Documents

For welds to Grade 300 and 350 structural steel:

1. Weld metal shall be designated as $f_{u w}=490 \mathrm{MPa}$.
2. Welding consumables shall be matched with the steel types in accordance with AS/NZS 1554.1 (2014) Table 4.6.1(A).
3. All welding, including qualification of welding procedures, shall comply with AZ/NZS 1554.1 (2004; Am. 1, 2015; Am. 2, 2017).
4. Welds subject to earthquake loads or effects shall comply with AS/nZS 5131 (2016; Am., 2020) Section 7.5.17 and welding consumables shall have a Ship Classification Societies Grade 3 approval.
5. eld category specified for seismic structural applications, and for all construction to Construction Category (CC) 3, shall be SP to AS/NZS 1554.1 (2004; Am. 1, 2015; Am. 2, 2017).
6. Fabrication shall comply with the Construction Category (CC) in accordance with AS/NZS 5131 (2016; Am., 2020).
7. Weld inspection shall follow AZ/NZS 5131 (2016; Am., 2020) Appendix I.

B. Fabricator Actions in Response to Above Specification

1. Welding consumables shall be used within the welding parameter ranges specified by the manufacturer, and as per any relevant Ship Classification Societies approval.
2. Fabricator shall comply with the Construction Category (CC) specified for the job.

C. Commentary

1. The recommendations above were developed together with John Jones Steel and the HERA Welding Centre (June, 2021). They were developed to simplify weld specification.
2. Welding inspection can be performed as a combination of in-house welding inspection and by a third-party inspector if required. The standard is not specific as to who should perform the inspection. The type and quantity of inspection needs to be specified by the engineer. It can be performed by the fabricator (in-house), and/or by a third-party inspection company.
3. Fillet welds should be specified where possible because butt welds are generally more expensive.
4. Storage of welding consumables will comply with manufacturer's recommendations (to avoid cold cracking, porosity and other weld defects) as the fabricator meets the Construction Category (CC) requirements.

(1)

 LIBERTY

 LIBERTY}

Hot Rolled and Structural Steel Products

Eighth Edition

Contents

Foreword and Introduction 2
Commitment to Quality
Test Certificates - EzyCommerce and ACRS 3
Availability
Structural Steel Sections 5
Merchant Bar Sections 7
Dimensions and Design Information
Universal Beams 10
Universal Columns 12
Tapered Flange Beams 14
Parallel Flange Channels 15
Universal Bearing Piles 16
Equal Angles 17
Unequal Angles 20
Tolerances
Rounds and Squares 23
Flats 23
Universal Beams 24
Universal Columns 24
Parallel Flange Channels 25
Tapered Flange Beams 25
Universal Bearing Piles 25
Equal Angles 26
Unequal Angles 27
Straightness
Universal Sections 28
Non-universal Sections 28
Standard Specifications
Structural Steel Sections 29
Merchant Bar Sections 30
Customer Technical Service 31

Foreword

This edition of Liberty Steel's Hot Rolled and Structural Steel Product Catalogue incorporates the following changes from the previous edition.

- The depths and widths of Universal Beams (UBs) and Columns (UCs) were previously provided to three significant figures. For consistency with AS/NZS 3679.1 Structural Steel - Hot rolled bars and sections, these measurements are now provided to one decimal place. The dimensions for UBs and UCs were converted from imperial to metric units of measure in the mid 1970s and resulted in dimensions that were not whole millimetres. Until this edition they were rounded to three significant figures. The other sections in the Catalogue are metric and therefore in whole millimetres. The section properties for all sections in this version and the previous versions have used depths and widths correct to one decimal place to calculate the tabulated values presented to three significant figures. These values are unchanged from the previous edition.
- The inclusion of tolerance tables for each of the products listed. These values are consistent with AS/NZS 3679.1.
- The inclusion of tables providing the allowable camber and sweep of sections consistent with AS/NZS 3679.1.

Introduction

Liberty Steel owns facilities which have a long and significant presence in the Australian steel industry. These facilities which produce steel and finished steel products, date back to the establishment of steelmaking in Newcastle in 1915 and continues to the present day.

Liberty Steel's major manufacturing facilities for hot rolled products are located in Whyalla, South Australia; in Melbourne, Victoria and in Newcastle and western Sydney, New South Wales. Together they are considered Australia's premier manufacturer of steel long products. These products include structural sections, rail, sleepers, rod, bar, and wire.

This catalogue, which demonstrates Liberty Steel's ongoing commitment to the Australian construction and manufacturing industry, has been produced to provide general information on a range of hot rolled structural steel products.

Commitment to Quality

Liberty Steel supplies products that are compliant to the relevant Australian Standards or its own high quality standards. Liberty Steel's aim is to supply a consistent high quality product which delivers benefits to our customers by minimising variation and reducing waste.

The quality of products is constantly checked in NATA accredited testing laboratories, by skilled technical staff using proven equipment. Strict metallurgical control is maintained, from receipt of raw materials to despatch of the finished product. Products are rigorously tested and certified, with test certificates providing assurance that Liberty Steel sections meet all required specifications. These are made available free of charge via our EzyCommerce ${ }^{\circledR}$ website.

At its manufacturing sites Liberty Steel has third party accreditation to Quality Management System ISO 9001 and Environmental Management System ISO 14001.

Test Certificates - EzyCommerce

NATA accredited test certificates are available for all AS/NZS 3679.1 products. The Steel Structures Design Standard - AS4100, acknowledges these certificates provide designers and certifiers with sufficient evidence that they are acceptable steels for use in designs to AS4100. Our test certificates also comply with EN10204 Type 3.1.

Fabricators can ensure they receive a copy of the relevant certificate covering the steel ordered and delivered by requesting them at the time of order. The certificates can be provided manually, electronically or customers can access these via Liberty Steel's EzyCommerce ${ }^{\circledR}$ website at https://ezycommerce.libertygfg.com

All distributors of Liberty Steel AS/NZS 3679.1 products have access to certificates via EzyCommerce ${ }^{\circledR}$ - this is a free service that offers the ability to access and retrieve this information anytime.

Access to EzyCommerce ${ }^{\circledR}$ Online is free to approved customers of Liberty Steel - all you need is a login name and password - please refer to www/libertygfg.com/steel/ezycommerce for more information on obtaining access to the website.

For more information:
Ezycommerce, https://libertygfg.com/steel/ezycommernce

ACRS - Third Party Certification

In addition to our quality systems and NATA endorsed laboratories, Liberty Steel's range of AS/NZS 3679.1 hot rolled products are all produced at mills with ACRS certification.

Copies of our ACRS accreditation can be viewed at the Liberty Steel website: www.libertygfg.com

For more information:

Liberty Steel website: www.libertygfg.com

Commitment to Quality

Test Certificate sample

TEST CERTIFICATE

Customer:	Supplier:	OneSteel Manufacturing Pty Limited Whyalla, SA - 5600, Australia
		Sales Order No: A.B.N. 42 004651325 B7093 $28 / 11 / 2018$
Ship To:	Printed on:	

	Accredited for compliance with ISO/IEC 17025Testing. This document shall not be reproduced except in full.	Sampling undertaken byOneSteel Whyalla15352 Approved Signatory - P. Rawnsley Chemical results as identified are fromBureau Veritas Minerals Pty Ltd, Whyalla0834 Approved Signatory - K. Barsby Mechanical results as identified are fromBureau Veritas Minerals Pty Ltd, Whyalla0794 Approved Signatory - I. Harrison
STEELMAKING:	Basic Oxygen - Slab Cast	INSPECTION: Supplier
SPECIFICATION:	AS/NZS3679.1-300PLUS/S0	CERTIFICATION: Supplier
PRODUCT:	310 UB40.4	

ITEMS COVERED BY THIS TEST CERTIFICATE

Item No	Heat No	Customer Order	Length
2260 C	571984	7505648987	10.500
2260 C	571985	7505648987	10.500
2260 C	571986	7505648987	10.500
2289 C	571973	7505649607	18.000
2289 C	571984	7505649607	18.000

CHEMICAL ANALYSIS

$\begin{aligned} & \hline \text { Item } \\ & \text { No } \end{aligned}$	Heat / Unit No	NATA Lab	L/P	C	P	Mn	Si	S	Ni	Cr	Mo	Cu	Sn	AI
2260C	571984	0834	L	. 188	. 018	1.32	. 150	. 006	. 008	. 022	. 005	. 008	. 002	. 012
2260C	571985	0834	L	. 184	. 016	1.33	. 140	. 008	. 007	. 022	. 005	. 008	. 002	. 022
2260C	571986	0834	L	. 188	. 013	1.34	. 130	. 007	. 007	. 022	. 005	. 008	. 001	. 023
2289C	571973	0834	L	. 157	. 016	1.53	. 150	. 010	. 008	. 024	. 006	. 009	. 002	. 022
2289C	571984	0834	L	. 188	. 018	1.32	. 150	. 006	. 008	. 022	. 005	. 008	. 002	. 012

Item No	Heat / Unit No	NATA Lab	L / P	Nb	Ti	B	V	N	Ca	Zr	CF 1
2260 C	571984	0834	L	.003	.001	.0005	.002	.0042	.0001	.002	.41
2260 C	571985	0834	L	.003	.001	.0005	.002	.0050	.0001	.002	.41
2260C	571986	0834	L	.003	.001	.0006	.002	.0044	.0001	.002	.42
2289 C	571973	0834	L	.004	.001	.0005	.002	.0060	.0001	.003	.42
2289C	571984	0834	L	.003	.001	.0005	.002	.0042	.0001	.002	.41

$\mathrm{CF} 1=\mathrm{C}+\mathrm{Mn} / 6+(\mathrm{Cr}+\mathrm{Mo}+\mathrm{V}) / 5+(\mathrm{Ni}+\mathrm{Cu}) / 15$

MECHANICAL TESTING

Tensile

Item No	Heat No	Tested Unit	NATA Lab	Test Report	ReH MPa	Rm MPa	ELONGN $\%$
2260C	571984	571984	0794	57196	380	520	37
2260C	571984	571984	0794	57196	365	500	36
2260C	571985	571985	0794	57197	350	500	36
2260C	571985	571985	0794	57197	350	490	36
2260C	571986	571986	0794	57197	355	490	36
2260C	571986	571986	0794	57197	355	500	39
2289C	571973	571973	0794	57196	360	500	38
2289C	571973	571973	0794	57196	345	490	38
2289C	571973	571973	0794	57196	360	510	34
2289C	571984	571984	0794	57196	380	520	37
2289C	571984	571984	0794	57196	365	500	36

Yield Strength - determined in accordance with requirements of nominated product standard

Availability

Structural Steel Sections

Hot Rolled Products

Hot Rolled Structural Steel Sections produced by Liberty Steel are manufactured in accordance with the requirements of Australian Standard AS/NZS 3679.1 Structural steel - hot rolled bars and sections.

Grade Availability

300PLUS ${ }^{\circledR}$ Steel is the standard product manufactured by Liberty Steel for hot rolled Structural Steel Sections for Australia.

300PLUS ${ }^{\circledR}$ Steel for hot rolled products is produced to exceed the minimum requirements of AS/NZS 3679.1 grade 300.

For further information contact Liberty Steel Sales.
The following AS/NZS 3679.1 grades are also available by enquiry and will depend on the section and quantity required.

Table 1: Additional Grades Available

Additional Grades Available
300PLUS ${ }^{\circledR}$ LO - Exceeds the requirements of AS/NZS 3679.1-300L0
300PLUS® ${ }^{\circledR} 15$ - Exceeds the requirements of AS/NZS 3679.1-300L15
AS/NZS 3679.1-350
AS/NZS 3679.1-350L0
AS/NZS 3679.1-350L15

Length Availability

The majority of Structural Steel Sections produced by Liberty Steel are available in standard length and bundle configurations.

We would recommend that attention be given to the standard lengths produced by Liberty Steel as they are more readily available than other lengths. Table 2 (page 6) indicates the standard lengths produced by Liberty Steel in Structural Steel Sections. For other lengths (including those in excess of 18 metres) please contact Liberty Steel Sales for further details.

Availability

Table 2 Standard Lengths

Section	6.0	7.5	9.0	10.5	12.0	Length (m)					
						13.5	14.0	15.0	16.5	18.0	20.0*
Universal Beams											
610 UB, 530 UB, 460 UB, 410 UB, 360 UB			\bullet	\bullet	\bullet	\bullet		-	-	\bullet	\bullet
310 UB 46.2, 40.4			\bullet	-	\bullet	\bullet		\bullet	\bullet	\bullet	-
310 UB 32.0			\bullet	\bullet	\bullet	\bullet		\bullet		\bullet	
250 UB			\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	
200 UB 29.8, 25.4, 22.3			\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	
200 UB 18.2			\bullet	-	\bullet	-		\bullet			
180 UB, 150 UB			-	\bullet	\bullet	-		\bullet	-		
Universal Columns											
310 UC 158, 137, 118			\bullet	\bullet	\bullet	\bullet		\bullet	-	-	
310 UC 96.8			\bullet	\bullet	\bullet	-		\bullet	\bullet	-	-
250 UC			\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	-
200 UC, 150 UC			\bullet	\bullet	\bullet	-		\bullet	\bullet	\bullet	
100 UC			\bullet		\bullet			\bullet			
Tapered Flange Beams											
125 TFB, 100 TFB		-	\bullet		-		\bullet	-			
Parallel Flange Channels											
380 PFC, 300 PFC, 250 PFC, 230 PFC, 200 PFC, 180 PFC			\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	
150 PFC			\bullet	-	-	\bullet		\bullet			
125 PFC, 100 PFC, 75 PFC	\bullet		\bullet		\bullet						
Universal Bearing Piles											
310 UBP, 200 UBP							enqui				
Equal Angles											
200 EA, $150 \mathrm{EA}, 125 \mathrm{EA}$			\bullet	\bullet	\bullet	-		-			
100 EA, 90 EA **	+	+	-		-						
$75 \mathrm{EA}, 65 \mathrm{EA}, 55 \mathrm{EA}, 50 \mathrm{EA}$ **	+	+	\bullet		+						
$45 \mathrm{EA}, 40 \mathrm{EA}, 30 \mathrm{EA}, 25 \mathrm{EA}$	\dagger	+	+		+						
Unequal Angles											
150×100 UA, 150×90 UA			\bullet	-	\bullet	\bullet		\bullet			
125×75 UA, 100×75 UA	+	+	+		+						
75×50 UA, 65×50 UA	+	+	+		+						

- The Section/Length combination is available in Standard Bundle configurations.
* By enquiry - delivery to capital cities only.
** Certain thicknesses may not be available in both lengths. Confirm availability with Liberty Steel.
+ By enquiry.

Availability

Merchant Bar Sections

Rounds, Squares and Flats

Availability

Merchant bar rounds, squares and flats are available in a variety of steel grades and sizes.
Due to process limitations not all grades are available in all sizes. For new applications we recommend you confirm product availability with a Liberty Steel Sales Office at an early stage of design. Other specifications and sizes may also be available on enquiry.

Specifications

Merchant bar sections are available in the following standards:

- 300PLUS ${ }^{\circledR}$ and AS/NZS 3679.1 - Structural Steel - Hot rolled bars and sections.
- AS 1442 - Carbon Steels and Carbon Manganese Steels - Hot rolled bars and semifinished products.
- AS 1444 - Wrought Alloy Steels Standard, Hardenability (H) Series and Hardened and Tempered to Designated Mechanical Properties.
- AS 1447 - Hot-rolled spring steels.
- Liberty Steel grades (based on AISI-SAE nomenclature).

Table 3 Rounds - Size Availability and Mass

Diameter (mm)	Mass $(\mathrm{kg} / \mathrm{m})$
10	0.616
12	0.887
13	1.04
14	1.21
15	1.39
16	1.58
17	1.78
18	1.99
19	2.23
20	2.46
22	2.98
24	3.55
27	4.49
30	5.55
33	6.71
36	7.99
39	9.38
42	10.9
45	12.5
48	14.2
50	15.4
56	19.3
60	22.2
65	26.0
75	34.7
90	49.9

[^13]Table 4 Squares - Size Availability and Mass

Thickness $(\mathbf{m m})$	Mass $(\mathbf{k g} / \mathbf{m})$
10^{*}	0.790
12	1.13
16	2.01
20	3.14
25	4.91
40	12.5

Standard Length: 6 metres
*onfirm availability.

Availability

Table 5 Flats - Size Availability and Mass (kg/m)

Whickness (mm)								
Width (mm)	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$
20				1.57				
25	0.981	1.18	1.57	1.96	2.36			
32	1.26	1.51	2.01	2.51	3.01			
40	1.57	1.88	2.51	3.14	3.77	5.02	6.28	
50	1.96	2.36	3.14	3.93	4.71	6.28	7.85	9.81
65	2.55	3.06	4.08	5.10	6.12	8.16	10.2	
75	2.94	3.53	4.71	5.89	7.07	9.42	11.8	14.7
90		4.24	5.65	7.07	8.48			
100	3.93	4.71	6.28	7.85	9.42	12.6	15.7	19.6
110				8.64				
130			8.16	10.2	12.2	16.3	20.4	25.5
150			9.42	11.8	14.1	18.8	23.6	29.4

Standard Length: 6 metres

Availability

Table 6 Merchant Bar Sections - Regular Grade

Steel Type	Standard	Grades Available
Structural Steels	Liberty Steel	$300 P L U S ®$
	AS/NZS 3679.1	
Carbon and Carbon-Manganese Steels		350
Spring Steels	AS 1442	1016
		1022
Liberty Steel Grades		1045

Note

Liberty Steel 300PLUS ${ }^{\circledR}$ exceeds the requirements of AS/NZS 3679.1 Grade 300.
Grade availability can vary with section.

Rods and Light Billets

Rods and light billets are available in a wide range of Liberty Steel grades, and selected grades from AS 1442, AS 1444 and AS 1447 specifications.
These sections are not available in structural grades 300PLUS ${ }^{\circledR}$ or 350 grade.
Due to process limitations not all grades are available in all sizes. Confirm product availability with a Liberty Steel Sales Office at an early stage of design.

Table 7 Rods - Size Availability
Diameter (mm)
5.56 .57 .08 .09 .010 .011 .212 .513 .014 .0
15.016 .017 .018 .0

Table 8 Light Billets - Size Availability
Sizes Available (mm x mm)
45×45
50×50
63×63
75×75

웅ㅇㅇㅇ솟ํㅇ

$\underset{m}{n} \frac{a}{m}$
on

Table 9 Universal Beams - Dimensions and Properties
$\begin{array}{ccccc}\text { Designation } \begin{array}{c}\text { Depth } \\ \text { of }\end{array} \quad \begin{array}{c}\text { Web }\end{array} & \begin{array}{c}\text { Root } \\ \text { Radius }\end{array} & \begin{array}{c}\text { Depth } \\ \text { Between }\end{array} \\ \text { Thickness } & \text { Radanges }\end{array}$

hickness
t_{f}

$\mathfrak{i n}$ no

人ion
Universal Beams
Table 10 Universal Beams - Properties for Assessing Section Capacity

300 PLUS $^{\circledR}$ replaced Grade 250 as the base grade for these sections in 1994.
300 PLUS $^{\circledR}$ hot rolled sections are produced to exceed the minimum requirements of AS/NZS 3679.1-300.
Notes

1. For 300 PLUS $^{\circledR}$ sections the tensile strength $\left(f_{u}\right)$ is 440 MPa .
2. For Grade 350 sections the tensile strength $\left(f_{u}\right)$ is 480 MPa .
3. C: Compact Section; N: Non-compact Section; S: Slender Section.
Table 11 Universal Columns - Dimensions and Properties $\begin{array}{llll}\text { Designation } & \begin{array}{c}\text { Depth of } \\ \text { Section }\end{array} \ldots \quad \text { Flange } & \begin{array}{c}\text { Web } \\ \text { Thickness }\end{array} & \text { Root Radius }\end{array} \begin{gathered}\text { Depth } \\ \text { Between } \\ \text { Elang }\end{gathered}$ Width Thickness Flanges Gross Area
of Coross
Sertion

Designation	Depth of Section d	Flange		$\begin{gathered} \text { Web } \\ \text { Thickness } \end{gathered}$	Root Radius	Depth Between Flanges			Gross Area of Cross Section	About x-axis				About y -axis				Torsion Constant	Warping Constant	Designation
		Width	Thickness				d_{1}	($\mathrm{b}_{\mathrm{f}}-\mathrm{t}_{\text {t }}$)												
		b_{f}	t_{f}	t_{w}	r_{1}	d_{1}	t_{w}	$2 \mathrm{t}_{\mathrm{f}}$	Ag	$\mathrm{I}_{\text {x }}$	$Z_{\text {x }}$	S_{x}	r_{x}	I_{y}	z_{y}	Sy	r_{y}	J	I_{w}	
kg/m	mm	mm	mm	mm	mm	mm			mm ${ }^{2}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$	
310 UC 158	327.2	311.0	25.0	15.7	16.5	277.2	17.7	5.91	20100	388	2370	2680	139	125	807	1230	78.9	3810	2860	310UC158
137	320.6	309.0	21.7	13.8	16.5	277.2	20.1	6.80	17500	329	2050	2300	137	107	691	1050	78.2	2520	2390	137
118	314.6	307.0	18.7	11.9	16.5	277.2	23.3	7.89	15000	277	1760	1960	136	90.2	588	893	77.5	1630	1980	118
96.8	308.0	305.0	15.4	9.9	16.5	277.2	28.0	9.58	12400	223	1450	1600	134	72.9	478	725	76.7	928	1560	96.8
250 UC 89.5	260.0	256.0	17.3	10.5	14.0	225.4	21.5	7.10	11400	143	1100	1230	112	48.4	378	575	65.2	1040	713	250UC89.5
72.9	253.8	254.0	14.2	8.6	14.0	225.4	26.2	8.64	9320	114	897	992	111	38.8	306	463	64.5	586	557	72.9
200 UC 59.5	209.8	205.0	14.2	9.3	11.4	181.4	19.5	6.89	7620	61.3	584	656	89.7	20.4	199	303	51.7	477	195	200UC 59.5
52.2	206.4	204.0	12.5	8.0	11.4	181.4	22.7	7.84	6660	52.8	512	570	89.1	17.7	174	264	51.5	325	166	52.2
46.2	203.4	203.0	11.0	7.3	11.4	181.4	24.8	8.90	5900	45.9	451	500	88.2	15.3	151	230	51.0	228	142	46.2
150 UC 37.2	161.8	154.0	11.5	8.1	8.9	138.8	17.1	6.34	4730	22.2	274	310	68.4	7.01	91.0	139	38.5	197	39.6	150 UC 37.2
30.0	157.6	153.0	9.4	6.6	8.9	138.8	21.0	7.79	3860	17.6	223	250	67.5	5.62	73.4	112	38.1	109	30.8	30.0
23.4	152.4	152.0	6.8	6.1	8.9	138.8	22.8	10.7	2980	12.6	166	184	65.1	3.98	52.4	80.2	36.6	50.2	21.1	23.4
100 UC 14.8	97.0	99.0	7.0	5.0	10.0	83.0	16.6	6.71	1890	3.18	65.6	74.4	41.1	1.14	22.9	35.2	24.5	34.9	2.30	100 UC 14.8

Universal Columns
Table 12 Universal Columns - Properties for Assessing Section Capacity

[^14]Tapered Flange Beams
Table 13 Tapered Flange Beams - Dimensions and Properties

Designation	Mass per metre	Depth of Section	Flange		Web Thickness	Radii		Depth Between Flanges	d_{1}	$\left(\mathrm{b}_{\mathrm{f}}-\mathrm{t}_{\text {w }}\right)$	Gross Area of Cross Section	About x-axis				About y -axis				Torsion Constant	Warping Constant	Designation
			Width	Thickness		Root	Toe															
		d	b_{f}	t_{f}	t_{w}	r_{1}	r_{2}	d_{1}	t_{w}	$2 \mathrm{t}_{f}$	A_{9}	$\mathrm{I}_{\text {x }}$	$z_{\text {x }}$	S_{x}	${ }_{\text {r }}{ }^{\text {d }}$	I ${ }_{\text {y }}$	z_{y}	Sy	r_{y}	J	I_{w}	
	kg/m	mm	mm	mm	mm	mm	mm	mm			mm ${ }^{2}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$	
125 TFB	13.1	125	65.0	8.5	5.0	8.0	4.0	108	21.6	3.53	1670	4.34	69.4	80.3	50.9	0.337	10.4	17.2	14.2	40.2	1.14	125 TFB
100 TFB	7.20	100	45.0	6.0	4.0	7.0	3.0	88	22.0	3.42	917	1.46	29.2	34.1	39.9	0.0795	3.53	6.00	9.31	11.6	0.176	100 TFB

Table 14 Tapered Flange Beams - Properties for Assessing Section Capacity

Parallel Flange Channels

Table 15 Parallel Flange Channels - Dimensions and Properties

Designation	Mass per metre	Depth of Section d	Flange		Web Thickness	Root Radius	Depth Between Flanges	d_{1}	$\left(b_{f}-t_{w}\right)$	Gross Area Coordinate of Cross of Centroid Section		Coordinate of Shear Centre	About x -axis				About y-axis					Torsion Constant J	Warping Constant I_{w}	Designation	
			Width	Thickness																					
			b_{f}	t_{f}	t_{w}	r_{1}	d_{1}	$\mathrm{t}_{\text {w }}$	t_{f}	A_{9}	X_{L}		X_{0}	I_{x}	Z_{x}	S_{x}	r_{x}	I_{y}	$Z_{\text {yR }}$	z_{x}	S_{y}				r_{y}
	kg/m	mm	mm	mm	mm	mm	mm			mm^{2}	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$		
380 PFC	55.2	380	100	17.5	10.0	14.0	345	34.5	5.14	7030	27.5	56.7	152	798	946	147	6.48	89.4	236	161	30.4	491	151	380 PFC	
300 PFC	40.1	300	90	16.0	8.0	14.0	268	33.5	5.13	5110	27.2	56.1	72.4	483	564	119	4.04	64.4	148	117	28.1	304	58.2	300 PFC	
250 PFC	35.5	250	90	15.0	8.0	12.0	220	27.5	5.47	4520	28.6	58.5	45.1	361	421	99.9	3.64	59.3	127	107	28.4	248	35.9	250 PFC	
230 PFC	25.1	230	75	12.0	6.5	12.0	206	31.7	5.71	3200	22.6	46.7	26.8	233	271	91.4	1.76	33.6	77.8	61.0	23.5	112	15.0	230 PFC	
200 PFC	22.9	200	75	12.0	6.0	12.0	176	29.3	5.75	2920	24.4	50.5	19.1	191	221	80.9	1.65	32.7	67.8	58.9	23.8	105	10.6	200 PFC	
180 PFC	20.9	180	75	11.0	6.0	12.0	158	26.3	6.27	2660	24.5	50.3	14.1	157	182	72.9	1.51	29.9	61.5	53.8	23.8	84.5	7.82	180 PFC	
150 PFC	17.7	150	75	9.5	6.0	10.0	131	21.8	7.26	2250	24.9	51.0	8.34	111	129	60.8	1.29	25.7	51.6	46.0	23.9	56.6	4.59	150 PFC	
125 PFC	11.9	125	65	7.5	4.7	8.0	110	23.4	8.04	1520	21.8	45.0	3.97	63.5	73.0	51.1	0.658	15.2	30.2	27.2	20.8	23.8	1.64	125 PFC	
100 PFC	8.33	100	50	6.7	4.2	8.0	86.6	20.6	6.84	1060	16.7	33.9	1.74	34.7	40.3	40.4	0.267	8.01	16.0	14.4	15.9	13.6	0.424	100 PFC	
75 PFC	5.92	75	40	6.1	3.8	8.0	62.8	16.5	5.95	754	13.7	27.2	0.683	18.2	21.4	30.1	0.120	4.56	8.71	8.20	12.6	8.42	0.106	75 PFC	

Table 16 Parallel Flange Channels - Properties for Assessing Section Capacity

Universal Bearing Piles (refer Note 4 4)
Table 17 Universal Bearing Piles - Dimensions and Properties Designation $\begin{aligned} & \text { Depth of } \\ & \text { Section }\end{aligned} \quad$ Flange $\quad \begin{gathered}\text { Web } \\ \text { Thickness }\end{gathered}$ Root Radius $\begin{gathered}\text { Depth } \\ \text { Between }\end{gathered}$

$$
\begin{array}{rrrrrrr}
78.8 & 299 & 306 & 11.1 & 11.1 & 16.5 & 277 \\
\hline \text { 200 UBP 122 } & 230 & 220 & 25.0 & 25.0 & 11.4 & 180 \\
\hline
\end{array}
$$

$$
\frac{d_{1}}{t_{w}} \frac{\left(b_{f} \cdot t_{w}\right)}{2 t_{f}}
$$

$$
\begin{aligned}
& 13.5 \\
& 181
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{A}_{9} \\
\hline \mathrm{~mm}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& 19000 \\
& 14000 \\
& 10100 \\
& \hline
\end{aligned}
$$

$$
15600
$$

$$
\underset{\sim}{n} \underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\sim}
$$

$$
\underset{\sim}{\underset{\sim}{n}}
$$

Table 18 Universal Bearing Piles - Properties for Assessing Section Capacity

Notes

1. For 300 PLUS ${ }^{\circledR}$ sections the tensile strength (f_{u}) is 440 MPa . 2. For Grade 350 sections the tensile strength $\left(f_{u}\right)$ is 480 MPa .
2. C: Compact Section; N: Non-compact Section; S : Slender Section.
3. C: Compact Section; N : Non-compact Section; S : Slender Section.
Table 19 Equal Angles - x-axis and y-axis - Dimensions and Properties

Equal Angles

Table 20 Equal Angles - x -axis and y -axis - Properties for Assessing Section Capacity
Designation

EQUAL ANGLES Designation

Equal Angles

Table 21 Equal Angles - n -axis and p-axis - Properties

About n-axis and p-axis

Table 22 Unequal Angles - x -axis and y -axis - Dimensions and Properties

mm mm mm	kg/m	mm	mm mm			mm^{2}	$\frac{\mathrm{mm} \mathrm{~mm}}{49.1 \quad 24.3}$		$\begin{array}{r} \hline 10^{6} \mathrm{~mm}^{4} \\ \hline 7.51 \end{array}$	$\frac{\mathrm{mm}}{102}$	$10^{3} \mathrm{~mm}^{3} \mathrm{~mm}$		$\begin{array}{r} 10^{3} \mathrm{~mm}^{3} \\ \hline 99.7 \end{array}$	$\frac{\mathrm{mm}}{35.2}$	$\begin{gathered} \frac{10^{3} \mathrm{~mm}^{3}}{213} \end{gathered}$	$\frac{10^{3} \mathrm{~mm}^{3}}{127}$	$\frac{\mathrm{mm}}{\mathrm{~m}} \mathrm{~F} .2$	$\begin{array}{r} 10^{6} \mathrm{~mm}^{4} \\ \hline 1.35 \end{array}$	$\frac{\mathrm{mm}}{27.6}$	$10^{3} \mathrm{~mm}^{3} \mathrm{~mm}$		$10^{3} \mathrm{~mm}^{3} \mathrm{~mm}$		$\begin{gathered} \hline 10^{3} \mathrm{~mm}^{3} \\ \hline 32.1 \end{gathered}$	$10^{3} \mathrm{~mm}^{3} \mathrm{~mm}$		$10^{3} \mathrm{~mm}^{4}$			
$150 \times 100 \times 12 \mathrm{UA}$	22.5	12.0	10.0	5.0	11.5	7.332870			73.5		75.3	48.8								52.9	25.5	42.0	51.7		21.7	141	0.43	$50 \times 100 \times 12 \mathrm{UA}$		
10 UA	18.0	9.5	10.0	5.0	14.8	9.532300	48.1	23.3		6.11	103	59.5	74.9	81.5	34.6	177	102	51.6	1.09	26.9	40.7	53.0	20.6	40.7	26.9	41.8	21.8	71.9	0.441	10 UA
$150 \times 90 \times 16 \mathrm{UA}$	27.9	15.8	10.0	5.0	8.49	4.703550	52.5	22.7	8.80	99.5	88.4	71.9	122	41.9	210	154	49.8	1.32	24.6	53.8	49.9	26.5	38.9	34.0	55.9	19.3	300	0.353	90x 16UA	
12 UA	21.6	12.0	10.0	5.0	11.5	6.502750	51.0	21.2	6.97	100	69.4	71.3	97.8	40.8	171	120	50.4	1.04	23.4	44.5	50.1	20.8	37.2	28.0	43.8	19.5	136	0.360	12 UA	
10 UA	17.3	9.5	10.0	5.0	14.8	8.472200	50.0	20.2	5.66	101	56.1	70.7	80.1	40.1	141	96.6	50.7	0.847	22.6	37.4	50.4	16.8	36.1	23.5	35.4	19.6	69.0	0.363	10 UA	
8 UA	14.3	7.8	10.0	5.0	18.2	10.51820	49.2	19.6	4.73	101	46.7	70.3	67.3	39.5	120	80.1	51.0	0.710	22.1	32.2	50.6	14.0	35.2	20.2	29.5	19.7	39.0	0.364	8 UA	
$125 \times 75 \times 12 \mathrm{UA}$	17.7	12.0	8.0	5.0	9.42	5.252260	43.3	18.4	3.91	83.2	47.0	59.7	65.5	34.6	113	81.4	41.6	0.585	19.9	29.3	41.4	14.1	31.9	18.4	29.7	16.1	110	0.356	$\times 12 \mathrm{UA}$	
10 UA	14.2	9.5	8.0	5.0	12.2	6.891810	42.3	17.5	3.20	83.8	38.2	59.3	53.9	33.9	94.4	65.8	42.0	0.476	19.2	24.9	41.6	11.4	30.7	15.5	24.1	16.2	56.2	0.360	10 UA	
8 UA	11.8	7.8	8.0	5.0	15.0	8.621500	41.5	16.8	2.68	84.2	31.8	58.9	45.5	33.3	80.4	54.6	42.2	0.399	18.6	21.5	41.8	9.55	29.9	13.3	20.1	16.3	31.7	0.363	8 UA	
6 UA	9.16	6.0	8.0	5.0	19.8	11.51170	40.7	16.0	2.10	84.7	24.8	58.5	36.0	32.8	64.1	42.4	42.5	0.315	18.0	17.5	42.1	7.47	29.0	10.8	15.7	16.4	14.8	0.364	6 UA	
$100 \times 75 \times 10$ UA	12.4	9.5	8.0	5.0	9.53	6.891580	31.8	19.4	1.89	69.2	27.3	54.5	34.6	18.6	101	46.5	34.6	0.401	22.3	18.0	36.4	11.0	32.2	12.5	21.2	16.0	49.1	0.546	00×75 $\times 10 \mathrm{UA}$	
8 UA	10.3	7.8	8.0	5.0	11.8	8.621310	31.1	18.7	1.59	69.4	22.9	54.3	29.2	18.2	87.0	38.7	34.8	0.337	21.8	15.4	36.4	9.26	31.3	10.7	17.8	16.0	27.8	0.549	BUA	
6 UA	7.98	6.0	8.0	5.0	15.7	11.51020	30.3	17.9	1.25	69.7	17.9	54.0	23.1	17.9	70.0	30.1	35.1	0.265	21.4	12.4	36.5	7.27	30.3	8.75	13.9	16.2	13.0	0.551	6 UA	
$75 \times 50 \times 8 \cup A$	7.23	7.8	7.0	3.0	8.62	5.41921	25.2	12.8	0.586	50.8	11.5	37.8	15.5	18.0	32.5	20.0	25.2	0.106	14.2	7.46	26.4	4.01	21.7	4.88	8.19	10.7	19.5	0.430	$75 \times 50 \times 8 U A$	
6 UA	5.66	6.0	7.0	3.0	11.5	7.33721	24.4	12.1	0.468	51.2	9.15	37.5	12.5	17.6	26.7	15.8	25.5	0.0842	13.6	6.17	26.5	3.18	20.8	4.04	6.48	10.8	9.21	0.435	6 UA	
5 UA	4.40	4.6	7.0	3.0	15.3	9.87560	23.8	11.5	0.370	51.5	7.17	37.2	9.93	17.2	21.5	12.3	25.7	0.0666	13.2	5.03	26.6	2.50	20.1	3.32	5.09	10.9	4.32	0.437	5 UA	
$65 \times 50 \times 8 \cup A$	6.59	7.8	6.0	3.0	7.33	5.41840	21.1	13.6	0.421	44.9	9.37	36.3	11.6	11.6	36.4	16.1	22.4	0.0936	15.6	6.00	23.9	3.91	22.3	4.20	7.49	10.6	17.6	0.570	$65 \times 50 \times 8 \mathrm{UA}$	
6 UA	5.16	6.0	6.0	3.0	9.83	7.33658	20.4	12.9	0.338	45.2	7.48	36.1	9.35	11.2	30.2	12.7	22.7	0.0743	15.1	4.91	23.9	3.11	21.4	3.48	5.93	10.6	8.29	0.575	6 UA	
5 UA	4.02	4.6	6.0	3.0	13.1	9.87512	19.8	12.4	0.267	45.4	5.89	35.9	7.43	10.9	24.5	9.92	22.8	0.0587	14.8	3.97	23.9	2.46	20.6	2.85	4.66	10.7	3.87	0.577	5 UA	

Unequal Angles
Table 23 Unequal Angles - x -axis and y -axis - Properties for Assessing Section Capacity

Designation	Yield Stressf_{y}	Form Factork_{f}	About x-axis		About y-axis		Yield Stress \qquad	Form Factor k_{f} \qquad	About x-axis		About y-axis		Designation
			Load A	Load C	Load B	Load D			Load A	Load C	Load B	Load D	
			$\mathrm{Z}_{\text {ex }}$	$\mathrm{Z}_{\text {ex }}$	$Z_{\text {ey }}$	$Z_{\text {ey }}$			$Z_{\text {ex }}$	$\mathrm{Z}_{\text {ex }}$	$\mathrm{Z}_{\text {ey }}$	$\mathrm{Z}_{\text {ey }}$	
mm mm mm	MPa		$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	MPa		$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	
300PLUS ${ }^{\text {® * }}$							AS/NZS 3679.1-350						
$150 \times 100 \times 12$ UA	300	1.00	102	110	35.3	38.2	340	1.00	100	110	34.7	38.2	$150 \times 100 \times 12 \mathrm{UA}$
10 UA	320	0.975	74.8	81.7	26.0	30.9	360	0.943	73.0	78.9	25.3	30.9	10 UA
$150 \times 90 \times 16$ UA	300	1.00	132	133	39.5	39.8	340	1.00	130	133	39.0	39.8	$150 \times 90 \times 16$ UA
12 UA	300	1.00	96.3	104	28.8	31.1	340	1.00	94.6	104	28.3	31.1	12 UA
10 UA	320	0.973	70.6	81.8	21.2	25.2	360	0.940	68.8	79.5	20.6	25.2	10 UA
8 UA	320	0.863	53.1	60.3	15.9	21.0	360	0.836	51.2	57.9	15.4	21.0	8 UA
$125 \times 75 \times 12 \mathrm{UA}$	300	1.00	68.6	70.5	20.6	21.2	340	1.00	67.6	70.5	20.3	21.2	$125 \times 75 \times 12$ UA
10 UA	320	1.00	51.6	57.2	15.5	17.2	360	1.00	50.6	57.2	15.2	17.2	10 UA
8 UA	320	0.964	39.8	46.0	11.9	14.3	360	0.931	38.8	44.7	11.6	14.3	8 UA
6 UA	320	0.824	26.8	30.1	8.07	11.2	360	0.799	25.8	28.7	7.75	11.2	6 UA
$100 \times 75 \times 10$ UA	320	1.00	39.4	40.9	15.9	16.6	360	1.00	38.8	40.9	15.7	16.6	$100 \times 75 \times 10$ UA
8 UA	320	1.00	31.2	33.1	12.6	13.9	360	1.00	30.6	32.1	12.4	13.9	8 UA
6 UA	320	0.946	22.0	21.8	8.93	10.9	360	0.917	21.4	20.7	8.68	10.9	6 UA
$75 \times 50 \times 8$ UA	320	1.00	17.0	17.3	5.93	6.02	360	1.00	16.8	17.3	5.85	6.02	$75 \times 50 \times 8$ UA
6 UA	320	1.00	12.6	13.7	4.37	4.77	360	1.00	12.4	13.7	4.30	4.77	6 UA
5 UA	320	0.956	8.89	9.65	3.10	3.75	360	0.926	8.66	9.30	3.02	3.75	5 UA
$65 \times 50 \times 8$ UA	320	1.00	14.1	14.1	5.86	5.86	360	1.00	14.1	14.1	5.86	5.86	$65 \times 50 \times 8$ UA
6 UA	320	1.00	10.7	11.2	4.46	4.67	360	1.00	10.6	11.2	4.40	4.67	6 UA
5 UA	320	1.00	7.76	7.92	3.23	3.68	360	1.00	7.59	7.64	3.17	3.68	5 UA

300PLUS ${ }^{\ominus}$ replaced Grade 250 as the base grade for $150 \times 90 \times 8$ unequal angles and larger in 1994 .
300PLUS ${ }^{\star}$ replaced Grade 250 as the base grade for $125 \times 75 \times 12$ unequal angles and smaller in 1997 . 300PLUS ${ }^{\circledR}$ hot rolled sections are produced to exceed the minimum requirements of AS/NZS 3679.1-300. Notes

1. For 300 PLUS ${ }^{\oplus}$ sections the tensile strength (fu) is 440 MPa .
2. For Grade 350 sections the tensile strength (fu) is 480 MPa .

Designation	About n-axis							About p-axis							Product of 2nd Moment of Area I_{np}	Designation
	I_{n}	p_{B}	Z_{nB}	$\mathrm{p}_{\text {T }}$	$Z_{n T}$	S_{n}	r_{n}	I_{p}	n_{L}	Z_{pl}	n_{R}	Z_{PR}	S_{p}	r_{p}		
mm mm mm	$10^{6} \mathrm{~mm}^{4}$	mm	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	mm	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	
$150 \times 100 \times 12$ UA	6.52	49.1	133	101	64.6	117	47.7	2.34	24.3	96.2	75.7	30.9	56.0	28.6	-2.27	$150 \times 100 \times 12 \mathrm{UA}$
10 UA	5.29	48.1	110	102	51.9	94.0	48.0	1.91	23.3	81.9	76.7	24.9	44.7	28.8	-1.85	10 UA
$150 \times 90 \times 16$ UA	7.97	52.5	152	97.5	81.7	145	47.4	2.15	22.7	94.9	67.3	32.0	59.5	24.6	-2.35	$150 \times 90 \times 16$ UA
12 UA	6.29	51.0	123	99.0	63.5	114	47.8	1.72	21.2	81.0	68.8	25.0	45.7	25.0	-1.89	12 UA
10 UA	5.10	50.0	102	100	51.0	91.5	48.2	1.41	20.2	69.5	69.8	20.2	36.5	25.3	-1.54	10 UA
8UA	4.26	49.2	86.6	101	42.3	76.0	48.4	1.18	19.6	60.4	70.4	16.8	30.1	25.5	-1.29	8 UA
$125 \times 75 \times 12$ UA	3.54	43.3	81.8	81.7	43.3	77.3	39.6	0.958	18.4	52.0	56.6	16.9	31.4	20.6	-1.05	$125 \times 75 \times 12$ UA
10 UA	2.88	42.3	68.2	82.7	34.9	62.5	39.9	0.789	17.5	45.2	57.5	13.7	25.1	20.9	-0.867	10 UA
8 UA	2.41	41.5	58.1	83.5	28.9	52.0	40.1	0.664	16.8	39.6	58.2	11.4	20.7	21.0	-0.731	8 UA
6 UA	1.89	40.7	46.5	84.3	22.5	40.6	40.3	0.524	16.0	32.7	59.0	8.89	16.0	21.2	-0.575	6 UA
$100 \times 75 \times 10$ UA	1.55	31.8	48.6	68.2	22.6	41.3	31.3	0.743	19.4	38.3	55.6	13.4	24.3	21.7	-0.625	$100 \times 75 \times 10$ UA
8 UA	1.30	31.1	41.8	68.9	18.8	34.4	31.5	0.626	18.7	33.5	56.3	11.1	20.2	21.9	-0.528	8 UA
6UA	1.02	30.3	33.7	69.7	14.6	26.9	31.7	0.494	17.9	27.5	57.1	8.67	15.7	22.0	-0.416	6 UA
$75 \times 50 \times 8$ UA	0.511	25.2	20.3	49.8	10.3	18.5	23.6	0.181	12.8	14.1	37.2	4.86	8.96	14.0	-0.174	$75 \times 50 \times 8$ UA
6 UA	0.407	24.4	16.7	50.6	8.05	14.6	23.8	0.145	12.1	12.0	37.9	3.84	6.98	14.2	-0.140	6 UA
5 UA	0.321	23.8	13.5	51.2	6.27	11.4	23.9	0.115	11.5	10.0	38.5	3.00	5.41	14.3	-0.111	5 UA
$65 \times 50 \times 8$ UA	0.341	21.1	16.2	43.9	7.75	14.1	20.1	0.174	13.6	12.7	36.4	4.78	8.74	14.4	-0.141	$65 \times 50 \times 8$ UA
6 UA	0.272	20.4	13.4	44.6	6.10	11.1	20.3	0.140	12.9	10.8	37.1	3.77	6.85	14.6	-0.114	6 UA
5 UA	0.215	19.8	10.9	45.2	4.75	8.70	20.5	0.111	12.4	8.96	37.6	2.95	5.32	14.7	-0.0903	5 UA

Tolerances

Rounds and Squares

Table 25 Permissible variations in cross-sectional dimensions for Rounds and Squares

Nominal Dimension	Permissible Variation	Permissible out-of-round or out-of-square
$\mathbf{D}_{\text {nominal }}$		$\mathbf{D}_{\text {max }}-\mathbf{D}_{\text {min }}$
$\mathbf{m m}$	$\pm \mathbf{m m}$	$\mathbf{m m}$
≤ 25	± 0.25	0.40
$>25 \leq 30$	± 0.40	0.45
$>30 \leq 40$	± 0.50	0.60
$>40 \leq 50$	± 0.60	0.75
$>50 \leq 60$	± 0.70	0.90
$>60 \leq 70$	± 0.80	1.05
$>70 \leq 80$	± 0.90	1.20
$>80 \leq 100$	+2.45 to -0^{*}	1.35
$>80^{*} \leq 100^{*}$		1.85^{*}

Note: * indicates alternative for material produced as primary-rolled product.

Flats
Table 26 Permissible variations in cross-sectional dimensions for Flats

Nomin	Width	Width Tolerance	Thickness Tolerance				
W			T				
mm		mm	mm				
			<6	$\geq 6 \leq 12$	$>12 \leq 25$	$>25 \leq 50$	>50
≤ 25		± 0.40	± 0.20	± 0.20	± 0.25	-	-
>25	≤ 50	± 0.80	± 0.20	± 0.30	± 0.40	± 0.80	-
>50	≤ 100	+1.60 to -0.80	± 0.20	± 0.40	± 0.50	± 0.80	± 1.20
>100	≤ 150	+2.40 to -1.60	± 0.25	± 0.40	± 0.50	± 0.80	± 1.60

Universal Beam

Table 27 Universal Beam Tolerances

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Universal Column

Table 28 Universal Column Tolerances

Designation	mm	mm	mm	mm	mm	mm	mm	mm	$\mathbf{m m}$
310UC158	± 3.0	+6.0 to -5.0	± 1.5	± 1.0	1.5	5.0	8.0	5.0	6.0
310UC137	± 3.0	+6.0 to -5.0	± 1.5	± 0.7	1.5	5.0	8.0	5.0	6.0
310UC118	± 3.0	+6.0 to -5.0	± 1.5	± 0.7	1.5	5.0	8.0	5.0	6.0
310UC96.8	± 3.0	+6.0 to -5.0	± 1.5	± 0.7	1.5	5.0	8.0	5.0	6.0
250UC89.5	± 3.0	+6.0 to -5.0	± 1.5	± 0.7	1.5	4.0	6.0	5.0	6.0
250UC72.9	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0
200UC59.5	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0
200UC52.2	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0
200UC46.2	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0
150UC37.2	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0
150UC30.0	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0
150UC23.4	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0
100UC14.8	± 3.0	+6.0 to -5.0	± 1.0	± 0.7	1.0	4.0	6.0	5.0	6.0

Parallel Flange Channels

Table 29 Parallel Flange Channel Tolerances

	Permissible variation of depth	Permissible variation of flange width	Permissible variation of flange thickness	Permissible variation of web thickness	Permissible out-of-square on each flange	Permissible total out-ofsquare
	d	b_{f}	t_{f}	t_{w}	(a_{1} or a_{0})	($a_{1}+a_{0}$)
Designation	mm	mm	mm	mm	mm	mm
380PFC	+5.0 to -3.0	+3.0 to -4.0	± 1.0	± 1.0	2.0	3.0
300PFC	+3.0 to -1.5	± 3.0	± 1.0	± 1.0	1.5	2.7
250PFC	+3.0 to -1.5	± 3.0	± 1.0	± 1.0	1.5	2.7
230PFC	+3.0 to -1.5	± 3.0	± 1.0	± 1.0	1.5	2.3
200PFC	+3.0 to -1.5	± 3.0	± 1.0	± 1.0	1.5	2.3
180PFC	+3.0 to -1.5	± 3.0	± 1.0	± 1.0	1.5	2.3
150PFC	+3.0 to -1.5	± 3.0	± 1.0	± 1.0	1.5	2.3
125PFC	+3.0 to -1.5	± 3.0	± 1.0	± 1.0	1.5	2.0
100PFC	+3.0 to -1.5	± 3.0	± 0.7	± 0.7	1.0	1.5
75PFC	+3.0 to -1.5	± 3.0	± 0.7	± 0.7	1.0	1.2

Tapered Flange Beam

Table 30 Tapered Flange Beam Tolerances

	Permissible variation of depth	Permissible variation of flange width	Permissible variation of flange thickness	Permissible variation of web thickness	Permissible out-of-square on each flange	Permissible total out-ofsquare
	d	b_{f}	t_{f}	t_{w}	(a_{1} or a_{0})	$\left(a_{1}+a_{0}\right)$
Designation	mm	mm	mm	mm	mm	mm
125TFB	+2.5 to -1.5	± 3.0	± 0.7	± 0.7	1.5	2.0
100TFB	+2.5 to -1.5	± 3.0	± 0.7	± 0.7	1.5	1.4

G web

Universal Bearing Piles

Table 31 Universal Bearing Pile Tolerances

	Permissible variation of depth	Permissible variation of flange width	Permissible variation of flange thickness	Permissible variation of web thickness	Maximum difference of flange over four flanges	Permissible out-ofsquare on each flange	Permissible total out-ofsquare	Permissible web off-centre	Permissible overall depth over specified depth
	d	b_{f}	t_{f}	t_{w}		(a_{1} or a_{0})	$\left(a_{1}+a_{0}\right)$	e	($\mathrm{d}_{0}-\mathrm{d}$)
Designation	mm	mm	mm	mm	mm	mm	mm	mm	mm
310 UBP149	+3.0 to -2.0	± 4.0	± 1.5	± 0.7	1.5	4.0	6.3	3.5	6.0
310 UBP110	+3.0 to -2.0	± 4.0	± 1.5	± 0.7	1.5	4.0	6.2	3.5	6.0
310 UBP78.8	+3.5 to -3.5	+6.5 to -5.4	± 1.0	± 0.7	1.0	5.0	8.0	5.0	6.0
200UBP122	+3.4 to -3.4	+6.5 to -5.4	± 1.5	± 1.0	1.5	4.0	6.0	5.0	6.0

Tolerances

Equal Angle

Table 32 Equal Angle Tolerances

	Permissible variation of leg length	Permissible variation of thickness	Permissible out-of-square
	a	t_{w}	s
Designation	mm	mm	mm
$200 \times 200 \times 26 \mathrm{EA}$	+5.0 to -3.0	± 1.5	± 5.0
$200 \times 200 \times 20$ EA	+5.0 to -3.0	± 1.0	± 5.0
$200 \times 200 \times 18$ EA	+5.0 to -3.0	± 1.0	± 5.0
$200 \times 200 \times 16$ EA	+5.0 to -3.0	± 1.0	± 5.0
$200 \times 200 \times 13$ EA	+5.0 to -3.0	± 0.7	± 5.0
$150 \times 150 \times 19$ EA	± 3.0	± 1.0	± 4.0
150x150x16 EA	± 3.0	± 1.0	± 4.0
$150 \times 150 \times 12 \mathrm{EA}$	± 3.0	± 0.7	± 4.0
$150 \times 150 \times 10$ EA	± 3.0	± 0.5	± 4.0
$125 \times 125 \times 16$ EA	± 3.0	± 1.0	± 3.0
$125 \times 125 \times 12$ EA	± 3.0	± 0.7	± 3.0
$125 \times 125 \times 10$ EA	± 3.0	± 0.5	± 3.0
125x125x8 EA	± 3.0	± 0.5	± 3.0
$100 \times 100 \times 12 \mathrm{EA}$	± 3.0	± 0.7	± 3.0
$100 \times 100 \times 10 \mathrm{EA}$	± 3.0	± 0.5	± 3.0
100x100x8 EA	± 3.0	± 0.5	± 3.0
100x100x6 EA	± 3.0	± 0.5	± 3.0
$90 \times 90 \times 10 \mathrm{EA}$	± 3.0	± 0.5	± 3.0
$90 \times 90 \times 8$ EA	± 3.0	± 0.5	± 3.0
$90 \times 90 \times 6 \mathrm{EA}$	± 3.0	± 0.5	± 3.0
$75 \times 75 \times 10$ EA	+2.5 to -1.5	± 0.5	± 2.0
$75 \times 75 \times 8$ EA	+2.5 to -1.5	± 0.5	± 2.0
$75 \times 75 \times 6$ EA	+2.5 to -1.5	± 0.5	± 2.0
$75 \times 75 \times 5$ EA	+2.5 to -1.5	± 0.5	± 2.0
$65 \times 65 \times 10$ EA	+2.5 to -1.5	± 0.5	± 2.0
$65 \times 65 \times 8$ EA	+2.5 to -1.5	± 0.5	± 2.0
$65 \times 65 \times 6$ EA	+2.5 to -1.5	± 0.5	± 2.0
$65 \times 65 \times 5$ EA	+2.5 to -1.5	± 0.5	± 2.0
$55 \times 55 \times 6$ EA	+2.5 to -1.5	± 0.5	± 2.0
$55 \times 55 \times 5$ EA	+2.5 to -1.5	± 0.5	± 2.0
$50 \times 50 \times 8$ EA	+2.5 to -1.5	± 0.5	± 2.0
$50 \times 50 \times 6 \mathrm{EA}$	+2.5 to -1.5	± 0.5	± 2.0
$50 \times 50 \times 5 \mathrm{EA}$	+2.5 to -1.5	± 0.5	± 2.0
$50 \times 50 \times 3$ EA	+2.5 to -1.5	± 0.5	± 2.0
$45 \times 45 \times 6$ EA	+2.5 to -1.5	± 0.5	± 2.0
$45 \times 45 \times 5$ EA	+2.5 to -1.5	± 0.5	± 2.0
$45 \times 45 \times 3$ EA	+2.5 to -1.5	± 0.5	± 2.0
$40 \times 40 \times 6 \mathrm{EA}$	+2.5 to -1.5	± 0.5	± 1.0
$40 \times 40 \times 5$ EA	+2.5 to -1.5	± 0.5	± 1.0
40x40x3 EA	+2.5 to -1.5	± 0.5	± 1.0
$30 \times 30 \times 6 \mathrm{EA}$	+2.5 to -1.5	± 0.5	± 1.0
$30 \times 30 \times 5$ EA	+2.5 to -1.5	± 0.5	± 1.0
$30 \times 30 \times 3$ EA	+2.5 to -1.5	± 0.5	± 1.0
$25 \times 25 \times 6$ EA	+2.5 to -1.5	± 0.5	± 1.0
$25 \times 25 \times 5$ EA	+2.5 to -1.5	± 0.5	± 1.0
$25 \times 25 \times 3$ EA	+2.5 to -1.5	± 0.5	± 1.0

Unequal Angle

Table 33 Unequal Angle Tolerances

Designation	Permissible variation of leg length Long Leg	Permissible variation of leg length Short Leg	Permissible variation of thickness	Permissible out-ofsquare
	a	b	t_{w}	s
	mm		mm	mm
$150 \times 100 \times 12$ UA	± 3.0	± 3.0	± 0.7	± 4.0
$150 \times 100 \times 10$ UA	± 3.0	± 3.0	± 0.5	± 4.0
$150 \times 90 \times 16$ UA	± 3.0	± 3.0	± 1.0	± 4.0
$150 \times 90 \times 12$ UA	± 3.0	± 3.0	± 0.7	± 4.0
$150 \times 90 \times 10$ UA	± 3.0	± 3.0	± 0.5	± 4.0
150x90x8 UA	± 3.0	± 3.0	± 0.5	± 4.0
$125 \times 75 \times 12$ UA	± 3.0	+2.5 to -1.5	± 0.7	± 3.0
$125 \times 75 \times 10$ UA	± 3.0	+2.5 to -1.5	± 0.5	± 3.0
$125 \times 75 \times 8$ UA	± 3.0	+2.5 to -1.5	± 0.5	± 3.0
$125 \times 75 \times 6$ UA	± 3.0	+2.5 to -1.5	± 0.5	± 3.0
$100 \times 75 \times 10$ UA	± 3.0	+2.5 to -1.5	± 0.5	± 3.0
$100 \times 75 \times 8$ UA	± 3.0	+2.5 to -1.5	± 0.5	± 3.0
$100 \times 75 \times 6$ UA	± 3.0	+2.5 to -1.5	± 0.5	± 3.0
$75 \times 50 \times 8$ UA	+2.5 to -1.5	+2.5 to -1.5	± 0.5	± 2.0
$75 \times 50 \times 6$ UA	+2.5 to -1.5	+2.5 to -1.5	± 0.5	± 2.0
$75 \times 50 \times 5$ UA	+2.5 to -1.5	+2.5 to -1.5	± 0.5	± 2.0
$65 \times 50 \times 8$ UA	+2.5 to -1.5	+2.5 to -1.5	± 0.5	± 2.0
$65 \times 50 \times 6$ UA	+2.5 to -1.5	+2.5 to -1.5	± 0.5	± 2.0
$65 \times 50 \times 5$ UA	+2.5 to -1.5	+2.5 to -1.5	± 0.5	± 2.0

Straightness

Universal Sections

Table 34 Permissable Variations in Straightness for Universal Sections

Section	Camber (mm)	Sweep (mm)
Beams with flange $b_{f}<150 \mathrm{~mm}$	$\frac{\text { Length (mm) }}{1000}$	$\frac{\text { Length (mm) }}{500}$
Beams with flange $b_{f} \geq 150 \mathrm{~mm}$	$\frac{\text { Length (mm) }}{1000}$	(See Note 2)
Columns $\leq 14000 \mathrm{~mm}$ long	Length (mm) but no more 1000 than 10 mm	(See Note 2)
Columns $>$ 14000mm long	$10 \mathrm{~mm}+\frac{\text { Length }(\mathrm{mm})-14000}{10000}$	(See Note 2)

Notes:

1. Measuring of the camber and sweep shall be in accordance with the figure below.
2. Owing to the extreme variation in the elastic flexibility of these sections about the y axis, difficulty may be experienced in obtaining reproducible sweep measurements.

Non-universal Sections

Table 35 Permissible Variations in Straightness for Channels, Taper Flange Beams and Angles

Section	Camber (mm)	Sweep (mm)
Channels		
Taper Flange Beams	$\frac{\text { Length }(\mathrm{mm})}{500}$	
Angles		(See Note 2)

Notes:

1. For angles having a combined leg length of greater than 150 mm this is the straightness tolerance.
2. Owing to the extreme variation in flexibility of these sections about the y axis, straightness tolerances are as specified by the purchaser for the individual sections involved.

Standard Specifications

Structural Steel - Hot Rolled Bars and Sections - Standard: AS/NZS 3679.1
Table 36 Chemical Composition - Bars and Sections

Grade
Gee Note 1) (see

Notes

1. The use of sulfide modification steel making techniques for these grades is permitted.
2. Grain refining elements, i.e. aluminium and titanium, may be added, provided that the total content does not exceed 0.15%. Limits are for total or soluble aluminium.
3. Carbon equivalent (CE) is calculated from the following equation: $C E=C+\underline{M n}+\underline{C r}+M o+V+\underline{N i}+C u$
4. Micro-alloying elements are not permitted in grade 300 except for thicknesses greater than or equal to 15 mm , where the following apply:
5. The following elements may be present to the limits stated, subject to a maximum total of 1.00% :
(a) the maximum combined micro-alloying element content is 0.15%
(a) Copper 0.50%
(b) where micro-alloying elements are used, the percentage of each element is to be shown on certificates.
(b) Nickel $\quad 0.50 \%$ 7. For grade 350, micro-alloying elements niobium, vanadium and titanium may be added,
(c) Chromium $\quad 0.30 \%$
(d) Molybdenum $\quad 0.10 \%$ provided that their total combined content does not exceed 0.15%.
6. For grade 300PLUS, the following are not considered as microalloying elements:
(a) Titanium $\quad 0.040 \%$ maximum
(b) Niobium $\quad 0.020 \%$ maximum
(c) Vanadium $\quad 0.030 \%$ maximum
(d) Niobium plus vanadium 0.030% maximum

Table 37 Tensile Properties - Flat Bars and Sections - Standard: AS/NZS 3679.1

Grade	Minimum yield stress, MPa Thickness (see Note 1) mm			Minimum tensile strength MPa	Minimum elongation on a gauge length of $5.65 \sqrt{ } \mathrm{~S}_{0}$ \% (see Note 2)
	< 11	≥ 11 to ≤ 17	> 17 to < 40		
300PLUS®, 300PLUS®LO, 300PLUS ${ }^{\text {® }}$ L15	320	300	280	440	22
350, 350L0, 350L15	360	340	340	480	20

Table 38 Tensile Properties - Round and Square Bars - Standard: AS/NZS 3679.1

Grade	Minimum yield stress, MPa Thickness mm			Minimum tensile strength MPa	Minimum elongation on a gauge length of $5.65 \sqrt{ } \mathrm{~S}_{0}$ \%
	≤ 50	> 50 to < 100	≥ 100		
300PLUS ${ }^{\text {® }}$	300	290	280	440	22
350	340	330	320	480	20

Notes (apply to tables 37 and 38)

1. For a section, the term 'thickness' refers to the nominal thickness of the part from which the sample is taken.
2. S_{0} is the cross-sectional area of the test piece before testing.
3. For precise details of properties reference should be made to the latest edition of AS/NZS 3679.1 or the latest Liberty Steel specification.
4. 300 PLUS ${ }^{\circledR}$ steel is produced to exceed the latest requirements for grade 300 in AS/NZS 3679.1.

Table 39 Charpy V-Notch Impact Test Requirements - Bars and Sections - Standard: AS/NZS 3679.1 Grade Minimum Absorbed Energy, J Size of Test Piece

	Test Temperature ${ }^{\circ} \mathrm{C}$	$10 \mathrm{~mm} \times 10 \mathrm{~mm}$		$10 \mathrm{~mm} \times 7.5 \mathrm{~mm}$		$10 \mathrm{~mm} \times 5 \mathrm{~mm}$	
		Average of 3 Tests	Individual Test	Average of 3 Tests	Individual Test	Average of 3 Tests	Individual Test
300PLUS® ${ }^{\text {L0, }} 350{ }^{\text {a }}$	0	27	20	22	16	18	13
300PLUS® ${ }^{\text {L15, }} 350 \mathrm{~L} 15$	-15	27	20	22	16	18	13

[^15]
Standard Specifications

Merchant Bar Sections

Table 40 Chemical Composition - For Liberty Steel Merchant Bar Sections - Regular Grades - AS 1442

Steel Type	Grade	C		Si		Mn		P		S	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Carbon and Carbon Manganese Steels	1016	0.13	0.18	0.10	0.35	0.60	0.90	*	0.040	*	0.040
	1022	0.18	0.23	0.10	0.35	0.70	1.00	*	0.040	*	0.040
	1045	0.43	0.50	0.10	0.35	0.60	0.90	*	0.040	*	0.040

Table 41 Chemical Composition - For Liberty Steel Merchant Bar Sections - Regular Grades - AS 1447

Steel Type	Grade	C		Si		Mn		P		S		Cr	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Spring Steels	5160	0.55	0.65	0.10	0.35	0.70	1.00	*	0.040	*	0.040	0.70	0.90
	9258	0.50	0.65	1.60	2.20	0.70	1.05	*	0.040	*	0.040	*	*
	9261	0.55	0.65	1.80	2.20	0.70	1.00	*	0.040	*	0.040	0.10	0.25

Table 42 Liberty Steel Grades

Steel Type	Grade	C		Si		Mn		P		S		Cr		V	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Liberty Steel	X4K92M61S*	0.55	0.65	1.60	1.90	0.70	1.00	*	0.040	*	0.040	0.10	0.25	0.15	0.25

Table 43 Heat Treatment Limitations Maximum Recommended Cross Section*

Grade	Rounds	Squares	Flats
5160	40 mm	36 mm	28 mm
9261	27 mm	25 mm	19 mm
9258			16 mm

[^16]
Customer Technical Service

MORE INFORMATION

Further information on Liberty Steel products, services and other publications can be found at: www.libertygfg.com

www.libertygfg.com

This publication has been prepared by Liberty OneSteel (Manufacturing) Pty Limited ABN 38623194070 . Please note that any specifications or technical data referred to in this publication are subject to change and/or variation or improvement without notice and no warranty as to their suitability for any use is made. Users of this publication, to ensure accuracy and adequacy for their purposes, are requested to check the information provided in this publication to satisfy themselves as to its appropriateness and not to rely on the information without first doing so. Unless required by law, the company cannot accept any responsibility for any loss, damage or consequence resulting from the use of this publication. Photographs shown are representative only of typical applications, current at February 2019. This brochure is not an offer to trade and shall not form any part of the trading terms in any transaction.
© Copyright 2019 Liberty OneSteel (Manufacturing) Pty Limited. 300PLUS® is a registered trademark of Liberty OneSteel (Manufacturing) Pty Limited ABN 38623194070. Issue 8, February 2019.

Bibliography

Australian Steel Institute. Design capacity tables for structural steel. Australian Steel Institute, North Sydney, N.S.W, 2016. ISBN 9781921476402.
K. Corgan. Print reading for welding and fabrication. Pearson, Boston, 2017. ISBN 9780133803839.

Jagdish R. Dhanuskar and Laxmikant M. Gupta. Shear lag effect in welded single angle tension member. International fournal of Steel Structures, 21(3):935-949, apr 2021. doi: 10.1007/s13296-021-00482-1.

Dan Dubina, Viorel Ungureanu, and Raffaele Landolfo. Design of Cold-formed Steel Structures : Eurocode 3: Design of Steel Structures. ECCS, Brussels, Belgium, 2012. ISBN 9789291471072.

Ana Espinos, Manuel L. Romero, Antonio Hospitaler, Ana M. Pascual, and Vicente Albero. Advanced materials for concrete-filled tubular columns and connections. Structures, 4:105-113, November 2015. ISSN 2352-0124. doi: 10.1016/j.istruc.2015.08.006.

Branko E. Gorenc, Ron Tinyou, and A. Syam. Steel Designers' Handbook. UNIV OF WASHINGTON PR, 8th edition, September 2015. ISBN 1742233414.

Richard B. Hetnarski, editor. Encyclopedia of Thermal Stresses. Springer Netherlands, 2014. doi: 10.100 7/978-94-007-2739-7.

Joint Committee of the Welding Research Council and ASCE. Plastic design in steel : a guide and commentary. American Society of Civil Engineers, New York, 1971. ISBN 9780872622173.

Ioannis Katsivalis, Ole Thybo Thomsen, Stefanie Feih, and Mithila Achintha. Strength evaluation and failure prediction of bolted and adhesive glass/steel joints. Glass Structures \& Engineering, 3(2):183196, apr 2018. doi: 10.1007/s40940-018-0070-0.

Paul W. McMullin, Jonathan S. Price, and Richard T. Seelos, editors. Steel design. Routledge, New York, 2018. ISBN 9781138831049.

Weilian Qu, Ernian Zhao, and Qiang Zhou. Refined analysis of fatigue crack initiation life of beam-tocolumn welded connections of steel frame under strong earthquake. Shock and Vibration, 2017:1-13, 2017. doi: $10.1155 / 2017 / 7946286$.

Raymond Roark. Roark's formulas for stress and strain. McGraw-Hill, New York, 2012. ISBN 9780071742474.

Charles G. Salmon, John E. Johnson, and Faris A. Malhas. Steel Structures: Design and Behavior. Pearson/Prentice Hall, 5th edition, 2009. ISBN 9780131885561.
J. C. Smith and Whitney Smith. Structural Steel Design: LRFD Approach. John Wiley \& Sons, January 1996. ISBN 0471106933.

Joseph A. Yura. The effective length of columns in unbraced frames. AISC Engineering fournal, 8(2): 37-42, 1971.

[^0]: ${ }^{1}$ https://www.austubemills.com.au/en-au/resource-centre/resources/design-capacity-tables-for-struc tural-steel-hollow/
 ${ }^{2}$ https://www. youtube.com/channel/UCXAS_Ekkq0iFJ9dSUIkcAkw
 ${ }^{3}$ https://en.smath.com/view/SMathStudio/summary

[^1]: ${ }^{4}$ https://www.tracker-software.com/product/pdf-xchange-viewer

[^2]: ${ }^{1}$ https://www.rei.com/stores/seattle.html

[^3]: ${ }^{2}$ https://www.youtube.com/watch?v=PaGJwOPg2kU

[^4]: ${ }^{3} h t t p s: / /$ www.youtube.com/watch?v=AkX6JqlWRqc

[^5]: ${ }^{4}$ https://www.youtube.com/watch?v=tpGhqQvftAo

[^6]: ${ }^{5} \mathrm{https}: / /$ www.youtube.com/watch?v=21G7LA2DcGQ

[^7]: ${ }^{6}$ https://www.youtube.com/watch?v=tpGhqQvftAo

[^8]: ${ }^{1}$ https://www. youtube.com/watch?v=XS17ZntK94E

[^9]: ${ }^{2}$ https://www.youtube.com/watch?v=QtyGWZDPtCI

[^10]: ${ }^{3}$ https://www.youtube.com/watch?v=f08Y39UiC-o

[^11]: ${ }^{1}$ https://www.scnz.org/techincal-resources/connections-guide/

[^12]: ${ }^{1}$ https://www. theengineerspost.com/welding-defects/

[^13]: Standard Length: 6 metres

[^14]: * 300PLUS® replaced Grade 250 as the base grade for these sections in 1994.
 300PLUS ${ }^{\text {® }}$ hot rolled sections are produced to exceed the minimum requirem

 300PLUS ${ }^{\circledR}$ hot rolled sections are produced to exceed the minimum requirements of AS/NZS 3679.1-300
 Notes

 1. For 300 PLUS ${ }^{\circledR}$ sections the tensile strength (f_{w}) is 440 MPa .
 2. C: Compact Section; N: Non-compact Section; S: Slender Section.
[^15]: Notes
 This does not cover impact tested grades for thickness less than 7 mm .
 *Impact testing is not available for bars and is only available for some sections by enquiry

[^16]: * The recommendations are based on the criterion that, at the maximum
 dimensions, a hardness of 50 HRC can be achieved in the centre of the quenched section.

 The actual properties obtained are dependent on both grade and heat treatment process control. As Liberty Steel has no control over the springmakers' heat treatment process, the above recommendations cannot be guaranteed. However springmakers with efficient heat treatment facilities will be able to achieve a hardness value of 50 HRC as recommended.

