
Constitutive

Modelling

Cookbook

Dr. Theodore Chang

April 25, 2024



This work is licensed under the

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/
4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042,
USA.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Contents

List of Figures vii

List of Tables ix

1. Preface 1
1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I. Prerequisites 3

2. Tensor Basics 5
2.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Tensor Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2. Double Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Stress Tensor Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Tensor Function of Stress Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Plasticity Basics 13
3.1. Decomposition of Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Yield Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3. Flow Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4. Hardening Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5. Consistency Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6. State Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6.1. Local Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.2. Consistent Tangent Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7. Some Tensor Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.1. Spherical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.2. Deviatoric Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.3. Volumetric Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.4. Deviatoric Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.5. Hooke’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.6. Lode Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



Contents

II. Uniaxial Models 23

4. Uniaxial Metal Models 25
4.1. Linear Isotropic Hardening Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2. Combined Isotropic/Kinematic Hardening Model . . . . . . . . . . . . . . . . . 29
4.2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3. Armstrong–Fredrick Hardening Model . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4. Uniaxial Model for BRB Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5. VAFCRP1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5. Uniaxial Phenomenological Models 47
5.1. Ramberg–Osgood Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2. MPF Steel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3. Bouc–Wen Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4. General Framework for Hysteresis Models . . . . . . . . . . . . . . . . . . . . . 52
5.4.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6. Uniaxial Plasticity Models (Other Materials) 57
6.1. K4 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iv



Contents

III. 2D/3D Models 69

7. Metal 71
7.1. von Mises Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.4. Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2. Hoffman J2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8. Timber 85
8.1. TimberPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.1. Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.2. Consistent Tangent Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9. Concrete 89
9.1. Concrete Damage Plasticity Model . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.1.1. Plasticity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.1.2. Damage Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.1.3. Plasticity Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.1.4. Damage Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.1.5. Consistent Tangent Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.1.6. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2. CDPM2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.2.1. Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2.2. Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2.3. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2.4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.Rubber 117
10.1. Mooney–Rivlin Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.2. Blatz–Ko Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.2.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.2.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.3. Yeoh Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.3.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.3.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.3.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



Contents

11.Geomaterial 121
11.1. Drucker–Prager Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
11.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.2. Modified Cam Clay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.2.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
11.2.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.3. Simple Sand Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.3.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.3.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.3.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11.4. Dafalias–Manzari Sand Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.4.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.4.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
11.4.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.5. Duncan Soil Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.5.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.5.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.5.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12.Viscoplasticity 161
12.1. VAFCRP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.2. Maxwell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2.2. Modified Power-law Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 168
12.2.3. Extension to Maxwell Model . . . . . . . . . . . . . . . . . . . . . . . . 170
12.2.4. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.2.5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.Other 179
13.1. Gurson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

13.1.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.1.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.1.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

13.2. The N -M Frame Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.2.2. Generalised Plasticity Framework . . . . . . . . . . . . . . . . . . . . . . 184
13.2.3. Discrete System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
13.2.4. Summary of The Proposed Model . . . . . . . . . . . . . . . . . . . . . 195
13.2.5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

vi



List of Figures

3.1. idealisation of a typical elasto-plastic model . . . . . . . . . . . . . . . . . . . . 13

5.1. schematic illustration a generalised hysteresis model . . . . . . . . . . . . . . . 53

11.1. σult
d determined by Mohr’s circle . . . . . . . . . . . . . . . . . . . . . . . . . . 153

12.1. rheology model of the Maxwell model with inelastic spring . . . . . . . . . . . . 170

13.1. deformation and resistance of a 2D beam . . . . . . . . . . . . . . . . . . . . . 182
13.2. mixed evolution of an example N -M interaction surface . . . . . . . . . . . . . 187
13.3. definition of nodal equivalent plastic deformation of 2D beam . . . . . . . . . . 188
13.4. bounded evolution of nodal back resistance of a 2D beam . . . . . . . . . . . . 190

vii





List of Tables

13.1. summary of key expressions and parameters . . . . . . . . . . . . . . . . . . . . 195

ix





1. Preface

Most books/papers present constitutive models analytically, leaving the implementation to
readers to address.

This book aims to provide practical guidance to numerical implementation of plasticity mod-
els.

Readers are expected to have undergraduate level background of linear algebra, numerical
analysis, elasticity and some programming knowledge.

1.1. Overview

The book presents a collection of constitutive models covering both uniaxial and triaxial and a
wide range of common materials used in engineering. The implementation details are derived
for each model.

The ultimate target is to provide an easy–to–follow, error and confusion free reference for
readers who are interested in implementing constitutive models under the modern plasticity
framework.

However, a wide range of different constitutive models are covered in this book, not only
formulations but also implementations, some of which are very lengthy. There are a huge
amount of symbols and formulae.

1.2. Implementation

For scientific computation that involves a significant amount of linear algebra operations, in
my opinion, operator overloading is essential. Lengthy implementation is almost inevitable
if the language does not support operator overloading. In this sense, account for perfor-
mance, C++ is perhaps the first choice. However, Rust may be another candidate in the
future.

Python and MATLAB, in the author’s opinion, are ideal for experimenting. Due to perfor-
mance related issues, they are not ready for production development.

1



1. Preface

For models only involve scalar operations, such as most uniaxial models, C/Fortran can be
equivalently chosen. All variables can be grouped into structs and a typical state determination
interface in C may look like this.

1 struct State
2 {
3 double strain;
4 double stress;
5 double stiffness;
6 // more history variables
7 double elastic_modulus;
8 // more model constants and parameters
9 };

10

11 int update_state(const struct State *const current, struct State *const trial){
12 // update trial state
13 trial->stress = 2.;
14

15 return 0;
16 }
17

18 int main()
19 {
20 struct State current, trial;
21

22 // set trial strain
23 trial.strain = 1.;
24 // call state determination
25 int err = update_state(&current, &trial);
26 // handle error
27 }

In all the state determination algorithms presented in this book, by default it is assumed all
local iteraions eventually converge. Thus the handling of failure of convergence is not presented
for brevity. One shall always bear in mind that not all algorithms converge, and for robust,
practical algorithms, more numerical processes are required.

1.3. Digest

As the title indicates, this book is drafted as a reference book on constitutive modelling, it
shall be self–complete in terms of theoretical part. For practical implementation, algorithms
in pseudo code are given for most models. Core CPP implementations are also provided as
references/comparisons for readers who are familiar with CPP and scientific computation with
relevant tools. The code snippets are taken from the implementations from suanPan [1]. In
this regard, this book can also be used as the program manual.

2



Part I.

Prerequisites
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2. Tensor Basics

In engineering, often tensors are defined in Euclidean spaces and belong to Cartesian ten-
sor (type). Transformation between covariant and contravariant bases, thus raising/lowering
indices, is somehow not emphasised (but implied). The most likely reason is that, often
orthonormal bases are used so that covariant and contravariant bases lead to the same coor-
dinates. Thus, only subscripts (i, j, k, l, etc.) are used to represent tensor indices, implying
that contravariant bases are used. Furthermore, scalars are denoted by normal symbols such
as A while vectors and tensors are not distinguished, all denoted by boldface symbols such as
A.

2.1. Notations

Let A ∈ R2×R2 denote a second order tensor with contravariant bases e1 and e2. With that,
A has four components that can be arranged in the following matrix.

A = Aije
i ⊗ ej =

[
A11 A12
A21 A22

]
. (2.1)

The tensor notation of A is the notation with indices, which refers to coordinates Aij . The
matrix representation refers to the 2D matrix of size two. The operator ⊗ stands for tensor
product which will be introduced later. In some literature, it is omitted for simplicity, resulting
in

A = Aije
iej . (2.2)

This notation will be used in this book. In this case, eiej does not represent the dot product
of two vectors. Rather, the operator · shall be explicitly shown as ei · ej to avoid potential
confusion.

The Einstein summation convention is adopted, that is, in each single term, if the same index
appears exactly twice, the summation of that term over all values of that index. In this
example, i, j = {1, 2}. Thus,

A = Aije
iej =

2∑
i,j=1

Aije
iej = A11e

1e1 +A12e
1e2 +A21e

2e1 +A22e
2e2. (2.3)

Since indices only act as placeholders, it does not matter which symbol is used. The following

5



2. Tensor Basics

expressions are equivalent.

A = Aije
iej = Aike

iek = Ajie
jei = Ajke

jek = Akie
kei = Akje

kej . (2.4)

But it is not equivalent to

A ̸= Aiie
iei = Ajje

jej = Akke
kek. (2.5)

If A represents a symmetric stress tensor σ, it can be expressed in both matrix and vector
representations such as

σ = σije
iej =

[
σ11 σ12
σ21 σ22

]
=
[
σx τxy

τxy σy

]
matrix representation, (2.6)

σ =

σx

σy

τxy

 =

 σ11
σ22

σ12 = σ21

 Voigt notation, (2.7)

σ =

 σx

σy√
2τxy

 =

 σ11
σ22√

2σ12 =
√

2σ21

 Mandel notation. (2.8)

Readers shall be familiar with the Voigt notation as it is widely used due to simplicity. The
Mandel notation is an alternative that provides convenience when it comes to some tensor
algebra operations. Examples will be shown later. It shall be noted that different vector/matrix
representations of a tensor may have different components.

If A represents a symmetric strain tensor ε, then its matrix and vector representations are

ε = εije
iej =

[
ε11 ε12
ε21 ε22

]
=

 εx
1
2γxy

1
2γxy εy

 matrix representation, (2.9)

ε =

 εx

εy

γxy

 =

 ε11
ε22

2ε12 = 2ε21

 Voigt notation, (2.10)

ε =


εx

εy√
2

2 γxy

 =

 ε11
ε22√

2ε12 =
√

2ε21

 Mandel notation. (2.11)

In above, γxy = 2ε12 = 2ε21 is commonly known as the engineering shear strain.

[2] presents a great discussion on compressed matrix representation covering both second order
and fourth order tensors.
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2.2. Tensor Operations

2.2. Tensor Operations

2.2.1. Tensor Product

Definition

The tensor product is also called dyadic product, which is an operation to construct high order
tensor from low order tensors. Let A = Aie

i and B = Bie
i be two first order tensors (vectors),

then tensor product of A and B gives a second order tensor C

C = A⊗B = Aie
i ⊗Bje

j = AiBje
i ⊗ ej = Cije

i ⊗ ej . (2.12)

The simplified notation can also be adopted

C = AB = Aie
iBje

j = AiBje
iej = Cije

iej . (2.13)

The components of C can be expressed as

Cij = AiBj . (2.14)

If A = Aije
iej and B = Bije

iej are two second order tensors, then the result is a fourth order
tensor

C = AB = Aije
iejBkle

kel = AijBkle
iejekel = Cijkle

iejekel (2.15)

with components Cijkl = AijBkl. If both A and B are symmetric tensors, then C possesses
major symmetry

Cijkl = Cklij (2.16)

and minor symmetry

Cijkl = Cjikl = Cijlk. (2.17)

Vector/Matrix Representation

Let A = Aie
i ∈ R2 and B = Bie

i ∈ R2 be two first order tensors. Their column vector
representations can be expressed as

A = Aie
i =

[
A1 A2

]T
, B = Bie

i =
[
B1 B2

]T
. (2.18)
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2. Tensor Basics

The tensor product Eq. (2.13) gives a second order tensor C ∈ R2×R2 that can be represented
by a matrix as shown in Eq. (2.1), which is

C = Cije
iej =

[
C11 C12
C21 C22

]
=
[
A1B1 A1B2
A2B1 A2B2

]
. (2.19)

Now if tensor C is treated as a matrix while tensors A and B are treated as column vectors, the
tensor product is exactly the outer product between A and B. That is,

C = A⊗B = AB︸ ︷︷ ︸
tensor product between tensors

←→ C = ABT.︸ ︷︷ ︸
vector/matrix representation

(2.20)

Now let A = Aije
iej ∈ R3 × R3 and B = Bije

iej ∈ R3 × R3 be two symmetric second order
stress tensors, adopting the Voigt notation, their column vector representation can be shown
as

A = Aije
iej =

[
A11 A22 A33 A12 A23 A31

]T
, (2.21)

B = Bije
iej =

[
B11 B22 B33 B12 B23 B31

]T
. (2.22)

The tensor product Eq. (2.15) between A and B gives the fourth order tensor C ∈ R3 ×
R3 × R3 × R3 which can be arranged in a 2D matrix accounting for both major and minor
symmetries.

C = Cijkle
iejekel =



C1111 C1122 C1133 C1112 C1123 C1131
C2211 C2222 C2233 C2212 C2223 C2231
C3311 C3322 C3333 C3312 C3323 C3331
C1211 C1222 C1233 C1212 C1223 C1231
C2311 C2322 C2333 C2312 C2323 C2331
C3111 C3122 C3133 C3112 C3123 C3131


. (2.23)

It can be observed Eq. (2.20) still applies since Cijkl = AijBkl. It is thus convenient to adopt
the Voigt notation to perform tensor product between stress tensors.

However, if A and B are strain tensors, the Voigt notation leads to the following result of the
outer product

Ĉ =



C1111 C1122 C1133 2C1112 2C1123 2C1131
C2211 C2222 C2233 2C2212 2C2223 2C2231
C3311 C3322 C3333 2C3312 2C3323 2C3331
2C1211 2C1222 2C1233 4C1212 4C1223 4C1231
2C2311 2C2322 2C2333 4C2312 4C2323 4C2331
2C3111 2C3122 2C3133 4C3112 4C3123 4C3131


. (2.24)

Fundamentally, different base tensors are used for stress tensors (contravariant) and strain
tensors (covariant).
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2.2. Tensor Operations

With the compressed matrix representations, one must be clear about such difference and
apply proper scaling vectors/matrices when necessary.

2.2.2. Double Contraction

Definition

The double contraction, also known as the double dot product, is a tensor operation to con-
struct low order tensors from high order tensors. Let A = Aie

i and B = Bie
i be two first

order tensors (vectors), then dot product of A and B gives a zeroth order tensor (scalar) C
as

C = A ·B = Aie
i ·Bje

j = AiBje
i · ej = δijAiBj = AiBi, (2.25)

where δij is the Kronecker delta which equals 1 if i = j or 0 otherwise.

If A = Aije
iej and B = Bije

iej are two second order tensors, then the double contraction
performs dot product twice on different indices, resulting in a zeroth order tensor (scalar)
as

C = A : B = Aije
iej : Bkle

kel = AijBkl(ei · ek)(ej · el)
= δikδjlAijBkl = AijBij .

(2.26)

Vector/Matrix Representation

Let A = Aije
iej ∈ R3×R3 and B = Bije

iej ∈ R3×R3 be two symmetric second order stress
tensors. According to Eq. (2.26), the double contraction of two gives

C = A : B = AijBij = A11B11 +A22B22 +A33B33

+ A12B12 + A13B13 + A21B21 + A23B23 + A31B31 + A32B32. (2.27)

It can be expressed via column vector representations (in the Voigt notation) of A and B
as

C = ATSB =
[
A11 A22 A33 A12 A23 A31

]


1
1

1
2

2
2





B11
B22
B33
B12
B23
B31


. (2.28)
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Its derivative reads

∂C

∂A
= BTS,

∂C

∂B
= ATS. (2.29)

However, if the Mandel notation is adopted, it is simply

C = ATB =
[
A11 A22 A33

√
2A12

√
2A23

√
2A31

]


B11
B22
B33√
2B12√
2B23√
2B31


. (2.30)

If A and B represent strain tensors, a similar expression can be obtained with a different
scaling matrix S using the Voigt notation.

S = diag
(

1 1 1 1
2

1
2

1
2

)
. (2.31)

With the Mandel notation, again no additional scaling matrix is required, C = ATB.

The Mandel notation is constructed on top of orthonormal basis of second order tensors. The
advantage in obvious: there is no need to handle covariant and contravariant representations.
However, it is not widely used as its physical meaning is not that obvious. In this book, the
Voigt notation is used by default.

2.3. Stress Tensor Norm

The double contraction between a second order tensor A and itself results in a scalar that can
be used to characterise the norm of A. In this sense, double contraction of second order tensors
can be deemed as an equivalent version of dot product of vectors.

Let σ ∈ R3×R3 denote the symmetric stress tensor, define its Euclidean norm as

∥σ∥ =
√
σ : σ

=
√
σ2

11 + σ2
22 + σ2

33 + 2σ2
12 + 2σ2

23 + 2σ2
31.

(2.32)

Accordingly, its normalised version

n = σ

∥σ∥
. (2.33)
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2.3. Stress Tensor Norm

The derivative of ∥σ∥ can be computed accordingly via the chain rule.

d∥σ∥
dσ = 1

2
2σ : I
∥σ∥

= n in tensor notation, (2.34)

where I is the fourth order identity tensor. It shall be noted Eq. (2.34) is shown in ten-
sor notation. For column vector representation in the Voigt notation, it shall be expressed
as

d∥σ∥
dσ = 1

2
1
∥σ∥

[
2σ11 2σ22 2σ33 4σ12 4σ23 4σ31

]
=
(

σ

∥σ∥

)T
diag

((
1 1 1 2 2 2

))

= 1
∥σ∥

[
σ11 σ22 σ33 σ12 σ23 σ31

]


1
1

1
2

2
2


.

(2.35)

It is clear that with the Voigt notation, the vector/matrix representation differs from the cor-
responding tensor representation. However, with the Mandel notation,

d∥σ∥
dσ = 1

∥σ∥

[
σ11 σ22 σ33

√
2σ12

√
2σ23

√
2σ31

]
, (2.36)

which matches the tensor notation.

Now we proceed to compute the derivative of n with respect to σ.

dn
dσ =

dσ
dσ∥σ∥ − σ

d∥σ∥
dσ

∥σ∥2
= 1
∥σ∥

(I− n⊗ n) in tensor notation. (2.37)

With the Voigt notation, it can be computed as follows.

dn
dσ = 1

∥σ∥
diag


1
1
1
1
1
1

−
1
∥σ∥3


σ2

11 σ11σ22 σ11σ33 2σ11σ12 2σ11σ23 2σ11σ31
σ11σ22 σ2

22 σ22σ33 2σ12σ22 2σ22σ23 2σ22σ31
σ11σ33 σ22σ33 σ2

33 2σ12σ33 2σ23σ33 2σ31σ33
σ11σ12 σ12σ22 σ12σ33 2σ2

12 2σ12σ23 2σ12σ31
σ11σ23 σ22σ23 σ23σ33 2σ12σ23 2σ2

23 2σ23σ31
σ11σ31 σ22σ31 σ31σ33 2σ12σ31 2σ23σ31 2σ2

31

 . (2.38)
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It is essentially

dn
dσ = 1

∥σ∥


I − nnT



1
1

1
2

2
2




, (2.39)

where I is the identity matrix of size 6.

2.4. Tensor Function of Stress Tensors

Some tensor–valued functions of stress tensors are frequently used in the analysis of plasticity.
Let β = f (σ,α) denote a tensor-valued function of the stress tensor σ and some other tensors
denoted by α. Let the tensor–valued function γ = g (β) be the normalised version of β, that
is

γ = β

∥β∥
= β√

β : β
. (2.40)

The partial derivative can be expressed as

∂γ

∂
= ∂γ

∂β
: ∂β
∂

= 1
∥β∥

(I− γ ⊗ γ) : ∂β
∂

in tensor notation. (2.41)

Depending on the form of β, the compressed vector/matrix representation would differ. This
will be dealt in specific context.
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3. Plasticity Basics

Here we present a general framework of plasticity.

The idealisation of a typical elasto-plastic model can be represented by a frictional device
as shown in Fig. 3.1. The device consists of an elastic spring element that deforms in an
elastic manner, the deformation of which can be fully recovered when applied external force
becomes zero, and a friction element, which deforms when deformation exceeds a certain
limit and its deformation cannot be recovered even when applied external force becomes
zero.

Most plastic models are formulated in stress space, or equivalently, strain driven. The task
is to determine stress response based on strain input.

Figure 3.1.: idealisation of a typical elasto-plastic model

3.1. Decomposition of Strain

With the above model, it is clear that total strain ε can be decomposed into two parts, namely
recoverable elastic strain εe and unrecoverable plastic strain εp.

ε = εe + εp. (3.1)

The elastic part obeys Hooke’s law,

σ = D : εe = D : (ε− εp) , (3.2)

where D is the elastic stiffness moduli.
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3.2. Yield Function

To be able to determine whether a given stress state is admissible, the yield function is in-
troduced as the criterion. It is often a scaler–valued function of stress σ and some additional
internal variables q, viz.,

f = f (σ, q) . (3.3)

By convention, it is defined so that all admissible stress states would lead to f ⩽ 0 while f > 0
is not allowed by any means. If f is deemed as a surface in stress space, all admissible stress
states shall fall in the volume bounded by f . Thus yield function is also called yield surface
in some literature, it may further evolve (change of size, location, etc.) with the development
of plasticity. Sometimes it is further classified into two types: initial yield surface (when
plasticity has not occurred) and subsequent yield surface (when plasticity has developed and
is developing).

The internal variables q are called history variables.

3.3. Flow Rule

As plastic strain may evolve during the loading/unloading process, it is necessary to know how
it evolves, the flow rule is defined as follows.

ε̇p = γr (σ, q) , (3.4)

where γ is a non-negative scalar called the consistency parameter, r = r (σ, q) is a tensor–
valued function that indicates the direction of plastic flow.

In the context of plasticity, since time t is often not explicitly involved, the dot symbol ˙(·)
above a quantity denotes its increment ˙(·) = ∂(·)

∂t
∆t for brevity.

3.4. Hardening Law

In order to allow yield function to evolve, internal variables shall be governed by some function,
which is defined as hardening law.

q̇ = γh (σ, q) , (3.5)

where h = h (σ, q) is another tensor–valued function that indicates the type of hardern-
ing.
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3.5. Consistency Conditions

Since f ≯ 0 and γ ≮ 0, the number of admissible situations is limited:

• f < 0 — elastic loading/unloading

• f = 0 and ḟ < 0 — elastic unloading from yield surface

• f = 0 and ḟ = 0 and γ > 0 — plastic loading

• f = 0 and ḟ = 0 and γ = 0 — neutral loading on current yield surface

The above lengthy list can be elegantly characterised by the consistency conditions:

γf = 0 and γḟ = 0. (3.6)

3.6. State Determination

The yield function, flow rule and hardening law are three elements that complete most plastic
models.

For a given strain input ∆ε and initial conditions, a general algorithm would possess the
following structure.

Algorithm 1 general state determination algorithm of plastic models
1: freeze plasticity (assume elastic loading/unloading)
2: compute yield function f
3: if f ⩾ 0 then
4: plasticity must develop
5: compute plastic response
6: update internal variables
7: else
8: elastic loading/unloading
9: compute elastic response

10: no need to update internal variables
11: end if

3.6.1. Local Iteration

If plasticity must develop, noting that f = 0, with the assist of Eq. (3.2), σ can be equivalently
represented by εp, there are three unknown variables γ, εp and q to be solved subjected to the
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following three equations.
0 = f (εp, q) ,
ε̇p = γr (εp, q) ,
q̇ = γh (εp, q) .

(3.7)

Often the above system is nonlinear by construction and needs to be solved with an itera-
tive method. It can be rewritten in a more nonlinear–flavoured style. Let x =

[
γ εp q

]
denote the local variable vector, and R (γ, εp, q) denote the residual of the nonlinear sys-
tem

R =


f (εp, q) ,
ε̇p − γr (εp, q) ,
q̇ − γh (εp, q) .

(3.8)

The target is to find the solution x to R = 0 for a prescribed total strain ε. The Newton–
Raphson method can be adopted with the help of Jacobian ∂R

∂x
. It shall be noted that partial

derivatives are used here since fundamentally ε enters the system. It is also a variable which
is held constant only at local iteration level.

3.6.2. Consistent Tangent Stiffness

To compute the consistent tangent stiffness, one can start from Eq. (3.2),

∂σ

∂ε
= D −D : ∂ε

p

∂ε
. (3.9)

Noting that at equilibrium, local residual shall be zero, viz., R = 0. Taking full differentiation
leads to

∂R

∂ε
+ ∂R

∂x

∂x

∂ε
≡ 0, (3.10)

thus

∂x

∂ε
= −

(
∂R

∂x

)−1 ∂R

∂ε
. (3.11)

The term ∂εp

∂ε
can be extracted from ∂x

∂ε
.

Although not in the closed–form, the above procedure provides a universal approach to compute
the consistent tangent stiffness in a highly efficient manner which can be applied to a wide
range of plastic models.

Readers who are interested in plasticity theory please refer to [3] for more formal mathematical
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formulations.

3.7. Some Tensor Quantities

Here we present some frequently used tensor quantities defined in 3D space.

3.7.1. Spherical Stress

The spherical stress of a stress tensor σ refers to the portion corresponds to an isotropic
hydrostatic pressure p,

p = 1
3trace (σ) = 1

3σii = 1
3 (σ11 + σ22 + σ33) . (3.12)

The corresponding spherical stress in the Voigt notation is then

p1 =
[
p p p 0 0 0

]T
. (3.13)

3.7.2. Deviatoric Stress

The remaining portion is often known the deviatoric stress, denoted by s.

s = dev (σ) = σ − p1 =



σ11 − p
σ22 − p
σ33 − p
σ12
σ23
σ31


=



2
3 −1

3 −1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3

1
1

1





σ11
σ22
σ33
σ12
σ23
σ31


. (3.14)

In which, 1 is the unit second order tensor. In tensor notation,

s = Idev : σ. (3.15)

By simple comparison, one can immediately find

Idev =



2
3 −1

3 −1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3

1
1

1


(3.16)
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is the matrix representation of the fourth order deviatoric operator Idev. It must be noted
that due to the adoption of the Voigt notation, the matrix representation of Idev is not
unique.

3.7.3. Volumetric Strain

It is possible to define the volumetric strain εv to be

εv = trace (ε) = εii = ε11 + ε22 + ε33. (3.17)

In tensor notation, it is

εv = 1 : ε. (3.18)

3.7.4. Deviatoric Strain

Similarly, the remaining portion of strain is called the deviatoric strain εd.

e = εd = dev (ε) = ε− εv

3 1 =



ε11 − εv

3
ε22 − εv

3
ε33 − εv

3
2ε12
2ε23
2ε31


=



2
3 −1

3 −1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3

1
1

1





ε11
ε22
ε33
γ12
γ23
γ31


. (3.19)

In tensor notation,

e = εd = Idev : ε. (3.20)

3.7.5. Hooke’s Law

The spherical part and deviatoric part are governed by two material parameters: bulk modulus
K and shear modulus G, in tensor notation,

p = Kεv, s = 2Gεd. (3.21)

Please note the latter in component form readss11 s12 s31
s12 s22 s23
s31 s23 s33


︸ ︷︷ ︸

s

= 2G

εd
11 εd

12 εd
31

εd
12 εd

22 εd
23

εd
31 εd

23 εd
33


︸ ︷︷ ︸

εd

. (3.22)
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The corresponding compressed matrix representation shall be expressed as

s11
s22
s33
s12
s23
s31


︸ ︷︷ ︸

s

= 2G



1
1

1
1
2

1
2

1
2


︸ ︷︷ ︸

I



εd
11
εd

22
εd

33
2εd

12
2εd

23
2εd

31


︸ ︷︷ ︸

εd

= 2G



2
3 −1

3 −1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3

1
2

1
2

1
2


︸ ︷︷ ︸

Idev



ε11
ε22
ε33
2ε12
2ε23
2ε31


︸ ︷︷ ︸

ε

.

(3.23)

In this case, the matrix representation of I changes its form since it links strain with stress.

After some manipulations, total stress can be expressed by total strain as follows.

σ = s + p1

= 2Gεd +Kεv1

= 2GIdev : ε +K1⊗ 1 : ε

=
(
2GIdev +K1⊗ 1

)
: ε.

(3.24)

Thus,

D = 2GIdev +K1⊗ 1 = 2GI− 2G1
31⊗ 1 +K1⊗ 1. (3.25)

In matrix representation,

D = 2G



2
3 −1

3 −1
3 · · ·

−1
3

2
3 −1

3 · · ·
−1

3 −1
3

2
3 · · ·

· · · 1
2 · ·

· · · · 1
2 ·

· · · · · 1
2


+K



1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
· · · · · ·
· · · · · ·
· · · · · ·


. (3.26)

Here one may observe Idev appears in a different form. This inconsistency is caused by the
Voigt notation, as here the operand is strain tensor while the result is stress tensor. One can
again refer to [2] for detailed explanation.
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3. Plasticity Basics

Using Lamé’s constant λ = K−2
3G, D can be alternatively expressed as

D =



λ+ 2G λ λ · · ·
λ λ+ 2G λ · · ·
λ λ λ+ 2G · · ·
· · · G · ·
· · · · G ·
· · · · · G


. (3.27)

3.7.6. Lode Angle

For some material models, the Haigh–Westergaard stress space may be used. The lode angle
is often used to define some parameter that alters the yield surface which may have a special
shape on the π-plane. The lode angle θ can be defined as

cos (3θ) = J3
2

( 3
J2

)1.5
, (3.28)

where

J2 = 1
2trace

(
s2
)

= 1
2∥s∥

2, J3 = 1
3trace

(
s3
)

= det s (3.29)

are the invariants of the deviatoric stress tensor s.

Eq. (3.28) can be equivalently expressed as

cos (3θ) = 61.5

2
J3

∥s∥3
=
√

54det s
∥s∥3

=
√

54 det s

∥s∥
. (3.30)

By the chain rule, the derivative of Eq. (3.28) can be expressed as

d cos (3θ)
ds = 1

2

( 3
J2

)1.5 dJ3
ds −

32.5

4
J3
J2.5

2

dJ2
ds . (3.31)

With the assist of

dJ2
ds = s,

dJ3
ds = s · s− 2

3J21, (3.32)

Eq. (3.31) becomes

d cos (3θ)
ds = 1

2

( 3
J2

)1.5 (
s · s− 2

3J21

)
− 32.5

4
J3
J2.5

2
s

=
√

2
( 3

2J2

)1.5 (
s · s− 2J2

3 1− 3
2J2

J3s

)
.

(3.33)
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Denoting s = 2J2
3 , then

d cos (3θ)
ds =

√
2s−1.5

(
s · s− s1− J3

s
s

)
. (3.34)
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4. Uniaxial Metal Models

In this chapter, several models suitable for modelling metals are presented. We shall start
from simple von Mises criterion based models, to more advanced uniaxial models suitable for
modelling buckling restrained bracing members.

4.1. Linear Isotropic Hardening Model

4.1.1. Theory

For uniaxial models, the constitutive equation Eq. (3.2) simplifies to

σ = E (ε− εp) (4.1)

where E is Young’s modulus.

Yield Function

The (probably) most simplest yield function is

f = |σ| − σy (4.2)

where σy = σy (σ, q) is the yield stress which is a function of internal variable q thus would
evolve.

For example, a linear function can be chosen so that

σy = σi +Kq, (4.3)

where σi is the initial yield stress (non-negative) and K is the isotropic hardening modulus
(either positive for hardening or negative for softening).
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4. Uniaxial Metal Models

Flow Rule

It is reasonable to define that the direction of plastic flow coincides with the direction of stress,
that is

ε̇p = γ sign (σ) . (4.4)

Physically, it simply states plastic strain evolves towards the direction of stress. If stress is
positive, plastic strain increases and vice versa.

Noting that ∂f
∂σ

= sign (σ), the flow rule can also be expressed as

ε̇p = γ
∂f

∂σ
. (4.5)

In 3D space, such a flow rule is often called the associative rule.

Hardening Law

For the internal hardening variable q, the simplest case would be

q̇ = |ε̇p| = γ. (4.6)

Thus q characterises the accumulated magnitude of plastic strain. Given that γ ⩾ 0, it is clear
that q is a non-decreasing (strictly increasing) function.

We are ready to formulate and implement our first plastic model.

4.1.2. Formulation

In this book, subscript (·)n is adopted to indicate initial conditions (current state or converged
state) and subscript (·)n+1 is adopted to indicate solution (new state or trial state). Sometimes
(·)n+1 is omitted for simplicity.

The summation of this simple isotropic hardening model is listed as follows.

Constitutive Law σ = E (ε− εp)
Yield Function f = |σ| −

(
σi +Kq

)
Flow Rule ε̇p = γ sign (σ)

Hardening Law q̇ = γ

For this example, the initial conditions are stress σn, total strain εn, plastic strain εp
n and
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4.1. Linear Isotropic Hardening Model

hardening variable qn. For a given εn+1, the model shall compute new σn+1, εp
n+1 and

qn+1.

Elastic Loading/Unloading

By freezing plasticity, one can first check if the new state is elastic. Since it may not be the final
new state, we denote the computed stress and trial stress. According to

σtrial
n+1 = E (εn+1 − εp

n) , (4.7)

or equivalently,

σtrial
n+1 = σn + E (εn+1 − εn) , (4.8)

the yield function becomes

f trial =
∣∣∣σtrial

∣∣∣− σy = E|εn+1 − εp
n| −

(
σi +Kqn

)
, (4.9)

f trial =
∣∣∣σtrial

∣∣∣− σy = |σn + E (εn+1 − εn)| −
(
σi +Kqn

)
. (4.10)

If f trial < 0, indicating elastic loading/unloading, the new state is simply εp
n+1 = εp

n, qn+1 = qn

and σn+1 = σtrial
n+1.

Plastic Evolution

Otherwise the new state consists of new evolution of plasticity. In this case,

σn+1 = E
(
εn+1 − εp

n+1
)
. (4.11)

The yield function is

f = |σ| − σy = E
∣∣εn+1 − εp

n+1
∣∣− (σi +Kqn+1

)
= 0. (4.12)

The flow rule and hardening law shall be expressed as

εp
n+1 = εp

n + ε̇p = εp
n + γ sign (σn+1) , (4.13)

qn+1 = qn + q̇ = qn + γ. (4.14)

Noting that

σn+1 = σtrial
n+1 − Eε̇p −→ σn+1 + Eγ sign (σn+1) = σtrial

n+1

−→ (|σn+1|+ Eγ) sign (σn+1) =
∣∣∣σtrial

n+1

∣∣∣ sign
(
σtrial

n+1

)
,

(4.15)
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4. Uniaxial Metal Models

since both E and γ are non-negative, sign (σn+1) = sign
(
σtrial

n+1

)
and |σn+1|+Eγ =

∣∣∣σtrial
n+1

∣∣∣. Thus
inserting the above expressions into the yield function, one can obtain∣∣∣σtrial

n+1 − Eγ sign
(
σtrial

n+1

)∣∣∣− (σi +K (qn + γ)
)

= 0. (4.16)

After some manipulations, it is∣∣∣σtrial
n+1

∣∣∣− Eγ − (σi +K (qn + γ)
)

= 0. (4.17)

The above expression holds since
∣∣∣σtrial

n+1

∣∣∣−Eγ = |σn+1| is non-negative.

The consistency parameter can be solved as

γ =

∣∣∣σtrial
n+1

∣∣∣− (σi +Kqn
)

E +K
= f trial

E +K
. (4.18)

It is easy to further compute

∂γ

∂εn+1
= E

E +K
. (4.19)

4.1.3. Implementation

The implementation is quite straightforward for such a simple model. Algorithm 2 summarised
the state determination algorithm for the above isotropic hardening model.

Algorithm 2 state determination of uniaxial isotropic hardening model
1: Parameter: E, K
2: Input: εn+1, εn, εp

n, σn, qn

3: Output: En+1, εp
n+1, σn+1, qn+1

4: compute σtrial and f trial

5: if f trial ⩾ 0 then

6: γ = f trial

E +K
7: εp

n+1 = εp
n + γ sign

(
σtrial

n+1

)
8: qn+1 = qn + γ

9: σn+1 = σtrial
n+1 − Eγ sign

(
σtrial

n+1

)
10: En+1 = E − E2

E +K
= EK

E +K
11: else
12: εp

n+1 = εp
n

13: qn+1 = qn

14: σn+1 = σtrial
n+1

15: En+1 = E
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4.2. Combined Isotropic/Kinematic Hardening Model

16: end if

4.2. Combined Isotropic/Kinematic Hardening Model

Isotropic hardening controls the size of yield surface without changing its location. Kine-
matic hardening, on contrary, changes yield surface location but does not touch its size.
Combining isotropic hardening and kinematic hardening allows flexible response to be mod-
elled.

4.2.1. Theory

Yield Function

Since σy characterises the size of yield surface, a natural approach to allow yield surface to
move around is to introduce the explicit location of its centre.

f = |η| − σy, (4.20)

with η = σ − α is defined to be the shifted stress with α denoting the back stress. The
additional stress quantity α characterises the centre of yield surface.

Flow Rule

Assuming associative rule, the flow rule shall be updated as

ε̇p = γ
∂f

∂σ
= γ sign (η) . (4.21)

Hardening Law

The additional internal variable α shall evolve as well. It can take a similar form as fol-
lows.

α̇ = Hε̇p = γH sign (η) . (4.22)

in which H denotes the kinematic hardening modulus. The existing hardening law for q does
not altered.

q̇ = |ε̇p| = γ. (4.23)
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4. Uniaxial Metal Models

4.2.2. Formulation

The summation of this combined isotropic/kinematic hardening model is listed as follows.

Constitutive Law σ = E (ε− εp)
Yield Function f = |σ − α| −

(
σi +Kq

)
Flow Rule ε̇p = γ sign (σ − α)

Hardening Law q̇ = γ
α̇ = γH sign (σ − α)

The algorithm aims to compute new σn+1, εp
n+1, αn+1 and qn+1 based on current σn, εn, εp

n,
αn, qn and new εn+1.

Elastic Loading/Unloading

The trial stress can be computed following Eq. (4.8). Then by denoting ηtrial = σtrial−αn, the
yield function becomes

f trial =
∣∣∣ηtrial

∣∣∣− (σi +Kqn

)
. (4.24)

Plastic Evolution

With new state variables, let ηn+1 = σn+1−αn+1, compute the yield function as follows.

f = |σn+1 − αn+1| −
(
σi +Kqn+1

)
=
∣∣∣σtrial

n+1 − Eγ sign (ηn+1)− αn −Hγ sign (ηn+1)
∣∣∣− (σi +Kqn +Kγ

)
=
∣∣∣ηtrial

n+1 − (E +H) γ sign (ηn+1)
∣∣∣− (σi +Kqn +Kγ

)
= 0.

(4.25)

Similar to Eq. (4.15), it can be derived that

sign
(
ηtrial

n+1

)
= sign (ηn+1) ,

∣∣∣ηtrial
n+1

∣∣∣ = |ηn+1|+ (E +H) γ. (4.26)

Thus,

f =
∣∣∣ηtrial

n+1

∣∣∣− (E +H) γ −
(
σi +Kqn +Kγ

)
= 0. (4.27)

From which η can be solved.

η =

∣∣∣ηtrial
n+1

∣∣∣− (σi +Kqn
)

E +H +K
= f trial

E +H +K
. (4.28)
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4.3. Armstrong–Fredrick Hardening Model

4.2.3. Implementation

The state determination algorithm resembles the previous one for isotropic hardening model.

Algorithm 3 state determination of uniaxial combined isotropic/kinematic hardening model
1: Parameter: E, H, K
2: Input: εn+1, εn, εp

n, σn, αn, qn

3: Output: En+1, εp
n+1, σn+1, αn+1, qn+1

4: compute σtrial, ηtrial and f trial

5: if f trial ⩾ 0 then

6: γ = f trial

E +H +K
7: εp

n+1 = εp
n + γ sign

(
ηtrial

n+1

)
8: qn+1 = qn + γ

9: αn+1 = αn +Hγ sign
(
ηtrial

n+1

)
10: σn+1 = σtrial

n+1 − Eγ sign
(
ηtrial

n+1

)
11: En+1 = E − E2

E +H +K
= E (H +K)
E +H +K

12: else
13: εp

n+1 = εp
n

14: qn+1 = qn

15: αn+1 = αn

16: σn+1 = σtrial
n+1

17: En+1 = E
18: end if

4.3. Armstrong–Fredrick Hardening Model

So far, two simple models has been introduced. The linear isotropic/kinematic hardening law
is adopted so that the local residual is a linear function which can be solved within one step.
However, linear hardening has limited applications.

To allow more versatile applications, in this section, a metal model incorporating Armstrong–
Fredrick type kinematic hardening [4] and Voce type isotropic hardening [5] is introduced.
Both hardening types are nonlinear.
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4. Uniaxial Metal Models

4.3.1. Theory

Yield Function and Flow Rule

The same yield function and flow rule used in the previous combined isotropic/kinematic
hardening model are adopted.

f = |η| − σy, (4.29)

ε̇p = γ
∂f

∂σ
= γn = γ sign (η) , (4.30)

in which η = σ−α is the shifted stress, α = α (q) is the back stress, σy = σy (q) is the isotropic
hardening stress and n = sign (η).

Hardening Law

The same hardening law for q is adopted as well.

q̇ = |ε̇p| = γ. (4.31)

Isotropic Hardening Instead of using a simple linear function, a Voce type function is adopted
for σy.

σy = σi +Kq + σs (1− e−mp) , (4.32)

in which K denotes the linear hardening modulus, σs is the satuated stress that denotes the
size of additional yield stress caused by exponential hardening and m is a model parameter
that controls the rate of exponential part of hardening.

If K = 0, it can be seen that

lim
p→∞

σy = σi + σs, lim
p→0

σy = σi. (4.33)

Kinematic Hardening A multiplicative formulation [6] for back stress is adopted with the
Armstrong–Fredrick type hardening rule. The back stress is defined to be the summation of sev-
eral back stresses that evolve independently with different rates. That is,

α =
n∑

i=1
αi (4.34)

with

α̇i = aiε̇p − biαiq̇ (4.35)
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4.3. Armstrong–Fredrick Hardening Model

where ai and bi are two sets of model parameters. In terms of γ, it is

α̇i = aiγn− biαiγ. (4.36)

4.3.2. Formulation

The summation of this AF model is listed as follows.

Constitutive Law σ = E (ε− εp)
Yield Function f = |σ − α| −

(
σi +Kp+ σs (1− e−mp)

)
Flow Rule ε̇p = γ sign (σ − α)

Hardening Law q̇ = γ
α = ∑n

i=1 αi

α̇i = aiγn− biαiγ

Elastic Loading/Unloading

The trial stress can be computed following Eq. (4.8). Then by denoting ηtrial = σtrial−αn, the
yield function becomes

f trial =
∣∣∣ηtrial

∣∣∣− (σi +Kpn + σs (1− e−mpn
))
. (4.37)

Plastic Evolution

It is now clear that nonlinearity is introduced since α̇i = g (αi, · · · ) is a function of αi and other
variables. Various first order numerical methods can be applied. For example,

• explicit/forward Euler method

αi,n+1 = αi,n + g (αi,n, · · · ) , (4.38)

• implicit/backward Euler method

αi,n+1 = αi,n + g (αi,n+1, · · · ) , (4.39)

• mid-point method

αi,n+1 = αi,n + g (αi,n, · · · ) + g (αi,n+1, · · · )
2 . (4.40)
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4. Uniaxial Metal Models

We mainly use the implicit Euler method in our plastic models, although it is significantly
more complex than the explicit one.

Then αi,n+1 can be expressed as

αi,n+1 = αi,n + α̇i = αi,n + aiγn− biαi,n+1γ. (4.41)

Thus,

αi,n+1 = αi,n + aiγn

1 + biγ
. (4.42)

Then,

αn+1 =
∑ αi,n + aiγn

1 + biγ
. (4.43)

The shifted stress can be then computed as

ηn+1 = σn+1 − αn+1 = σtrial − Eγn−
∑ αi,n + aiγn

1 + biγ
. (4.44)

Rearranging leads to

ηn+1 + Eγn+
∑ aiγn

1 + biγ
= σtrial −

∑ αi,n

1 + biγ
. (4.45)

Given that n = sign (ηn+1) and γ ⩾ 0,(
|ηn+1|+ Eγ +

∑ aiγ

1 + biγ

)
n =

∣∣∣∣σtrial −
∑ αi,n

1 + biγ

∣∣∣∣ sign
(
σtrial −

∑ αi,n

1 + biγ

)
. (4.46)

Thus,

n = sign (ηn+1) = sign
(
σtrial −

∑ αi,n

1 + biγ

)
, (4.47)

|ηn+1|+ Eγ +
∑ aiγ

1 + biγ
=
∣∣∣∣σtrial −

∑ αi,n

1 + biγ

∣∣∣∣. (4.48)

With the above expressions, the yield function can be evaluated as

f = |ηn+1| −
(
σi +Kqn+1 + σs (1− e−mqn+1

))
=
∣∣∣∣σtrial −

∑ αi,n

1 + biγ

∣∣∣∣− Eγ −∑ aiγ

1 + biγ
− σi −Kqn −Kγ − σs

(
1− e−m(qn+γ)

)
= 0.

(4.49)

The Newton–Raphson method shall be used to solve this nonlinear equation. The Jacobian
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4.3. Armstrong–Fredrick Hardening Model

reads

∂f

∂γ
=
∑ biαi,nn− ai

(1 + biγ)2 − E −K −mσ
se−m(qn+γ). (4.50)

The tangent modulus shall be computed via the chain rule.

∂σn+1
∂εn+1

= ∂σtrial

∂εn+1
+ En

∂γ

∂εn+1
= E + En

∂γ

∂εn+1
. (4.51)

Following the general procedure Eq. (3.10), at equilibrium, the full differentiation of yield
function is

∂f

∂εn+1
+ ∂f

∂γ

∂γ

∂εn+1
= 0. (4.52)

Thus,

∂γ

∂εn+1
= −

(
∂f

∂γ

)−1 ∂f

∂εn+1
. (4.53)

In which,

∂f

∂εn+1
= nE, (4.54)

and ∂f

∂γ
should have been computed when local iteration converges.

Finally, the tangent stiffness is

∂σn+1
∂εn+1

= E + En
∂γ

∂εn+1
= E +

(
∂f

∂γ

)−1
E2. (4.55)

4.3.3. Implementation

The state determination algorithm of this AF model is given in Algorithm 4.

Algorithm 4 state determination of uniaxial AF steel model
1: Parameter: E, K, σs, m, ai, bi

2: Input: εn+1, εn, εp
n, σn, αi,n, qn

3: Output: En+1, εp
n+1, σn+1, αi,n+1, qn+1

4: compute σtrial, ηtrial and f trial n = sign
(
σtrial −

∑ αi,n

1 + biγ

)
5: if f trial ⩾ 0 then
6: γ = 0
7: while true do
8: compute f and ∂f

∂γ
▷ Eq. (4.49) and Eq. (4.50)
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4. Uniaxial Metal Models

9: ∆γ =
(
∂f

∂γ

)−1
f

10:
11: if |∆γ| < tolerance then
12: break
13: end if
14: γ ← γ −∆γ
15: end while
16: εp

n+1 = εp
n + γn

17: qn+1 = qn + γ

18: αi,n+1 = αi,n + aiγn

1 + biγ
19: σn+1 = σtrial

n+1 − Eγn

20: En+1 = E +
(
∂f

∂γ

)−1
E2

21: else
22: εp

n+1 = εp
n

23: qn+1 = qn

24: αi,n+1 = αi,n

25: σn+1 = σtrial
n+1

26: En+1 = E
27: end if

So far it is clear that for both simple and complex models, the structure of state determi-
nation algorithm remains more or less the same. The core formulation only differs due to
different yield function, flow rule and hardening law. Nevertheless, some simplifications are
often possible.

1 int ArmstrongFrederick1D::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
5

6 trial_stress = current_stress + (trial_stiffness = initial_stiffness) * incre_strain;
7

8 trial_history = current_history;
9 auto& p = trial_history(size);

10

11 auto yield_func = fabs(trial_stress(0) - accu(trial_history.head(size))) - std::max(0.,
yield + hardening * p + saturated * (1. - exp(-m * p)));↪→

12

13 if(yield_func < 0.) return SUANPAN_SUCCESS;
14

15 auto gamma = 0.;
16 double xi, jacobian;
17

18 unsigned counter = 0;
19 while(true) {
20 if(max_iteration == ++counter) {
21 suanpan_error("ArmstrongFrederick1D cannot converge in %u iterations.\n",

max_iteration);↪→
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4.3. Armstrong–Fredrick Hardening Model

22 return SUANPAN_FAIL;
23 }
24

25 const auto exp_term = saturated * exp(-m * p);
26

27 auto k = yield + saturated + hardening * p - exp_term;
28 auto dk = hardening + m * exp_term;
29 if(k < 0.) k = dk = 0.;
30

31 auto sum_a = 0., sum_b = 0.;
32 for(unsigned I = 0; I < size; ++I) {
33 const auto denom = 1. + b(I) * gamma;
34 sum_a += trial_history(I) / denom;
35 sum_b += a(I) / denom;
36 }
37

38 yield_func = fabs(xi = trial_stress(0) - sum_a) - (elastic_modulus + sum_b) * gamma -
k;↪→

39

40 jacobian = -elastic_modulus - dk;
41

42 if(xi > 0.) for(unsigned I = 0; I < size; ++I) jacobian += (b(I) * trial_history(I) -
a(I)) * pow(1. + b(I) * gamma, -2.);↪→

43 else for(unsigned I = 0; I < size; ++I) jacobian -= (b(I) * trial_history(I) + a(I))
* pow(1. + b(I) * gamma, -2.);↪→

44

45 const auto incre = yield_func / jacobian;
46 suanpan_extra_debug("ArmstrongFrederick1D local iterative loop error: %.5E.\n",

fabs(incre));↪→

47 if(fabs(incre) <= tolerance) break;
48

49 gamma -= incre;
50 p -= incre;
51 }
52

53 if(xi > 0.) {
54 for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) + a(I) *

gamma) / (1. + b(I) * gamma);↪→

55

56 trial_stress -= elastic_modulus * gamma;
57 }
58 else {
59 for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) - a(I) *

gamma) / (1. + b(I) * gamma);↪→

60

61 trial_stress += elastic_modulus * gamma;
62 }
63

64 trial_stiffness += elastic_modulus / jacobian * elastic_modulus;
65

66 return SUANPAN_SUCCESS;
67 }
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4. Uniaxial Metal Models

4.4. Uniaxial Model for BRB Steel

The previous models show symmetric behaviour regardless under tension or compression. For
some application such as buckling restrained braces, buckling under compression would result
in lower strength. In this section, a model [7] suitable for BRB steel is presented with a neat
implementation.

4.4.1. Theory

To distinguish different responses in tension and compression, one set of flow rule and hard-
ening law is not sufficient. Instead, tension and compression shall be treated separately.
Here superscripts (·)+ and (·)− are used to denote tension and compression governing equa-
tions.

Plasticity Activation

The model adopts a different approach. The activation of plasticity is decided based on the
product σε̇. When loading towards tension (compression), as long as σ is in tension (compres-
sion), plasticity evolves. In mathematical language,

ε̇σ > 0, plasticity develops
ε̇σ ⩽ 0, elastic unloading (4.56)

In other words, loading is always plastic while only unloading can be elastic.

Flow Rule

The increment of plastic strain is defined to be a portion of the increment of total strain,

ε̇p =



∣∣∣∣∣σ −Kεp

σ+
y

∣∣∣∣∣
α+

ε̇, tension evolution∣∣∣∣∣σ −Kεp

σ−
y

∣∣∣∣∣
α−

ε̇. compression evolution
(4.57)

The term Kεp defines the linear hardening, which serves as a baseline, given than yield stress
σ+

y (σ−
y ) defines the boundary, the fraction is always smaller than unity.
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4.4. Uniaxial Model for BRB Steel

Hardening Law

The yield stress follows a Voce type rule.

σ+
y = σ0 +

(
σ+

s − σ0
)(

1− exp
(
− q

n+

))
= σ+

s −
(
σ+

s − σ0
)

exp
(
− q

n+

)
,

(4.58)

σ−
y = σ0 +

(
σ−

s − σ0
) (

1− exp
(
− q

n−

))
= σ−

s −
(
σ−

s − σ0
)

exp
(
− q

n−

)
.

(4.59)

In which n+ and n− are two factors controlling the speed of evolution of yield stress while σ+
s

and σ−
s are two saturated stresses. By setting different values, tension response can differ from

compression response.

4.4.2. Formulation

The governing equations are summarised as follows.

Constitutive Law σ = E (ε− εp)

Flow Rule ε̇p =



∣∣∣∣∣σ −Kεp

σ+
y

∣∣∣∣∣
α+

ε̇, tension evolution,∣∣∣∣∣σ −Kεp

σ−
y

∣∣∣∣∣
α−

ε̇, compression evolution.

Hardening Law q̇ = |ε̇p|

σ+
y = σ+

s −
(
σ+

s − σ0
)

exp
(
− q

n+

)
σ−

y = σ−
s − (σ−

s − σ0) exp
(
− q

n−

)

The state determination is based on the flow rule. Rearranging it gives

R = ε̇p −
∣∣∣∣∣σ −Kεp

σ±
y

∣∣∣∣∣
α±

ε̇ (4.60)

with superscript (·)± covering both tension and compression, whichever suits.

It can be further expanded as

R = ε̇p −
∣∣∣∣∣E (εn+1 − εp

n − ε̇p)−Kεp
n −Kε̇p

σ±
y

∣∣∣∣∣
α±

ε̇. (4.61)
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4. Uniaxial Metal Models

Denoting σtrial = E (εn+1 − εp
n)− kεp

n, it is

R = ε̇p −
∣∣∣∣∣σtrial − Eε̇p −Kε̇p

σ±
y

∣∣∣∣∣
α±

ε̇. (4.62)

The corresponding derivative is

∂R

∂ε̇p
= 1 + α±ε̇

∣∣∣∣∣σtrial − Eε̇p −Kε̇p

σ±
y

∣∣∣∣∣
α± (E +K)σ±

y +
(
σtrial − Eε̇p −Kε̇p

) dσ±
y

dε̇p

σ±
y (σtrial − Eε̇p −Kε̇p)

. (4.63)

It can be validated the above derivative holds for both positive and negative fraction.

The derivative of yield function can be computed as

dσ±
y

dε̇p
= σ±

s − σ0
n± exp

(
− q

n±

)
sign (ε̇p) . (4.64)

For tangent stiffness, the following expression will be used.

∂R

∂εn+1
= −

∣∣∣∣∣σtrial − Eε̇p −Kε̇p

σ±
y

∣∣∣∣∣
α± (

1 + α±ε̇E

σtrial − Eε̇p −Kε̇p

)
. (4.65)

4.4.3. Implementation

A clear and concise implementation is presented as follows. Compared with other existing
bloated implementations, the following one is significantly simpler.

Algorithm 5 state determination of uniaxial BRB steel model
1: Parameter: E, K, σ0, σ+

s , σ−
s , n+, n−, α+, α−

2: Input: εn+1, εn, εp
n, σn, qn

3: Output: En+1, εp
n+1, σn+1, qn+1

4: ε̇ = εn+1 − εn

5: assuming elastic response σn+1 = σn + E (εn+1 − εn)
6: if σn+1ε̇ ⩽ 0. then ▷ elastic
7: εp

n+1 = εp
n

8: qn+1 = qn

9: En+1 = E
10: else ▷ plastic
11: determine tension/compression plastic loading
12: ε̇p = 1

2 ε̇
13: while true do
14: εp

n+1 = εp
n + ε̇p
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4.4. Uniaxial Model for BRB Steel

15: qn+1 = qn + |ε̇p|
16: σn+1 = E

(
εn+1 − εp

n+1
)

17: compute σ±
y and

dσ±
y

dε̇p
using the proper function

18: compute R and ∂R

∂ε̇p
▷ Eq. (4.62) and Eq. (4.63)

19: ∆ = −
(
∂R

∂ε̇p

)−1
R

20: if |∆| < tolerance then
21: break
22: end if
23: ε̇p ← ε̇p + ∆
24: end while
25: En+1 = E + E

(
∂R

∂ε̇p

)−1 ∂R

∂εn+1
26: end if

The idea of the above steel BRB model is fairly straightforward. Given that the target is to gen-
erate different response under tension/compression, one can simply adopt two sets of flow rule
and hardening law to fulfil this task. For each case, the overall structure of algorithm remains
the same, one can switch between two sets of model parameters.

The CPP implementation of the state determination algorithm is shown as follows.

1 int SteelBRB::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_stress = current_stress + (trial_stiffness = elastic_modulus) * incre_strain;
7

8 trial_history = current_history;
9 const auto& current_accumulated_strain = current_history(0); // u

10 const auto& current_plastic_strain = current_history(1); // \delta_1
11 auto& accumulated_strain = trial_history(0); // u
12 auto& plastic_strain = trial_history(1); // \delta_1
13

14 if(trial_stress(0) / incre_strain(0) < 0.) return SUANPAN_SUCCESS;
15

16 const auto tension_flag = incre_strain(0) >= 0.;
17 const auto& exponent = tension_flag ? t_exponent : c_exponent;
18 const auto compute_stress = tension_flag ? std::mem_fn(&SteelBRB::compute_t_yield_stress)

: std::mem_fn(&SteelBRB::compute_c_yield_stress);↪→

19

20 auto incre = .5 * incre_strain(0), incre_plastic_strain = 0.;
21 auto counter = 0;
22 while(true) {
23 if(max_iteration == ++counter) {
24 suanpan_error("SteelBRB cannot converge within %u iterations.\n", max_iteration);
25 return SUANPAN_FAIL;
26 }
27
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4. Uniaxial Metal Models

28 incre_plastic_strain += incre;
29

30 plastic_strain = current_plastic_strain + incre_plastic_strain;
31 trial_stress = elastic_modulus * (trial_strain - plastic_strain);
32

33 const auto sigma_y = compute_stress(this, accumulated_strain =
current_accumulated_strain + fabs(incre_plastic_strain));↪→

34 const auto numerator = trial_stress(0) - plastic_modulus * plastic_strain;
35 const auto fraction = numerator / sigma_y(0);
36 const auto pow_term = pow(fabs(fraction), exponent);
37 auto residual = -incre_strain(0) * pow_term;
38 const auto jacobian = 1. + exponent / numerator * residual * (s_modulus - fraction *

(incre_plastic_strain >= 0. ? sigma_y(1) : -sigma_y(1)));↪→

39 residual += incre_plastic_strain;
40

41 const auto error = fabs(incre = -residual / jacobian);
42

43 suanpan_debug("SteelBRB local iteration error: %.5E.\n", error);
44

45 if(error <= tolerance) {
46 trial_stiffness *= 1. - (pow_term + incre_strain(0) * elastic_modulus * exponent

* pow_term / numerator) / jacobian;↪→

47

48 return SUANPAN_SUCCESS;
49 }
50 }
51 }

4.5. VAFCRP1D

Finally, an extension of Armstrong–Fredrick model is presented to close this chapter. A 3D
version will be introduced later.

4.5.1. Theory

Yield Function

A von Mises yielding function is used.

f = ∥η∥ − k, (4.66)

in which η = σ − β is the shifted stress, β is the back stress and k = k (q) is the isotropic
hardening stress.
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4.5. VAFCRP1D

Flow Rule

The associated plasticity flow is adopted. The plastic strain rate is then

ε̇p = γ
∂f

∂σ
= γn = γ sign (η) , (4.67)

where n = η

∥η∥
= sign (η). The corresponding accumulated plastic strain rate is

ṗ = ∥ε̇p∥ = γ. (4.68)

Hardening Law

An exponential function with a linear component is used for isotropic hardening stress.

k = σy + klp+ ks − kse
−mp. (4.69)

The corresponding derivative is

dk
dγ = kl + ksme

−mp. (4.70)

The rate form of back stress β =
∑

βi is defined as

β̇i = aiε̇p − biβiṗ.

In terms of γ, it is β̇i = aiγn− biβiγ. The incremental form is thus

βi = βi
n + aiγn− biβiγ, βi = βi

n + aiγn

1 + biγ
. (4.71)

Plastic Multiplier

The rate of plastic multiplier is defined as

γ

∆t = γ̇ = 1
µ

(∥η∥k
)1
ϵ − 1

 , (4.72)

in which µ and ϵ are two material constants. Equivalently, it is

∥η∥
( ∆t

∆t+ µγ

)ϵ

− k = 0. (4.73)

43
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4.5.2. Formulation

Incremental Form

The shifted stress can be computed as

η = σ − β = E
(
εtrial − εp

n − γn
)
− β = σtrial − nEγ −

∑ βi
n + naiγ

1 + biγ
(4.74)

with σtrial = E
(
εtrial − εp

n

)
. Knowing that γ is positive, the following can be obtained by

splitting the summation into two parts,(
∥η∥+ Eγ +

∑ aiγ

1 + biγ

)
n =

∥∥∥∥∥σtrial −
∑ βi

n

1 + biγ

∥∥∥∥∥u,

where u =
σtrial −

∑ βi
n

1 + biγ∥∥∥∥∥σtrial −
∑ βi

n

1 + biγ

∥∥∥∥∥
. This expression is equivalent to n = u and

η =
(∥∥∥∥∥σtrial −

∑ βi
n

1 + biγ

∥∥∥∥∥− Eγ −∑ aiγ

1 + biγ

)
u. (4.75)

The reason to find such an identity is that u is only a function of γ, the derivative of which can
be easily computed. Similar derivations can also be seen in the 3D version, leading to the con-
clusion that the direction of back stress is aligned with some direction.

The corresponding derivatives are

∂∥η∥
∂εtrial = uE,

∂∥η∥
∂γ

=
∑ biβi

nu− ai

(1 + biγ)2 − E.

Scalar Equation Iteration

With the above expression, it is possible to establish the local residual based on the creep rule,
which is

R =
(∥∥∥∥∥σtrial −

∑ βi
n

1 + biγ

∥∥∥∥∥− Eγ −∑ aiγ

1 + biγ

)( ∆t
∆t+ µγ

)ϵ

−
(
σy + kl (pn + γ) + ks

(
1− e−m(pn+γ)

))
. (4.76)
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The corresponding derivatives are then

∂R

∂εtrial = uE

( ∆t
∆t+ µγ

)ϵ

, (4.77)

∂R

∂γ
=
(∑ biβi

nu− ai

(1 + biγ)2 − E −
ϵµ∥η∥

∆t+ µγ

)( ∆t
∆t+ µγ

)ϵ

− dk
dγ . (4.78)

Consistent Tangent Stiffness

For stiffness, εtrial is now varying, then

∂R

∂εtrial + ∂R

∂γ

dγ
dεtrial = 0, dγ

dεtrial = −
(
∂R

∂γ

)−1 ∂R

∂εtrial . (4.79)

Since the stress can be written as

σ = E(εtrial − εp) = E(εtrial − εp
n −∆εp) = E(εtrial − εp

n)− Eγu. (4.80)

The derivative is

dσ
dεtrial = E − Eu dγ

dεtrial = E + E2
(
∂R

∂γ

)−1 ( ∆t
∆t+ µγ

)ϵ

. (4.81)

4.5.3. Implementation

1 int VAFCRP1D::update_trial_status(const vec& t_strain) {
2 trial_stress = current_stress + (trial_stiffness = initial_stiffness) * (incre_strain =

(trial_strain = t_strain) - current_strain);↪→

3

4 trial_history = current_history;
5 auto& p = trial_history(size);
6

7 if(fabs(trial_stress(0) - accu(trial_history.head(size))) < std::max(0., yield +
hardening * p + saturated * (1. - exp(-m * p)))) return SUANPAN_SUCCESS;↪→

8

9 auto gamma = 0.;
10 double xi, jacobian, exp_gamma;
11

12 unsigned counter = 0;
13 while(true) {
14 if(max_iteration == ++counter) {
15 suanpan_error("VAFCRP1D cannot converge in %u iterations.\n", max_iteration);
16 return SUANPAN_FAIL;
17 }
18

19 const auto exp_term = saturated * exp(-m * p);
20

21 auto k = yield + saturated + hardening * p - exp_term;
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22 auto dk = hardening + m * exp_term;
23 if(k < 0.) k = dk = 0.;
24

25 auto sum_a = 0., sum_b = 0.;
26 for(unsigned I = 0; I < size; ++I) {
27 const auto denom = 1. + b(I) * gamma;
28 sum_a += trial_history(I) / denom;
29 sum_b += a(I) / denom;
30 }
31

32 const auto q = fabs(xi = trial_stress(0) - sum_a) - (elastic_modulus + sum_b) *
gamma;↪→

33

34 exp_gamma = pow(*incre_time / (*incre_time + mu * gamma), epsilon);
35

36 jacobian = -elastic_modulus - epsilon * mu * q / (*incre_time + mu * gamma);
37

38 if(xi > 0.) for(unsigned I = 0; I < size; ++I) jacobian += (b(I) * trial_history(I) -
a(I)) * pow(1. + b(I) * gamma, -2.);↪→

39 else for(unsigned I = 0; I < size; ++I) jacobian -= (b(I) * trial_history(I) + a(I))
* pow(1. + b(I) * gamma, -2.);↪→

40

41 const auto incre = (q * exp_gamma - k) / ((jacobian *= exp_gamma) -= dk);
42 suanpan_extra_debug("VAFCRP1D local iterative loop error: %.5E.\n", fabs(incre));
43 if(fabs(incre) <= tolerance) break;
44

45 gamma -= incre;
46 p -= incre;
47 }
48

49 if(xi > 0.) {
50 for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) + a(I) *

gamma) / (1. + b(I) * gamma);↪→

51

52 trial_stress -= elastic_modulus * gamma;
53 }
54 else {
55 for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) - a(I) *

gamma) / (1. + b(I) * gamma);↪→

56

57 trial_stress += elastic_modulus * gamma;
58 }
59

60 trial_stiffness += elastic_modulus / jacobian * elastic_modulus * exp_gamma;
61

62 return SUANPAN_SUCCESS;
63 }
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In this chapter, we present a number of uniaxial phenomenological models. Due to their phe-
nomenological nature, some models may violate Ilyushin’s postulate.

5.1. Ramberg–Osgood Model

5.1.1. Theory

The Ramberg–Osgood relation is nonlinear function that defines

ε̄ = σ̄

E
+ α

σ̄

E

(
σ̄

σ̄y

)n−1
, (5.1)

where α and n are two model constants. To account for cyclic response, strain and stress are
not directly used in the above expression.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

5

10

ε̄

σ̄

5.1.2. Formulation

The residual equation is formulated as

R = σ̄ + ασ̄

(
σ̄

σ̄y

)n−1
− Eε̄, (5.2)
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its derivative with regard to σ̄ is

∂R

∂σ̄
= 1 + nα

(
σ̄

σ̄y

)n−1
. (5.3)

Once ε̄ and σ̄y are determined, σ̄ can be iteratively computed.

For cyclic loads, it is necessary to record the location of reversing point, denoted by εr and σr.
Then,

ε̄ = |ε− εr|, σ̄ = |σ − σr|. (5.4)

It simply means ε̄ and σ̄ are the absolute strain and stress measured from the reversing
point.

The yield stress is taken as

σ̄y = σy + |σr|. (5.5)

where σy is the initial yield stress. This definition is fine for large cycle loads, but not sufficient
for small cycle loads. For which, the previous reversing point shall be used, let εpr and σpr

denote its strain and stress, then for small cycles, |σpr| > |σr|,

σ̄y = |σpr − σr|. (5.6)

To wrap up,

σ̄y =
{

max (σy + |σr|, |σpr − σr|) , if σpr = 0 or |σpr| < |σr|,
|σpr − σr|, otherwise. (5.7)

5.1.3. Implementation

The CPP implementation can be found as follows.

1 int RambergOsgood::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_history = current_history;
7 auto& load_sign = trial_history(0);
8 auto& reverse_strain = trial_history(1);
9 auto& reverse_stress = trial_history(2);

10 auto& p_reverse_strain = trial_history(3);
11 auto& p_reverse_stress = trial_history(4);
12

13 if(const auto trial_load_sign = suanpan::sign(incre_strain(0));
!suanpan::approx_equal(trial_load_sign, load_sign)) {↪→
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14 if(!suanpan::approx_equal(load_sign, 0.)) {
15 p_reverse_strain = reverse_strain;
16 p_reverse_stress = reverse_stress;
17 reverse_strain = current_strain(0);
18 reverse_stress = current_stress(0);
19 }
20 load_sign = trial_load_sign;
21 }
22

23 const auto elastic_predictor = elastic_modulus * fabs(trial_strain(0) - reverse_strain);
24

25 const auto norm_yield_stress = std::max(datum::eps, 0. == p_reverse_stress ||
fabs(p_reverse_stress) < fabs(reverse_stress) ? std::max(fabs(reverse_stress -
p_reverse_stress), yield_stress + fabs(reverse_stress)) : fabs(reverse_stress -
p_reverse_stress));

↪→

↪→

↪→

26

27 const auto pow_a = pow(norm_yield_stress, nm);
28

29 auto norm_stress = fabs(current_stress(0) - reverse_stress);
30

31 unsigned counter = 0;
32 while(true) {
33 const auto pow_b = offset * pow(norm_stress, nm);
34 const auto jacobian = pow_a + n * pow_b;
35 const auto incre = (norm_stress * (pow_a + pow_b) - elastic_predictor * pow_a) /

jacobian;↪→

36 const auto error = fabs(incre) / yield_stress;
37 suanpan_debug("RambergOsgood local iteraton error: %.5E.\n", error);
38 if(error <= tolerance || max_iteration == ++counter) {
39 trial_stress = load_sign * norm_stress + reverse_stress;
40 trial_stiffness = elastic_modulus * pow_a / jacobian;
41 return SUANPAN_SUCCESS;
42 }
43 norm_stress -= incre;
44 }
45 }

5.2. MPF Steel Model

5.2.1. Theory

5.2.2. Formulation

5.2.3. Implementation

The CPP implementation can be found as follows.
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1 int MPF::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_history = current_history;
7 auto& reverse_stress = trial_history(0);
8 auto& reverse_strain = trial_history(1);
9 auto& inter_stress = trial_history(2);

10 auto& inter_strain = trial_history(3);
11 auto& pre_inter_strain = trial_history(4);
12 auto& max_strain = trial_history(5);
13 auto& load_sign = trial_history(6);
14

15 auto shift_stress = 0.;
16 if(isotropic_hardening) {
17 shift_stress = std::max(0., A3 * yield_stress * (max_strain / yield_strain - A4));
18 max_strain = std::max(max_strain, fabs(trial_strain(0)));
19 }
20

21 if(const auto trial_load_sign = suanpan::sign(incre_strain(0));
!suanpan::approx_equal(trial_load_sign, load_sign)) {↪→

22 if(!suanpan::approx_equal(load_sign, 0.)) {
23 reverse_stress = current_stress(0);
24 reverse_strain = current_strain(0);
25 pre_inter_strain = inter_strain;
26 inter_strain = yield_stress * hardening_ratio - yield_stress - shift_stress;
27 if(trial_load_sign > 0.) inter_strain = -inter_strain;
28 inter_strain = (inter_strain + elastic_modulus * reverse_strain - reverse_stress)

/ (elastic_modulus - hardening_ratio * elastic_modulus);↪→

29 inter_stress = elastic_modulus * (inter_strain - reverse_strain) +
reverse_stress;↪→

30 }
31 else if(trial_load_sign > 0.) {
32 inter_stress = yield_stress;
33 inter_strain = yield_strain;
34 }
35 else {
36 inter_stress = -yield_stress;
37 inter_strain = -yield_strain;
38 }
39 load_sign = trial_load_sign;
40 }
41

42 auto radius = R0;
43 if(!constant_radius) {
44 // update radius
45 const auto xi = fabs(reverse_strain - pre_inter_strain) / yield_strain;
46 radius -= A1 * xi / (A2 + xi);
47 }
48

49 const auto gap_strain = inter_strain - reverse_strain;
50 const auto gap_stress = inter_stress - reverse_stress;
51 const auto normal_strain = std::max(datum::eps, (trial_strain(0) - reverse_strain) /

gap_strain);↪→

52 const auto factor_a = 1. + pow(normal_strain, radius);
53 const auto factor_b = (1. - hardening_ratio) * pow(factor_a, -1. / radius);

50



5.3. Bouc–Wen Model

54

55 trial_stress = (hardening_ratio + factor_b) * normal_strain * gap_stress +
reverse_stress;↪→

56 trial_stiffness = gap_stress / gap_strain * (hardening_ratio + factor_b / factor_a);
57

58 return SUANPAN_SUCCESS;
59 }

5.3. Bouc–Wen Model

5.3.1. Theory

5.3.2. Formulation

5.3.3. Implementation

1 int BoucWen::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
5

6 const auto n_strain = incre_strain(0) / yield_strain;
7

8 trial_history = current_history;
9 const auto& current_z = current_history(0); // z

10 auto& z = trial_history(0); // z
11

12 auto incre = .5 * n_strain;
13 unsigned counter = 0;
14 while(true) {
15 if(max_iteration == ++counter) {
16 suanpan_error("BoucWen cannot converge within %u iterations.\n", max_iteration);
17 return SUANPAN_FAIL;
18 }
19

20 z += incre;
21

22 const auto p_term = (gamma + (z * n_strain >= 0. ? beta : -beta)) *
pow(std::max(datum::eps, fabs(z)), n);↪→

23 const auto t_term = n_strain * p_term;
24

25 const auto residual = z - current_z + t_term - n_strain;
26 const auto jacobian = z + n * t_term;
27

28 const auto error = fabs(incre = -residual * z / jacobian);
29
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30 suanpan_debug("BoucWen local iteration error: %.5E.\n", error);
31

32 if(error <= tolerance) {
33 trial_stress = modulus_a * trial_strain + modulus_b * z;
34 trial_stiffness = modulus_a + modulus_b / yield_strain * (1. - p_term) * z /

jacobian;↪→

35

36 return SUANPAN_SUCCESS;
37 }
38 }
39 }

5.4. General Framework for Hysteresis Models

5.4.1. Theory

The general framework consists of three main elements:

1. backbone curve — compression/tension envelope, blue curves in Fig. 5.1

2. unloading curve — unload from backbone to the corresponding residual point (with zero
stress), green curves in Fig. 5.1

3. reloading curve — loading from residual point to backbone curve on the opposite side,
purple curves in Fig. 5.1

Each of those three curves can be either linear/nonlinear or piece-wise linear/nonlinear and
may depend on other internal variables.

Accordingly, at least four points are essential to control the response of the model, namely,
the tension unloading point, the tension residual point, the compression unloading point, the
compression residual point. A schematic illustration is given in Fig. 5.1. Some complex models
may consist of more control points, such as reloading points that connect reloading curves with
backbones.

With the above definition, it is clear that any given current state εn and σn shall on one
of three curves. With prescribed strain increment ∆ε, the determination of stress σn+1 is
equivalent to computing the new point on one of three curves. As the current state (εn, σn)
has to be on one of three curves, it is easy to determine whether εn+1 = εn + ∆ε is on
unloading/reloading/backbone curve by simply comparing the magnitudes of εn+1 and that of
unloading/residual strain, which are stored as history variables.

The state determination algorithm can be cast in a branching programming style. In the
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strain

stress
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tension
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Figure 5.1.: schematic illustration a generalised hysteresis model

following procedure, εcr is compression residual strain, εcu is compression unloading strain, εtr

is tension residual strain, εtu is tension unloading strain.

Algorithm 6 state determination of general hysteresis model
1: Parameter: necessary model parameters
2: Input: εn+1, εn, σn and other relevant history variables
3: Output: En+1, σn+1 and other relevant history variables
4: get strain values of four control points
5: εn+1 = εn + ∆ε
6: determine which curve the new state is on based on the curve the current state is on and

the magnitudes of εn+1, εcr, εcu, εtr, εtu

7: call corresponding methods to compute the new state (εn+1, σn+1) based on relevant two
control points and history variables, if any

5.4.2. Implementation

By using two flags, it is easy to track which curve each point is on.

1 enum class Status { NONE, CBACKBONE, TBACKBONE, CINNER, TINNER };
2

3 Status trial_flag = Status::NONE, current_flag = Status::NONE;

The implementation presented uses a nested structure to simply the procedure. The top
level determines whether the new state is on the backbone, if not, the second level determines
whether the new state is on the corresponding unloading curve or reloading curve and computes
the response accordingly.
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For each curve, a universal interface can be provided such that each takes εn+1 as the input
and returns σn+1 and En+1 in an array.

1 [[nodiscard]] virtual podarray<double> compute_compression_backbone(double) const = 0;
2 [[nodiscard]] virtual podarray<double> compute_tension_backbone(double) const = 0;
3 [[nodiscard]] podarray<double> compute_compression_inner(double) const;
4 [[nodiscard]] podarray<double> compute_tension_inner(double) const;

The control points can be updated on the demand with some auxiliary methods.

1 [[nodiscard]] virtual podarray<double> compute_compression_initial_reverse() const = 0;
2 [[nodiscard]] virtual podarray<double> compute_tension_initial_reverse() const = 0;
3 [[nodiscard]] virtual double compute_compression_residual(double, double) const = 0;
4 [[nodiscard]] virtual double compute_tension_residual(double, double) const = 0;

The following CPP code snippet shows a working implementation of such a state determination
procedure.

1 int SimpleHysteresis::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
5

6 if(current_history.is_empty() || !any(current_history)) {
7 current_history.zeros(8);
8 auto point = compute_compression_initial_reverse();
9 current_history(2) = point(0);

10 current_history(3) = point(1);
11 point = compute_tension_initial_reverse();
12 current_history(4) = point(0);
13 current_history(5) = point(1);
14 initial_history = current_history;
15 }
16 else if(current_history.size() != 8) {
17 current_history.resize(8);
18 initial_history = current_history;
19 }
20

21 trial_history = current_history;
22 auto& max_c_strain = trial_history(0); // maximum compression strain recorded
23 auto& max_t_strain = trial_history(1); // maximum tension strain recorded
24 auto& reverse_c_strain = trial_history(2); // unloading point strain compression side
25 auto& reverse_c_stress = trial_history(3); // unloading point stress compression side
26 auto& reverse_t_strain = trial_history(4); // unloading point strain tension side
27 auto& reverse_t_stress = trial_history(5); // unloading point stress tension side
28 auto& residual_c_strain = trial_history(6); // residual strain in compression unloading

path↪→

29 auto& residual_t_strain = trial_history(7); // residual strain in compression unloading
path↪→

30

31 podarray<double> response;
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32

33 if(Status::NONE == current_flag) {
34 if(incre_strain(0) > 0.) {
35 trial_flag = Status::TBACKBONE;
36 response = compute_tension_backbone(max_t_strain = trial_strain(0));
37 }
38 else {
39 trial_flag = Status::CBACKBONE;
40 response = compute_compression_backbone(max_c_strain = trial_strain(0));
41 }
42 }
43 else if(Status::CBACKBONE == current_flag) {
44 if(incre_strain(0) > 0.) {
45 residual_c_strain = compute_compression_residual(reverse_c_strain =

current_strain(0), reverse_c_stress = current_stress(0));↪→

46 if(trial_strain(0) > reverse_t_strain) {
47 trial_flag = Status::TBACKBONE;
48 response = compute_tension_backbone(max_t_strain = trial_strain(0));
49 }
50 else {
51 trial_flag = Status::CINNER;
52 response = compute_compression_inner(trial_strain(0));
53 }
54 }
55 else {
56 trial_flag = Status::CBACKBONE;
57 response = compute_compression_backbone(max_c_strain = trial_strain(0));
58 }
59 }
60 else if(Status::TBACKBONE == current_flag) {
61 if(incre_strain(0) < 0.) {
62 residual_t_strain = compute_tension_residual(reverse_t_strain =

current_strain(0), reverse_t_stress = current_stress(0));↪→

63 if(trial_strain(0) < reverse_c_strain) {
64 trial_flag = Status::CBACKBONE;
65 response = compute_compression_backbone(max_c_strain = trial_strain(0));
66 }
67 else {
68 trial_flag = Status::TINNER;
69 response = compute_tension_inner(trial_strain(0));
70 }
71 }
72 else {
73 trial_flag = Status::TBACKBONE;
74 response = compute_tension_backbone(max_t_strain = trial_strain(0));
75 }
76 }
77 else if(Status::CINNER == current_flag) {
78 if(trial_strain(0) > reverse_t_strain) {
79 trial_flag = Status::TBACKBONE;
80 response = compute_tension_backbone(max_t_strain = trial_strain(0));
81 }
82 else if(trial_strain(0) < reverse_c_strain) {
83 trial_flag = Status::CBACKBONE;
84 response = compute_compression_backbone(max_c_strain = trial_strain(0));
85 }
86 else {
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87 trial_flag = Status::CINNER;
88 response = compute_compression_inner(trial_strain(0));
89 }
90 }
91 else if(Status::TINNER == current_flag) {
92 if(trial_strain(0) > reverse_t_strain) {
93 trial_flag = Status::TBACKBONE;
94 response = compute_tension_backbone(max_t_strain = trial_strain(0));
95 }
96 else if(trial_strain(0) < reverse_c_strain) {
97 trial_flag = Status::CBACKBONE;
98 response = compute_compression_backbone(max_c_strain = trial_strain(0));
99 }

100 else {
101 trial_flag = Status::TINNER;
102 response = compute_tension_inner(trial_strain(0));
103 }
104 }
105

106 trial_stress = response(0);
107 trial_stiffness = response(1);
108

109 suanpan_debug([&]() { if(!trial_stress.is_finite() || !trial_stiffness.is_finite()) throw
invalid_argument("infinite number detected.\n"); });↪→

110

111 return SUANPAN_SUCCESS;
112 }

Remarks

A lot of hysteresis models can be reformulated in the above framework. For example, by
fixing residual points to origin, all unloading paths (either linear or nonlinear) converge to
origin, which correspond to a class of models that are often called origin–oriented. Alterna-
tively, the reloading curve can be defined in a way so that it always loads back to the peak
point on the backbone curve on the opposite side. This is often known as peak–oriented
model.

Some complex models suitable for concrete can be formulated accordingly, in which the curves
are nonlinear and depend on other internal variables as well. Given that tension response and
compression response are independent from each other, some asymmetric models can also be
defined.

Noting that the top level branching does not care about history variables, the updating of
them are solely handled in the corresponding methods. The presented framework provides a
flexible container so that a wide range of models can be defined.
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6.1. K4 Concrete

In this section, we introduce a uniaxial model for concrete that is formulated within the classic
plasticity framework. The model is named as K4 model in this book as the four authors’
surnames all start with letter ‘K’. However, the model presented in the original paper adopts
a linear degradation, leading to inevitable sudden zero stiffness after exceeding certain strain
limit. Numerical models do not prefer exact zeros, thus, it is revised to adopt an exponentially
decaying function instead. It shall be pointed out that the original formulation [8] contains
some mistakes, in the event of any discrepancy or inconsistency, we prefer the formulation
discussed in this section.

There are quite a number of phenomenological models for concrete. Since they are phenomeno-
logical, it is relatively flexible to define different loading/unloading response. Such kind of
flexibility makes the corresponding model easier for engineers to understand and extrapolate,
however, they may violate thermodynamic principles.

6.1.1. Theory

The classic plasticity framework does not support definition of stiffness degradation, the elastic
loading/unloading paths always follow the gradient of initial stiffness. It is a common practice
to combine plasticity and damage [9] together so that the apparent stiffness can gradually
degrade.

The apparent stress σ is conventionally expressed as

σ = (1− d) σ̄, (6.1)

where d is the damage factor ranging from zero to unity and σ̄ is the effective stress. With such
a formulation, damage and plasticity apply to d and σ̄ respectively.

Just like other plasticity models, the additive decomposition applies such that

σ̄ = E (ε− εp) . (6.2)
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Yield Function

Unlike metals, there is no need to model ratcheting in concrete, as a result, convention-
ally there is only isotropic hardening, but no kinematic hardening. Thus, there is also no
need to introduce back stress into the model. The yield function F can be simply expressed
as

F = |σ̄| − σ̄y. (6.3)

It states that plasticity evolution will be triggered whenever the magnitude of effective stress
σ̄ exceeds the backbone defined by σ̄y, which is a function of some internal hardening vari-
able.

It becomes apparent that if only one σ̄y is used, there is no way to differentiate tensile behaviour
from compressive one. This issue can be addressed by adopting two sets of rules, one for tension
and the other for compression.

F =
{
Ft, σ̄ > 0,
Fc, otherwise, (6.4)

with

Ft = σ̄ − σ̄y,t, Fc = −σ̄ − σ̄y,c. (6.5)

Flow Rule

For uniaxial models, the flow direction is simply the loading direction,

ε̇p = γ sign (σ̄) = γ
∂F

∂σ̄
. (6.6)

One would find this coincide with the associative plasticity (the second equality).

Hardening Law

Any functions can be chosen as the hardening law, meaning that

σ̄y,t = Ht (kt) , σ̄y,c = Hc (kc) , (6.7)

where kt and kc are internal hardening variables.

Given that the damage theory is adopted to account for stiffness and strength degradation, of-
ten monotonically increasing functions are chosen for hardening functions.
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The original formulation adopts the following explicit forms.

σ̄y,t = ft + htkt, σ̄y,c =
{
fy + hckc, kc ⩽ k0,
fy + hck0 + hd (kc − k0) , otherwise. (6.8)

In the above expression, ft and fy are crack strength (for tension, in positive) and yield strength
(for compression, in positive), ht, hc and hd are three positive moduli, and k0 denotes the value
of kc at compressive crush strength. Essentially, σ̄y,t is a linear hardening function while σ̄y,c

is a bilinear hardening function. The above expression can be further simplified if we let fc

denote fy + hck0.

Since stiffness and strength degradation is taken care of by the damage part, here no softening
is considered such that

ht, hc, hd ⩾ 0. (6.9)

The evolutions of kt and kc are tied to the plastic strain.

k̇t = |ε̇p| = γ for tension loading, (6.10)
k̇c = |ε̇p| = γ for compression loading. (6.11)

Although the same expression is used for both, it shall be noted that for one single loading
step, only one of two yield functions will be activated, hence the plastic strain increment γ (of
that particular step) can only contribute to either kt or kc, not both.

Degradation

With the above yield function, flow rule and hardening law, we effectively have defined a very
simple plasticity model with only isotropic hardening which may have different behaviour in
tension and compression. It bears some resemblance compared with the model introduced in
§ 4.4, which adopts the same concept to differentiate tension and compression but is more
complex in terms of the specific functions chosen.

Similarly, it is desired to control degradation rate independently for tension and compression,
to this end,

d =
{
dt, σ̄ > 0,
dc, otherwise, (6.12)

The specific forms of tensile damage dt and compressive damage dc could vary, for example,
the original formulation [8] uses the linear degradation [10]. Here, we use a simpler exponential
function.

dt = 1− exp
(
− kt

er,t

)
, dc = 1− exp

(
− kc

er,c

)
. (6.13)
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The parameters er,t and er,c are introduced to control the degradation rate.

For compression, if the original bilinear hardening function Eq. (6.8) is used, it is desired
to achieve the crush strength, thus, the damage evolution shall be delayed. The following
function

dc = 1− exp
(
−max (kc − k0, 0)

er,c

)

can be used such that dc stays at zero until kc becomes larger than k0.

Total Energy If linear hardening is used, say for example,

σ̄y = ak + b. (6.14)

Here we do not distinguish between tension and compression, and use general parameters a and
b. Combining σ̄y with damage factor gives the final stress backbone as

σy = (1− d) σ̄y = exp
(
−k
c

)
(ak + b) . (6.15)

Integration leads to∫ ∞

0
σy dk = ac2 + bc. (6.16)

The initial slope is

dσy

dk

∣∣∣∣
k=0

= a− b

c
. (6.17)

For it to be smaller than zero (no initial hardening, softening only), it is required that

ac < b. (6.18)

If a = 0, then no matter what value c takes, there is no initial hardening since b > 0. If ac ⩾ b,
implying a > 0, the backbone has a peak value at k = c− b

a
.

It is possible to associate c with b such that c = b

ζE
where ζ is a positive multiplier, then the

total energy becomes

a
b2

ζ2E2 + b
b

ζE
=
(

a

ζ2E2 + 1
ζE

)
b2. (6.19)
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The peak value for ζE < a is

ab

ζE
exp

(
ζE − a
a

)
. (6.20)

If, for the reference characteristic length lr, the reference ζr is given, then for any characteristic
length l, if the total energy needs to stay unchanged, then(

a

ζ2E2 + 1
ζE

)
b2l =

(
a

ζ2
rE

2 + 1
ζrE

)
b2lr, (6.21)

a

ζ2E2 + 1
ζE

= lr
l

(
a

ζ2
rE

2 + 1
ζrE

)
, (6.22)

1
ζE

=

√√√√1 + 4 lr
l

(
a2

ζ2
rE

2 + a

ζrE

)
− 1

2a . (6.23)

Denoting ra = a

E
,

ζ = 2ra√√√√1 + 4 lr
l

(
r2

a

ζ2
r

+ ra

ζr

)
− 1

. (6.24)

Note here we only enforce the total energy to be constant. It is not equivalent to objective
results under arbitrary magnitudes of loading.

Crack/Gap Closing

According to Eq. (6.10), kt is the accumulated tensile plastic strain, physically, it repre-
sents the crack opening. When reloading towards compression, this opening can be gradually
closed.

To account for this crack closing mechanism, one more history variable kk is introduced to
allow additional plasticity to develop. kk tracks crack closing.

For this inner plasticity model, we adopt a simple linear model such that a fixed fraction of
strain increment contributes to plastic strain, that is

∆εp = ∆ε E

E + hk
. (6.25)

Knowing that this is only activated during compressive loading (σ̄ < 0 and ∆ε < 0), then
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∆εp < 0 and |∆εp| = −∆εp.

∆kk = −∆εp, (6.26)
∆σ̄ = −E∆εp. (6.27)

Such a mechanism states that, for reloading towards compression (σ̄ < 0 and ∆ε < 0), whenever
kk < kt, viz., crack closing is smaller than crack opening, there is net crack opening needs to
be closed. Under such a condition, the inner plasticity is activated such that part of strain
increment is converted to plastic strain (cracking closing). The following two implementation
details need to be considered to ensure a correct model.

Entering It shall be pointed out that the exact transition step from tensile stress to compres-
sive stress needs special treatment. The tensile stress needs to fully unload to zero, this part
involves no plasticity, the remaining is compressive loading which involves plasticity. Thus ∆εp

should be limited such that

∆εp =
(

∆ε+ max (σ̄n, 0)
E

)
E

E + hk
= ∆ε E

E + hk
+ max (σ̄n, 0)

E + hk
. (6.28)

The above expression states that if the current effective stress σ̄n is positive (tensile), then we
remove the corresponding tensile strain (max (σ̄n, 0)

E
) from the total strain increment ∆ε. The

resulting ∆εp would be fully induced by compressive part.

Exiting Similarly, the exact transition step from not yet closed to fully closed also needs
additional attention. Noting that kk shall never exceed kt, and during the evolution of kk, kt

does not change, then

kk = kk,n + ∆kk = kk,n −∆εp ⩽ kt, (6.29)

equivalently,

kk,n − kt ⩽ ∆εp. (6.30)

If the above condition is not satisfied by the plastic strain increment computed from Eq. (6.28),
then one shall manually set ∆εp = kk,n−kt and update kk and σ̄ accordingly.

Remark For crack closing, the original model [8] formulates it as a plasticity model but does
not use a returning mapping algorithm in the corresponding implementation. Characterising
such a mechanism using a yield function, such as

Fk = |σ̄| − σ̄k

with σ̄k = hkkk, does not properly define the behaviour. Especially under cyclic loading, the
elastic region grows as σ̄k would grow.
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To correct the response, it, at least, has to be defined as

σ̄k = hk

(
kk − ki

k

)
, (6.31)

where ki
k is the initial kk at the beginning of current loading path, and needs to be updated

whenever load reversal occurs.

We avoid such a complex presentation as it may cause unnecessary confusions. At its core,
the crack closing mechanism tries to close the unclosed crack (kt − kk) by accumulating a
portion of strain increment to kk (∆kk = |∆ε| E

E + hk
), and this mechanism is conditionally

activated.

6.1.2. Formulation

Tangent Stiffness

By the chain rule, differentiating the expression of stress

σ = (1− d) σ̄ (6.32)

leads to

dσ
dε = (1− d) dσ̄

dε − σ̄
dd
dk

dk
dε . (6.33)

Here we use an ‘anisotropic’ damage concept, that is

d =
{
dt, σ̄ > 0,
dc, else, k =

{
kt, σ̄ > 0,
kc, else. (6.34)

Knowing that dk
dε is effectively dγ

dε as k̇ = γ, from the local residual (yield function) at equi-
librium,

∂F

∂ε
= ∂F

∂γ

dγ
dε + ∂F

∂ε
= 0, (6.35)

one could derive

dγ
dε = −

(
∂F

∂γ

)−1 ∂F

∂ε
. (6.36)
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The yield function can be expressed as

F = |σ̄| − σ̄y

=
∣∣∣σ̄trial − γEsign (σ̄)

∣∣∣− σ̄y,
(6.37)

then

∂F

∂γ
= −sign (σ̄)Esign (σ̄)− dσ̄y

dk = −E − dσ̄y

dk , (6.38)

∂F

∂ε
= sign (σ̄)E. (6.39)

In the above, J = ∂F

∂γ
is in fact the Jacobian of the local system. Thus,

dγ
dε = −sign (σ̄) E

J
. (6.40)

For the effective stress,

dσ̄
dε = E − sign (σ̄)E dγ

dε = E + E2

J
. (6.41)

The stiffness can be expressed as

dσ
dε = (1− d)

(
E + E2

J

)
+ |σ̄|dddk

E

J
. (6.42)

The explicit form of dd
dk shall be determined by the damage evolution.

6.1.3. Implementation

Algorithm 7 state determination of K4 concrete model
1: compute trial stress
2: if crack closing is activated then
3: apply crack closing plasticity
4: end if
5: if tension then
6: apply tensile plasticity
7: apply tensile damage
8: else
9: apply compressive plasticity

10: apply compressive damage
11: end if
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It is straightforward to translate the above pseudo code to implementation.

1 int NonlinearK4::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_history = current_history;
7 const auto& plastic_strain = trial_history(0);
8 // auto& kt = trial_history(1);
9 // auto& kc = trial_history(2);

10 const auto& current_kt = current_history(1);
11 const auto& current_kk = current_history(3);
12

13 trial_stress = (trial_stiffness = elastic_modulus) * (trial_strain - plastic_strain);
14

15 if(apply_crack_closing && trial_stress(0) < 0. && incre_strain(0) < 0. && current_kt >
current_kk) compute_crack_close_branch();↪→

16

17 return compute_plasticity();
18 }

The crack closing accounts for the aforementioned entering/exiting details.

1 void NonlinearK4::compute_crack_close_branch() {
2 auto& plastic_strain = trial_history(0);
3 const auto& kt = trial_history(1);
4 auto& kk = trial_history(3);
5

6 const auto jacobian = elastic_modulus + hardening_k;
7

8 // account for entering
9 const auto net_strain = fabs(incre_strain(0)) - std::max(0., current_stress(0)) /

elastic_modulus;↪→

10 const auto dgamma = elastic_modulus / jacobian;
11 auto incre = net_strain * dgamma;
12

13 // physically, the tension plastic strain is the crack opening, closing the crack should
not exceed the opening↪→

14 // ensure the crack plastic strain is bounded by the tension plastic strain
15 if(incre > kt - kk) incre = kt - kk;
16 else trial_stiffness -= dgamma * elastic_modulus; // otherwise, the stiffness is degraded

during the closing phase↪→

17

18 const auto incre_ep = incre * suanpan::sign(trial_stress(0));
19

20 kk += incre;
21 plastic_strain += incre_ep;
22 trial_stress -= elastic_modulus * incre_ep;
23 }
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The tension and compression return mapping algorithms are almost identical except that they
update different history variables and call different functions to compute backbone and damage.
One can unify them and use one implementation for both.

1 int NonlinearK4::compute_plasticity() {
2 auto& plastic_strain = trial_history(0);
3

4 const auto sign_sigma = suanpan::sign(trial_stress(0));
5

6 auto& k = sign_sigma > 0. ? trial_history(1) : trial_history(2);
7

8 const auto backbone_handle = sign_sigma > 0. ?
std::mem_fn(&NonlinearK4::compute_tension_backbone) :
std::mem_fn(&NonlinearK4::compute_compression_backbone);

↪→

↪→

9 const auto damage_handle = sign_sigma > 0. ?
std::mem_fn(&NonlinearK4::compute_tension_damage) :
std::mem_fn(&NonlinearK4::compute_compression_damage);

↪→

↪→

10

11 auto counter = 0u;
12 auto ref_error = 1.;
13 while(true) {
14 if(max_iteration == ++counter) {
15 suanpan_error("Cannot converge within {} iterations.\n", max_iteration);
16 return SUANPAN_FAIL;
17 }
18

19 const auto backbone = backbone_handle(this, k);
20 const auto residual = fabs(trial_stress(0)) - backbone(0);
21

22 if(1u == counter && residual <= 0.) {
23 if(apply_damage) {
24 const auto damage = damage_handle(this, k);
25 const auto damage_factor = 1. - damage(0);
26

27 trial_stress *= damage_factor;
28 trial_stiffness *= damage_factor;
29 }
30

31 return SUANPAN_SUCCESS;
32 }
33

34 const auto jacobian = elastic_modulus + backbone(1);
35 const auto incre = residual / jacobian;
36 const auto error = fabs(incre);
37 if(1u == counter) ref_error = error;
38 suanpan_debug("Local plasticity iteration error: {:.5E}.\n", error);
39 if(error < tolerance * ref_error || (fabs(residual) < tolerance && counter > 5u)) {
40 const auto dgamma = elastic_modulus / jacobian;
41 trial_stiffness -= dgamma * elastic_modulus;
42

43 if(apply_damage) {
44 const auto damage = damage_handle(this, k);
45 const auto damage_factor = 1. - damage(0);
46

47 trial_stiffness *= damage_factor;
48 trial_stiffness -= trial_stress * damage(1) * sign_sigma * dgamma;
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6.1. K4 Concrete

49

50 trial_stress *= damage_factor;
51 }
52

53 return SUANPAN_SUCCESS;
54 }
55

56 const auto incre_ep = incre * sign_sigma;
57

58 k += incre;
59 plastic_strain += incre_ep;
60 trial_stress -= elastic_modulus * incre_ep;
61 }
62 }

In the computation of damage variables, it is possible to adjust ζ according to the previous
discussion.

1 double NonlinearK4::objective_scale(const double a, const double zeta) const {
2 if(!objective_damage) return zeta;
3

4 const auto ratio = a / zeta;
5 return 2. * a / (std::sqrt(1. + 4. / get_characteristic_length() * (ratio * ratio +

ratio)) - 1.);↪→

6 }
7

8 vec2 ConcreteK4::compute_tension_damage(const double k) const {
9 const auto e_t = f_t / objective_scale(hardening_t, zeta_t);

10 const auto factor = exp(-k / e_t);
11 return vec2{1. - factor, factor / e_t};
12 }
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7. Metal

In this chapter, several frameworks suitable for developing metal models are introduced. The
basic one is the von Mises framework, which is also called J2 model in some literature as it
adopts the second invariant of the deviatoric stress to characterise yield function. The in-
termediate one is the VAFCRP model, in which a Voce type nonlinear isotropic hardening,
a multiplicative Armstrong–Fredrick type kinematic hardening and a Peric type viscosity are
implemented. Thus, this model can account for dynamic effects. The third model is a general
framework developed based on the Hoffman criterion, it is suitable for orthotropic materi-
als.

7.1. von Mises Framework

Here the uniaxial combined isotropic/kinematic model introduced in § 4.2 is reformulated
in 3D space. Some difference will be observed, but the final local residual is a scalar equa-
tion.

7.1.1. Theory

Yield Function

The von Mises yield criterion is adopted,

f = ∥η∥ −
√

2
3σ

y, (7.1)

with η = s − α is the shifted stress with α denoting the back stress and s = dev (σ) de-

noting the deviatoric stress. The only purpose of the constant
√

2
3 is to produce consistent

response under uniaxial loading compared to the uniaxial version with the same set of model
parameters. By definition, the back stress α is also a deviatoric stress, thus trace (α) =
0.
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7. Metal

Flow Rule

Assuming associative rule, the flow rule is

ε̇p = γ
∂f

∂σ
= γ

1
2
Idev : η
∥η∥

= γ
η

∥η∥
= γn. (7.2)

All analytical formulations are based on tensor notation. However, compressed matrix rep-
resentation is used in implementation. One shall note the difference due to the Voigt nota-
tion. ε̇p11 ε̇p12 ε̇p31

ε̇p12 ε̇p22 ε̇p23
ε̇p31 ε̇p23 ε̇p33


︸ ︷︷ ︸

ε̇p

= γ

n11 n12 n31
n12 n22 n23
n31 n23 n33


︸ ︷︷ ︸

n

, expressed in components (7.3)

We define the scaling vector c =
[
1 1 1 2 2 2

]T
and let ◦ be the Hadamard (element–

wise) product operator, then the above expression is equivalent to

ε̇p11
ε̇p22
ε̇p33
2ε̇p12
2ε̇p23
2ε̇p31


︸ ︷︷ ︸

ε̇p

= γ



1
1

1
2

2
2





n11
n22
n33
n12
n23
n31


︸ ︷︷ ︸

n

= γ c ◦ n. expressed in the Voigt notation

(7.4)

This agrees with Eq. (2.35).

It can be observed that ε̇p has a magnitude of γ while n is a unit tensor in R3 × R3 hyper
space. Thus n serves as a direction indicator, εp evolves towards n by the amount of γ. Since
n is deviatoric, εp is also deviatoric.

Hardening Law

For internal variable q, the hardening law takes the accumulated magnitude of εp.

q̇ =
√

2
3∥ε̇

p∥ =
√

2
3γ. (7.5)

For isotropic hardening, σy is defined as a general function of q,

σy = σy (q) . (7.6)

72



7.1. von Mises Framework

For kinematic hardening, the evolution law of back stress α is defined to be

α̇ =
√

2
3Ḣn. (7.7)

in which H = H (q) is now a scalar–valued function of q that controls the development of
∥α∥, α always evolves towards n by the amount Ḣ = H (qn+1) − H (qn) characterising the

increment of H. The fraction
√

2
3 is introduced for consistent response as stated early. Since

α̇ and n are coaxial, α stays deviatoric but may not be coaxial with all n through the loading
process.

7.1.2. Formulation

The summation of the von Mises model is listed as follows.

Constitutive Law σ = D : (ε− εp)

Yield Function f = ∥η∥ −
√

2
3σ

y

Flow Rule ε̇p = γn

Hardening Law q̇ =
√

2
3γ

α̇ =
√

2
3γḢn

Elastic Loading/Unloading

The trial stress can be computed such as

σtrial = D : (εn+1 − εp
n) = σn + D : (εn+1 − εn) . (7.8)

In matrix representation, it is

σtrial
11
σtrial

22
σtrial

33
σtrial

12
σtrial

23
σtrial

31


︸ ︷︷ ︸
σtrial

=



λ+ 2G λ λ · · ·
λ λ+ 2G λ · · ·
λ λ λ+ 2G · · ·
· · · G · ·
· · · · G ·
· · · · · G


︸ ︷︷ ︸

D





ε11,n+1
ε22,n+1
ε33,n+1
γ12,n+1
γ23,n+1
γ31,n+1


−



εp
11,n

εp
22,n

εp
33,n

γp
12,n

γp
23,n

γp
31,n


.


︸ ︷︷ ︸

˙εn+1−ε̇p
n

(7.9)
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Then ηtrial = dev
(
σtrial

)
−αn, which gives trial yield function

f trial =
∥∥∥ηtrial

∥∥∥−√2
3σ

y
n (7.10)

with σy
n = σy (qn) evaluated with current qn.

Plastic Evolution

By default, we present the formulation with the implicit Euler method.

The yield function evaluated at the new state reads

f = ∥dev (σn+1)−αn+1∥ −
√

2
3σ

y
n+1

=
∥∥∥∥∥dev

(
σtrial

)
− γ2Gn−αn −

√
2
3 (Hn+1 −Hn)n

∥∥∥∥∥−
√

2
3σ

y
n+1

=
∥∥∥∥∥ηtrial −

(
2Gγ +

√
2
3 (Hn+1 −Hn)

)
n

∥∥∥∥∥−
√

2
3σ

y
n+1

=
∥∥∥ηtrial

∥∥∥− (2Gγ +
√

2
3 (Hn+1 −Hn)

)
−
√

2
3σ

y
n+1,

(7.11)

given that it can be proved that ηtrial and η are coaxial, following a similar derivation as shown
previously.

The Jacobian reads

∂f

∂γ
= −2G−

√
2
3
∂Hn+1
∂qn+1

∂qn+1
∂γ

−
√

2
3
∂σy

n+1
∂qn+1

∂qn+1
∂γ

. (7.12)

Since qn+1 = qn +
√

2
3γ, ∂qn+1

∂γ
=
√

2
3. Hence,

∂f

∂γ
= −2G− 2

3
∂Hn+1
∂qn+1

− 2
3
∂σy

n+1
∂qn+1

. (7.13)

Consistent Tangent Stiffness

From σn+1 = σtrial − γ2Gn, as n = η

∥η∥
= ηtrial

∥ηtrial∥
, the consistent tangent stiffness can be

computed via the chain rule as

∂σn+1
∂εn+1

= ∂σtrial
n+1

∂εn+1
− 2Gn⊗ ∂γ

∂εn+1
= D − 2G

(
n⊗ ∂γ

∂εn+1
+ γ

∂n

∂εn+1

)
. (7.14)
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7.1. von Mises Framework

In which, according to Eq. (2.41),

∂n

∂εn+1
= 1
∥ηtrial∥

(I− n⊗ n) : ∂η
trial

∂εn+1

= 2G
∥ηtrial∥

(I− n⊗ n) : Idev

= 2G
∥ηtrial∥

(
Idev − n⊗ n

)
.

(7.15)

From converged local residual (yield function),

∂γ

∂εn+1
= −

(
∂f

∂γ

)−1 ∂f

∂εn+1
= −

(
∂f

∂γ

)−1
2Gn. (7.16)

Thus the final expression for consistent tangent stiffness can be assembled as

∂σn+1
∂εn+1

= D − 2G
(
−2G

(
∂f

∂γ

)−1
n⊗ n + γ

2G
∥ηtrial∥

(
Idev − n⊗ n

))

= D + 4G2
(
∂f

∂γ

)−1
n⊗ n + 4G2γ

∥ηtrial∥

(
n⊗ n− Idev

)
= D + 4G2

((
∂f

∂γ

)−1
+ γ

∥ηtrial∥

)
n⊗ n− 4G2γ

∥ηtrial∥
Idev

= D + 4G2

 γ

∥ηtrial∥
− 1

2G+ 2
3
∂Hn+1
∂qn+1

+ 2
3
∂σy

n+1
∂qn+1

n⊗ n− 4G2γ

∥ηtrial∥
Idev.

(7.17)

It shall be noted that Idev takes the form as presented in Eq. (3.23). Readers are strongly
suggested to derive it via both tensor notation and compression matrix representation as a
practice. Both leads to identical results.

Since the local iteration is a scalar function, the closed–form of consistent tangent stiffness is
relatively easy to compute. It will be seen in more complex models that closed–forms do not
always possess simple forms.

As a general framework, the above formulation does not require explicit forms of H (q) and
σy (q). Thus, various types of scalar–valued functions can be adopted.

7.1.3. Implementation

The state determination algorithm of this general model incorporating von Mises criterion is
given in Algorithm 8.
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7. Metal

Algorithm 8 state determination of general von Mises model
Parameter: λ, G
Input: εn+1, εn, εp

n, σn, αn, qn

Output: Dn+1, εp
n+1, σn+1, αn+1, qn+1

compute σtrial, ηtrial, n and f trial ▷ Eq. (7.8) and Eq. (7.10)
if f trial ⩾ 0 then

γ = 0
while true do

compute f and ∂f

∂γ
▷ Eq. (7.11) and Eq. (7.13)

update ∆H = H (qn+1)−H (qn)

∆γ =
(
∂f

∂γ

)−1
f

if |∆γ| < tolerance then
break

end if
γ ← γ −∆γ
qn+1 = qn +

√
2
3γ

end while
σn+1 = σtrial − γ2Gn
εp

n+1 = εp
n + γn

αp
n+1 = αp

n +
√

2
3∆Hn

compute Dn+1 ▷ Eq. (7.17)
else

σn+1 = σtrial

εp
n+1 = εp

n

αp
n+1 = αp

n

qn+1 = qn

Dn+1 = D
end if

It shall be noted that the algorithm does not implement H (q) and σy (q). It is assumed those
two functions are defined somewhere else and are able to provide derivatives.

7.1.4. Closing Remarks

As the first 3D material model introduced, the von Mises framework allows beginners to get
familiar with multiaxial constitutive modelling with a relatively smooth learning curve. The
formulation is expressed in tensor notation. Readers are strongly encouraged to derive the for-
mulation from three governing equations independently in both tensor and compressed matrix
notions separately. It is a good practice to get each tiny detail correct.
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7.1. von Mises Framework

1 int NonlinearJ2::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
5

6 trial_stress = current_stress + (trial_stiffness = initial_stiffness) * incre_strain;
7

8 trial_history = current_history;
9 auto& plastic_strain = trial_history(0);

10 vec back_stress(&trial_history(1), 6, false, true);
11

12 const vec rel_stress = tensor::dev(trial_stress) - back_stress;
13 const auto norm_rel_stress = tensor::stress::norm(rel_stress);
14

15 auto yield_func = norm_rel_stress - root_two_third * std::max(0.,
compute_k(plastic_strain));↪→

16

17 if(yield_func < 0.) return SUANPAN_SUCCESS;
18

19 const auto current_h = compute_h(plastic_strain);
20 auto gamma = 0., incre_h = 0., denom = 0.;
21 unsigned counter = 0;
22 while(++counter < max_iteration) {
23 denom = double_shear + two_third * (compute_dk(plastic_strain) +

compute_dh(plastic_strain));↪→

24 const auto incre_gamma = yield_func / denom;
25 const auto abs_error = fabs(incre_gamma);
26 suanpan_extra_debug("NonlinearJ2 local iteration error: %.5E.\n", abs_error);
27 if(abs_error <= tolerance) break;
28 incre_h = compute_h(plastic_strain = current_history(0) + root_two_third * (gamma +=

incre_gamma)) - current_h;↪→

29 yield_func = norm_rel_stress - double_shear * gamma - root_two_third * (std::max(0.,
compute_k(plastic_strain)) + incre_h);↪→

30 }
31

32 if(max_iteration == counter) {
33 suanpan_error("NonlinearJ2 cannot converge within %u iterations.\n", max_iteration);
34 return SUANPAN_FAIL;
35 }
36

37 back_stress += root_two_third * incre_h / norm_rel_stress * rel_stress;
38

39 auto t_factor = double_shear * gamma / norm_rel_stress;
40 trial_stress -= t_factor * rel_stress;
41

42 t_factor *= double_shear;
43 trial_stiffness += (t_factor - square_double_shear / denom) / norm_rel_stress /

norm_rel_stress * rel_stress * rel_stress.t() - t_factor * unit_dev_tensor;↪→

44

45 return SUANPAN_SUCCESS;
46 }
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7. Metal

7.2. Hoffman J2 Model

Here we introduce an anisotropic model that adopts the Hoffman yielding criterion. This frame-
work resembles the isotropic von Mises model. It can be used to model orthtropic materials
such sheet steel and timber.

7.2.1. Theory

Yield Function

The yield function adopts the Hoffman criterion.

f = 1
2σ

TPσ + qTσ − σ2
y , (7.18)

where P = PT and q are constant scaling matrix/vector of various forms [11] that depend on
material constants.

For example, the Hoffman criterion can be expressed as

P =



T1 −
T1 + T2 − T3

2
−

T3 + T1 − T2

2

−
T1 + T2 − T3

2
T2 −

T2 + T3 − T1

2

−
T3 + T1 − T2

2
−

T2 + T3 − T1

2
T3

1
f2

12

1
f2

23

1
f2

13



, q =



(
fc

11 − f t
11
)

T1(
fc

22 − f t
22
)

T2(
fc

33 − f t
33
)

T3

0

0

0


,

(7.19)

in which,

T1 = 1
f t

11f
c
11
, T2 = 1

f t
22f

c
22
, T3 = 1

f t
33f

c
33
, (7.20)

with fℵ
ij representing the yielding stress along different directions.
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Flow Rule

The associated plasticity is assumed such that the plastic potential g is identical to f . The
plastic flow direction is then

n = ∂g

∂σ
= ∂f

∂σ
= Pσ + q. (7.21)

The flow rule can be defined as

ε̇p = γn. (7.22)

Hardening Law

The reference yield stress σy is defined as a function of the accumulated equivalent plastic
strain εp.

σy = H (εp) . (7.23)

The evolution of εp is driven by the norm of ε̇p.

ε̇p = ∥ε̇p∥ = γ∥n∥, (7.24)

where ∥n∥, in matrix form, can be expressed as

∥n∥ =
√

2
3n

TTn, (7.25)

with T = diag
(

1 1 1 1
2

1
2

1
2

)
.

7.2.2. Formulation

To some extend, the model is even simpler than the von Mises model as there is no back stress to
support kinematic hardening. Furthermore, the yield function involves only matrix–vector op-
erations, the corresponding derivatives are relatively easy to compute.

Constitutive Law σ = D : (ε− εp)
Yield Function f = 1

2σ
TPσ + qTσ − σ2

y

Flow Rule ε̇p = γn
Hardening Law ε̇p = γ∥n∥
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Elastic Loading/Unloading

Compared with the von Mises framework, there is no essential difference in terms of elastic
loading/unloading, the plasticity is frozen at the beginning of each substep, allowing one to
compute the trial stress such that

σtrial = D : (εn+1 − εp
n)

((((((((((((hhhhhhhhhhhh
= σn + D : (εn+1 − εn) . (7.26)

One shall note that the second form is not used here. In most cases, both forms are equivalent.
However, some models may further apply damage mechanics to the result of plasticity, making
the second form incorrect (as σn may contain damage reductions).

The trial yield function can then be computed using the unchanged plastic strain.

f trial = 1
2σ

trial,TPσtrial + qTσtrial − σ2
y,n. (7.27)

Plastic Evolution

Since it is an anisotropic model, the local iteration may have difficulties in convergence,
especially when a high anisotropy is defined. Some implementations [12, 13] adopt line
search, which does mitigate the local convergence issue but does not address it at the global
level.

In this work, we choose another approach to alleviate the problem. Instead of the first order
accurate backward Euler method for numerical integration, the higher order accurate method is
used. In specific, the discretised evolution of plastic strain is written as

εp
n+1 = εp

n + ∆εp = εp
n + γnm, (7.28)

where nm is n evaluated at the middle of the substep. Since it is a linear function of
σ,

nm = σn + σn+1
2 . (7.29)

One shall note that replacing nm by nn+1 = Pσn+1 + q gives the evolution formula of the
implicit Euler method.
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7.2. Hoffman J2 Model

Local Residual

The residual is chosen as follows. For brevity, all subscripts (·)n+1 are dropped.

R =


1
2σ

TPσ + qTσ − σ2
y ,

σ + γEnm − σtrial.

(7.30)

By choosing x =
[
γ σ

]T
as the independent variables, the Jacobian can be then computed

as

J = ∂R

∂x
=

−2σy
dσy

dεp
∥nm∥ nT − σy

dσy

dεp
γ

d∥nm∥
dnm

P

Enm I + γ

2EP

 . (7.31)

In the above expression,

d∥nm∥
dnm

= 2
3
nT

mT

∥nm∥
. (7.32)

Some references would further derive a scalar local residual at the cost of complicating gradient.
Here we choose to increase the size of local system in order to express the Jacobian in a
simpler form. Performance wise, a scalar local residual does not necessarily leads to faster
state determination.

Consistent Tangent Stiffness

The consistent tangent stiffness can be directly computed from the local residual, given that
σn+1 is chosen as the variable. Differentiating R at equilibrium R = 0 gives

∂R

∂x

∂x

∂εn+1
+ ∂R

∂εn+1
= 0, (7.33)

rearranging which gives

∂x

∂εn+1
= −

(
∂R

∂x

)−1 ∂R

∂εn+1
= −J−1 ∂R

∂εn+1
. (7.34)
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The right hand side ∂R

∂εn+1
can be computed as

∂R

∂εn+1
=
[

0
−E

]
, (7.35)

while the left hand side ∂x

∂εn+1
contains

∂x

∂εn+1
=


∂γ

∂εn+1

∂σn+1
∂εn+1

 . (7.36)

Thus,

∂σn+1
∂εn+1

=
(
J−1

[
0
E

])⟨2−7⟩

, (7.37)

where (·)⟨2−7⟩ denotes the second to the seventh row of target quantity (·).

Unlike the von Mises framework, in which the analytical expression for the consistent tangent
stiffness matrix is derived. Here we take advantage of the fact that when the local equilibrium
is achieved, R = 0 or at least R ≈ 0, allowing one to take full differentiation to obtain some
useful quantities that otherwise may be difficult to compute. If σn+1 is directly involved as one
of the independent variables in local iteration, the consistent stiffness can be directly obtained.
Otherwise, often additional simple steps (chain rule) shall be applied to the stress update
formula to compute ∂σn+1

∂εn+1
.

This method avoid the computation of lengthy, cumbersome analytical expressions of consistent
tangent. In most cases, it is also very simple to implement as J is already available when the
local iteration converges, and ∂R

∂εn+1
often is very easy to compute. Readers shall try to grasp

the beauty of Eq. (7.33), as this method will be frequently used in the models introduced later
in this book.

7.2.3. Implementation

1 int NonlinearHoffman::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
5

6 trial_history = current_history;
7 auto& eqv_strain = trial_history(0);
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8 const auto& current_eqv_strain = current_history(0);
9 vec plastic_strain(&trial_history(1), 6, false, true);

10

11 const vec predictor = (trial_stiffness = initial_stiffness) * (trial_strain -
plastic_strain);↪→

12 trial_stress = predictor;
13 const vec c_stress = .5 * proj_a * initial_stiffness * (current_strain - plastic_strain);
14

15 auto gamma = 0., ref_error = 1.;
16

17 vec incre, residual(7);
18 mat jacobian(7, 7);
19

20 auto counter = 0u;
21 while(true) {
22 if(max_iteration == ++counter) {
23 suanpan_error("Cannot converge within {} iterations.\n", max_iteration);
24 return SUANPAN_FAIL;
25 }
26

27 const vec factor_a = proj_a * trial_stress;
28 const vec factor_b = .5 * factor_a + proj_b;
29 const vec n_mid = c_stress + factor_b;
30 const auto norm_n_mid = root_two_third * tensor::strain::norm(n_mid);
31 const auto k = compute_k(eqv_strain = current_eqv_strain + gamma * norm_n_mid);
32 const auto f = dot(trial_stress, factor_b) - k * k;
33

34 if(1u == counter && f < 0.) return SUANPAN_SUCCESS;
35

36 const rowvec dn = two_third / norm_n_mid * (n_mid % tensor::strain::norm_weight).t();
37 const auto factor_c = k * compute_dk(eqv_strain);
38

39 residual(sa) = f;
40 residual(sb) = trial_stress + gamma * initial_stiffness * n_mid - predictor;
41

42 jacobian(sa, sa) = -2. * factor_c * norm_n_mid;
43 jacobian(sa, sb) = factor_a.t() + proj_b.t() - factor_c * gamma * dn * proj_a;
44 jacobian(sb, sa) = initial_stiffness * n_mid;
45 jacobian(sb, sb) = eye(6, 6) + .5 * gamma * elastic_a;
46

47 if(!solve(incre, jacobian, residual)) return SUANPAN_FAIL;
48

49 const auto error = norm(incre);
50 if(1u == counter && error > ref_error) ref_error = error;
51 suanpan_debug("Local plasticity iteration error: {:.5E}.\n", error / ref_error);
52

53 if(error <= tolerance * std::max(1., ref_error)) {
54 plastic_strain += gamma * n_mid;
55

56 mat left, right(7, 6, fill::zeros);
57 right.rows(sb) = initial_stiffness;
58

59 if(!solve(left, jacobian, right)) return SUANPAN_FAIL;
60

61 trial_stiffness = left.rows(sb);
62

63 return SUANPAN_SUCCESS;
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64 }
65

66 gamma -= incre(sa);
67 trial_stress -= incre(sb);
68 }
69 }
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8.1. TimberPD

Here we present a 3D model based on the Hoffman yielding criterion and damage mechanics.
It is suitable for modelling timber. The model is based on the split of the effective stress σ̄
such that

σ̄ = σ̄t + σ̄c, (8.1)

with

σ̄t =
3∑

i=1
⟨σ̂i⟩pi ⊗ pi, σ̄c =

3∑
i=1

(σ̂i − ⟨σ̂i⟩)pi ⊗ pi, (8.2)

where pi and σ̂i are eigenvectors and eigenvalues of the second order tensor σ̄. The above
expression shall be interpreted with the tensor notation.

The effective stress σ̄ obeys the conventional hardening model using the Hoffman yielding
criterion, see § 7.2 for details. The final stress can be obtained after applying damage factors
on tensile and compressive part of σ̄.

σ = (1− ωt) σ̄t + (1− ωc) σ̄c. (8.3)

8.1.1. Damage

The damage part follows the one proposed in [14]. The damage evolution is governed by the
equivalent stress τ̄ℵ.

τ̄ℵ =
√

1
2 σ̄

T
ℵHℵσ̄ℵ, (8.4)

that covers both tensile and compressive cases. The matrix Hℵ is the projection matrix of
the Hill criterion, which is a special case of Eq. (7.19). For ℵ = t, set f c

ii = f t
ii. For ℵ = c,

set f t
ii = f c

ii. It could be noted that in either case, q = 0, thus, Eq. (8.4) does not contain a
second term.
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The damage variables are updated based on the maximum history of τ̄ℵ, that is

rℵ = max
t
τ̄ℵ, (8.5)

and

ωt = 1− rt,0
rt

(1− n+ n exp (b (rt,0 − rt))) , (8.6)

ωc = β

(
1− rc,0

rc

)m

. (8.7)

The final stress is

σ = (1− ωt) σ̄t + (1− ωc) σ̄c. (8.8)

8.1.2. Consistent Tangent Stiffness

In the case of activation of damage evolution,

∂σ

∂ε
=
((

(1− ωt) I − σ̄t
dωt

drt

drt

dσ̄t

) dσ̄t

dσ̄ +
(

(1− ωc) I − σ̄c
dωc

drc

drc

dσ̄c

) dσ̄c

dσ̄

)
∂σ̄

∂ε
. (8.9)

8.1.3. Implementation

1 int TimberPD::update_trial_status(const vec& t_strain) {
2 if(SUANPAN_SUCCESS != BilinearHoffman::update_trial_status(t_strain)) return

SUANPAN_FAIL;↪→

3

4 if(norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
5

6 vec principal_stress; // 3
7 mat principal_direction; // 3x3
8 if(!eig_sym(principal_stress, principal_direction,

tensor::stress::to_tensor(trial_stress), "std")) return SUANPAN_FAIL;↪→

9

10 mat stiffness_t = transform::eigen_to_tensile_derivative(principal_stress,
principal_direction);↪→

11 mat stiffness_c = eye(6, 6) - stiffness_t;
12

13 const vec sigma_t = transform::eigen_to_tensile_stress(principal_stress,
principal_direction);↪→

14 const vec sigma_c = trial_stress - sigma_t;
15

16 const auto omega_t = update_damage_t(sigma_t, stiffness_t);
17 const auto omega_c = update_damage_c(sigma_c, stiffness_c);
18

19 trial_stress = (1. - omega_t) * sigma_t + (1. - omega_c) * sigma_c;
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20 trial_stiffness = (stiffness_t + stiffness_c) * trial_stiffness;
21

22 return SUANPAN_SUCCESS;
23 }
24

25 double TimberPD::update_damage_t(const vec& sigma_t, mat& stiffness_t) {
26 auto& r_t = trial_history(7);
27

28 bool new_damage_t = false;
29 if(const auto eqv_stress_t = sqrt(.5 * dot(hill_t * sigma_t, sigma_t)); eqv_stress_t >

r_t) {↪→

30 new_damage_t = true;
31 r_t = eqv_stress_t;
32 }
33

34 const auto omega_t = compute_damage_t(r_t);
35 if(new_damage_t) {
36 const auto domega_t = ini_r_t / r_t / r_t * ((b_t * n_t * r_t + n_t) * exp(b_t *

(ini_r_t - r_t)) - n_t + 1.);↪→

37 stiffness_t = ((1. - omega_t) * eye(6, 6) - sigma_t * domega_t * .5 / r_t *
sigma_t.t() * hill_t) * stiffness_t;↪→

38 }
39 else stiffness_t *= 1. - omega_t;
40

41 return omega_t;
42 }
43

44 double TimberPD::update_damage_c(const vec& sigma_c, mat& stiffness_c) {
45 auto& r_c = trial_history(8);
46

47 bool new_damage_c = false;
48 if(const auto eqv_stress_c = sqrt(.5 * dot(hill_c * sigma_c, sigma_c)); eqv_stress_c >

r_c) {↪→

49 new_damage_c = true;
50 r_c = eqv_stress_c;
51 }
52

53 const auto omega_c = compute_damage_c(r_c);
54 if(new_damage_c) {
55 const auto domega_c = m_c * ini_r_c / r_c * omega_c / (r_c - ini_r_c);
56 stiffness_c = ((1. - omega_c) * eye(6, 6) - sigma_c * domega_c * .5 / r_c *

sigma_c.t() * hill_c) * stiffness_c;↪→

57 }
58 else stiffness_c *= 1. - omega_c;
59

60 return omega_c;
61 }
62

63 double TimberPD::compute_damage_t(const double r_t) const { return 1. - ini_r_t / r_t * (1. -
n_t + n_t * exp(b_t * (ini_r_t - r_t))); }↪→

64

65 double TimberPD::compute_damage_c(const double r_c) const { return b_c *
pow(std::max(datum::eps, 1. - ini_r_c / r_c), m_c); }↪→
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9.1. Concrete Damage Plasticity Model

In this section, the concrete damage plasticity model proposed by [15] is presented. A slight dif-
ferent version (with Lode angle dependency and others) is implemented in ABAQUS.

The CDP model follows Lemaitre’s damage theory [9] and is developed under the assumption
of isotropic damage. Accordingly, the final stress σ can be expressed as the product of the
effective stress σ̄ and some function of damage measure.

σ = h (dt, dc) σ̄, (9.1)

where h (dt, dc) is a function of two damage variables dt and dc, which depend on some internal
history variables.

The effective part σ̄ fully resembles the conventional plasticity. Thus h (dt, dc) and σ̄ can be
handled in a relatively independent manner.

9.1.1. Plasticity Theory

Yield Function

The yield function is defined as

f = αĪ1 +
√

3
2∥s̄∥+ β ⟨σ̂1⟩ − (1− α) cc, (9.2)

with Ī1 = trace (σ̄) is the first invariant of effective stress tensor σ̄, σ̂1 is the major effective

principal stress, cc = −f̄c denotes cohesion and β = f̄c

f̄t

(α−1)−(α+1). The effective backbone

stresses (both positive) f̄c and f̄t will be defined later.
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Flow Rule

The flow potential g is chosen to be

g =
√

2J̄2 + αpĪ1 = ∥s̄∥+ trace (αpσ̄) . (9.3)

The flow rule is accordingly defined as

ε̇p = γ
∂g

∂σ̄
= γ

(
s̄

∥s̄∥
+ αp1

)
= γ (n + αp1) . (9.4)

In deviatoric and spherical components,

˙εd,p = γn, ˙εv,p = γ3αp. (9.5)

Noting that

s̄ = s̄trial − 2G ˙εd,p = s̄trial − γ2Gn, (9.6)
p̄ = p̄trial −K ˙εv,p = p̄trial − γ3Kαp, (9.7)

equivalently,

∥s̄∥+ γ2G =
∥∥∥s̄trial

∥∥∥, (9.8)

Ī1 + γ9Kαp = Ītrial
1 . (9.9)

Furthermore, s and strial are coaxial, thus,

s̄

∥s̄∥
= s̄trial

∥s̄trial∥
≡ n. (9.10)

It simply means the flow direction is fixed for all iterations in each sub-step. And due to the
coaxiality, s̄ and s̄trial share the same eigen space. More importantly, the eigenvectors remain
constant for each iteration. Thus,

s̄

∥s̄∥
= s̄trial

∥s̄trial∥
,

ŝ

∥ŝ∥
= ŝtrial

∥ŝtrial∥
, (9.11)

where ŝ denotes the principal stress tensor of the deviatoric stress tensor s̄. As the yield
function f can be equivalently expressed with the principal stresses, in the following derivation,
n̂ is used to represent the unit principal deviatoric stress which has three components. The
transformation matrix T is defined as

σ̂︸︷︷︸
3 × 1

= T︸︷︷︸
3 × 6

σ̄︸︷︷︸
6 × 1

, ŝ︸︷︷︸
3 × 1

= T︸︷︷︸
3 × 6

s̄︸︷︷︸
6 × 1

, (9.12)

and can be formulated from eigenanalysis.
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Hardening Law

Since concrete shows different behaviour under compression and tension, the subscript (·)ℵ is
used to denoted either tension (·)t or compression (·)c.

Internal hardening parameters κℵ shall satisfy the following expression,

κ̇ℵ = γHℵ, (9.13)

whereHℵ defines the hardening law. DifferentHℵ shall be used for compression/tension.

Ht = r
ft

gt
(n̂1 + αp) , (9.14)

Hc = (1− r) fc

gc
(n̂3 + αp) . (9.15)

In which n̂1 and n̂3 denotes the maximum and minimum components in n̂ and r is a scalar val-
ued function of the effective principal stress. In the original model, it is defined as

r (σ̂) = ⟨σ̂1⟩+ ⟨σ̂2⟩+ ⟨σ̂3⟩
|σ̂1|+ |σ̂2|+ |σ̂3|

. (9.16)

The purpose of r is to characterise the proportion of tension in a multiaxial loading case.

Backbone Curve

The backbone curve fℵ is related to the internal parameter κℵ.

fℵ = fℵ,0
√
ϕℵΦℵ,

with

ϕℵ = 1 + aℵ (2 + aℵ)κℵ, Φℵ = 1 + aℵ −
√
ϕℵ

aℵ
.

The effective counterpart f̄ℵ is defined as

f̄ℵ = fℵ
1− dℵ

= fℵ,0
√
ϕℵΦ1−cℵ/bℵ

ℵ ,

with

dℵ = 1− Φcℵ/bℵ
ℵ .

In general, the backbone curve can be customised. The main algorithm has no interested in
how the backbone curve is computed, only fℵ, f̄ℵ and dℵ and their derivatives with regard to
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κℵ need to be provided. The exponential form adopted in the original model may encounter
some numerical difficulties, which in the author’s opinion is not ideal. One can always choose
another form, such as providing those quantities in a tabulated fashion. This is also what
ABAQUS offers.

9.1.2. Damage Theory

The damage measure takes the form

h (dt, dc) = (1− dc) (1− sdt) (9.17)

with s = s0 + (1− s0) r is the recovery factor.

9.1.3. Plasticity Formulation

The CDP model is driven by three quantities κt, κc and εp. The governing equations are listed
as follows.

Yield Function f = αĪ1 +
√

3
2∥s̄∥+ β ⟨σ̂1⟩ − (1− α) cc

Flow Rule ε̇p = γ

(
s̄

∥s̄∥
+ αp1

)
Hardening Law κ̇ℵ = γHℵ

Elastic Loading/Unloading

Assuming elastic loading/unloading, the trial state of the effective part can be computed as
done in other plasticity models.

σ̄trial = D : (εn+1 − εp
n) . (9.18)

Then by performing eigenanalysis, σ̂trial can be computed. The trial yield function is

f trial = αĪtrial
1 +

√
3
2
∥∥∥s̄trial

∥∥∥+ β
〈
σ̂trial

1

〉
− (1− α) cc, (9.19)

with β and cc computed by using κt,n and κc,n. If f trial < 0, indicating elastic loading/unload-
ing, then σ̄n+1 = σ̄trial, the final stress is simply

σn+1 = (1− dc,n) (1− sdt,n) σ̄trial. (9.20)
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The corresponding tangent stiffness is then

∂σn+1
∂εn+1

= ∂σn+1
∂σ̄n+1

: ∂σ̄n+1
∂εn+1

= (1− dc,n) dt,n (s0 − 1) σ̄trial ⊗ dr
dσ̄n+1

: D + (1− dc,n) (1− sdt,n)D

= (1− dc,n)
(
dt,n (s0 − 1) σ̄trial ⊗ dr

dσ̄n+1
+ (1− sdt,n) I

)
: D.

(9.21)

Plasticity Evolution

The yield function and the damage evolutions are three local equations shall be satisfied.

R =



αĪ1 +
√

3
2
∥∥∥s̄trial

∥∥∥− γ√6G+ β
〈
σ̄trial

1 − γ (2Gn̂1 + 3Kαp)
〉

+ (1− α) f̄c,

κt,n + γr
ft

gt
(n̂1 + αp)− κt,

κc,n + γ (1− r) fc

gc
(n̂3 + αp)− κc.

(9.22)

By choosing x =
[
γ κt κc

]T
as the independent variables and assuming n̂ = ŝtrial

∥ŝtrial∥
that is a function of εn+1 only thus does not contain γ, the Jacobian can be computed
as

J =



−9Kααp −
√

6G − β (2Gn̂1 + 3Kαp) H (σ̂1) ⟨σ̂1⟩ ∂β

∂κt
(1 − α) f̄ ′

c + ⟨σ̂1⟩ ∂β

∂κc

ft
n̂1 + αp

gt

(
r + γ

∂r

∂γ

)
γr

n̂1 + αp

gt
f ′

t − 1 ·

fc
n̂3 + αp

gc

(
1 − r − γ

∂r

∂γ

)
· γ (1 − r) n̂3 + αp

gc
f ′

c − 1


,

(9.23)

where H (·) is the heaviside function and

∂β

∂κt
= (1− α) f̄c

f̄2
t

f̄ ′
t ,

∂β

∂κc
= (α− 1) 1

f̄t

f̄ ′
c.
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In the explicit form, if σ̂1 > 0,

J =



−9Kααp −
√

6G − β (2Gn̂1 + 3Kαp) (1 − α) f̄cσ̂1

f̄2
t

f̄ ′
t (1 − α)

(
1 − σ̂1

f̄t

)
f̄ ′

c

ft
n̂1 + αp

gt

(
r + γ

∂r

∂γ

)
rγ

n̂1 + αp

gt
f ′

t − 1 ·

fc
n̂3 + αp

gc

(
1 − r − γ

∂r

∂γ

)
· (1 − r) γ

n̂3 + αp

gc
f ′

c − 1


, (9.24)

otherwise,

J =



−9Kααp −
√

6G · (1 − α) f̄ ′
c

ft
n̂1 + αp

gt

(
r + γ

∂r

∂γ

)
rγ

n̂1 + αp

gt
f ′

t − 1 ·

fc
n̂3 + αp

gc

(
1 − r − γ

∂r

∂γ

)
· (1 − r) γ

n̂3 + αp

gc
f ′

c − 1

 . (9.25)

9.1.4. Damage Formulation

There is no local iteration required in the damage part. Once κt and κc are determined, the
effective part σ̄ can be determined. Damage measures dt and dc can be computed accord-
ingly.

9.1.5. Consistent Tangent Stiffness

In order to take derivatives with regard to trial strain, one can replace
∥∥∥ŝtrial

∥∥∥ and
∥∥∥s̄trial

∥∥∥,
which yields

∂R

∂εn+1
=



3Kα1 +
√

6Gn +H (σ̂1)βdσ̂1
dσ̄ : ∂σ̄

∂εn+1
,

γ
ft

gt

(
r
∂n̂1
∂εn+1

+ (n̂1 + αp) dr
dσ̄ : ∂σ̄

∂εn+1

)
,

γ
fc

gc

(
(1− r) ∂n̂3

∂εn+1
− (n̂3 + αp) dr

dσ̄ : ∂σ̄

∂εn+1

)
.

(9.26)

so that

dx
dεn+1

=



dγ
dεn+1

dκt

dεn+1
dκc

dεn+1


= −

(
∂R

∂x

)−1 ∂R

∂εn+1
. (9.27)
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The effective stress σ̄n+1 only depends on εn+1 and γ. The partial derivative is

∂σ̄n+1
∂εn+1

= ∂

∂εn+1

(
strial − 2Gγ strial

∥strial∥
+
(
ptrial − 3Kαpγ

)
1

)

= D − 4G2γ

∥strial∥

(
Idev − n⊗ n

)
.

(9.28)

The full derivative is

dσ̄n+1
dεn+1

= d
dεn+1

(
strial − 2Gγ strial

∥strial∥
+
(
ptrial − 3Kαpγ

)
1

)

= D − 4G2γ

∥strial∥

(
Idev − n⊗ n

)
− (2Gn + 3Kαp1)⊗ ∂γ

∂εn+1

= ∂σ̄n+1
∂εn+1

− (2Gn + 3Kαp1)⊗ ∂γ

∂εn+1
.

(9.29)

The derivative of the damage factor can be expressed as

dh
dεn+1

= (1− dc)
d (1− sdt)

dεn+1
+ (1− sdt)

d (1− dc)
dεn+1

= (dc − 1)
(
s

ddt

dεn+1
+ dt

ds
dεn+1

)
+ (sdt − 1) ddc

dεn+1
,

(9.30)

with

ddt

dεn+1
= ddt

dκt

dκt

dεn+1
, (9.31)

ddc

dεn+1
= ddc

dκc

dκc

dεn+1
, (9.32)

ds
dεn+1

= (1− s0) dr
dσ̄n+1

: dσ̄n+1
dεn+1

. (9.33)

The following derivatives would be useful.

ddℵ
dκℵ

= cℵ
bℵ

aℵ + 2
2
√
ϕℵ

Φcℵ/bℵ−1
ℵ , (9.34)

dfℵ
dκℵ

= fℵ,0
aℵ + 2
2
√
ϕℵ

(
aℵ − 2

√
ϕℵ + 1

)
, (9.35)

df̄ℵ
dκℵ

= fℵ,0
aℵ + 2
2
√
ϕℵ

(
aℵ + 1 +

(
cℵ
bℵ
− 2

)√
ϕℵ

)
Φcℵ/bℵ

ℵ

. (9.36)

Given that the stress update is computed as follows,

σn+1 = hσ̄n+1, (9.37)
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the consistent tangent stiffness is then

dσn+1
dεn+1

= σ̄n+1 ⊗
dh

dεn+1
+ h

dσ̄n+1
dεn+1

= σ̄n+1 ⊗
(

(dc − 1)
(
s

ddt

dεn+1
+ dt

ds
dεn+1

)
+ (sdt − 1) ddc

dεn+1

)
+ h

dσ̄n+1
dεn+1

,

(9.38)

which is equivalently,

dσn+1
dεn+1

= σ̄n+1 ⊗


[
s (dc − 1) ddt

dκt
(sdt − 1) ddc

dκc

] 
dκt

dεn+1

dκc

dεn+1




︸ ︷︷ ︸
dot product in vector representation

+
(
dt (dc − 1) (1− s0) σ̄n+1 ⊗

dr
dσ̄n+1

+ hI
) dσ̄n+1

dεn+1
. (9.39)

The CDP model has no kinematic hardening, the effective part resembles the bounding surface
concept. Due to the coaxiality, the model can be constructed in the eigen space, which brings
some convenience in terms of implementation.

9.1.6. Implementation

The state determination of the CDP model is shown in Algorithm 9. Compared with the
original implementation, the presented one is much more concise and is able to avoid lengthy
computation of consistent tangent stiffness.

It is worth noting some quantities remain constant in the local iteration, for example,

2Gn̂1 + 3Kαp,
n̂1 + αp

gt
,

n̂3 + αp

gc
. (9.40)

They can be computed as stored before entering local iteration.

Algorithm 9 state determination of the CDP model
Parameter: λ, G
Input: εn+1, εn, εp

n, σn, κℵ,n

Output: Dn+1, εp
n+1, σn+1, κℵ,n+1

σ̄trial = D : (εn+1 − εp
n)

strial = dev
(
σ̄trial

)
perform eigenanalysis on σ̄trial and compute T , s̄trial

n̂ = s̄trial

∥s̄trial∥
compute f trial ▷ Eq. (9.19)
κℵ,n+1 = κℵ,n
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9.1. Concrete Damage Plasticity Model

if f trial ⩾ 0 then ▷ plasticity evolution
compute fℵ, f̄ℵ and dℵ and their derivatives ▷ This can be an independent overridable

method.
while true do

γ = 0
compute R and ∂R

∂x
▷ Eq. (9.22) and Eq. (9.23)

∆ =
(
∂R

∂x

)−1
R ▷ ∆ =

[
δγ δκt δκc

]
if ∥∆∥ < tolerance then

break
end if
γ ← γ − δγ
κt,n+1 ← κt,n+1 − δκt

κt,n+1 ← κt,n+1 − δκc

end while
σn+1 = σtrial − γ (2Gn + 3Kαp1)
εp

n+1 = εp
n + γ (n + αp1)

compute Dn+1 ▷ Eq. (9.39)
else ▷ elastic loading/unloading

σn+1 = σtrial

εp
n+1 = εp

n

compute Dn+1 ▷ Eq. (9.21)
end if

The CPP implementation of state determination can be found as follows.

1 int NonlinearCDP::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_history = current_history;
7 auto& d_t = trial_history(0);
8 auto& d_c = trial_history(1);
9 auto& kappa_t = trial_history(2);

10 auto& kappa_c = trial_history(3);
11 vec plastic_strain(&trial_history(4), 6, false, true);
12

13 const auto& current_kappa_t = current_history(2);
14 const auto& current_kappa_c = current_history(3);
15

16 trial_stress = (trial_stiffness = initial_stiffness) * (trial_strain - plastic_strain);
// 6↪→

17

18 vec principal_stress; // 3
19 mat principal_direction; // 3x3
20 if(!eig_sym(principal_stress, principal_direction,

tensor::stress::to_tensor(trial_stress), "std")) return SUANPAN_FAIL;↪→

21

22 const auto trans = transform::compute_jacobian_nominal_to_principal(principal_direction);
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23

24 const auto s = tensor::dev(trial_stress); // 6
25 const auto norm_s = tensor::stress::norm(s); // 1
26 vec n = s / norm_s; // 6
27 if(!n.is_finite()) n.zeros();
28

29 const auto ps = tensor::dev(principal_stress); // 3
30 const vec pn = normalise(ps); // 3
31

32 const vec dsigmadlambda = -double_shear * pn - three_alpha_p_bulk; // 6
33

34 const auto dgdsigma_t = (pn(2) + alpha_p) / g_t;
35 const auto dgdsigma_c = (pn(0) + alpha_p) / g_c;
36

37 auto new_stress = principal_stress; // converged principal stress
38 const auto& max_stress = new_stress(2); // algebraically maximum principal stress
39

40 const auto const_yield = alpha * accu(principal_stress) + root_three_two * norm_s;
41

42 vec residual(3), incre;
43 mat jacobian(3, 3, fill::zeros);
44 mat left(3, 6);
45

46 podarray<double> t_para, c_para;
47

48 auto lambda = 0., ref_error = 0.;
49 double r, beta;
50 vec dr;
51

52 unsigned counter = 0;
53 while(true) {
54 if(max_iteration == ++counter) {
55 suanpan_error("NonlinearCDP cannot converge within %u iterations.\n",

max_iteration);↪→

56 return SUANPAN_FAIL;
57 }
58

59 t_para = compute_tension_backbone(kappa_t);
60 c_para = compute_compression_backbone(kappa_c);
61

62 const auto tension_flag = max_stress > 0.;
63

64 beta = -one_minus_alpha * c_para(2) / t_para(2) - alpha - 1.;
65

66 residual(0) = const_yield + pfplambda * lambda + one_minus_alpha * c_para(2);
67

68 if(tension_flag) residual(0) += beta * max_stress;
69

70 r = compute_r(new_stress);
71

72 if(1 == counter && residual(0) < 0.) {
73 const auto damage_c = scale * d_c - 1.;
74 const auto damage_t = compute_s(r) * scale * d_t - 1.;
75 const auto damage = damage_c * damage_t;
76 trial_stiffness = (damage * eye(6, 6) + damage_c * scale * d_t * (1. - s0) *

trial_stress * compute_dr(new_stress).t() * trans) * initial_stiffness;↪→

77 trial_stress *= damage;
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78 return SUANPAN_SUCCESS;
79 }
80

81 const auto t_term = t_para(1) * dgdsigma_t;
82 const auto c_term = c_para(1) * dgdsigma_c;
83

84 residual(1) = r * t_term * lambda + current_kappa_t - kappa_t;
85 residual(2) = (c_term - r * c_term) * lambda + current_kappa_c - kappa_c;
86

87 if(tension_flag) {
88 jacobian(0, 0) = pfplambda + beta * dsigmadlambda(2);
89 const auto tmp_term = one_minus_alpha * max_stress / t_para(2);
90 jacobian(0, 1) = tmp_term * c_para(2) / t_para(2) * t_para(5);
91 jacobian(0, 2) = (one_minus_alpha - tmp_term) * c_para(5);
92 }
93 else {
94 jacobian(0, 0) = pfplambda;
95 jacobian(0, 1) = 0.;
96 jacobian(0, 2) = one_minus_alpha * c_para(5);
97 }
98

99 const auto dlambda = r + lambda * dot(dr = compute_dr(new_stress), dsigmadlambda);
100 jacobian(1, 0) = t_term * dlambda;
101 jacobian(2, 0) = c_term - c_term * dlambda;
102 jacobian(1, 1) = r * lambda * dgdsigma_t * t_para(4) - 1.;
103 jacobian(2, 2) = (lambda - r * lambda) * dgdsigma_c * c_para(4) - 1.;
104

105 if(!solve(incre, jacobian, residual)) return SUANPAN_FAIL;
106

107 auto error = norm(residual);
108 if(1 == counter) ref_error = std::max(1., error);
109 suanpan_debug("NonlinearCDP local iteration error: %.5E.\n", error /= ref_error);
110 if(error <= tolerance || norm(incre) <= tolerance) break;
111

112 lambda -= incre(0);
113 kappa_t -= incre(1);
114 kappa_c -= incre(2);
115 new_stress -= dsigmadlambda * incre(0);
116

117 if(kappa_t > 1.) kappa_t = .999; // avoid overshoot
118 if(kappa_c > 1.) kappa_c = .999; // avoid overshoot
119 }
120

121 // update damage indices
122 d_t = t_para(0);
123 d_c = c_para(0);
124 // update plastic strain
125 plastic_strain += lambda * (n % tensor::stress::norm_weight + unit_alpha_p);
126

127 const auto recovery = compute_s(r);
128 const auto damage_c = scale * d_c - 1.;
129 const auto damage_t = recovery * scale * d_t - 1.;
130 const auto damage = damage_c * damage_t;
131

132 // update trial stress
133 trial_stress = transform::compute_jacobian_principal_to_nominal(principal_direction) *

new_stress;↪→
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134

135 const mat dnde = double_shear / norm_s * (unit_dev_tensor - n * n.t());
136

137 // \dfrac{\partial\bar{\sigma}}{\partial\varepsilon^{tr}}
138 trial_stiffness -= double_shear * lambda * dnde;
139

140 const rowvec drdsigma = dr.t() * trans;
141 const rowvec prpe = drdsigma * trial_stiffness;
142

143 // compute local derivatives
144 left.row(0) = 3. * alpha * bulk * tensor::unit_tensor2.t() + root_three_two *

double_shear * n.t();↪→

145 left.row(1) = t_para(1) * lambda * (r / g_t * trans.row(2) * dnde + dgdsigma_t * prpe);
146 left.row(2) = c_para(1) * lambda * ((1. - r) / g_c * trans.row(0) * dnde - dgdsigma_c *

prpe);↪→

147

148 if(max_stress > 0.) left.row(0) += beta * trans.row(2) * trial_stiffness;
149

150 const mat right = -solve(jacobian, left);
151 const auto& dlambdade = right.row(0);
152 const auto& dkappade = right.rows(1, 2);
153

154 // \dfrac{\mathrm{d}\bar{\sigma}}{\mathrm{d}\varepsilon^{tr}}
155 trial_stiffness -= (double_shear * n + three_alpha_p_bulk * tensor::unit_tensor2) *

dlambdade;↪→

156

157 trial_stiffness = (damage * eye(6, 6) + scale * d_t * damage_c * (1. - s0) * trial_stress
* drdsigma) * trial_stiffness + trial_stress * scale * rowvec{recovery * damage_c *
t_para(3), damage_t * c_para(3)} * dkappade;

↪→

↪→

158

159 trial_stress *= damage;
160

161 return SUANPAN_SUCCESS;
162 }

9.2. CDPM2 Model

The CDP adopts an isotropic damage, which leads to, for example, degradation of compres-
sive/tensile strength due to tensile/compressive damage. In cyclic loading cases, it may not
be ideal. The CDPM2 model uses a different approach that applies tensile damage to tensile
part of stress and compressive damage to compressive part of stress.

Compared to the original formulation [10], here the dependency of the Lode angle is removed
for brevity.
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9.2.1. Plasticity

The model is driven by the norm of the deviatoric stress s = ∥s∥, the hydrostatic stress p and
the internal hardening variable κp.

Yield Function

The yield function F is defined as

F = g2
1 +m0q

2
h1qh2g3 − q2

h1q
2
h2, (9.41)

where the friction parameter m0

m0 = 3f2
c − 3f2

t

fcft

e

1 + e
(9.42)

depends on material strengths fc and ft, e is the eccentricity constant which depends on the
previous two strengths and equibiaxial compression strength fbc. The hardening functions qh1
and qh2 will be introduced later. The helper functions g1 and g3 are also used to define the
plastic potential G. If the Lode angle shall be considered, g3 needs to be replaced by g4 which
is defined as

g4 = s√
6fc

r + p

fc
, (9.43)

with r = r (θ) being a function of the lode angle θ.

The partial derivatives of F are

∂F

∂p
= 2g1

∂g1
∂p

+m0q
2
h1qh2

∂g3
∂p

, (9.44)

∂F

∂s
= 2g1

∂g1
∂s

+m0q
2
h1qh2

∂g3
∂s

, (9.45)

∂F

∂κp
= 2g1

∂g1
∂κp

+ 2m0qh1qh2g3
dqh1
dκp

+m0q
2
h1g3

dqh2
dκp

− 2qh1qh2

(
qh2

dqh1
dκp

+ qh1
dqh2
dκp

)
.

(9.46)

Flow Rule

The plastic potential G is defined as

G = g2
1 + q2

h1g2, (9.47)
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where

g1 = (1− qh1) g2
3 +

√
3
2
s

fc
, g2 = m0s√

6fc

+ mg

fc
, g3 = s√

6fc

+ p

fc
, (9.48)

mg = AgBgfc exp
(

3p− qh2ft

3Bgfc

)
, (9.49)

Ag = 3ftqh2
fc

+ m0
2 , (9.50)

Bg = qh2 (1 + ft/fc) /3
lnAg − ln (2Df − 1)− ln (3qh2 +m0/2) + ln (Df + 1) . (9.51)

With the derivatives of auxiliary functions expressed as

∂g3
∂p

= 1
fc
,

∂g3
∂s

= 1√
6fc

,
∂g2
∂p

= 1
fc

∂mg

∂p
,

∂g2
∂s

= m0√
6fc

, (9.52)

∂g1
∂p

= 2 (1− qh1) g3
∂g3
∂p

,
∂g1
∂s

= 2 (1− qh1) g3
∂g3
∂s

+
√

3
2

1
fc
. (9.53)

The flow rule can be derived as

Gp = ∂G

∂p
= 2g1

∂g1
∂p

+ q2
h1
∂g2
∂p

=
4 (1− qh1) g1g3 + q2

h1Ag exp
(
p− qh2ft/3

Bgfc

)
fc

, (9.54)

Gs = ∂G

∂s
= 2g1

∂g1
∂s

+ q2
h1
∂g2
∂s

= 4 (1− qh1) g1g3 + 6g1 +m0q
2
h1√

6fc

. (9.55)

Hardening Law

The variables qh1 and qh2 are functions of the hardening variable κp.

qh1 =
{
qh0 + (1− qh0)

(
κ3

p − 3κ2
p + 3κp

)
−Hp

(
κ3

p − 3κ2
p + 2κp

)
for κp < 1,

1 for κp ⩾ 1.
(9.56)

qh2 =
{

1 for κp < 1,
1 +Hp (κp − 1) for κp ⩾ 1. (9.57)

The evolution of κp is defined as

κ̇p = ∥ε̇p∥
xh

4 cos2 (θ) . (9.58)

Here the dependency on the Lode angle θ is removed such that

xhκ̇p = ∥ε̇p∥ = γGκ, (9.59)
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with Gκ =
√
G2

s +G2
p/3. This effectively means θ = 2π/3 is a constant.

Plasticity Residual

Collecting the yield function, evolutions of s, p and κp, the local residual of the plasticity part
can be expressed as

R =



g2
1 +m0q

2
h1qh2g3 − q2

h1q
2
h2,

s+ 2GγGs − strial,

p+KγGp − ptrial,

xhκ
n
p + γGκ − xhκp.

(9.60)

The local system consists of four scalar equations.

The Jacobian thus has a size of 4 and reads

J =



· ∂F

∂s

∂F

∂p

∂F

∂κp

2GGs 1 + 2Gγ∂Gs

∂s
2Gγ∂Gs

∂p
2Gγ∂Gs

∂κp

KGp Kγ
∂Gp

∂s
1 +Kγ

∂Gp

∂p
Kγ

∂Gp

∂κp

Gκ γ
∂Gκ

∂s

(
κn

p − κp

) dxh

dp + γ
∂Gκ

∂p
γ
∂Gκ

∂κp
− xh


. (9.61)

9.2.2. Damage

Equivalent Strain

The equivalent strain is defined as

ε̃ = g5 +
√
g2

5 + g2
6, (9.62)

with

g5 = ε0m0
2 g3, g6 =

√
3
2
s

fc
. (9.63)
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Again, if the Lode angle needs to be considered, replace g3 with g4. The equivalent strain is
further split into tensile and compressive parts.

ε̃t = αtε̃, ε̃c = αcε̃, (9.64)

where αt +αc = 1 are two parameters that characterise the tensile/compressive portion of the
current loading step.

The damage history variables κdt and κdc track the maximum values of ε̃t and ε̃c, respec-
tively.

Tension

The inelastic strain is expressed as a function of damage factors.

εi = κdt1 + ωtκdt2. (9.65)

While the uniaxial stress response can be expressed as

σ = (1− ωt)Eκdt. (9.66)

Assume an exponential degradation curve,

σ = ft exp
(
− εi

εft

)
(9.67)

The local residual is

R = ft exp
(
− εi

εft

)
− (1− ωt)Eκdt. (9.68)

For a given set of κdt, κdt1 and κdt2, the above residual is a function of unknown ωt. It can be
solved by, for example, Newton’s method. The corresponding derivatives are

∂R

∂ωt
= Eκdt −

κdt2
εfc

ft exp
(
− εi

εft

)
, (9.69)

∂R

∂κdt
= − (1− ωt)E, (9.70)

∂R

∂κdt1
= − 1

εft
ft exp

(
− εi

εft

)
, (9.71)

∂R

∂κdt2
= − ωt

εft
ft exp

(
− εi

εft

)
. (9.72)
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Compression

For compression, the definition fully resembles its tensile counterpart. The inelastic strain is
driven by two internal parameters κdc1 and κdc2,

εi = κdc1 + ωcκdc2. (9.73)

The uniaxial response is

σ = (1− ωc)Eκdc. (9.74)

With the exponential backbone, the local residual is

R = ft exp
(
− εi

εfc

)
− (1− ωc)Eκdc. (9.75)

Stress

The final stress can be expressed as

σ = (1− ωt) (1− ωc) σ̄. (9.76)

This form is identical to the one used in the CDP model. It represents the isotropic damage.
Alternatively, it can also be expressed as

σ = (1− ωt) σ̄t + (1− ωc) σ̄c, (9.77)

which stands for the anisotropic damage. The tensile and compressive part of the stress tensor
σ̄t and σ̄c are obtained by performing an eigenanalysis such that

σ̄t =
3∑

i=1
⟨σ̂i⟩pi ⊗ pi, σ̄c = σ̄ − σ̄t, (9.78)

where σ̂i is the eigenvalue of σ̄ and pi is the associated eigenvector.

Eq. (9.77) can be equivalently expressed as

σ = (1− ωt) σ̄t + (1− ωc) (σ̄ − σ̄t)
= (1− ωc) σ̄ + (ωc − ωt) σ̄t.

(9.79)

With the above expression, the tangent stiffness can be expressed as

dσ
dε = (1− ωc)

dσ̄
dε + (ωc − ωt)

dσ̄t

dσ̄
dσ̄
dε − σ̄ ⊗ dωc

dε + σ̄t ⊗
(dωc

dε −
dωt

dε

)
. (9.80)
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9.2.3. Formulation

9.2.4. Implementation

The main body of state determination consists of two main tasks: 1) compute the plastic-
ity part and 2) compute the damage part. The implementation can be found as follows.

1 int CDPM2::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
5

6 trial_history = current_history;
7 const auto& current_kp = current_history(0);
8 auto& kp = trial_history(0);
9 vec plastic_strain(&trial_history(1), 6, false, true);

10

11 trial_stress = (trial_stiffness = initial_stiffness) * (trial_strain - plastic_strain);
12

13 //
14 // plasticity part
15 //
16

17 const auto dev_stress = tensor::dev(trial_stress);
18 const auto hydro_stress = tensor::mean3(trial_stress);
19 const auto trial_s = tensor::stress::norm(dev_stress);
20 const auto trial_p = hydro_stress;
21 const vec n = dev_stress / trial_s;
22

23 auto gamma = 0., s = trial_s, p = trial_p;
24

25 mat jacobian(4, 4, fill::none), left(4, 6, fill::zeros);
26 jacobian(0, 0) = 0.;
27

28 vec residual(4), incre;
29

30 podarray<double> data(15);
31 const auto& f = data(0);
32 const auto& pfps = data(1);
33 const auto& pfpp = data(2);
34 const auto& pfpkp = data(3);
35 const auto& gs = data(4);
36 const auto& gp = data(5);
37 const auto& gg = data(6);
38 const auto& pgsps = data(7);
39 const auto& pgspp = data(8);
40 const auto& pgspkp = data(9);
41 const auto& pgpps = data(10);
42 const auto& pgppp = data(11);
43 const auto& pgppkp = data(12);
44 const auto& xh = data(13);
45 const auto& dxhdp = data(14);
46
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47 auto counter = 0u;
48

49 while(true) {
50 if(max_iteration == ++counter) return SUANPAN_FAIL;
51

52 compute_plasticity(s, p, kp, data);
53

54 if(1 == counter && f < 0.) break;
55

56 residual(0) = f;
57 residual(1) = s + double_shear * gamma * gs - trial_s;
58 residual(2) = p + bulk * gamma * gp - trial_p;
59 residual(3) = xh * (current_kp - kp) + gamma * gg;
60

61 jacobian(0, 1) = pfps;
62 jacobian(0, 2) = pfpp;
63 jacobian(0, 3) = pfpkp;
64

65 jacobian(1, 0) = double_shear * gs;
66 jacobian(1, 1) = double_shear * gamma * pgsps + 1.;
67 jacobian(1, 2) = double_shear * gamma * pgspp;
68 jacobian(1, 3) = double_shear * gamma * pgspkp;
69

70 jacobian(2, 0) = bulk * gp;
71 jacobian(2, 1) = bulk * gamma * pgpps;
72 jacobian(2, 2) = bulk * gamma * pgppp + 1.;
73 jacobian(2, 3) = bulk * gamma * pgppkp;
74

75 jacobian(3, 0) = gg;
76 jacobian(3, 1) = gamma / gg * (gs * pgsps + gp / 3. * pgpps);
77 jacobian(3, 2) = gamma / gg * (gs * pgspp + gp / 3. * pgppp) + (current_kp - kp) *

dxhdp;↪→

78 jacobian(3, 3) = gamma / gg * (gs * pgspkp + gp / 3. * pgppkp) - xh;
79

80 if(!solve(incre, jacobian, residual)) return SUANPAN_FAIL;
81

82 const auto error = norm(residual);
83 suanpan_debug("CDPM2 local plasticity iteration error: %.5E.\n", error);
84

85 if(error <= tolerance) {
86 const vec unit_n = n % tensor::stress::norm_weight;
87

88 plastic_strain += gamma * gs * unit_n + gamma * gp / 3. * tensor::unit_tensor2;
89

90 trial_stress = s * n + p * tensor::unit_tensor2;
91

92 mat right(4, 6, fill::none);
93

94 right.row(0).zeros();
95 right.row(1) = double_shear * unit_n.t() * unit_dev_tensor;
96 right.row(2) = bulk * tensor::unit_tensor2.t();
97 right.row(3).zeros();
98

99 if(!solve(left, jacobian, right)) return SUANPAN_FAIL;
100

101 trial_stiffness = n * (left.row(1) - s / trial_s * right.row(1)) + s / trial_s *
double_shear * unit_dev_tensor;↪→

107



9. Concrete

102 trial_stiffness.row(0) += left.row(2);
103 trial_stiffness.row(1) += left.row(2);
104 trial_stiffness.row(2) += left.row(2);
105

106 break;
107 }
108

109 gamma -= incre(0);
110 s -= incre(1);
111 p -= incre(2);
112 kp -= incre(3);
113 }
114

115 //
116 // damage part
117 //
118

119 vec principal_stress; // 3
120 mat principal_direction; // 3x3
121 if(!eig_sym(principal_stress, principal_direction,

tensor::stress::to_tensor(trial_stress), "std")) return SUANPAN_FAIL;↪→

122

123 vector<uword> tp, cp;
124 tp.reserve(3);
125 cp.reserve(3);
126 for(auto I = 0llu; I < 3llu; ++I)
127 if(principal_stress(I) > 0.) tp.emplace_back(I);
128 else cp.emplace_back(I);
129

130 const uvec t_pattern(tp), c_pattern(cp);
131

132 const auto aca = accu(square(principal_stress(c_pattern)));
133 const auto acb = accu(square(principal_stress));
134 const auto ac = aca / acb;
135 rowvec daca = 2. * principal_stress.t();
136 daca(t_pattern).fill(0.);
137 const rowvec dac = (daca - 2. * ac * principal_stress.t()) / acb;
138

139 if(SUANPAN_SUCCESS != compute_damage(gamma, s, p, kp, ac, data)) return SUANPAN_FAIL;
140

141 if(DamageType::NODAMAGE == damage_type) return SUANPAN_SUCCESS;
142

143 const auto& omegat = trial_history(16);
144 const auto& omegac = trial_history(17);
145 const rowvec pot(&data(0), 4, false, true);
146 const rowvec poc(&data(4), 4, false, true);
147 const auto& pocpac = data(8);
148

149 const rowvec potpe = pot * left;
150 const rowvec pocpe = poc * left + pocpac * dac *

transform::compute_jacobian_nominal_to_principal(principal_direction) *
trial_stiffness;

↪→

↪→

151

152 if(DamageType::ISOTROPIC == damage_type) {
153 trial_stiffness *= (1. - omegat) * (1. - omegac);
154 trial_stiffness -= trial_stress * ((1. - omegat) * pocpe + (1. - omegac) * potpe);
155
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156 trial_stress *= (1. - omegat) * (1. - omegac);
157 }
158 else if(DamageType::ANISOTROPIC == damage_type) {
159 const auto compute_fraction = [&](const double a, const double b) { return

suanpan::approx_equal(a, b, 4) ? a + b <= 0. ? 0. : 2. : 2. * (suanpan::ramp(a) -
suanpan::ramp(b)) / (a - b); };

↪→

↪→

160 const auto get_fraction = [&](const vec& p_stress) { return
vec{compute_fraction(p_stress(0), p_stress(1)), compute_fraction(p_stress(1),
p_stress(2)), compute_fraction(p_stress(2), p_stress(0))}; };

↪→

↪→

161

162 const mat pnn = [](const mat& eig_vec) {
163 const mat n12 = eig_vec.col(0) * eig_vec.col(1).t();
164 const mat n23 = eig_vec.col(1) * eig_vec.col(2).t();
165 const mat n31 = eig_vec.col(2) * eig_vec.col(0).t();
166

167 mat pij(6, 6);
168

169 pij.col(0) = tensor::stress::to_voigt(eig_vec.col(0) * eig_vec.col(0).t());
170 pij.col(1) = tensor::stress::to_voigt(eig_vec.col(1) * eig_vec.col(1).t());
171 pij.col(2) = tensor::stress::to_voigt(eig_vec.col(2) * eig_vec.col(2).t());
172 pij.col(3) = tensor::stress::to_voigt(.5 * (n12 + n12.t()));
173 pij.col(4) = tensor::stress::to_voigt(.5 * (n23 + n23.t()));
174 pij.col(5) = tensor::stress::to_voigt(.5 * (n31 + n31.t()));
175

176 return pij;
177 }(principal_direction);
178

179 mat tension_projector = pnn.cols(t_pattern) * pnn.cols(t_pattern).t();
180 mat tension_derivative = tension_projector + pnn.tail_cols(3) *

diagmat(get_fraction(principal_stress)) * pnn.tail_cols(3).t();↪→

181

182 tension_projector.tail_cols(3) *= 2.;
183 tension_derivative.tail_cols(3) *= 2.;
184

185 const vec tension_stress = tension_projector * trial_stress;
186

187 trial_stiffness = (1. - omegac) * trial_stiffness - trial_stress * pocpe + (omegac -
omegat) * tension_derivative * trial_stiffness + tension_stress * (pocpe -
potpe);

↪→

↪→

188

189 trial_stress *= 1. - omegac;
190 trial_stress += (omegac - omegat) * tension_stress;
191 }
192

193 return SUANPAN_SUCCESS;
194 }

Here, all relevant quantities (mainly derivatives) are stored in array data that is passed
to the corresponding functions. For example, in order to compute plasticity, the following
method is used. It is lengthy and tedious, mainly computing derivatives via the chain rule.
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1 void CDPM2::compute_plasticity(const double s, const double p, const double kp,
podarray<double>& data) const {↪→

2 auto& f = data(0);
3 auto& pfps = data(1);
4 auto& pfpp = data(2);
5 auto& pfpkp = data(3);
6 auto& gs = data(4);
7 auto& gp = data(5);
8 auto& gg = data(6);
9 auto& pgsps = data(7);

10 auto& pgspp = data(8);
11 auto& pgspkp = data(9);
12 auto& pgpps = data(10);
13 auto& pgppp = data(11);
14 auto& pgppkp = data(12);
15 auto& xh = data(13);
16 auto& dxhdp = data(14);
17

18 auto qh1 = 1., qh2 = 1.;
19 auto dqh1dkp = 0., dqh2dkp = 0.;
20

21 if(kp < 1.) {
22 qh1 = qh0 + (1. - qh0) * kp * (kp * (kp - 3.) + 3.) - hp * kp * (kp - 1.) * (kp -

2.);↪→

23 dqh1dkp = (3. - 3. * qh0) * pow(kp - 1., 2.) - hp * (3. * kp * (kp - 2.) + 2.);
24 }
25 else {
26 qh2 = 1. + hp * (kp - 1.);
27 dqh2dkp = hp;
28 }
29

30 const auto ag = 3. * ftfc * qh2 + .5 * m0;
31 const auto dagdkp = 3. * ftfc * dqh2dkp;
32 const auto cg = qh2 * (1. + ftfc) / 3.;
33 const auto dg = log(ag) - log(3. * qh2 + .5 * m0) + lndf;
34 const auto dcgdkp = dqh2dkp * (1. + ftfc) / 3.;
35 const auto ddgdkp = dagdkp / ag - dqh2dkp / (qh2 + m0 / 6.);
36 const auto bg = cg / dg;
37 const auto dbgdkp = (dcgdkp - bg * ddgdkp) / dg;
38

39 const auto eg = (p / fc - qh2 * ftfc / 3.) / bg;
40 const auto pegpkp = (-ftfc / 3. * dqh2dkp - eg * dbgdkp) / bg;
41 const auto pmgpp = ag * exp(eg);
42

43 const auto g3 = (s / sqrt_six + p) / fc;
44 const auto g1 = (1. - qh1) * g3 * g3 + sqrt_three_two * s / fc;
45

46 const auto pg3pp = 1. / fc;
47 const auto pg3ps = pg3pp / sqrt_six;
48

49 const auto pg2pp = pmgpp / fc;
50 const auto pg2ps = m0 * pg3ps;
51

52 const auto pg1pp = (2. - 2. * qh1) * g3 * pg3pp;
53 const auto pg1ps = (2. - 2. * qh1) * g3 * pg3ps + sqrt_three_two / fc;
54 const auto pg1pkp = -dqh1dkp * g3 * g3;
55
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56 f = g1 * g1 + m0 * qh1 * qh1 * qh2 * g3 - qh1 * qh1 * qh2 * qh2;
57

58 pfpp = 2. * g1 * pg1pp + m0 * qh1 * qh1 * qh2 * pg3pp;
59 pfps = 2. * g1 * pg1ps + m0 * qh1 * qh1 * qh2 * pg3ps;
60 pfpkp = 2. * g1 * pg1pkp + 2. * qh1 * qh2 * (m0 * g3 * dqh1dkp - qh1 * dqh2dkp - qh2 *

dqh1dkp) + m0 * qh1 * qh1 * g3 * dqh2dkp;↪→

61

62 gp = 2. * g1 * pg1pp + qh1 * qh1 * pg2pp;
63 gs = 2. * g1 * pg1ps + qh1 * qh1 * pg2ps;
64

65 gg = sqrt(gs * gs + gp * gp / 3.);
66

67 pgppp = (4. - 4. * qh1) * (pg1pp * g3 + g1 * pg3pp) + qh1 * qh1 * ag * exp(eg) / bg / fc;
68 pgpps = (4. - 4. * qh1) * (pg1ps * g3 + g1 * pg3ps);
69 pgppkp = 4. * g3 * (pg1pkp - qh1 * pg1pkp - dqh1dkp * g1) + (2. * dqh1dkp * ag + qh1 *

(dagdkp + ag * pegpkp)) * qh1 * exp(eg);↪→

70

71 pgppp /= fc;
72 pgpps /= fc;
73 pgppkp /= fc;
74

75 pgspp = (4. - 4. * qh1) * (pg1pp * g3 + g1 * pg3pp) + 6. * pg1pp;
76 pgsps = (4. - 4. * qh1) * (pg1ps * g3 + g1 * pg3ps) + 6. * pg1ps;
77 pgspkp = 4. * g3 * (pg1pkp - qh1 * pg1pkp - dqh1dkp * g1) + 6. * pg1pkp + 2. * m0 * qh1 *

dqh1dkp;↪→

78

79 pgspp /= sqrt_six * fc;
80 pgsps /= sqrt_six * fc;
81 pgspkp /= sqrt_six * fc;
82

83 if(const auto rh = -p / fc - 1. / 3.; rh >= 0.) {
84 xh = (bh - ah) * exp(-rh / ch);
85 dxhdp = xh / ch / fc;
86 xh += ah;
87 }
88 else {
89 xh = eh * exp(rh / fh);
90 dxhdp = -xh / fh / fc;
91 xh += dh;
92 }
93 }

The converged data is then passed to the method to compute damage factors. It is similar to
the plasticity part.

1 int CDPM2::compute_damage(const double gamma, const double s, const double p, const double
kp, const double ac, podarray<double>& data) {↪→

2 const auto& gs = data(4);
3 const auto& gp = data(5);
4 const auto& gg = data(6);
5 const auto& pgsps = data(7);
6 const auto& pgspp = data(8);
7 const auto& pgspkp = data(9);
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8 const auto& pgpps = data(10);
9 const auto& pgppp = data(11);

10 const auto& pgppkp = data(12);
11

12 const auto& current_ee = current_history(7);
13 const auto& current_et = current_history(8);
14 const auto& current_ec = current_history(9);
15 const auto& current_kdt1 = current_history(12);
16 const auto& current_kdc1 = current_history(13);
17 const auto& current_kdt2 = current_history(14);
18 const auto& current_kdc2 = current_history(15);
19 auto& ee = trial_history(7);
20 auto& et = trial_history(8);
21 auto& ec = trial_history(9);
22 auto& kdt = trial_history(10);
23 auto& kdc = trial_history(11);
24 auto& kdt1 = trial_history(12);
25 auto& kdc1 = trial_history(13);
26 auto& kdt2 = trial_history(14);
27 auto& kdc2 = trial_history(15);
28 auto& omegat = trial_history(16);
29 auto& omegac = trial_history(17);
30

31 // ee
32 const auto ptapp = .5 * e0 * m0 / fc;
33 const auto ptaps = ptapp / sqrt_six;
34 const auto ptbps = sqrt_three_two * e0 / fc;
35 const auto term_a = ptaps * s + ptapp * p;
36 const auto term_b = ptbps * s;
37 const auto term_c = sqrt(term_a * term_a + term_b * term_b);
38 ee = term_a + term_c;
39 const auto incre_ee = ee - current_ee;
40 const auto peeps = (ptaps * ee + term_b * ptbps) / term_c;
41 const auto peepp = ptapp * ee / term_c;
42

43 // ep
44 const auto ep = gamma * gg;
45 const auto peppg = gg;
46 const auto pepps = gamma / gg * (gs * pgsps + gp / 3. * pgpps);
47 const auto peppp = gamma / gg * (gs * pgspp + gp / 3. * pgppp);
48 const auto peppkp = gamma / gg * (gs * pgspkp + gp / 3. * pgppkp);
49

50 // xs
51 auto xs = 1., pxsps = 0., pxspp = 0.;
52 if(p <= 0.) {
53 pxspp = (sqrt_six - as * sqrt_six) / s;
54 xs += pxspp * p;
55 pxsps = -pxspp * p / s;
56 }
57

58 // kdt
59 auto incre_kdt = 0., pkdtps = 0., pkdtpp = 0.;
60 if((et = current_et + incre_ee) > kdt) {
61 incre_kdt = et - kdt;
62 kdt = et;
63 pkdtps = peeps;
64 pkdtpp = peepp;
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65 }
66

67 // kdt1
68 auto pkdt1pg = 0., pkdt1ps = 0., pkdt1pp = 0., pkdt1pkp = 0.;
69 if(incre_kdt > 0. && kdt > e0) {
70 const auto incre_kdt1 = ep / xs;
71 kdt1 = current_kdt1 + incre_kdt1;
72 pkdt1pg = peppg / xs;
73 pkdt1ps = (pepps - incre_kdt1 * pxsps) / xs;
74 pkdt1pp = (peppp - incre_kdt1 * pxspp) / xs;
75 pkdt1pkp = peppkp / xs;
76 }
77

78 // kdt2
79 const auto incre_kdt2 = incre_kdt / xs;
80 kdt2 = current_kdt2 + incre_kdt2;
81 const auto pkdt2ps = (pkdtps - incre_kdt2 * pxsps) / xs;
82 const auto pkdt2pp = (pkdtpp - incre_kdt2 * pxspp) / xs;
83

84 // kdc
85 auto incre_kdc = 0., pkdcps = 0., pkdcpp = 0., pkdcpac = 0.;
86 if((ec = current_ec + ac * incre_ee) > kdc) {
87 incre_kdc = ec - kdc;
88 kdc = ec;
89 pkdcps = ac * peeps;
90 pkdcpp = ac * peepp;
91 pkdcpac = incre_ee;
92 }
93

94 // kdc1
95 auto pkdc1pg = 0., pkdc1ps = 0., pkdc1pp = 0., pkdc1pkp = 0., pkdc1pac = 0.;
96 if(incre_kdc > 0. && kdc > e0) {
97 auto qh2 = 1., dqh2dkp = 0.;
98 if(kp >= 1.) {
99 qh2 += hp * kp - hp;

100 dqh2dkp = hp;
101 }
102

103 const auto betac = sqrtdf * qh2 / s;
104 const auto pbetacpkp = sqrtdf / s * dqh2dkp;
105 const auto pbetacps = -betac / s;
106

107 pkdc1pac = ep * betac / xs;
108 const auto incre_kdc1 = pkdc1pac * ac;
109 kdc1 = current_kdc1 + incre_kdc1;
110 pkdc1pg = peppg * ac * betac / xs;
111 pkdc1ps = ac / xs * (pepps * betac + ep * pbetacps - ep * betac / xs * pxsps);
112 pkdc1pp = ac / xs * betac * (peppp - ep / xs * pxspp);
113 pkdc1pkp = ac / xs * (peppkp * betac + ep * pbetacpkp);
114 }
115

116 // kdc2
117 const auto incre_kdc2 = incre_kdc / xs;
118 kdc2 = current_kdc2 + incre_kdc2;
119 const auto pkdc2ps = (pkdcps - incre_kdc2 * pxsps) / xs;
120 const auto pkdc2pp = (pkdcpp - incre_kdc2 * pxspp) / xs;
121 const auto pkdc2pac = pkdcpac / xs;
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122

123 podarray<double> datad(3);
124

125 if(SUANPAN_SUCCESS != compute_damage_factor(kdt, kdt1, kdt2, eft, omegat, datad)) return
SUANPAN_FAIL;↪→

126 const auto& potpkdt = datad(0);
127 const auto& potpkdt1 = datad(1);
128 const auto& potpkdt2 = datad(2);
129

130 auto& potpg = data(0);
131 auto& potps = data(1);
132 auto& potpq = data(2);
133 auto& potpkp = data(3);
134

135 potpg = potpkdt1 * pkdt1pg;
136 potps = potpkdt * pkdtps + potpkdt1 * pkdt1ps + potpkdt2 * pkdt2ps;
137 potpq = potpkdt * pkdtpp + potpkdt1 * pkdt1pp + potpkdt2 * pkdt2pp;
138 potpkp = potpkdt1 * pkdt1pkp;
139

140 if(SUANPAN_SUCCESS != compute_damage_factor(kdc, kdc1, kdc2, efc, omegac, datad)) return
SUANPAN_FAIL;↪→

141 const auto& pocpkdc = datad(0);
142 const auto& pocpkdc1 = datad(1);
143 const auto& pocpkdc2 = datad(2);
144

145 auto& pocpg = data(4);
146 auto& pocps = data(5);
147 auto& pocpq = data(6);
148 auto& pocpkp = data(7);
149 auto& pocpac = data(8);
150

151 pocpg = pocpkdc1 * pkdc1pg;
152 pocps = pocpkdc * pkdcps + pocpkdc1 * pkdc1ps + pocpkdc2 * pkdc2ps;
153 pocpq = pocpkdc * pkdcpp + pocpkdc1 * pkdc1pp + pocpkdc2 * pkdc2pp;
154 pocpkp = pocpkdc1 * pkdc1pkp;
155 pocpac = pocpkdc * pkdcpac + pocpkdc1 * pkdc1pac + pocpkdc2 * pkdc2pac;
156

157 return SUANPAN_SUCCESS;
158 }

Finally, the damage part involves a local iteration procedure.

1 int CDPM2::compute_damage_factor(const double kd, const double kd1, const double kd2, const
double ef, double& omega, podarray<double>& data) const {↪→

2 auto& popkd = data(0);
3 auto& popkd1 = data(1);
4 auto& popkd2 = data(2);
5

6 if(kd < e0) {
7 popkd = 0.;
8 popkd1 = 0.;
9 popkd2 = 0.;

10 return SUANPAN_SUCCESS;
11 }
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12

13 auto counter = 0u;
14 while(true) {
15 if(max_iteration == ++counter) return SUANPAN_FAIL;
16

17 const auto term_a = ft * exp(-(kd1 + omega * kd2) / ef);
18 const auto term_b = (1. - omega) * elastic_modulus;
19 const auto jacobian = elastic_modulus * kd - kd2 / ef * term_a;
20 const auto incre = (term_a - term_b * kd) / jacobian;
21

22 const auto error = fabs(incre);
23 suanpan_debug("Local damage iteration error: {:.5E}.\n", error);
24

25 if(error <= tolerance) {
26 popkd = term_b / jacobian;
27 popkd1 = term_a / ef / jacobian;
28 popkd2 = popkd1 * omega;
29 return SUANPAN_SUCCESS;
30 }
31

32 omega -= incre;
33 }
34 }
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10.1. Mooney–Rivlin Model

10.1.1. Theory

10.1.2. Formulation

10.1.3. Implementation

1 // takes green strain as input
2 int MooneyRivlin::update_trial_status(const vec& t_strain) {
3 const vec G = weight % (trial_strain = t_strain) + tensor::unit_tensor2;
4

5 const auto &C1 = G(0), &C2 = G(1), &C3 = G(2), &C4 = G(3), &C5 = G(4), &C6 = G(5);
6

7 const auto I1 = C1 + C2 + C3;
8 const auto I2 = C1 * C2 + C1 * C3 + C2 * C3 - C4 * C4 - C5 * C5 - C6 * C6;
9 const auto I3 = std::max(datum::eps, C1 * C2 * C3 + 2. * C4 * C5 * C6 - C1 * C5 * C5 - C2

* C6 * C6 - C3 * C4 * C4);↪→

10

11 const auto J3M1 = sqrt(I3) - 1.;
12

13 const vec I2E{C2 + C3, C3 + C1, C1 + C2, -C4, -C5, -C6};
14 const vec I3E{C2 * C3 - C5 * C5, C3 * C1 - C6 * C6, C1 * C2 - C4 * C4, C5 * C6 - C3 * C4,

C6 * C4 - C1 * C5, C4 * C5 - C2 * C6};↪→

15

16 auto W1 = pow(I3, -one_three);
17 auto W2 = two_three * I1 * pow(I3, -four_three);
18 auto W3 = 2. * W1 * W1;
19 auto W4 = four_three * I2 * pow(I3, -five_three);
20 auto W5 = pow(I3, -.5);
21

22 const vec J1E = W1 * I1E - W2 * I3E;
23 const vec J2E = W3 * I2E - W4 * I3E;
24 const vec J3E = W5 * I3E;
25

26 trial_stress = A10 * J1E + A01 * J2E + K * J3M1 * J3E;
27

28 mat I3EE(6, 6, fill::zeros);
29 I3EE(1, 2) = I3EE(2, 1) = -2. * (I3EE(4, 4) = -2. * C1);
30 I3EE(0, 2) = I3EE(2, 0) = -2. * (I3EE(5, 5) = -2. * C2);
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31 I3EE(0, 1) = I3EE(1, 0) = -2. * (I3EE(3, 3) = -2. * C3);
32 I3EE(2, 3) = I3EE(3, 2) = -2. * (I3EE(4, 5) = I3EE(5, 4) = 2. * C4);
33 I3EE(0, 4) = I3EE(4, 0) = -2. * (I3EE(3, 5) = I3EE(5, 3) = 2. * C5);
34 I3EE(1, 5) = I3EE(5, 1) = -2. * (I3EE(3, 4) = I3EE(4, 3) = 2. * C6);
35

36 const auto W8 = W5;
37 const auto W6 = .5 * W3;
38 W1 = two_three * W8;
39 W2 *= four_three;
40 W3 = .375 * W2;
41 W5 = two_three * W4;
42 W4 = four_three * W8;
43 const auto W7 = .75 * W5;
44 const auto W9 = .5 * W8;
45

46 const mat TA = A10 * W1 * J1E + A01 * W4 * J2E;
47 const mat TB = TA * J3E.t();
48

49 trial_stiffness = (A10 * W2 + A01 * W5 + K - K * J3M1 * W8) * J3E * J3E.t() + (K * J3M1 *
W9 - A10 * W3 - A01 * W7) * I3EE + A01 * W6 * I2EE - TB - TB.t();↪→

50

51 return SUANPAN_SUCCESS;
52 }

10.2. Blatz–Ko Model

10.2.1. Theory

10.2.2. Formulation

10.2.3. Implementation

1 // takes green strain as input
2 int BlatzKo::update_trial_status(const vec& t_strain) {
3 trial_strain = t_strain;
4

5 vec G = weight % t_strain + tensor::unit_tensor2;
6

7 vec H(6);
8 H(0) = G(1) * G(2) - G(4) * G(4);
9 H(1) = G(2) * G(0) - G(5) * G(5);

10 H(2) = G(0) * G(1) - G(3) * G(3);
11 H(3) = G(4) * G(5) - G(2) * G(3);
12 H(4) = G(5) * G(3) - G(0) * G(4);
13 H(5) = G(3) * G(4) - G(1) * G(5);
14
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15 const auto I3 = G(0) * H(0) + G(3) * H(3) + G(5) * H(5);
16

17 auto factor_a = pow(std::max(datum::eps, I3), -half_beta_two);
18

19 trial_stress = shear_modulus * (tensor::unit_tensor2 - factor_a * H);
20

21 G *= -(factor_a *= 2. * shear_modulus);
22

23 trial_stiffness.zeros(6, 6);
24

25 trial_stiffness(4, 4) = -.5 * (trial_stiffness(1, 2) = G(0));
26 trial_stiffness(5, 5) = -.5 * (trial_stiffness(0, 2) = G(1));
27 trial_stiffness(3, 3) = -.5 * (trial_stiffness(0, 1) = G(2));
28 trial_stiffness(4, 5) = -.5 * (trial_stiffness(2, 3) = -G(3));
29 trial_stiffness(3, 5) = -.5 * (trial_stiffness(0, 4) = -G(4));
30 trial_stiffness(3, 4) = -.5 * (trial_stiffness(1, 5) = -G(5));
31

32 factor_a *= half_beta_two / I3;
33

34 for(auto I = 0; I < 6; ++I) {
35 const auto factor_b = factor_a * H(I);
36 trial_stiffness(I, I) += factor_b * H(I);
37 for(auto J = I + 1; J < 6; ++J) trial_stiffness(J, I) = trial_stiffness(I, J) +=

factor_b * H(J);↪→

38 }
39

40 return SUANPAN_SUCCESS;
41 }

10.3. Yeoh Model

10.3.1. Theory

10.3.2. Formulation

10.3.3. Implementation

1 // takes green strain as input
2 int Yeoh::update_trial_status(const vec& t_strain) {
3 const vec G = weight % (trial_strain = t_strain) + tensor::unit_tensor2;
4

5 const auto &C1 = G(0), &C2 = G(1), &C3 = G(2), &C4 = G(3), &C5 = G(4), &C6 = G(5);
6

7 const auto I1 = C1 + C2 + C3;
8 const auto I3 = std::max(datum::eps, C1 * C2 * C3 + 2. * C4 * C5 * C6 - C1 * C5 * C5 - C2

* C6 * C6 - C3 * C4 * C4);↪→
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9

10 const vec I3E = 2. * vec{C2 * C3 - C5 * C5, C3 * C1 - C6 * C6, C1 * C2 - C4 * C4, C5 * C6
- C3 * C4, C6 * C4 - C1 * C5, C4 * C5 - C2 * C6};↪→

11

12 const auto W1 = pow(I3, -one_three);
13 const auto W2 = one_three * I1 * pow(I3, -four_three);
14 const auto W5 = .5 * pow(I3, -.5);
15

16 const vec J1E = W1 * I1E - W2 * I3E;
17 const vec J3E = W5 * I3E;
18

19 const auto D = compute_derivative(I1 * W1 - 3., sqrt(I3) - 1.);
20

21 const auto &DWDJ1 = D(0), &DWDJ3 = D(1), &DDWDDJ1 = D(2), &DDWDDJ3 = D(3);
22

23 trial_stress = DWDJ1 * J1E + DWDJ3 * J3E;
24

25 mat I3EE(6, 6, fill::zeros);
26 I3EE(1, 2) = I3EE(2, 1) = -2. * (I3EE(4, 4) = -2. * C1);
27 I3EE(0, 2) = I3EE(2, 0) = -2. * (I3EE(5, 5) = -2. * C2);
28 I3EE(0, 1) = I3EE(1, 0) = -2. * (I3EE(3, 3) = -2. * C3);
29 I3EE(2, 3) = I3EE(3, 2) = -2. * (I3EE(4, 5) = I3EE(5, 4) = 2. * C4);
30 I3EE(0, 4) = I3EE(4, 0) = -2. * (I3EE(3, 5) = I3EE(5, 3) = 2. * C5);
31 I3EE(1, 5) = I3EE(5, 1) = -2. * (I3EE(3, 4) = I3EE(4, 3) = 2. * C6);
32

33 const auto P1 = 2. * four_three * W2 * DWDJ1;
34 const auto P2 = four_three * W5 * DWDJ1;
35 const auto P3 = W2 * DWDJ1;
36 const auto P4 = W5 * DWDJ3;
37

38 trial_stiffness = (P1 + DDWDDJ3 - 2. * P4) * J3E * J3E.t() + (P4 - P3) * I3EE + (DDWDDJ1
* J1E - P2 * J3E) * J1E.t() - P2 * J1E * J3E.t();↪→

39

40 return SUANPAN_SUCCESS;
41 }
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11. Geomaterial

In geotechnical engineering, compression positive convention is used in existing literatures.
This brings some convenience to geotechnical engineering specific applications but conflicts
against the common convention adopted in continuum mechanics (tension positive).

To be consistent with other models, in this chapter the continuum mechanics convention is
adopted. Thus the formulations presented here may differ from what readers can found in
other literatures.

11.1. Drucker–Prager Model

The Drucker–Prager model is a simple model that resembles the J2 model and can be used in
simple preliminary stability/capacity analysis.

11.1.1. Theory

Yield Function

f =
√
J2 + ηp− ξc, (11.1)

where J2 = 1
2s : s is the J2 invariant of the deviatoric stress tensor s, p = 1

3trace (σ) is the
hydrostatic stress, η and ξ are two model parameters which can be adjusted to match different
shapes, c is the cohesion.

Flow Rule

The plastic potential possesses a form that resembles the yield function.

g =
√
J2 + η̄p. (11.2)
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11. Geomaterial

When η̄ = η, an associative flow rule is implied. The corresponding rate form of plastic strain
is then

ε̇p = γ
∂g

∂σ
= γ

(√
2

2 n + η̄

31
)
. (11.3)

Hardening Law

The accumulated equivalent plastic strain α can be defined as

α̇ = γ. (11.4)

Then the cohesion can be defined as a function of α.

c = c (α) . (11.5)

More complex laws to allow η and ξ to evolve with the development of plasticity are also pos-
sible. Here for simplicity, it is assumed that η and ξ are two constants.

11.1.2. Formulation

As the cohesion c is not explicitly defined in this model, it can be customised to produce
various hardening responses.

The only local variable is the plasticity consistency parameter γ.

Elastic Loading/Unloading

The trial state can be computed as

σtrial = D : (εn+1 − εp
n) . (11.6)

The deviatoric stress and hydrostatic stress can be computed accordingly,

strial = dev
(
σtrial

)
, (11.7)

ptrial = 1
3trace

(
σtrial

)
. (11.8)
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11.1.3. Implementation

1 int NonlinearDruckerPrager::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_stress = current_stress + (trial_stiffness = initial_stiffness) * incre_strain;
7

8 trial_history = current_history;
9 auto& plastic_strain = trial_history(0);

10

11 const auto dev_stress = tensor::dev(trial_stress);
12 const auto hydro_stress = tensor::mean3(trial_stress);
13 const auto sqrt_j2 = sqrt(std::max(datum::eps, tensor::stress::invariant2(dev_stress)));
14

15 const auto yield_const = sqrt_j2 + eta_yield * hydro_stress;
16

17 if(yield_const <= xi * compute_c(plastic_strain)) return SUANPAN_SUCCESS;
18

19 auto gamma = 0.;
20 double denominator;
21

22 auto counter = 0u;
23 auto ref_error = 1.;
24 while(true) {
25 if(max_iteration == ++counter) {
26 suanpan_error("Cannot converge within {} iterations.\n", max_iteration);
27 return SUANPAN_FAIL;
28 }
29

30 const auto residual = yield_const - factor_a * gamma - xi *
compute_c(plastic_strain);↪→

31 const auto incre_gamma = residual / (denominator = factor_a + xi * xi *
compute_dc(plastic_strain));↪→

32 const auto error = fabs(incre_gamma);
33 if(1u == counter) ref_error = error;
34 suanpan_debug("Local iteration error: {:.5E}.\n", error);
35 if(error < tolerance * ref_error || (fabs(residual) < tolerance && counter > 5u))

break;↪→

36 plastic_strain = current_history(0) + xi * (gamma += incre_gamma);
37 }
38

39 if(sqrt_j2 >= shear * gamma) {
40 const auto norm_s = tensor::stress::norm(dev_stress);
41

42 const auto t_factor = shear / sqrt_j2 * gamma;
43

44 trial_stress -= t_factor * dev_stress + bulk * eta_flow * gamma *
tensor::unit_tensor2;↪→

45

46 trial_stiffness += double_shear * (t_factor - shear / denominator) / norm_s / norm_s
* dev_stress * dev_stress.t() - double_shear * t_factor * unit_dev_tensor -
factor_d / denominator * unit_x_unit;

↪→

↪→

47
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48 const mat t_mat = eta_yield * factor_c / denominator / norm_s * dev_stress *
tensor::unit_tensor2.t();↪→

49

50 associated ? trial_stiffness -= t_mat + t_mat.t() : trial_stiffness -= t_mat +
eta_flow / eta_yield * t_mat.t();↪→

51 }
52 else {
53 // apex return
54 gamma = 0.; // volumetric strain reuse variable
55 plastic_strain = current_history(0);
56

57 counter = 0u;
58 while(true) {
59 if(max_iteration == ++counter) {
60 suanpan_error("Cannot converge within {} iterations.\n", max_iteration);
61 return SUANPAN_FAIL;
62 }
63

64 const auto residual = compute_c(plastic_strain) * xi / eta_flow - hydro_stress +
bulk * gamma;↪→

65 const auto incre_gamma = residual / (denominator = factor_b *
compute_dc(plastic_strain) + bulk);↪→

66 const auto error = fabs(incre_gamma);
67 if(1u == counter) ref_error = error;
68 suanpan_debug("Local iteration error: {:.5E}.\n", error);
69 if(error < tolerance * ref_error || (fabs(residual) < tolerance && counter > 5u))

break;↪→

70 plastic_strain = current_history(0) + xi / eta_yield * (gamma -= incre_gamma);
71 }
72

73 trial_stress = (hydro_stress - bulk * gamma) * tensor::unit_tensor2;
74

75 trial_stiffness = (bulk - bulk * bulk / denominator) * unit_x_unit;
76 }
77

78 return SUANPAN_SUCCESS;
79 }

11.2. Modified Cam Clay Model

This model is identical to the one documented in [13, see § 10.1] apart from the definition of
hardening variable. In this section, we present an equivalent formulation.
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11.2.1. Theory

Basics

The model adopts a two-scalar formulation that depends on hydrostatic stress p and von Mises
equivalent stress q, which are defined as

p = trace (σ)
3 = I1

3 , q =
√

3J2 =
√

3
2s : s =

√
3
2∥s∥. (11.9)

They are effectively two invariants I1 and J2.

Yield Function

The yield function is defined as

f = p2
e

b2 + q2

M2 − a
2, (11.10)

where pt ⩾ 0 is the tensile yield strength, b = 1 if pe ⩾ 0 and b = β if pe < 0 with pe =
p − pt + a denotes relative stress to the centre of ellipse, β is a constant that controls the
shape of negative-wards half of yielding ellipse, M is the ratio between two radii of yielding
ellipse.

The above yield function essentially possesses the form of an ellipse, for example,

x2

r2
x

+ y2

r2
y

= 1.

The centre of the ellipse is shifted to pt − a so that the majority of the ellipse is in the
compression region. The radius b alters its value depending on the sign of pe. The yield
surface is effectively two half ellipses glued together.

Flow Rule

The associative plasticity is assumed so that

ε̇p = γ
∂f

∂σ
= γ

(2pe

3b2 1 + 3
M2s

)
. (11.11)

The following relationship is used,

dq2

dσ = 3
2

d (s : s)
dσ = 3

2

( ds
dσ : s + s : ds

dσ

)
= 3s,
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since ds
dσ : s = Idev : s = s. Accordingly,

ε̇p
v = γ

2pe

b2 , ε̇p
d = γ

3
M2s, (11.12)

where ε̇p
v = trace (ε̇p) is the increment of the volumetric strain scalar and ε̇p

d is the increment
of the deviatoric strain tensor.

Hardening Rule

The hardening variable α is defined as the volumetric strain εp
v so that

α = εp
v. (11.13)

The corresponding incremental form is then

α = αn + γ
2pe

b2 . (11.14)

The hardening rule is then defined as a function of α,

a = a (α) ⩾ 0. (11.15)

Note here we simple take α = εp
v instead of α = −εp

v in the original literature [13].

11.2.2. Formulation

Local Residual

By using the elastic relationship,

s = 2Gεe
d = 2G

(
εtrial

d −∆εp
d

)
= strial − γ 6G

M2s, (11.16)

one can rearrange and obtain the following,

s = M2

M2 + 6G∆γ s
trial, q = M2

M2 + 6G∆γ q
trial. (11.17)

The governing residual equations for independent variables x =
[
γ α

]T
can be expressed
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as

R =


p2

e

b2 + q2

M2 − a
2 = 0,

α− αn − γ
2
b2 pe = 0.

(11.18)

where pe = ptrial −Kα+Kαn − pt + a since

p = Kεe
v = K

(
εtrial

v −∆εp
v

)
= ptrial −K (α− αn) , (11.19)

and q = M2

M2 + 6G∆γ q
trial.

Local Iteration

The Jacobian can be formed accordingly.

J = ∂R

∂x
=


−12GM2qtrial,2

(M2 + 6Gγ)3
2
b2 pe(a′ −K)− 2aa′

− 2
b2 pe 1− γ 2

b2 (a′ −K)

 . (11.20)

Tangent Stiffness

At local iteration, εtrial (or εn+1, or just ε for brevity) is fixed and R is iterated out. Noting
that in the global iteration, εtrial is also a variable that changes. If local iteration is converged,
then R = 0, so

dR
dε = ∂R

∂ε
+ ∂R

∂x

dx
dε = 0, (11.21)

consequently,

dx
dε =


dγ
dε
dα
dε

 = −
(
∂R

∂x

)−1 ∂R

∂ε
= −J−1∂R

∂ε
. (11.22)

Taking derivatives about ε gives

∂R

∂ε
=


2peK

b2 1 + 6G
M2 + 6Gγ s

−2γK
b2 1

 . (11.23)
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The stress can be expressed as

σ = s + p1 = M2

M2 + 6G∆γ s
trial +

(
ptrial −K (α− αn)

)
1. (11.24)

Direct differentiation gives

dσ
dε = M2

M2 + 6Gγ
dstrial

dε + strial ⊗
d M2

M2 + 6Gγ
dε + 1⊗

d
(
ptrial −K (α− αn)

)
dε

= 2GM2

M2 + 6Gγ I
dev +K1⊗ 1−K1⊗ dα

dε −
6GM2

(M2 + 6Gγ)2s
trial ⊗ dγ

dε ,

= D − 12G2γ

M2 + 6Gγ I
dev −K1⊗ dα

dε −
6G

M2 + 6Gγs⊗
dγ
dε .

(11.25)

In which dα
dε and dγ

dε are obtained from Eq. (11.22). The above derivation also takes advantage
of the expression

D = 2GIdev +K1⊗ 1. (11.26)

11.2.3. Implementation

1 int NonlinearCamClay::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_stress = current_stress + (trial_stiffness = initial_stiffness) * incre_strain;
7

8 trial_history = current_history;
9 auto& alpha = trial_history(0);

10 const auto& current_alpha = current_history(0);
11

12 auto trial_s = tensor::dev(trial_stress);
13 const auto trial_q = sqrt_three_two * tensor::stress::norm(trial_s);
14 const auto p = tensor::mean3(trial_stress);
15

16 auto gamma = 0.;
17

18 vec residual(2), incre;
19 mat jacobian(2, 2);
20

21 auto counter = 0u;
22 auto rel_error = 1.;
23 while(true) {
24 if(max_iteration == ++counter) {
25 suanpan_error("Cannot converge within {} iterations.\n", max_iteration);
26 return SUANPAN_FAIL;
27 }
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28

29 const auto a = compute_a(alpha);
30 const auto da = compute_da(alpha);
31 const auto incre_alpha = alpha - current_alpha;
32 const auto trial_p = p - bulk * incre_alpha;
33 const auto rel_p = trial_p - pt + a;
34 const auto square_b = rel_p >= 0. ? 1. : square_beta;
35 const auto denom = square_m + six_shear * gamma;
36 const auto square_qm = pow(m * trial_q / denom, 2.);
37

38 residual(0) = rel_p * rel_p / square_b + square_qm - a * a;
39

40 if(1u == counter && residual(0) < 0.) return SUANPAN_SUCCESS;
41

42 residual(1) = incre_alpha - 2. * gamma / square_b * rel_p;
43

44 jacobian(0, 0) = -2. * six_shear / denom * square_qm;
45 jacobian(1, 0) = -2. * rel_p / square_b;
46 jacobian(0, 1) = jacobian(1, 0) * (bulk - da) - 2. * a * da;
47 jacobian(1, 1) = 1. - 2. * gamma / square_b * (da - bulk);
48

49 if(!solve(incre, jacobian, residual, solve_opts::equilibrate)) return SUANPAN_FAIL;
50

51 const auto error = inf_norm(incre);
52 if(1u == counter) rel_error = error;
53 suanpan_debug("Local iteration error: {:.5E}.\n", error);
54 if(error < tolerance * rel_error || (inf_norm(residual) < tolerance && counter > 5u))

{↪→

55 mat left(6, 2);
56

57 rel_error = 2. * bulk / square_b; // reuse variable
58 left.col(0) = rel_error * rel_p * tensor::unit_tensor2 + six_shear / denom *

(trial_s *= square_m / denom);↪→

59 left.col(1) = -rel_error * gamma * tensor::unit_tensor2;
60

61 trial_stress = trial_s + trial_p * tensor::unit_tensor2;
62

63 rel_error = six_shear / denom; // reuse variable
64 trial_stiffness -= 2. * shear * gamma * rel_error * unit_dev_tensor -

join_rows(rel_error * trial_s, bulk * tensor::unit_tensor2) * solve(jacobian,
left.t());

↪→

↪→

65

66 return SUANPAN_SUCCESS;
67 }
68

69 gamma -= incre(0);
70 alpha -= incre(1);
71 }
72 }
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11.3. Simple Sand Model

This sand model is a hybrid of several existing models with significant simplifications. Readers
should not expect this model to give accurate results. Instead, this model only captures the
characteristics of sand material. It is presented to craft a basic framework from which more
complex sand models can be developed.

Compared to other models for sand, this model is more like a preliminary model just like the bi-
linear hardening von Mises model compared to other models for metals.

A distinctive feature of sand models is that, often a non-associative plastic flow is used and the
hardening law is significantly more complex, involving heavy tensor operations, than aforemen-
tioned models. Often the hardening laws are tensor–valued functions, and cannot be simplified
to scalar–valued functions. The numerical complexity is higher.

11.3.1. Theory

Elastic Constitutive Relation

Often for sand, the elastic response is nonlinear (to be specific, hyper-elastic). The shear
modulus and bulk modulus often are functions of hydrostatic pressure. In this model, for
simplicity, an linear elastic relation is assumed. Readers shall be warned this does no reflect
the real behaviour of sand.

The decomposition of total strain into elastic/plastic strain components is still valid. Thus the
trial elastic state can be computed via the same expression.

σtrial = D : (εn+1 − εp
n) = σn + D : (εn+1 − εn) . (11.27)

Furthermore,

σtrial = strial + ptrial1. (11.28)

Yield Function

A wedge–like function is chosen to be the yield surface.

f = ∥s + pα∥+mp = ∥η∥+mp,

where s = dev (σ) is the deviatoric stress, p = 1
3trace (σ) is the hydrostatic stress, α is the so

called back stress and m characterises the size of the wedge. For simplicity, m is assumed to
be a constant in this model.
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Flow Rule

A non-associated plastic flow is used, the corresponding flow rule is defined as follows.

ε̇p = γ

(
n + 1

3A
(
αd −m−α : n

)
1

)
,

where D = A
(
αd −m−α : n

)
is the dilatancy parameter, n = η

∥η∥
is the unit directional

tensor, A is a model constant, it can also be defined as a function of current state. Note since
the sign convention is changed, a positive A leads to dilatant behaviour.

Since the linear elasticity is applied, the following expressions hold.

s = strial − 2Gγn, p = ptrial −KAγ
(
αd −m−α : n

)
.

Hardening Law

The evolution rate of the back stress α is defined in terms of a proper distance measure from
the bounding surface, Here, such a distance measure is chosen to be h

((
αb −m

)
n−α

)
,

where h is a model constant. Thus,

α̇ = γh
((
αb −m

)
n−α

)
.

Essentially, this is similar to the Armstrong–Frederick type kinematic hardening rule. It shall
be noted that n is a deviatoric stress, and α stays deviatoric but may not be coaxial with n.
Thus in tensor notion,

n = I : n = Idev : n, α = I : α = Idev : α. (11.29)

Critical State

The state parameter is defined to be

ψ = v0
(
1 + εv,trial

)
− vc + λc ln

(
p

pc

)
,

where v0 is the initial specific volume, vc is the corresponding specific volume on the critical line
at pc and λc is absolute value of the slope of the critical line in v–ln(−p) space.

The Lode angle dependence is not considered for simple derivations of the corresponding terms.
Hence both the dilatancy surface and bounding surface will be circular cones in the principal
stress space.
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The dilatancy surface is defined as

αd = αc exp
(
ndψ

)
.

The corresponding derivatives are

∂αd

∂εtrial = αdndv01
T,

∂αd

∂p
= αdndλc

p
.

The bounding surface is defined as

αb = αc exp
(
−nbψ

)
.

The corresponding derivatives are

∂αb

∂εtrial = −αbnbv01
T,

∂αb

∂p
= −αbnbλc

p
.

The symbol 1 denotes the unit second order tensor. In explicit compressed matrix representa-
tion, it is 1 =

[
1 1 1 0 0 0

]T
.

11.3.2. Formulation

Some tensorial derivatives are presented first. They will be used in both formulation and imple-
mentation. According to Eq. (2.41), the following expressions can be derived.

∂∥η∥
∂

= n : ∂η
∂
,

∂n

∂
= 1
∥η∥

(I− n⊗ n) : ∂η
∂
.

Hence, in compressed matrix representation with the scaling vector c =
[
1 1 1 2 2 2

]T
,

∂∥η∥
∂p

= nTdiag (c)α, ∂n

∂p
= 1
∥η∥

(
α− nnTdiag (c)α

)
,

∂∥η∥
∂s

= n ◦ c, ∂n

∂s
= 1
∥η∥

(
I − nnTdiag (c)

)
,

∂∥η∥
∂α

= p n ◦ c, ∂n

∂α
= p

∥η∥

(
I − nnTdiag (c)

)
.

The governing equations of this model are
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Constitutive Law σ = D : (ε− εp)
Yield Function f = ∥s + pα∥+mp = ∥η∥+mp

Flow Rule ε̇p = γ

(
n + 1

3A
(
αd −m−α : n

)
1

)
Hardening Law α̇ = γh

((
αb −m

)
n−α

)
Critical State ψ = v0

(
1 + εv,trial

)
− vc + λc ln

(
p

pc

)
αd = αc exp

(
ndψ

)
αb = αc exp

(
−nbψ

)

Elastic Loading/Unloading

The trial yield function can be computed from trial stress as

f trial =
∥∥∥strial + ptrialα

∥∥∥+mptrial =
∥∥∥ηtrial

∥∥∥+mptrial. (11.30)

Plastic Evolution

In summary, there are four residual equations.

R =



∥ηn+1∥+mpn+1,

pn+1 − ptrial +KAγ
(
αd

n+1 −m−αn+1 : nn+1
)
,

sn+1 − strial + 2Gγnn+1,

αn + γh
(
αb

n+1 −m
)
nn+1 − (γh+ 1)αn+1.

(11.31)

To avoid complex computation of derivatives, the above four result equations are not further
combined. By defined x =

[
γ pn+1 sn+1 αn+1

]T
, the local Jacobian can be derived and

expressed in the compressed matrix form. It shall be noted for simplicity the subscript (·)n+1
is dropped.

∂R

∂x
=
[
∂R

∂γ

∂R

∂p

∂R

∂s

∂R

∂α

]
, (11.32)
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with

∂R

∂γ
=



0

KA
(
αd −m−α : n

)
2Gn

h
(
αb −m

)
n− hα


, (11.33)

∂R

∂p
=



α : n +m

1 +KAγ

(
αdndλc

p
− α : α− (α : n)2

∥η∥

)
2Gγ
∥η∥

(α− (α : n)n)

γh
(
αb

n+1 −m
)

∥η∥
α−

γhαbnbλc

p
+
γh
(
αb

n+1 −m
)

∥η∥
(α : n)

n


, (11.34)

∂R

∂s
=



nT ◦ cT

KAγ

∥η∥
((α : n)n−α)T ◦ cT

I + 2Gγ
∥η∥

(
I − nnTdiag (c)

)
γh
(
αb

n+1 −m
)

∥η∥

(
I − nnTdiag (c)

)


, (11.35)

∂R

∂α
=



p nT ◦ cT

KAγ

((
1 + p

∥η∥
(α : n)

)
n− p

∥η∥
α

)T
◦ cT

2Gγ p

∥η∥

(
I − nnTdiag (c)

)
γh
(
αb

n+1 −m
)
p

∥η∥

(
I − nnTdiag (c)

)
− (γh+ 1) I


. (11.36)

For simplicity, the double contraction is not explicitly expressed, one shall always use ATdiag (c)B
(in compressed matrix representation) for A : B. The Jacobian has a size of 1 + 1 + 6 + 6 =
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14.

Consistent Tangent Stiffness

The consistent tangent stiffness can be derived from the decomposition

σn+1 = sn+1 + pn+11. (11.37)

From which,

∂σn+1
∂εn+1

= ∂sn+1
∂εn+1

+ 1⊗ ∂pn+1
∂εn+1

. (11.38)

Since s and p are local independent variables, from local residual,

∂R

∂εn+1
+ ∂R

∂x

∂x

∂εn+1
= 0, (11.39)

then

∂x

∂εn+1
=



∂γ

∂εn+1

∂pn+1
∂εn+1

∂sn+1
∂εn+1

∂αn+1
∂εn+1


= −

(
∂R

∂x

)−1 ∂R

∂εn+1
. (11.40)

From the above equation, ∂sn+1
∂εn+1

and ∂pn+1
∂εn+1

can be extracted. The term ∂R

∂εn+1
can be

computed as

∂R

∂εn+1
=



0(
KAγαdndv0 −K

)
1T

−2GIdev

−γhαbnbv01
T


(11.41)

11.3.3. Implementation

The implementation of this simple sand model is presented in Algorithm 10. Please note since
the local iteration uses s and p as independent variables, the plastic strain history does not need
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to be explicitly stored. It can always be recovered via εp = ε−D−1 : σ.

Algorithm 10 state determination of simple sand model
Parameter: K, G, A, m, h, nd, nb, αc, v0, vc, λc, pc

Input: εn+1, εn, σn, αn

Output: Dn+1, σn+1, αn+1
σtrial = σn + D : (εn+1 − εn)
strial = dev

(
σtrial

)
ptrial = 1

3trace
(
σtrial

)
ηtrial = strial + ptrialαn

compute f trial ▷ Eq. (11.30)
if f trial ⩾ 0 then

γ = 0
pn+1 = ptrial

sn+1 = strial

αn+1 = αtrial

while true do
n = ηn+1

∥ηn+1∥

compute R and ∂R

∂x
▷ Eq. (11.31) and Eq. (11.32)

∆x =
(
∂R

∂x

)−1
R

if ∥∆x∥ < tolerance then
break

end if
update γ, pn+1, sn+1 and αn+1 using the increment ∆x

end while ▷ Once this while exists, pn+1, sn+1 and αn+1 are all new states.
σn+1 = sn+1 + pn+11
compute Dn+1 ▷ Eq. (11.38)

else
σn+1 = σtrial

αp
n+1 = αp

n

Dn+1 = D
end if

It can be seen that with such a framework, the state determination can be kept quite con-
cise.

136



11.4. Dafalias–Manzari Sand Model

11.4. Dafalias–Manzari Sand Model

11.4.1. Theory

Hyperelasticity

The hyperelastic response is defined as

G = G0
(2.97− e)2

1 + e

√
ppat, K = 2

3
1 + ν

1− 2νG. (11.42)

The corresponding derivatives are

∂G

∂e
= G0

√
ppat

e2 + 2e− 14.7609
(1 + e)2 ,

∂G

∂p
= G0

(2.97− e)2

1 + e

1
2

√
pat

p
. (11.43)

The void ratio can be associated to strain so that

e = e0 + (1 + e0) trace (εn+1) . (11.44)

The strain increment can be decomposed into elastic and plastic parts.

εn+1 = εn + ε̇ = εn + ε̇e + ε̇p. (11.45)

As such, the stress increment can be expressed accordingly,

σn+1 = σn + σ̇ = σn + 2G
(
ε̇d − ˙εd,p

)
+K (ε̇v − ˙εv,p)1. (11.46)

We do not use trial state any more since in this model the elastic part is not linear.

In derivatoric and spherical components,

σn+1 = sn+1 + pn+11, (11.47)

pn+1 = pn +K (ε̇v − ˙εv,p) , (11.48)

sn+1 = sn + 2G
(
ε̇d − ˙εd,p

)
, (11.49)

with

ε̇ = ε̇d + 1
3 ε̇

v1, (11.50)

where s = dev (σ) is the deviatoric stress, p = 1
3trace (σ) is the hydrostatic stress.
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Critical State

The critical state parameter is chosen as

ψ = e− e0 + λc

(
p

pat

)ξ

. (11.51)

The derivatives are

∂ψ

∂e
= 1, ∂ψ

∂p
= λcξ

(
p

pat

)ξ−1 1
pat

. (11.52)

The dilatancy surface is defined as

αd = αc exp
(
ndψ

)
. (11.53)

The bounding surface is defined as

αb = αc exp
(
−nbψ

)
. (11.54)

The corresponding derivatives are

∂αd

∂ψ
= ndαd,

∂αb

∂ψ
= −nbαb. (11.55)

Yield Function

A wedge-like function is chosen to be the yield surface.

F = ∥s + pα∥+mp = ∥η∥+mp, (11.56)

where α is the so called back stress and m characterises the size of the wedge. For simplicity,
m is assumed to be a constant in this model.

By denoting η = s + pα, the directional unit tensor is defined as

n = η

∥η∥
. (11.57)
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Flow Rule

A non-associated plastic flow is used, the corresponding flow rule is defined as follows.

ε̇p = γ

(
n + 1

3D1

)
, (11.58)

where D is the dilatancy parameter.

D = Ad

(
αd −m−α : n

)
= A0 (1 + ⟨z : n⟩)

(
αd −m−α : n

)
. (11.59)

For z : n ⩾ 0,

∂D

∂p
= A0

(
αd −m−α : n

)
(z : np) +A0 (1 + z : n)

(
∂αd

∂p
−α : np

)
, (11.60)

∂D

∂s
= A0

(
αd −m−α : n

)
(z : ns)−A0 (1 + z : n) (α : ns) , (11.61)

∂D

∂α
= A0

(
αd −m−α : n

)
(z : nα)−A0 (1 + z : n) (α : nα + n : I) , (11.62)

∂D

∂z
= A0

(
αd −m−α : n

)
(n : I) . (11.63)

For z : n < 0,

∂D

∂p
= A0

(
∂αd

∂p
−α : np

)
, (11.64)

∂D

∂s
= −A0 (α : ns) , (11.65)

∂D

∂α
= −A0 (α : nα + n : I) , (11.66)

∂D

∂z
= 0. (11.67)

In the above expressions, np, ns and nα are partial derivatives of n against p, s and α. Note
due to the change of sign convention, a negative D leads to contractive response. Thus, A0
often needs to be negative.

Hardening Law

The evolution rate of the back stress α is defined in terms of a proper distance measure from
the bounding surface,

α̇ = γh
((
αb −m

)
n−α

)
, (11.68)
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where h controls the hardening rate,

h = b0 exp (h1 (αin : n−α : n)) . (11.69)

The constant αin is updated whenever load reversal occurs.

The parameter b0 is defined as a function of current state,

b0 = G0h0 (1− che)
√
pat

p
. (11.70)

The derivatives are

∂b0
∂e

= −G0h0ch

√
pat

p
,

∂b0
∂p

= −G0h0 (1− che)
√
ppat

2p2 = − b0
2p. (11.71)

Hence,

∂h

∂p
= ∂b0

∂p
exp (h1 (αin : n−α : n)) , (11.72)

∂h

∂s
= hh1 (αin −α) : ns, (11.73)

∂h

∂α
= hh1 ((αin −α) : na − n : I) . (11.74)

Fabric Effect

The fabric tensor changes when ∆εp
v is positive,

ż = cz ⟨ ˙εv,p⟩ (zmn− z) = czγ ⟨D⟩ (zmn− z) . (11.75)

The sign is flipped compared to the original definition for consistency with other parts.

11.4.2. Formulation

The governing equations of this model are

Elastic Residual

The new state shall be computed assuming there is no plasticity. In which case,

pn+1 = pn +Kε̇v, (11.76)
sn+1 = sn + 2Gε̇d. (11.77)
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Constitutive Law σ = σn + 2G
(
ε̇d − ˙εd,p

)
+K (ε̇v − ˙εv,p)1

Yield Function f = ∥s + pα∥+mp = ∥η∥+mp

Flow Rule ε̇p = γ

(
n + 1

3
(
A0 (1 + ⟨z : n⟩)

(
αd −m−α : n

))
1

)
Hardening Law α̇ = γb0 exp (h1 (αin : n−α : n))

((
αb −m

)
n−α

)
Fabric Effect ż = cz ⟨ ˙εv,p⟩ (zmn− z)

Critical State ψ = e− e0 + λc

(
p

pat

)ξ

αd = αc exp
(
ndψ

)
αb = αc exp

(
−nbψ

)

Elastic Local Iteration

The independent variables are chosen to be x =
[
p s

]T
, then the local residual is

R =
{
pn+1 − pn −Kε̇v,

sn+1 − sn − 2Gε̇d.
(11.78)

The Jacobian can be expressed as

J =


1− ε̇v

2 + 2ν
3− 6ν

∂G

∂p
0

−2ε̇d
∂G

∂p
I

 . (11.79)

and

∂R

∂εn+1
=


−K1T − ε̇v

∂K

∂εn+1

−2GIdev − 2ε̇d
∂G

∂εn+1

 , (11.80)

which will be used in computation of consistent tangent stiffness.

When elastic state is computed, the trial yield function can be calculated.

f trial = ∥sn+1 + pn+1αn∥+mpn+1. (11.81)
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Plastic Residual

The are five local residual equations.

R =



∥η∥+mp,

p− pn +K (γD − ε̇v) ,

s− sn + 2G
(
γn− ε̇d

)
,

α−αn + γh
(
α−

(
αb −m

)
n
)
,

z − zn + czγ ⟨D⟩ (z − zmn) .

(11.82)

Plastic Local Iteration

By choosing x =
[
γ p s α z

]T
, the Jacobian consists of the entries that can be listed as

follows.

∂R

∂x
=
[
∂R

∂γ

∂R

∂p

∂R

∂s

∂R

∂α

∂R

∂z

]
(11.83)

with

∂R

∂γ
=



·

DK

2Gn

h
(
α− αbmn

)
cz ⟨D⟩ zz


, (11.84)

∂R

∂p
=



ηp +m

1 + ∂K

∂p
(γD − ε̇v) +Kγ

∂D

∂p

2∂G
∂p

(
γn− ε̇d

)
+ 2Gγnp

γ
∂h

∂p

(
α− αbmn

)
− γh

(
∂αb

∂p
n + αbmnp

)
czγ

∂⟨D⟩
∂p

zz − czγ ⟨D⟩ zmnp


, (11.85)
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∂R

∂s
=



ηs

γK

(
∂D

∂s

)T

I + 2Gγns

γ
(
α− αbmn

)
⊗ ∂h

∂s
− γhαbmns

czγzz ⊗
∂⟨D⟩
∂s

− czγ ⟨D⟩ zmns


, (11.86)

∂R

∂α
=



ηα

γK

(
∂D

∂α

)T

2Gγnα

(1 + γh) I + γ
(
α− αbmn

)
⊗ ∂h

∂α
− γhαbmna

czγzz ⊗
∂⟨D⟩
∂α

− czγ ⟨D⟩ zmnα


, (11.87)

∂R

∂z
=



·

γK

(
∂D

∂z

)T

·

·

(1 + czγ ⟨D⟩) I + czγzz ⊗
∂⟨D⟩
∂z


. (11.88)

In which,

αbm = αb −m, (11.89)
zz = z − zmn. (11.90)

And ηp, ηs and ηα are partial derivatives of ∥η∥ against p, s and α.
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Consistent Tangent Operator

∂R

∂εn+1
=



·(
(γD − ε̇v) ∂K

∂εn+1
+K

(
γ
∂D

∂εn+1
− 1

))T
,

2
(
γn− ε̇d

)
⊗ ∂G

∂εn+1
− 2GIdev,

γ
(
α− αbmn

)
⊗ ∂h

∂εn+1
− γhn⊗ ∂αb

∂εn+1
,

czγzz ⊗
∂⟨D⟩
∂εn+1


. (11.91)

Then,

∂x

∂εn+1
= −J−1 ∂R

∂εn+1
. (11.92)

Similar to the previous procedure,

∂σn+1
∂εn+1

= ∂sn+1
∂εn+1

+ 1⊗ ∂pn+1
∂εn+1

. (11.93)

The corresponding quantities can be extracted and be used to formulate consistent tangent
stiffness.

11.4.3. Implementation

Algorithm 11 state determination of Dafalias–Manzari sand model
Parameter: G0, v, pat, e0, λc, ξ, nd, nb, αc, m, A0, h0, h1, cz, zm

Input: εn+1, εn, σn, αn, zn

Output: Dn+1, σn+1, αn+1, zn+1
sn+1 = sn = dev (σn)
pn+1 = pn = 1

3trace (σn)
while true do

compute R and ∂R

∂x
▷ Eq. (11.78) and Eq. (11.79)

∆x =
(
∂R

∂x

)−1
R

if ∥∆x∥ < tolerance then
break

end if
update pn+1 and sn+1 using the increment ∆x

end while ▷ Once this while exists, pn+1 and sn+1 are new elastic states.
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compute f trial ▷ Eq. (11.81)
αn+1 = αn

zn+1 = zn

if f trial ⩾ 0 then ▷ plastic
γ = 0
while true do

n = ηn+1
∥ηn+1∥

compute R and ∂R

∂x
▷ Eq. (11.82) and Eq. (11.83)

∆x =
(
∂R

∂x

)−1
R

if ∥∆x∥ < tolerance then
break

end if
update γ, pn+1, sn+1, αn+1 and zn+1 using the increment ∆x

end while ▷ Once this while exists, pn+1, sn+1, αn+1 and zn+1 are all new states.
σn+1 = sn+1 + pn+11
compute plastic Dn+1 ▷ Eq. (11.93)

else ▷ elastic
σn+1 = sn+1 + pn+11
compute elastic Dn+1 ▷ Eq. (11.80)

end if

The Dafalias–Manzari sand model is probably the most complex model so far as it involves
heavy computation of tensor quantities. Here is a example implementation of state determi-
nation.

1 int DafaliasManzari::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
5

6 const auto current_p = tensor::mean3(current_stress);
7 const auto current_s = tensor::dev(current_stress);
8 const auto incre_ev = tensor::trace3(incre_strain);
9 const vec incre_ed = unit_dev_tensor * incre_strain;

10

11 // assume no plasticity
12 // compute trial stress
13

14 auto p = current_p + pr * gi * incre_ev;
15 vec s = current_s + 2. * gi * incre_ed;
16

17 const auto void_ratio = e0 + (1. + e0) * tensor::trace3(trial_strain);
18 const auto v_term_a = pow(2.97 - void_ratio, 2.) / (1. + void_ratio);
19 const auto v_term_b = (void_ratio * (void_ratio + 2.) - 14.7609) * pow(1. + void_ratio,

-2.) * (1. + e0);↪→

20

21 double g, pgpe, pgpp;
22

145



11. Geomaterial

23 vec residual(7, fill::none), incre;
24 mat jacobian(7, 7, fill::eye);
25

26 auto counter = 0u;
27 auto ref_error = 1.;
28

29 while(true) {
30 if(max_iteration == ++counter) return SUANPAN_FAIL;
31

32 const auto sqrt_term = shear_modulus * sqrt(std::max(datum::eps, pc * p));
33

34 g = sqrt_term * v_term_a;
35

36 if(g > gi) {
37 pgpe = sqrt_term * v_term_b;
38 pgpp = .5 * g / p;
39 }
40 else {
41 g = gi;
42 pgpe = pgpp = 0.;
43 }
44

45 residual(sa) = p - current_p - pr * g * incre_ev;
46 residual(sb) = s - current_s - 2. * g * incre_ed;
47

48 jacobian(sa, sa) = 1. - pr * incre_ev * pgpp;
49 jacobian(sb, sa) = -2. * pgpp * incre_ed;
50

51 if(!solve(incre, jacobian, residual)) return SUANPAN_FAIL;
52

53 auto error = norm(residual);
54 if(1 == counter) ref_error = std::max(1., error);
55 suanpan_debug("DafaliasManzari local elastic iteration error: %.5E.\n", error /=

ref_error);↪→

56 if(error <= tolerance) break;
57

58 p -= incre(sa);
59 s -= incre(sb);
60 }
61

62 // check if yield
63

64 const vec current_alpha(&current_history(0), 6, false, true);
65

66 vec eta = s + p * current_alpha;
67 auto norm_eta = tensor::stress::norm(eta);
68

69 if(norm_eta + m * p < 0.) {
70 trial_stress = s + p * tensor::unit_tensor2;
71

72 mat left(7, 6, fill::none), right;
73

74 left.row(sa) = pr * (incre_ev * pgpe + g) * tensor::unit_tensor2.t();
75 left.rows(sb) = 2. * pgpe * incre_ed * tensor::unit_tensor2.t() + 2. * g *

unit_dev_tensor;↪→

76

77 if(!solve(right, jacobian, left)) return SUANPAN_FAIL;
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78

79 trial_stiffness = right.rows(sb);
80 trial_stiffness.row(0) += right.row(sa);
81 trial_stiffness.row(1) += right.row(sa);
82 trial_stiffness.row(2) += right.row(sa);
83

84 return SUANPAN_SUCCESS;
85 }
86

87 // yield function violated
88

89 const vec current_z(&current_history(6), 6, false, true);
90

91 trial_history = current_history;
92 vec alpha(&trial_history(0), 6, false, true);
93 vec z(&trial_history(6), 6, false, true);
94 vec ini_alpha(&trial_history(12), 6, false, true);
95

96 residual.set_size(20);
97 jacobian.set_size(20, 20);
98 jacobian(si, si) = 0.;
99 jacobian(si, sm).zeros();

100 jacobian(sk, sm).zeros();
101 jacobian(sl, sm).zeros();
102

103 counter = 0u;
104

105 vec n, zz, aabmn;
106 auto gamma = 0.;
107 double pabpe, d, pdpe, h, phpe;
108 auto update_ini_alpha = false;
109

110 while(true) {
111 if(max_iteration == ++counter) return SUANPAN_FAIL;
112

113 // shear modulus
114

115 auto tmp_term = shear_modulus * sqrt(std::max(datum::eps, pc * p));
116 g = tmp_term * v_term_a;
117

118 if(g > gi) {
119 pgpe = tmp_term * v_term_b;
120 pgpp = .5 * g / p;
121 }
122 else {
123 g = gi;
124 pgpe = pgpp = 0.;
125 }
126

127 // state parameter
128

129 tmp_term = lc * pow(std::max(datum::eps, p / pc), xi);
130 const auto psi = void_ratio - e0 + tmp_term;
131 const auto ppsipp = xi * tmp_term / p;
132

133 // surface
134
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135 const auto ad = ac * exp(nd * psi);
136 const auto ab = ac * exp(-nb * psi);
137 const auto adm = ad - m;
138 const auto abm = ab - m;
139

140 auto padpe = nd * ad;
141 pabpe = -nb * ab;
142 const auto padpp = padpe * ppsipp;
143 const auto pabpp = pabpe * ppsipp;
144 padpe *= 1. + e0;
145 pabpe *= 1. + e0;
146

147 // yield function
148

149 eta = s + p * alpha;
150 norm_eta = tensor::stress::norm(eta);
151

152 n = eta / norm_eta;
153 const vec unit_n = n % tensor::stress::norm_weight;
154 const vec unit_alpha = alpha % tensor::stress::norm_weight;
155 const auto alpha_n = dot(n, unit_alpha);
156 aabmn = alpha - abm * n;
157

158 const vec np = (alpha - alpha_n * n) / norm_eta;
159 const mat ns = (eye(6, 6) - n * unit_n.t()) / norm_eta;
160

161 // dilatancy
162

163 const vec unit_z = z % tensor::stress::norm_weight;
164 const auto zn = dot(n, unit_z);
165

166 d = a * (adm - alpha_n);
167

168 double pdpp;
169 rowvec pdps, pdpa, pdpz;
170 if(zn > 0.) {
171 const auto term_a = a * (1. + zn);
172

173 pdpe = term_a * padpe;
174 pdpp = term_a * padpp + dot(d * unit_z - term_a * unit_alpha, np);
175 pdps = (d * unit_z - term_a * unit_alpha).t() * ns;
176 pdpa = p * pdps - term_a * unit_n.t();
177 pdpz = d * unit_n.t();
178

179 d *= 1. + zn;
180 }
181 else {
182 pdpe = a * padpe;
183 pdpp = a * (padpp - dot(unit_alpha, np));
184 pdps = -a * unit_alpha.t() * ns;
185 pdpa = p * pdps - a * unit_n.t();
186 pdpz.zeros(6);
187 }
188

189 // hardening
190

191 tmp_term = shear_modulus * h0 * sqrt(std::max(datum::eps, pc / p));
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192 const auto b0 = tmp_term * (1. - ch * void_ratio);
193 const auto pb0pe = -ch * tmp_term * (1. + e0);
194 const auto pb0pp = -.5 * b0 / p;
195

196 update_ini_alpha = false;
197 vec diff_alpha = (ini_alpha - alpha) % tensor::stress::norm_weight;
198 tmp_term = exp(h1 * dot(diff_alpha, n));
199

200 if(tmp_term > 1.) {
201 update_ini_alpha = true;
202 diff_alpha = (current_alpha - alpha) % tensor::stress::norm_weight;
203 tmp_term = exp(h1 * dot(diff_alpha, n));
204 }
205

206 h = tmp_term * b0;
207

208 phpe = tmp_term * pb0pe;
209 const auto phpp = tmp_term * pb0pp;
210 const rowvec phps = h * h1 * diff_alpha.t() * ns;
211 const rowvec phpa = p * phps - h * h1 * unit_n.t();
212

213 // local iteration
214

215 residual(si) = norm_eta + m * p;
216 residual(sj) = p - current_p + pr * g * (gamma * d - incre_ev);
217 residual(sk) = s - current_s + 2. * g * (gamma * n - incre_ed);
218 residual(sl) = alpha - current_alpha + gamma * h * aabmn;
219 residual(sm) = z - current_z;
220

221 jacobian(si, sj) = alpha_n + m;
222 jacobian(si, sk) = unit_n.t();
223 jacobian(si, sl) = p * jacobian(si, sk);
224

225 const auto gk = gamma * pr * g;
226 jacobian(sj, si) = d * pr * g;
227 jacobian(sj, sj) = 1. + pr * pgpp * (gamma * d - incre_ev) + gk * pdpp;
228 jacobian(sj, sk) = gk * pdps;
229 jacobian(sj, sl) = gk * pdpa;
230 jacobian(sj, sm) = gk * pdpz;
231

232 jacobian(sk, si) = 2. * g * n;
233 jacobian(sk, sj) = 2. * pgpp * (gamma * n - incre_ed) + 2. * g * gamma * np;
234 jacobian(sk, sk) = 2. * g * gamma * ns;
235 jacobian(sk, sl) = p * jacobian(sk, sk);
236 jacobian(sk, sk) += eye(6, 6);
237

238 jacobian(sl, si) = h * aabmn;
239 jacobian(sl, sj) = gamma * phpp * aabmn - gamma * h * (pabpp * n + abm * np);
240 jacobian(sl, sk) = gamma * aabmn * phps - gamma * h * abm * ns;
241 jacobian(sl, sl) = (1. + gamma * h) * eye(6, 6) + gamma * aabmn * phpa - gamma * h *

abm * p * ns;↪→

242

243 jacobian(sm, sm) = eye(6, 6);
244

245 if(d > 0.) {
246 const auto factor_a = cz * gamma;
247 const auto factor_b = factor_a * d;
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248 const auto factor_c = factor_b * zm;
249

250 zz = z - zm * n;
251

252 residual(sm) += factor_b * zz;
253

254 jacobian(sm, si) = cz * d * zz;
255 jacobian(sm, sj) = factor_a * pdpp * zz - factor_c * np;
256 jacobian(sm, sk) = factor_a * zz * pdps - factor_c * ns;
257 jacobian(sm, sl) = factor_a * zz * pdpa - factor_c * p * ns;
258 jacobian(sm, sm) += factor_b * eye(6, 6) + factor_a * zz * pdpz;
259 }
260 else {
261 jacobian(sm, si).zeros();
262 jacobian(sm, sj).zeros();
263 jacobian(sm, sk).zeros();
264 jacobian(sm, sl).zeros();
265 }
266

267 if(!solve(incre, jacobian, residual)) return SUANPAN_FAIL;
268

269 auto error = norm(residual);
270 if(1 == counter) ref_error = std::max(1., error);
271 suanpan_debug("DafaliasManzari local plastic iteration error: %.5E.\n", error /=

ref_error);↪→

272 if(error <= tolerance) break;
273

274 gamma -= incre(si);
275 p -= incre(sj);
276 s -= incre(sk);
277 alpha -= incre(sl);
278 z -= incre(sm);
279 }
280

281 trial_stress = s + p * tensor::unit_tensor2;
282

283 mat left(20, 6, fill::none), right;
284

285 left.row(si).zeros();
286 left.row(sj) = pr * (pgpe * (incre_ev - gamma * d) + g - g * gamma * pdpe) *

tensor::unit_tensor2.t();↪→

287 left.rows(sk) = 2. * g * unit_dev_tensor + 2. * pgpe * (incre_ed - gamma * n) *
tensor::unit_tensor2.t();↪→

288 left.rows(sl) = (gamma * h * n * pabpe - gamma * aabmn * phpe) *
tensor::unit_tensor2.t();↪→

289

290 if(d > 0.) left.rows(sm) = -cz * gamma * pdpe * zz * tensor::unit_tensor2.t();
291 else left.rows(sm).zeros();
292

293 if(!solve(right, jacobian, left)) return SUANPAN_FAIL;
294

295 trial_stiffness = right.rows(sk);
296 trial_stiffness.row(0) += right.row(sj);
297 trial_stiffness.row(1) += right.row(sj);
298 trial_stiffness.row(2) += right.row(sj);
299

300 if(update_ini_alpha) ini_alpha = current_alpha;
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301

302 return SUANPAN_SUCCESS;
303 }

11.5. Duncan Soil Model

In this section, we present a plane strain soil model. Unlike other models that are typically
strain–driven, it is a non-linear elastic phenomenological stress–driven model.

11.5.1. Theory

The incremental form of the constitutive relationship is defined as

σ̇ = Dε̇ = 3B
9B − E

3B + E 3B − E 0
3B − E 3B + E 0

0 0 E

 ε̇ (11.94)

where ε =
[
εx εy γxy

]T
and σ =

[
σx σy τxy

]T
are the strain and stress vector for condi-

tions of plane strain. As the original model is non-linear elastic, it can be fully defined by the
stress state. Thus, the elastic modulus E and the bulk modulus K can be determined solely
by the stress vector σ.

Before proceeding, one shall note that the stress vector σ can be converted into principal
stresses via either Mohr’s circle or eigenanalysis.

σ1
σ3

= σx + σy

2 ±

√(
σx − σy

2

)2
+ τ2

xy. (11.95)

In the context of geotechnical engineering, typically |σ1| > |σ3| and both take compression as
positive. Depending on how σ is defined, the signs presented in the above expression may be
flipped.

The corresponding derivatives dσ1
dσ and dσ3

dσ can be determined accordingly.

The difference between σ1 and σ3 is taken as the deviatoric stress.

σd = dev (σ) = |σ1 − σ3| = 2
√(

σx − σy

2

)2
+ τ2

xy. (11.96)
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Elastic Modulus

The elastic modulus E can be expressed as the product of two components, namely, the initial
part and the reduction part.

E = Ei

(
1− σd

σmax
d

)2

. (11.97)

The initial part Ei increases when σ3 grows larger.

Ei = Er

∣∣∣∣σ3
pa

∣∣∣∣n, (11.98)

where Er is the reference elastic modulus, pa is the atmospheric pressure, and n is a model
parameter that is typically between zero and unity.

The reduction part physically implies that the elastic modulus decreases when the current
deviatoric stress approaches the maximum deviatoric stress. This is effectively the Mohr–
Coulomb failure criterion. As a result, the deviatoric stress would asymptotically converge to
the maximum deviatoric stress that is defined as follows.

σmax
d = σult

d

rf
, (11.99)

with the ultimate deviatoric stress σult
d being defined as

σult
d = 2c cosϕ+ σ3 sinϕ

1− sinϕ . (11.100)

It can be solved graphically using the following trigonometry.(
σult

d /2 + σ3 − c tanϕ
)

sinϕ = σult
d /2− c

cosϕ. (11.101)

The ratio rf < 1 is introduced to fine–tune the behaviour.

Bulk Modulus

The bulk modulus B takes a similar approach. However, it only monotonically increases with
an increasing σ3.

B = Bi = Br

∣∣∣∣σ3
pa

∣∣∣∣m, (11.102)

whereBr is the reference bulk modulus andm is another modal parameter similar to n.
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σ

τ

σ3 σult
d /2

c

ϕ

ϕ

Figure 11.1.: σult
d determined by Mohr’s circle

11.5.2. Formulation

Local Iteration

The incremental form Eq. (11.94) resembles the elastic Hooke’s law. However, since E and
B rely on σ, the consistent tangent stiffness requires the computation of the full deriva-
tive.

dE
dσ = ∂E

∂σ1

dσ1
dσ + ∂E

∂σ3

dσ3
dσ ,

dB
dσ = dE

dσ3

dσ3
dσ . (11.103)

Adopting the implicit Euler method, the local residual can be expressed as

R = σ − σn −D∆ε. (11.104)

The Jacobian can be derived as

J = ∂R

∂σ
= I − dD

dσ ∆ε. (11.105)

The consistent tangent stiffness is thus

dσ
dε = C = J−1D. (11.106)

One shall note the following two points.

1. The derivative dD
dσ is a cube, since D is a matrix.

2. Although Eq. (11.94) is symmetric and resembles the elastic Hooke’s law, the consistent
tangent is not symmetric.

153



11. Geomaterial

Here, we present an example computation of the Jacobian. The first row of the residual vector
R can be explicitly written as

R⟨1⟩ = σx − σx,n −
3B

9B − E ((3B + E) ∆εx + (3B − E) ∆εy) . (11.107)

To avoid computing the derivative of fractions, the following equivalent form is adopted.

R⟨1⟩ = (9B − E) (σx − σx,n)−
((

9B2 + 3BE
)

∆εx +
(
9B2 − 3BE

)
∆εy

)
. (11.108)

The derivative can then be derived as

∂R⟨1⟩

∂σ
= (9B − E)

[
1 0 0

]
+ (σx − σx,n) d (9B − E)

dσ

−
(

∆εx
d
(
9B2 + 3BE

)
dσ + ∆εy

d
(
9B2 − 3BE

)
dσ

)
. (11.109)

Similar procedures can be applied to the other two components of R.

Plasticity

The original model is a non-linear elastic model, implying no plasticity whatsoever. Similar
to the concept discussed in [16], to enable plasticity–like behaviour, one could introduce the
concept of yield surface. Since the Mohr–Coulomb failure criterion is used in Eq. (11.97), the
yield function f (σ) can be simply chosen as

f (σ) = σd − σmax
d . (11.110)

Similar to conventional plasticity theory based models, a return mapping style algorithm can
be applied.

The maximum σmax
d shall be recorded, and it is only updated when local iteration converges

and the converged stress yields a larger σd. Then, whenever σd > σmax
d , f > 0 indicating

the development of plasticity, the elastic modulus shall be computed according to Eq. (11.97).
For σd ⩽ σmax

d , f < 0 indicating elastic loading/unloading, then the reduction in E is not
considered, viz., E = Ei.

Based on the above discussion, one can rewrite Eq. (11.97) as

E = Ei

(
1− β σd

σmax
d

)2

, (11.111)
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with

β =
{

0 σd ⩽ σmax
d ,

1 σd > σmax
d .

(11.112)

The factor β is defined as a function of ∆σ in [16]. In that case, the computation of derivatives
is more cumbersome.

11.5.3. Implementation

The state determination algorithm is shown in Algorithm 12. One must note the fact that, since
the model is stress driven, it is not as straightforward to obtain plastic strain alike quantities
as in conventional strain driven models. If one wants, the plastic strain can be defined as the
residual strain when fully unloaded (strain is zero). However, due to its non-linearity nature,
it is not guaranteed that the development of plasticity is irreversible, which mainly depends
on model parameters.

Algorithm 12 state determination of Duncan soil model
Parameter: pa, Er, n, Br, m, ϕi, ∆ϕ, rf , c
Input: εn+1, εn, σn, σmax

d

Output: Dn+1, σn+1
σn+1 = σn

while true do
compute σd based on σn+1
if σd ⩾ σmax

d then
compute E and B ▷ with reduction

else
compute E and B ▷ without reduction

end if
compute Dn+1 based on E and B
compute R and J
∆σ = J−1R
if convergence then

update σmax
d if σd exceeds σmax

d

C = J−1Dn+1
return

end if
σn+1 ← σn+1 −∆σ

end while

Numerical Robustness

The above algorithm combines both elastic and plastic branches. For a given time step, if the
stress state stays within the elastic/plastic domain, the above algorithm would not typically
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fail. However, if it crosses the boundary, for example, from elastic to plastic, since the tangent
stiffness matrix is discontinuous, the local Newton iteration may fail.

To address this issue, the state determination can be divided into two stages. In the first stage,
assume proportional loading and find the elastic portion that projects the stress state onto the
yield surface, in specific, find the scalar parameter γ such that

dev (σr)− σmax
d = 0, (11.113)

with

σr = σn + Dε̇γ. (11.114)

After obtaining γ, for the second stage, assume plastic response, consume the remaining
(1− γ) ε̇. The residual becomes

R = σ − σr −Dε̇ (1− γ) . (11.115)

Algorithm 13 dual–stage state determination of Duncan soil model
Parameter: pa, Er, n, Br, m, ϕi, ∆ϕ, rf , c
Input: εn+1, εn, σn, σmax

d

Output: Dn+1, σn+1
return if Algorithm 12 succeeds
assume elastic response, find γ using Eq. (11.113) and Eq. (11.114) as residuals
assume plastic response, iterate out Eq. (11.115)

Reference Implementation

The main body of the implementation can be shown as follows.

1 int DuncanSelig::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_history = current_history;
7

8 trial_stress = current_stress + current_stiffness * incre_strain;
9

10 const auto update_dev_stress = [&] {
11 auto& max_dev_stress = trial_history(0);
12 if(const auto trail_dev_stress = dev(trial_stress); trail_dev_stress >

max_dev_stress) max_dev_stress = trail_dev_stress;↪→

13 return SUANPAN_SUCCESS;
14 };
15

16 // first try a whole step size local iteration
17 if(SUANPAN_SUCCESS == local_update(current_stress, incre_strain, false)) return

update_dev_stress();↪→
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18

19 // if that fails, mostly likely due to discontinuity of the gradient
20 // assume proportional loading, project the stress onto the yield surface using elastic

moduli↪→

21 auto multiplier = 1.;
22 if(SUANPAN_SUCCESS != project_onto_surface(multiplier)) return SUANPAN_FAIL;
23

24 // then using plastic moduli to compute the new plastic state
25 // !!! the tangent operator is not algorithmically consistent in this case
26 if(SUANPAN_SUCCESS != local_update(vec(trial_stress), (1. - multiplier) * incre_strain,

true)) return SUANPAN_FAIL;↪→

27

28 return update_dev_stress();
29 }

The local iteration is a standard Newton iteration implementation.

1 int DuncanSelig::local_update(const vec& ref_stress, const vec& ref_strain, const bool
two_stage) {↪→

2 const auto update_moduli = [&] {
3 const auto max_dev_stress = trial_history(0);
4 return two_stage || dev(trial_stress) > max_dev_stress ? compute_plastic_moduli() :

compute_elastic_moduli();↪→

5 };
6

7 auto ref_error = 0.;
8 vec3 incre;
9

10 auto counter = 0u;
11 while(true) {
12 if(max_iteration == ++counter) {
13 suanpan_error("Local iteration cannot converge within {} iterations.\n",

max_iteration);↪→

14 return SUANPAN_FAIL;
15 }
16

17 const auto [elastic, bulk, deds, dkds] = update_moduli();
18

19 const auto factor_a = 3. * bulk * (3. * bulk + elastic);
20 const auto factor_b = 3. * bulk * (3. * bulk - elastic);
21

22 mat33 right(fill::zeros);
23 right(0, 0) = right(1, 1) = factor_a;
24 right(0, 1) = right(1, 0) = factor_b;
25 right(2, 2) = 3. * bulk * elastic;
26

27 const vec3 t_stress = trial_stress - ref_stress;
28 const vec3 residual = (9. * bulk - elastic) * t_stress - right * ref_strain;
29

30 const rowvec3 factor_c = 3. * (elastic * dkds + bulk * deds);
31 const rowvec3 dfads = 18. * bulk * dkds + factor_c;
32 const rowvec3 dfbds = 18. * bulk * dkds - factor_c;
33

34 mat33 jacobian = (9. * bulk - elastic) * eye(3, 3) + t_stress * (9. * dkds - deds);
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35 jacobian.row(0) -= ref_strain(0) * dfads + ref_strain(1) * dfbds;
36 jacobian.row(1) -= ref_strain(0) * dfbds + ref_strain(1) * dfads;
37 jacobian.row(2) -= ref_strain(2) * factor_c;
38

39 if(!solve(incre, jacobian, residual)) return SUANPAN_FAIL;
40

41 const auto error = inf_norm(incre);
42 if(1u == counter) ref_error = error;
43 suanpan_debug("Local iteration error: {:.5E}.\n", error / ref_error);
44 if(error < tolerance * ref_error || ((error < tolerance || inf_norm(residual) <

tolerance) && counter > 5u)) {↪→

45 if(!solve(trial_stiffness, jacobian, right)) return SUANPAN_FAIL;
46

47 return SUANPAN_SUCCESS;
48 }
49

50 trial_stress -= incre;
51 }
52 }

The computation of two moduli follows the formulation with extra cumbersome computation of
derivatives. To improve numerical robustness, additional limits are applied. Stress components
are bounded to the atmospheric pressure.

1 std::tuple<double, double> DuncanSelig::compute_elastic(const double s3) const {
2 double elastic, deds3;
3 if(s3 < -min_ratio * p_atm) {
4 elastic = ref_elastic * std::pow(.01, n);
5 deds3 = 0.;
6 }
7 else if(s3 < min_ratio * p_atm) {
8 elastic = ref_elastic * std::pow(min_ratio, n);
9 deds3 = 0.;

10 }
11 else {
12 elastic = ref_elastic * std::pow(s3 / p_atm, n);
13 deds3 = n * elastic / s3;
14 }
15

16 return {elastic, deds3};
17 }
18

19 std::tuple<double, double> DuncanSelig::compute_bulk(const double s3) const {
20 double bulk, dkds3;
21 if(s3 < -min_ratio * p_atm) {
22 bulk = ref_bulk * std::pow(.01, m);
23 dkds3 = 0.;
24 }
25 else if(s3 < min_ratio * p_atm) {
26 bulk = ref_bulk * std::pow(min_ratio, m);
27 dkds3 = 0.;
28 }
29 else {

158



11.5. Duncan Soil Model

30 bulk = ref_bulk * std::pow(s3 / p_atm, m);
31 dkds3 = m * bulk / s3;
32 }
33

34 return {bulk, dkds3};
35 }
36

37 std::tuple<double, double, rowvec3, rowvec3> DuncanSelig::compute_elastic_moduli() {
38 // principal stresses
39

40 const auto radius = .5 * dev(trial_stress);
41 rowvec3 drds(fill::zeros);
42 if(radius > datum::eps) drds = der_dev(trial_stress) / radius * .25;
43

44 const auto center = -.5 * (trial_stress(0) + trial_stress(1));
45 const rowvec3 dcds{-.5, -.5, 0.};
46

47 const auto s3 = center - radius;
48

49 const rowvec3 ds3ds = dcds - drds;
50

51 // for elastic modulus
52

53 const auto [elastic, deds3] = compute_elastic(s3);
54

55 const rowvec3 deds = deds3 * ds3ds;
56

57 // for bulk modulus
58

59 auto [bulk, dkds3] = compute_bulk(s3);
60

61 rowvec3 dkds = dkds3 * ds3ds;
62

63 if(3. * bulk < elastic) {
64 bulk = elastic / 3.;
65 dkds = deds / 3.;
66 }
67

68 return {elastic, bulk, deds, dkds};
69 }
70

71 std::tuple<double, double, rowvec3, rowvec3> DuncanSelig::compute_plastic_moduli() {
72 // principal stresses
73

74 const auto center = -.5 * (trial_stress(0) + trial_stress(1));
75 const rowvec3 dcds{-.5, -.5, 0.};
76

77 auto radius = .5 * dev(trial_stress);
78 rowvec3 drds(fill::zeros);
79 if(radius > datum::eps) drds = der_dev(trial_stress) / radius * .25;
80

81 const auto s1 = center + radius, s3 = center - radius;
82

83 const rowvec3 ds1ds = dcds + drds, ds3ds = dcds - drds;
84

85 // for elastic modulus
86
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87 double phi, dphids3;
88 if(s3 < p_atm) {
89 phi = ini_phi;
90 dphids3 = 0.;
91 }
92 else {
93 phi = ini_phi - ten_fold_phi_diff * log10(s3 / p_atm);
94 dphids3 = -ten_fold_phi_diff / (s3 * log(10));
95 if(phi < 0.) phi = dphids3 = 0.;
96 }
97

98 const auto denom = 1. - std::sin(phi);
99 auto max_dev_stress = 2. / r_f * (cohesion * std::cos(phi) + s3 * std::sin(phi)) / denom;

100 auto dmdsds3 = 0.;
101 if(max_dev_stress > min_ratio * p_atm) {
102 const auto pmdspphi = 2. / r_f * (s3 * std::cos(phi) / denom / denom + cohesion /

denom);↪→

103 const auto pmdsps3 = 2. / r_f * std::sin(phi) / denom;
104 dmdsds3 = pmdspphi * dphids3 + pmdsps3;
105 }
106 else max_dev_stress = min_ratio * p_atm;
107

108 const auto dev_stress = s1 - s3;
109 const auto pdsps1 = 1.;
110 const auto pdsps3 = -1.;
111

112 const auto [ini_elastic, deids3] = compute_elastic(s3);
113

114 const auto pepei = std::pow(1. - dev_stress / max_dev_stress, 2.);
115 const auto elastic = ini_elastic * pepei;
116 const auto pepds = -2. * ini_elastic * (1. - dev_stress / max_dev_stress) /

max_dev_stress;↪→

117 const auto pepmds = 2. * ini_elastic * (1. - dev_stress / max_dev_stress) * dev_stress /
max_dev_stress / max_dev_stress;↪→

118

119 const auto peps1 = pepds * pdsps1;
120 const auto peps3 = pepei * deids3 + pepds * pdsps3 + pepmds * dmdsds3;
121

122 const rowvec3 deds = peps1 * ds1ds + peps3 * ds3ds;
123

124 // for bulk modulus
125

126 auto [bulk, dkds3] = compute_bulk(s3);
127

128 rowvec3 dkds = dkds3 * ds3ds;
129

130 if(3. * bulk < elastic) {
131 bulk = elastic / 3.;
132 dkds = deds / 3.;
133 }
134

135 return {elastic, bulk, deds, dkds};
136 }
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12. Viscoplasticity

12.1. VAFCRP Model

Here we present a versatile viscoplastic model that can be used to model metals under dynamic
loadings. It is essentially a multiaxial extension of the aforementioned Armstrong–Fredrick
uniaxial model with additional viscosity component. Due to the presence of viscosity, the
typical formulation and implementation shall be modified a bit, as now transient effects are
accounted for and yield function does not need to be non-positive. It is only used to determine
whether a trial state is elastic or plastic.

12.1.1. Theory

Yield Function

A von Mises type yielding function is used.

f =
√

3
2∥η∥ − k = q − k, (12.1)

in which η = s−β is the shifted stress, s is the deviatoric stress, β is the back stress, k is the
isotropic hardening stress and q =

√
3
2∥η∥ is the equivalent stress.

Flow Rule

The associated plasticity flow is adopted. The plastic strain rate is then

ε̇p = γ
∂f

∂σ
=
√

3
2γn, (12.2)

where n = η

∥η∥
. The corresponding accumulated plastic strain rate is

ṗ =
√

2
3 ε̇

p : ε̇p = γ. (12.3)
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12. Viscoplasticity

One shall note that strictly speaking, it shall be the viscous plastic strain rather than the
plastic strain. For brevity, the superscript (·)p is used. If one wishes, (·)vp can also be
used.

Plastic Multiplier

Unlike plasticity, viscoplasticity adopts a different way to determine plastic multiplier. The
rate of plastic multiplier is defined as

γ

∆t = 1
µ

( q
k

)1
ϵ − 1

 , (12.4)

in which ∆t is increment of pseudo time which shall be available from global time integration
method, µ and ϵ are two material constants. Here a [17] type rule is used for easier numerical
implementation. Equivalently, after some rearrangement, it is

q

( ∆t
∆t+ µγ

)ϵ

− k = 0. (12.5)

Hardening Law

Similar to the previous model, a Voce type exponential function with a linear component is
used for isotropic hardening stress.

k = σy + klp+ ks − kse
−mp. (12.6)

In which, m is a parameter controls the speed of hardening.

The incremental form of multiplicative back stress [6] β =
∑

βi is defined as

β̇i =
√

2
3a

iε̇p − biβiṗ.

Again, ai and bi are two sets of model parameters. In terms of γ, it is β̇i = aiγn −
biγβi.

12.1.2. Formulation

In the following derivation, the subscript (·)n+1 is omitted for brevity.
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12.1. VAFCRP Model

Elastic Loading/Unloading

The trial state can be computed as usual.

σtrial = σn + D : (εn+1 − εn) . (12.7)

The trial yield function can be then expressed as

f trial =
√

3
2
∥∥∥dev

(
σtrial

)
−
∑

βi
n

∥∥∥− kn. (12.8)

Plastic Evolution

Given that

βi = βi
n + aiγn− biγβi, → βi = βi

n + aiγn

1 + biγ
, (12.9)

the shifted stress can be computed as

η = s− β = 2GIdev :
(
εn+1 − εp

n −
√

3
2γn

)
− β

= strial −
√

6Gγn−
∑ βi

n + aiγn

1 + biγ

(12.10)

with strial = 2GIdev (εn+1 − εp
n). Hence,

∥η∥n +
√

6Gγn +
∑ aiγ

1 + biγ
n = strial −

∑ βi
n

1 + biγ
,

it is easy to see that(
∥η∥+

√
6Gγ +

∑ aiγ

1 + biγ

)
n = strial −

∑ βi
n

1 + biγ
, (12.11)

meaning n and strial −
∑ βi

n

1 + biγ
are coaxial, thus

n = η

∥η∥
=

strial −
∑ βi

n

1 + biγ∥∥∥∥∥strial −
∑ βi

n

1 + biγ

∥∥∥∥∥
. (12.12)
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Now both η and n shall be functions of γ, which allows simplification of local system. Based
on this fact,

η = ∥η∥n =
(∥∥∥∥∥strial −

∑ βi
n

1 + biγ

∥∥∥∥∥−√6Gγ −
∑ aiγ

1 + biγ

)
n. (12.13)

Furthermore, q =
√

3
2

(∥∥∥∥∥strial −
∑ βi

n

1 + biγ

∥∥∥∥∥−√6Gγ −∑ aiγ

1 + biγ

)
. Its derivative with regard

to γ is

∂q

∂γ
=
√

3
2
∑ bin : βi

n − ai

(1 + biγ)2 − 3G. (12.14)

Local Scalar Residual

For viscoplasticity, the yield function f is not necessarily zero. The rate form of plastic multi-
plier is used here as the residual.

R = q

( ∆t
∆t+ µγ

)ϵ

− k.

The corresponding derivatives are then

∂R

∂γ
=
( ∆t

∆t+ µγ

)ϵ (∂q
∂γ
− qϵµ

∆t+ µγ

)
− dk

dγ (12.15)

and

∂R

∂εn+1
=
( ∆t

∆t+ µγ

)ϵ√
6Gn : Idev =

( ∆t
∆t+ µγ

)ϵ√
6Gn, (12.16)

with

dk
dγ = kl + ksme

−m(pn+γ). (12.17)

Consistent Tangent Stiffness

For stiffness, εn+1 is now varying, then

∂R

∂εn+1
+ ∂R

∂γ

∂γ

∂εn+1
= 0, ∂γ

∂εn+1
= −

(
∂R

∂γ

)−1 ∂R

∂εn+1
. (12.18)

The stress is

σn+1 = σtrial −
√

6Gγn. (12.19)
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The derivative is

∂σn+1
∂εn+1

= D −
√

6G
(
γ

∂n

∂εn+1
+
(
n + γ

∂n

∂γ

)
∂γ

∂εn+1

)
= D +

√
6G

((
n + γ

∂n

∂γ

)(
∂R

∂γ

)−1 ∂R

∂εn+1
− γ ∂n

∂εn+1

)
.

(12.20)

In which,

∂n

∂γ
=

∑ bi

(1 + biγ)2
(
βi

n −
(
n : βi

n

)
n
)

∥∥∥∥∥strial −
∑ βi

n

1 + biγ

∥∥∥∥∥
,

∂n

∂εn+1
=

2G
(
Idev − n⊗ n

)
∥∥∥∥∥strial −

∑ βi
n

1 + biγ

∥∥∥∥∥
. (12.21)

12.1.3. Implementation

The state determination algorithm of this VAFCRP model is given in Algorithm 14.

Algorithm 14 state determination of VAFCRP model
Parameter: λ, G, u, ϵ, m, kl, ks, σy, ai, bi

Input: εn+1, εn, σn, βi
n, pn, ∆t

Output: Dn+1, σn+1, βi
n+1, pn+1

compute σtrial, strial, n and f trial ▷ Eq. (12.7) and Eq. (12.8)
if f trial ⩾ 0 then

γ = 0
compute strial

while true do
compute n

compute R and ∂R

∂γ
▷ Eq. (12.1.2) and Eq. (12.15)

∆γ =
(
∂R

∂γ

)−1
R

if |∆γ| < tolerance then
break

end if
γ ← γ −∆γ
pn+1 = pn + γ

end while
σn+1 = σtrial −

√
6Gγn

compute all βi
n+1 ▷ Eq. (12.9)

compute Dn+1 ▷ Eq. (12.20)
else

σn+1 = σtrial

βp
n+1 = βp

n

pn+1 = pn

Dn+1 = D

165



12. Viscoplasticity

end if

1 int VAFCRP::update_trial_status(const vec& t_strain) {
2 trial_stress = current_stress + (trial_stiffness = initial_stiffness) * (incre_strain =

(trial_strain = t_strain) - current_strain);↪→

3

4 trial_history = current_history;
5 auto& p = trial_history(0);
6

7 const auto trial_s = tensor::dev(trial_stress);
8

9 auto eta = trial_s;
10 for(unsigned I = 0; I < size; ++I) eta -= vec{&trial_history(1 + 6llu * I), 6, false,

true};↪→

11

12 // const auto residual = root_three_two * tensor::stress::norm(eta) - std::max(0., yield
+ hardening * p + saturated * (1. - exp(-m * p)));↪→

13

14 if(root_three_two * tensor::stress::norm(eta) < std::max(0., yield + hardening * p +
saturated * (1. - exp(-m * p)))) return SUANPAN_SUCCESS;↪→

15

16 vec xi;
17 auto gamma = 0., exp_gamma = 1.;
18 double norm_xi, jacobian;
19

20 unsigned counter = 0;
21 while(true) {
22 if(max_iteration == ++counter) {
23 suanpan_error("VAFCRP cannot converge within %u iterations.\n", max_iteration);
24 return SUANPAN_FAIL;
25 }
26

27 const auto exp_term = saturated * exp(-m * p);
28

29 auto k = yield + saturated + hardening * p - exp_term;
30 auto dk = hardening + m * exp_term;
31 if(k < 0.) k = dk = 0.;
32

33 vec sum_a(6, fill::zeros);
34 auto sum_b = 0.;
35 for(unsigned I = 0; I < size; ++I) {
36 const auto denom = 1. + b(I) * gamma;
37 sum_a += vec{&trial_history(1 + 6llu * I), 6, false, true} / denom;
38 sum_b += a(I) * gamma / denom;
39 }
40

41 norm_xi = tensor::stress::norm(xi = trial_s - sum_a);
42

43 const auto q = root_three_two * (norm_xi - root_six_shear * gamma - sum_b);
44 exp_gamma = pow(*incre_time / (*incre_time + mu * gamma), epsilon);
45

46 sum_b = 0.;
47 for(unsigned I = 0; I < size; ++I) sum_b += (b(I) / norm_xi *

tensor::stress::double_contraction(xi, vec{&trial_history(1 + 6llu * I), 6,
false, true}) - a(I)) * pow(1. + b(I) * gamma, -2.);

↪→

↪→

48

49 jacobian = exp_gamma * (root_three_two * sum_b - three_shear - q * epsilon * mu /
(*incre_time + mu * gamma)) - dk;↪→
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50

51 const auto incre = (q * exp_gamma - k) / jacobian;
52 suanpan_extra_debug("VAFCRP local iterative loop error: %.5E.\n", fabs(incre));
53 if(fabs(incre) <= tolerance) break;
54

55 gamma -= incre;
56 p -= incre;
57 }
58

59 const vec u = xi / norm_xi;
60

61 vec sum_c(6, fill::zeros);
62 for(unsigned I = 0; I < size; ++I) {
63 vec beta(&trial_history(1 + 6llu * I), 6, false, true);
64 sum_c += b(I) * pow(1. + b(I) * gamma, -2.) * (beta -

tensor::stress::double_contraction(u, beta) * u);↪→

65 beta = (beta + a(I) * gamma * u) / (1. + b(I) * gamma);
66 }
67

68 trial_stress -= root_six_shear * gamma * u;
69

70 trial_stiffness += (root_six_shear * (double_shear * gamma / norm_xi + root_six_shear *
exp_gamma / jacobian) * u + root_six_shear * root_six_shear * exp_gamma * gamma /
jacobian / norm_xi * sum_c) * u.t() - double_shear * root_six_shear * gamma / norm_xi
* unit_dev_tensor;

↪→

↪→

↪→

71

72 return SUANPAN_SUCCESS;
73 }

12.2. Maxwell Model

The above viscoplasticity models often requires the explicit reference to time t (and its incre-
ment ∆t). By knowing strain increment ∆ε and ∆t, strain rate can be computed by using, for
example, constant rate assumption. By such, the whole model can be converted to a form that
only depends on strain input, assuming (pseudo-)time is always accessible to local material
points. Even with a static analysis setup, creep can be modelled.

Here we present a general framework [18] to solve the viscoplasticity model that truly responsive
to both strain and strain rate inputs.

12.2.1. Background

For viscous dampers, the mechanical response is often defined in displacement/force. Without
loss of generality, a typical viscosity model often defines a linear relationship between stress
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(force/resistance) σ and strain rate (velocity) ε̇,

σ = η · ε̇, (12.22)

where η is a non-zero constant that is known as the viscosity. Such a linear relationship is
known as Newtonian viscosity. For non-Newtonian behaviour, often the power-law fluid is
assumed for simplicity [19], that is,

σ = η · sign (ε̇) · |ε̇|α , (12.23)

where α is a positive constant often known as the flow behaviour index which shall be deter-
mined by experiments. If α = 1.0, the Newtonian viscosity is recovered. A value greater than
1.0 represents shear thickening behaviour. For structural dampers, often shear thinning fluid
is used, typical values of α range from 0.3 to 1.0 [20]. For recent applications, this exponent
can be as small as 0.1 [21].

12.2.2. Modified Power-law Viscosity

Viscous dampers can show different behaviour in four quadrants of strain versus strain rate
space. Such a change of behaviour may stem from, for example, applying one-way valves,
varying chamber geometries [22], changing material types [23] and/or effective fluid velocity.
A constant damping coefficient (viscosity) is not capable of describing such a behaviour (of
the device). Instead, it should be defined as a positive function of current state to account for
various mechanisms, which is

η = f (ε, ε̇) > 0. (12.24)

Thus the stress can be written as

σ = η (ε, ε̇) · sign (ε̇) · |ε̇|α . (12.25)

It shall be noted that Eq. (12.25) can also be expressed as

σ = η̃ · ε̇ (12.26)

with η̃ = η (ε, ε̇) · |ε̇|α−1 known as apparent viscosity, so that such a modification can still be
categorised as the generalised Newtonian fluid model. The definition of η (ε, ε̇) can be quite
flexible in order to describe the desired response. Such a modification mimics semi-active
control schemes in which stress feedback can be adjusted based on different strain and strain
rates as inputs. For more complex (semi-)active schemes, it can be further defined as a function
of other quantities, such as system energy and its history. Two examples are shown as follows
to illustrate this feature.
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Proposed Quadrant Modification

The simplest case would be using four different constants for four quadrants of the ε-ε̇ space.

η (ε, ε̇) =


η1, ε > 0, ε̇ > 0,
η2, ε < 0, ε̇ > 0,
η3, ε < 0, ε̇ < 0,
η4, ε > 0, ε̇ < 0.

(12.27)

Although Eq. (12.27) possesses a simple form that could be easily understood, sudden changes
of damping coefficient, as observed on two axes, are practically unrealistic. The rate of tran-
sition from one quadrant to another also plays a vital role and affects the overall response.
Furthermore, discontinuities in damping coefficient may cause numerical difficulties. Ideally, a
smooth transition is required to improve both numerical stability and robustness of the model.
To this end, a sigmoid function can be applied. The following arctangent functions provide
controllable smooth transition between two sides of the ε̇-axis.

η12 (ε) = η1 + η2
2 + η1 − η2

π
arctan (g1ε) , (12.28)

η43 (ε) = η4 + η3
2 + η4 − η3

π
arctan (g1ε) , (12.29)

where g1 is a constant that controls the steepness of the transition region. In a similar fashion,
for the ε-axis, the following function can be defined,

η (ε, ε̇) = η12 (ε) + η43 (ε)
2 + η12 (ε)− η43 (ε)

π
arctan (g2ε̇) , (12.30)

where g2 is another constant that serves a similar purpose to that of g1. The damping coefficient
η can now be expressed as a function of four material constants, viz.,

η (ε, ε̇) = η1 + η2 + η3 + η4
4 + η1 − η2 + η3 − η4

π2 arctan (g1ε) arctan (g2ε̇)

+ η1 − η2 − η3 + η4
2π arctan (g1ε) + η1 + η2 − η3 − η4

2π arctan (g2ε̇) . (12.31)

Noting that a sudden change of damping response is not achievable in real life, constants g1 and
g2 (strictly speaking, only the one corresponds to displacement tolerance, viz., g1) can hence
represent physical manufacturing tolerance of pistons and chambers.

Apart from the arctangent function, other types of sigmoid curves can also be used. The
following is an alternative using the logistic function.

η (ε, ε̇) = η3 + η4 − η3
1 + e−g1ε

+ η2 − η3
1 + e−g2ε̇

+ η1 + η3 − η2 − η4
(1 + e−g1ε) (1 + e−g2ε̇) . (12.32)

It shall be noted that the derivatives of Eq. (12.31) have a simpler form than that of the above
definition. Other simple functions such as a linear function can also be applied, in which the
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transition range can be explicitly defined.

The quadrant modification can be customised to mimic the effect of negative-stiffness damping
[24, 25, 26, 27] by choosing large η2 and η4 and small η1 and η3. Further elaborations are shown
in numerical examples. Readers who are interested in practical applications of such a quadrant
damper can refer to, for example, the work by [22].

12.2.3. Extension to Maxwell Model

In some certain applications, dampers could be idealised as Maxwell models given the fact
that the extender braces are not fully rigid [28]. For classic viscoelasticity and viscoplasticity,
theories have been developed [3]. Simple cases can be solved analytically by using convolution
integrals. Consider a typical Maxwell model, the rheology model is often represented by
Fig. 12.1. It is normally represented by two components in series: a viscous dashpot and a

Figure 12.1.: rheology model of the Maxwell model with inelastic spring

rate-independent spring which can be either elastic (without frictional device) or elasto-plastic
(with frictional device), then the total strain ε and stress σ of the model can be expressed
as

ε = εd + εs, (12.33)
σ = σd = σs. (12.34)

For a generalised case, it is also possible to further write stress feedback as functions of the
corresponding strain and strain rate, which is

σd = f(εd, ε̇d), σs = g(εs). (12.35)

The subscripts ·d and ·s represent dashpot and spring part, respectively. By differentiating
total strain with respect to time, one could obtain

ε̇ = ε̇d + ε̇s. (12.36)

The governing equation can be established via Eq. (12.34) so that

σd − σs = 0. (12.37)
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12.2.4. Formulation

In terms of numerical simulation, using a dashpot alone does not require special treatments
since the corresponding damping force can be treated as external load and directly applied
to the system/structure/model. If needed, the damping modulus can be derived accordingly.
This also applies to the case if the damper is idealised as a Kelvin–Voigt model. However,
for a Maxwell model, due to the presence of coupling between dashpot and spring, a proper
algorithm is required for state determinations of both components. Some researchers use the
popular Bouc-Wen [29] model to simulate viscous dampers [30, 31]. However, the identification
and calibration of model parameters often impose unnecessary complexities to the model.
Alternatively, the Maxwell system can be solved by using ODE solvers. In this section, the
drawbacks of the ODE solver based approach are first discussed, followed by the proposition
of a new iterative algorithm with better accuracy and efficiency.

ODE Solver Based Approach

If a linear elastic spring and a constant η are adopted, the whole system can be converted into
an ordinary differential equation via Eq. (12.36), that is,

ε̇ = ε̇d + ε̇s = sign (σ) α

√
|σ|
η

+ σ̇

E
, (12.38)

where E denotes the elastic modulus of the spring element, so that

σ̇ = E

(
ε̇− sign (σ) α

√
|σ|
η

)
. (12.39)

By assuming a proper distribution of total strain rate ε̇ over time t, viz., ε̇ = ε̇(t), Eq. (12.39)
can be written as a function of σ and t, viz., σ̇ = f(σ, t). Sophisticated solvers for ordinary
differential equations, including explicit, implicit and semi-implicit solvers, can be applied to
solve this system. Such an approach has been used in prior research [32, 33]. For some simple
cases, analytical solutions can also be derived [34].

Although the above method is simple, straightforward and easy to implement, it suffers from
three main drawbacks.

1. Applicability. Such an approach cannot be applied to inelastic spring. For which, unless
the corresponding spring constitutive model is stress driven, which is not the case for
most constitutive models, spring strain (rate) cannot be recovered from total stress (rate)
since it depends on loading history. As a consequence, dashpot strain (rate) cannot be
recovered. Because of this reason, the damping coefficient η can only be a function of
total strain and total strain rate (instead of that of dashpot), however, dashpot response
solely depends on its own strain and strain rate according to the definition. This is
theoretically incorrect. As can be seen later, the discrepancy due to different strain
and strain rate measures adopted can sometimes be significant, depending on the specific
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parameter set used.

Even with elastic spring, either linear or nonlinear, since spring strain is not explicitly
included in Eq. (12.39), there is no consistent way to isolate spring/dashpot strain (rate)
from total strain (rate) without interpolating both total strain and total strain rate. This
then leads to the second issue.

2. Kinematics Compatibility. This problem stems from the assumed distribution of total
strain rate ε̇, which should be carefully defined by taking the global level time integration
method into account. On one hand, the global time integration scheme is often not known
to local material points. Analysts may switch from one global time integration method
to another, resulting in different integrations of total strain at local points. On the
other hand, an arbitrarily defined distribution of ε̇, such as a simple linear relationship
[33], would lead to a corresponding strain increment which is independent from the one
computed by the global time integration. A consistency/compatibility issue arises. This
is less concerning if the time step is sufficiently small.

3. Efficiency. Existing ODE solvers are less efficient in terms of solving such a Maxwell
model. Consider the classic Fehlberg method [35] as an example, by construction, it
requires six evaluations of Eq. (12.39) for every new σ. If the error of the current step is
unacceptable, all previously evaluated function values would be discarded and a smaller
step size needs to be chosen to repeat the whole computation procedure. Sub-iterations
may be further required to meet a small tolerance.

Besides, if a shear thinning power-law fluid is used, when α deviates from unity (α < 1),
Eq. (12.39) tends to be stiff when velocity (strain rate) is close to zero and results in
potential numerical instability. In that case, explicit methods fail and lower order implicit
solvers have to be used, and the computational cost skyrockets due to their low order
of convergence (second order at most due to the second Dahlquist barrier [36]). Similar
stability issues may also occur if spring stiffness is disproportionally too large.

Furthermore, since the only independent variable is time t, it is in general difficult to
derive the tangent moduli for global equation solving, resulting in a superlinear global
convergence rate at most.

More accurate results can be achieved with fewer function evaluations and thus less compu-
tation time if a better solving method is available. The ideal algorithm shall strictly comply
with the theory and possess a higher convergence rate. Moreover, there is still room for im-
provements of both applicability and efficiency/robustness.

Proposed Iterative Approach

Here a typical strain driven framework is assumed. For numerical simulation, at a single
material point, it is generally difficult to obtain the exact relationship between total strain ε
and total strain rate ε̇ as they are determined by the global integration algorithm that could
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be changed on demand. To ensure kinematic compatibility, similar to the strategy adopted in
many time integration methods, the following assumption can be made between two adjacent
steps tn and tn+1 = tn + ∆t with χ = ε denoting the total strain of the Maxwell model and
χ̇ = ε̇ denoting its strain rate,

χn+1 = χn +
(
(1− β) χ̇n + βχ̇n+1

)
∆t, (12.40)

or equivalently with ∆χ = χn+1 − χn and ∆χ̇ = χ̇n+1 − χ̇n denoting increments of χ and its
rate,

∆χ = (χ̇n + β∆χ̇) ∆t, (12.41)

where β is an integration parameter. For β = 0.5, a constant acceleration rule is implied. Since
there is no other constraint imposed, such an integration relationship can be alternatively
applied to either spring component (χ = εs) or dashpot component (χ = εd). By such a
manner, kinematic compatibility can be rigorously satisfied within the Maxwell model and is
independent from the global time integration method. The parameter β can be defined as a user
input (if χ = εs or χ = εd) or be solved internally (if χ = ε), which is

β = ∆ε− ε̇n∆t
∆ε̇∆t , (12.42)

by using total strains εn+1 and εn and total strain rates ε̇n and ε̇n+1, since they are given at
the beginning of each time step at a specific material point.

As aforementioned, the damping coefficient can be defined as a function of dashpot strain
εd and dashpot strain rate ε̇d, it is necessary to compute them explicitly as history vari-
ables. Here an iterative method is presented to solve for all strain and strain rate compo-
nents.

With the above basic formulae at hand, the problem can now be rephrased as: knowing εn,
ε̇n, εn

d , ε̇n
d , εn

s and ε̇n
s , given the total increments ∆ε = εn+1 − εn and ∆ε̇ = ε̇n+1 − ε̇n, find

increments ∆εd, ∆εs, ∆ε̇d and ∆ε̇s that satisfy

∆εd + ∆εs = ∆ε, (12.43)
∆ε̇d + ∆ε̇s = ∆ε̇, (12.44)
∆εs − β∆ε̇s∆t = ε̇n

s ∆t, (12.45)
σd(εn+1

d , ε̇n+1
d )− σs(εn+1

s ) = 0. (12.46)

It shall be pointed out that Eq. (12.45) is the implementation of Eq. (12.41) on spring strain
εs. In this case, the parameter β can be either computed from Eq. (12.42) or given as a
model constant. Eq. (12.41) can also be applied on dashpot strain εd. However, additional
conversions between different quantities may be required.

Since ε̇s does not enter the constitutive relationship of spring, it can be condensed out so that
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Eq. (12.44) and Eq. (12.45) can be combined to

∆εs + β∆ε̇d∆t = ε̇n
s ∆t+ β∆ε̇∆t. (12.47)

Eq. (12.43), Eq. (12.46) and Eq. (12.47) can be iteratively solved with the classic Newton-
Raphson method. Alternatively, other optimisers can be applied. Linearisation of these
equations leads to the Jacobian matrix J and the corresponding residual R for increment
x =

[
δεs δεd δε̇d

]T
, which are

J = −


1 1 0
1 0 β∆t

−dσs

dεs

∂σd

∂εd

∂σd

∂ε̇d

 , R =

 ∆ε−∆εk
s −∆εk

d

ε̇n
s ∆t+ β∆ε̇∆t−∆εk

s − β∆ε̇k
d∆t

σk
s − σk

d

 , (12.48)

where the superscript (·)k denotes the k-th local iteration.

The determinant of J reads

detJ = β∆t
(dσs

dεs
+ ∂σd

∂εd

)
+ ∂σd

∂ε̇d
. (12.49)

Clearly in the current setup, there is no guarantee for J to be strictly invertible. If J appears
to be ill-conditioned, low rank updates such as the BFGS method, which do not rely on
Jacobian, can be used to solve the system. The inverse J−1 can be analytically expressed
as

J−1 = −1
detJ



∂σd

∂εd
β∆t ∂σd

∂ε̇d
−β∆t

dσs

dεs
β∆t+ ∂σd

∂ε̇d
−∂σd

∂ε̇d
β∆t

−∂σd

∂εd

dσs

dεs
+ ∂σd

∂εd
1


. (12.50)

Eq. (12.50) can be directly used in iterations. The computation of the numerical inverse of the
Jacobian can be avoided so that the rounding error in float point arithmetic can be minimised
as long as detJ is not zero.

A Simple Case

In the case of nonlinear spring and constant damping coefficient η,

dσs

dεs
= E(εs), ∂σd

∂εd
= 0, ∂σd

∂ε̇d
= ηα |ε̇d|α−1 . (12.51)

Given that β > 0, η > 0, α > 0 and ∆t > 0, for the determinant to be strictly posi-
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tive,

E(εs) > − ηα

β∆t |ε̇d|α−1 . (12.52)

Thus a non-softening spring would lead to a nonsingular Jacobian. For softening response,
viz., E(εs) < 0,

ε̇d ̸= ± α−1

√
β∆t |E(εs)|

ηα
(12.53)

guarantees an invertible Jacobian.

Furthermore, if the spring is linear elastic and α = 1, the Jacobian is constant so all quantities
can be solved in one step. To solve such a system with the aforementioned ODE solver
based approach, multiple function evaluations are inevitable, although the analytical solution
is available.

Tangent Stiffness and Damping Moduli

For an easier derivation of tangent stiffness and damping moduli, the stress response can be
rewritten as follows,

σ = 1
2 (σs + σd) . (12.54)

Since σs = σd, in fact, any weighted average with non-zero weights can be used. At equilibrium,
the residual equals zero vector, viz., R = 0, differentiation results in

∂R

∂a
da + ∂R

∂x
dx = 0, (12.55)

in which a =
[
∆ε ∆ε̇

]T
is the increments of total strain and total strain rate and ∂R

∂x
= J .

Thus,

∂x

∂a
=
[
∂x

∂∆ε
∂x

∂∆ε̇

]
= −J−1∂R

∂a
= 1

detJ



∂σd

∂εd
β∆t ∂σd

∂ε̇d
β∆t

dσs

dεs
β∆t+ ∂σd

∂ε̇d
−∂σd

∂ε̇d
β∆t

−∂σd

∂εd

dσs

dεs
β∆t+ ∂σd

∂εd
β∆t


.

(12.56)

It shall be pointed out that the parameter β is assumed to be a constant user input in the
above derivation for brevity. If it is expressed as a function of a via Eq. (12.42), the cor-
responding ∂x/∂a can be derived accordingly. The procedure is presented in the appendix.
The stiffness and damping moduli can be readily computed by using the chain rule. Knowing
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that

∂σ

∂x
= 1

2

[dσs

dεs

∂σd

∂εd

∂σd

∂ε̇d

]
, (12.57)

then after some rearrangements,

K = ∂σ

∂ε
= β∆t

detJ
dσs

dεs

∂σd

∂εd
, C = ∂σ

∂ε̇
= β∆t

detJ
dσs

dεs

∂σd

∂ε̇d
. (12.58)

Eq. (12.58) is independent from the global time integration scheme and quadratic convergence
is recovered. It can be easily verified that if the dashpot behaves like a spring so that dσs/dεs =
K1, dσd/dεd = K2 and dσd/dε̇d = 0, then the stiffness modulus K falls back to the widely
recognised form of two springs in series,

K = K1K2
K1 +K2

. (12.59)

Circumventions of Potential Numerical Difficulties

Numerical difficulties may arise if ∂η/∂εd becomes too large due to an improperly large steep-
ness parameter g1. The same situation occurs with ∂η/∂ε̇d and g2. This problem can be eased
by scaling steepness parameters according to the maximum strain and strain rate. Another ma-
jor problem is that ∂σd/∂ε̇d approaches infinity at origin if the exponent α in power-law model is
smaller than unity. An enough-close-to-origin strain rate can be often met, especially in forced
vibrations. This may not be a problem if the corresponding damping modulus term ∂σd/∂ε̇d

is not involved in the global equation of motion, in which case the quadratic convergence rate
cannot be recovered. However, when combined with a spring to form a Maxwell model, an
disproportionally large ∂σd/∂ε̇d may fail the local iteration. A possible workaround would be
limiting the apparent viscosity to a finite value via extrapolation [37].

Here in lieu of the original power-law relationship, a cubic segment within a small width
around origin is used to limit the corresponding derivative within a finite value so that the
stress feedback can be rewritten as a piecewise-defined function such as

σd =
{
η (εd, ε̇d) ·

(
Aε̇3

d +Bε̇d

)
, |ε̇d| ⩽ v,

η (εd, ε̇d) · sign (ε̇d) · |ε̇d|α , else, (12.60)

where v is a user-defined constant that controls the size of cubic replacement. The cubic
function, as an odd function, is chosen given the fact that the power-law Eq. (12.25) is also an
odd function. With a cubic replacement, C1 continuity can be ensured. By enforcing continuity
of both σd and ∂σd/∂ε̇d at |ε̇d| = v, constants A and B can be solved as

A = α− 1
2 vα−3, B = 3− α

2 vα−1. (12.61)

176



12.2. Maxwell Model

Hence,

∂σd

∂ε̇d

∣∣∣
ε̇d=0

= η (εd, ε̇d)
∣∣∣
ε̇d=0

B = η (εd, ε̇d)
∣∣∣
ε̇d=0

3− α
2 vα−1. (12.62)

A properly defined v can greatly improve the performance of the proposed model for a small α
as the apparent viscosity is bounded with such a modification. In the meantime, the damping
stress is not largely affected since the strain rate is close to zero.

12.2.5. Implementation

1 int Maxwell::update_trial_status(const vec& t_strain, const vec& t_strain_rate) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3 incre_strain_rate = (trial_strain_rate = t_strain_rate) - current_strain_rate;
4

5 if(fabs(incre_strain(0)) + fabs(incre_strain_rate(0)) <= datum::eps) return
SUANPAN_SUCCESS;↪→

6

7 const auto& K1 = spring->get_trial_stiffness().at(0);
8 const auto& K2 = damper->get_trial_stiffness().at(0);
9 const auto& K3 = damper->get_trial_damping().at(0);

10 const auto& F1 = spring->get_trial_stress().at(0);
11 const auto& F2 = damper->get_trial_stress().at(0);
12

13 // \beta\Delta{}t
14 const auto factor_a = beta * *incre_time;
15

16 const auto target = *incre_time * (current_strain_rate(0) -
damper->get_current_strain_rate().at(0)) + factor_a * incre_strain_rate(0);↪→

17

18 vec solution(3, fill::zeros);
19

20 counter = 0;
21

22 if(double error, ref_error = 1.; use_matrix) {
23 mat inv_jacobian(3, 3);
24

25 inv_jacobian(0, 2) = -factor_a;
26 inv_jacobian(1, 2) = factor_a;
27 inv_jacobian(2, 2) = 1.;
28

29 while(++counter < max_iteration) {
30 const vec residual{incre_strain(0) - solution(0) - solution(1), target -

solution(0) - factor_a * solution(2), F1 - F2};↪→

31

32 inv_jacobian(0, 0) = factor_a * K2;
33 inv_jacobian(1, 0) = factor_a * K1 + K3;
34 inv_jacobian(2, 0) = -K2;
35

36 inv_jacobian(0, 1) = K3;
37 inv_jacobian(1, 1) = -K3;
38 inv_jacobian(2, 1) = K1 + K2;
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39

40 const vec incre = inv_jacobian * residual / (factor_a * (K1 + K2) + K3);
41

42 if(1 == counter) ref_error = std::max(1., norm(residual));
43 suanpan_extra_debug("Maxwell local iteration error: %.4E.\n", error =

norm(residual) / ref_error);↪→

44 if(norm(incre) <= tolerance && error <= tolerance) break;
45 solution += incre;
46 spring->update_incre_status(solution(0));
47 damper->update_incre_status(solution(1), solution(2));
48 }
49 }
50 else
51 while(++counter < max_iteration) {
52 const auto residual_a = incre_strain(0) - solution(0) - solution(1);
53 const auto residual_b = target - solution(0) - factor_a * solution(2);
54 const auto residual_c = F1 - F2;
55 const auto residual = residual_a * K2 - residual_c + residual_b / factor_a * K3;
56 const auto jacobian = K1 + K2 + K3 / factor_a;
57 const auto incre = residual / jacobian;
58 if(1 == counter) ref_error = std::max(1., fabs(residual));
59 suanpan_extra_debug("Maxwell local iteration error: %.4E.\n", error =

fabs(residual) / ref_error);↪→

60 if(fabs(incre) <= tolerance && error <= tolerance) break;
61 solution(0) += incre;
62 solution(1) += residual_a - incre;
63 solution(2) += (residual_b - incre) / factor_a;
64 spring->update_incre_status(solution(0));
65 damper->update_incre_status(solution(1), solution(2));
66 }
67

68 if(max_iteration != counter) {
69 delay_counter = 0;
70

71 trial_stress = .5 * (F1 + F2);
72

73 trial_damping = trial_stiffness = factor_a / (factor_a * (K1 + K2) + K3) * K1;
74 trial_stiffness *= K2;
75 trial_damping *= K3;
76

77 return SUANPAN_SUCCESS;
78 }
79

80 if(1 >= proceed || ++delay_counter == proceed) {
81 suanpan_error("Maxwell: local iteration cannot converge within %u iterations.\n",

max_iteration);↪→

82 return SUANPAN_FAIL;
83 }
84

85 return reset_status();
86 }
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13.1. Gurson Model

13.1.1. Theory

13.1.2. Formulation

13.1.3. Implementation

1 int NonlinearGurson::update_trial_status(const vec& t_strain) {
2 incre_strain = (trial_strain = t_strain) - current_strain;
3

4 if(norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
5

6 trial_stress = current_stress + (trial_stiffness = initial_stiffness) * incre_strain;
7

8 trial_history = current_history;
9 auto& pe = trial_history(0); // equivalent plastic strain

10 auto& f = trial_history(1); // volume fraction
11 const auto& current_pe = current_history(0);
12 const auto& current_f = current_history(1);
13

14 auto trial_s = tensor::dev(trial_stress); // trial deviatoric
stress↪→

15 const auto trial_q = sqrt_three_two * tensor::stress::norm(trial_s); // trial von Mises
stress↪→

16 const auto trial_p = tensor::mean3(trial_stress); // trial hydrostatic
stress↪→

17 auto p = trial_p; // hydrostatic
stress↪→

18

19 mat jacobian(4, 4);
20 vec incre, residual(4);
21 auto gamma = 0.;
22 double denom;
23

24 unsigned counter = 0;
25 while(true) {
26 if(max_iteration == ++counter) {
27 suanpan_error("NonlinearGurson cannot converge within %u iterations.\n",

max_iteration);↪→
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28 return SUANPAN_FAIL;
29 }
30

31 const auto hardening = compute_hardening(pe);
32 const auto &k = hardening(0), &dk = hardening(1);
33 const auto hyper_term = 1.5 * q2 * p / k;
34 const auto cosh_term = cosh(hyper_term);
35 const auto sinh_term = sinh(hyper_term);
36 const auto q = trial_q / (denom = 1. + six_shear * gamma);
37 const auto an = para_b * exp(-.5 * pow((pe - en) / sn, 2.));
38 const auto para_d = para_a * sinh_term;
39

40 const auto diff_pe = pe - current_pe, diff_p = p - trial_p;
41

42 residual(0) = q * q + k * k * (f * q1 * (2. * cosh_term - q1 * f) - 1.);
43

44 if(1 == counter && residual(0) < 0.) return SUANPAN_SUCCESS;
45

46 residual(1) = (1. - f) * k * diff_pe - 2. * gamma * q * q + p * diff_p / bulk;
47 residual(2) = f - current_f + (1. - f) * diff_p / bulk - an * diff_pe;
48 residual(3) = diff_p + para_a * gamma * f * k * sinh_term;
49

50 jacobian(0, 0) = -2. * six_shear / denom * q * q;
51 jacobian(0, 1) = (f * (4. * q1 * k * cosh_term - para_d / bulk * p) - 2. * k * (q1 *

q1 * f * f + 1.)) * dk;↪→

52 jacobian(0, 2) = 2. * k * k * q1 * (cosh_term - q1 * f);
53 jacobian(0, 3) = para_d / bulk * f * k;
54 jacobian(1, 0) = 2. * q * q * (six_shear * gamma - 1.) / denom;
55 jacobian(1, 1) = (1. - f) * (dk * diff_pe + k);
56 jacobian(1, 2) = -k * diff_pe;
57 jacobian(1, 3) = (p + diff_p) / bulk;
58 jacobian(2, 0) = 0.;
59 jacobian(2, 1) = an / sn / sn * (pe - en) * diff_pe - an;
60 jacobian(2, 2) = 1. - diff_p / bulk;
61 jacobian(2, 3) = (1. - f) / bulk;
62 jacobian(3, 0) = para_d * f * k;
63 jacobian(3, 1) = para_a * gamma * f * (sinh_term - hyper_term * cosh_term) * dk;
64 jacobian(3, 2) = para_d * gamma * k;
65 jacobian(3, 3) = 1. + 1.5 * para_a * q2 * gamma * f * cosh_term;
66

67 if(!solve(incre, jacobian, residual)) return SUANPAN_FAIL;
68

69 const auto error = norm(residual);
70 suanpan_debug("NonlinearGurson local iteration error: %.5E.\n", error);
71 if(error <= tolerance || norm(incre) <= tolerance) break;
72

73 gamma -= incre(0);
74 pe -= incre(1);
75 f -= incre(2);
76 p -= incre(3);
77

78 f = std::min(std::max(f, 0.), 1.); // avoid overshoot
79 }
80

81 trial_s /= denom;
82

83 mat left, right(4, 6);
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84

85 right.row(0) = -six_shear / denom * trial_s.t();
86 right.row(1) = -2. * gamma * right.row(0) + p * tensor::unit_tensor2.t();
87 right.row(2) = (1. - f) * tensor::unit_tensor2.t();
88 right.row(3) = bulk * tensor::unit_tensor2.t();
89

90 if(!solve(left, jacobian, right)) return SUANPAN_FAIL;
91

92 trial_stress = trial_s + p * tensor::unit_tensor2;
93

94 trial_stiffness = six_shear / denom / 3. * unit_dev_tensor - six_shear / denom * trial_s
* left.row(0) + tensor::unit_tensor2 * left.row(3);↪→

95

96 return SUANPAN_SUCCESS;
97 }

13.2. The N-M Frame Element

In this section, we present a frame element that supports customisation of the N -M interaction
with the generalised plasticity theory. The core model is taken mainly from the literature,
further discussions can be seen elsewhere [38].

This element fuses the concepts of element, section and material altogether, thus, it can be
deemed as a material model as well.

13.2.1. Preliminaries

Definitions and Kinematics

Consider a two–node beam1 element connecting nodes i and j with its rigid body motions
removed, the resulting degrees of freedom are axial deformation u, rotational deformation θz,i

of end i and rotational deformation θz,j of end j, and additional two end rotations, θy,i and
θy,j about weak axis in case of a 3D beam. It is assumed that the beam is rigid against torsion
(no torsion deformation).

1The word ‘beam’ is used interchangeably with ‘frame’ and/or ‘beam–column’.
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x

y

θz,i(Mz,i)
u(P )

θz,j(Mz,j)

Figure 13.1.: deformation and resistance of a 2D beam

The elemental deformation vector v can then be defined as

v =
[
u θz,i θz,j θy,i θy,j

]T
(13.1)

for 3D beam elements, where u is the axial deformation and θ is the nodal deformation about its
chord, subscripts (·)i and (·)j denote two nodes/ends, (·)z and (·)y denote strong and weak axis,
respectively. Accordingly, the elemental resistance q can be defined as

q =
[
P Mz,i Mz,j My,i My,j

]T
, (13.2)

where P denotes axial force while M denotes end moment. The corresponding yield forces are
denoted as P y, My

z and My
y and it is assumed both ends have the same yield forces. Such

definitions of elemental deformation and resistance are independent from the transformation
between global and local reference frames, and thus, can be combined with either linear or
corotational transformation. For this reason, the subsequent discussion is confined to the local
reference frame only.

The elastic constitutive relationship, denoted by the superscript (·)e, is conventionally known
as

q = Kve, with K =



EA

L
· · · ·

· 4EIz

L

2EIz

L
· ·

· 2EIz

L

4EIz

L
· ·

· · · 4EIy

L

2EIy

L

· · · 2EIy

L

4EIy

L


, (13.3)

where L is the initial length of beam element, EA is the axial rigidity and EI denotes the
flexural rigidity.
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Basic Quantities

The above definition is widely adopted as the basic quantities of beam elements. However,
it complicates plasticity formulation due to the coupling of (rotational) DoFs. For example,
consider the moment Mz,i at end i, which can be explicitly written as

Mz,i = EIz

L
(4θz,i + 2θz,j) , (13.4)

the above expression implies that both θz,i and θz,j contribute to Mz,i. Once node j yields,
the plasticity developed on far end DoF θz,j would also affect near end moment Mz,i, thus, it
is difficult to find a yield rotation that corresponds to yield moment My

z,i by solely using near
end rotation θz,i.

Instead of v, the proposed formulation is developed based on the following quantity

e =


ε
χz,i

χz,j

χy,i

χy,j

 = Sv, S = 1
L


1 · · · ·
· 4 2 · ·
· 2 4 · ·
· · · 4 2
· · · 2 4

 . (13.5)

As a result, the coupling of rotational degrees of freedom is removed. The stiffness matrix
becomes a diagonal matrix. One may observe that the magnitudes of χi and χj correspond
to that of sectional curvatures at two ends (using displacement interpolation as in the conven-
tional displacement based Euler–Bernoulli beam element). By using which, it is possible to
find a yield curvature χy that corresponds to My for each DoF. It is worth noting that the
element length L is optionally moved from elasticity matrix E to e, hence e is a strain–like
quantity, rather than deformation in the conventional sense. However, we do not distinguish
between those two terminologies and use elemental ‘deformation’ to refer to e as defined in
Eq. (13.5).

For each end, the nodal deformation can be extracted as

ei =

 ε
χz,i

χy,i

 =

1 · · · ·
· 1 · · ·
· · · 1 ·

 e = Tie, ej =

 ε
χz,j

χy,j

 =

1 · · · ·
· · 1 · ·
· · · · 1

 e = Tje,

(13.6)

or concisely,

eℵ = Tℵe, (13.7)

where subscript (·)ℵ denotes either (·)i or (·)j . In this work, the presence of subscript (·)ℵ
implies that it is a nodal quantity, the same symbol without subscript (·)ℵ denotes its elemental
counterpart. We define Ti and Tj to be transformation/selection matrices. The main purpose
of adopting e in the formulation is two–fold: 1) to decouple nodal response so that plasticity
(on rotational DoFs) can be developed independently at each end, and 2) to obtain a better
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implication of the corresponding plastic deformation.

The nodal elasto-plastic constitutive relationship can now be conveniently expressed as

qℵ = Eℵe
e
ℵ = Eℵ

(
eℵ − ep

ℵ
)
, Eℵ = diag

(
EA EIz EIy

)
. (13.8)

The corresponding elemental version is

q = Eee = E (e− ep) , E = diag
(
EA EIz EIz EIy EIy

)
. (13.9)

We further rewrite the above expression in the normalised space (normalised by yield force
and yield deformation) as

qℵ = ee
ℵ = eℵ − ep

ℵ, or q = ee = e− ep, (13.10)

where the overbar (·) denotes the normalised counterpart, for example,

qℵ =

P y · ·
· My

z ·
· · My

y

 qℵ. (13.11)

The elemental version with subscript (·)ℵ omitted in Eq. (13.10) holds due to the fact that
DoFs are now decoupled.

13.2.2. Generalised Plasticity Framework

The generalised plasticity concept [39] is followed loosely in this work. However, the two–
surface (yield surface and bounding surface) concept is not adopted as the presence of which
makes the quantification of hardening behaviour difficult.

The main challenge comes from the fact that N -M interaction should be considered at each
node, the activation of plasticity (of moment) at either end should be relatively independent
from the other end. However, as there is only one axial force which is shared between two
ends, its plasticity history affects both ends. Simply adopting a conventional multisurface
formulation [3] leads to potential local bifurcation issues, as under certain conditions, one
surface would become redundant. In the following, a special formulation that allows in-
dependent activation of plasticity at each end while enables proper hardening behaviour is
presented.

Yield Function

Nodal Yield Function For each end, the nodal resistance qℵ should be bounded by the
corresponding nodal yield surface fℵ, then, the admissible region is defined by fℵ ⩽ 0 while
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the inadmissible region is equivalent to fℵ > 0. For each node, fℵ can be simply chosen
as

fℵ = Φℵ, (13.12)

where Φℵ = Φℵ (sℵ, αℵ) is the N -M interaction surface based on the shifted resistance sℵ =
qℵ − βℵ and the equivalent plastic strain αℵ, βℵ is similar to the concept of back stress
in conventional plasticity models, here back resistance that defines the centre of interaction
surface. The N -M interaction surface can not only change its location (governed by βℵ) but
also grow its size (governed by αℵ) accordingly.

Elemental Yield Function The elemental yield surface f should be able to capture yielding
of any ends, a possible option is

f =
∑
⟨fℵ⟩ =

∑
⟨Φℵ⟩ = ⟨Φi⟩+ ⟨Φj⟩, (13.13)

The ⟨·⟩ symbol denotes the Macaulay bracket. By Eq. (13.13), as long as one end yields (or
both yield), f > 0. Eq. (13.13) is closely related to the multisurface plasticity theory [3] but not
identical. The exact multisurface plasticity based formulation [40] would cause local bifurcation
as one of Φℵ becomes redundant under pure axial loading. By such, a single elemental yield
function f can be used to properly capture yielding of any ends.

Alternatively, a bounding surface concept, which is frequently adopted in models of geomate-
rials [41], concrete and metals, can be used to simulate more complex evolution of plasticity.
For simplicity, the above single surface formulation is adopted in this work. It is worth noting
that the major discrepancy compared to conventional plasticity models is that plasticity can
develop at either end in a relatively independent manner, in the meantime, two ends are
linked with each other via the shared axial force.

Often, f is a non-dimensional function of s and α. Dimensional analysis shows a plasticity
framework based on normalised quantities can simplify both formulation and implementation,
thus, in this work, the yield surface fℵ is defined as follows instead.

fℵ = Φℵ (sℵ, αℵ) , (13.14)

where sℵ = qℵ − βℵ with qℵ be the normalised nodal resistance Eq. (13.11) and βℵ be the
normalised nodal back resistance, viz.,

βℵ =

P y · ·
· My

z ·
· · My

y

βℵ. (13.15)
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N-M Interaction Surface

The initial N -M interaction surface is often defined as a non-homogeneous polynomial. For
example, for a 2D element, a common option is

Φℵ = 1.15
(
P − βP

)2
+
(
M z − βMz

)2
+ 3.67

(
P − βP

)2 (
M z − βMz

)2
− c,

where βP and βMz
denote the corresponding components of βℵ, c is a constant that determines

the initial size of the surface.

Introducing isotropic hardening to the above equation via c = c (α) indeed introduces hardening
into the model but cannot recover the desired hardening behaviour due to the non-homogeneous
attribute of Φℵ. Instead, accounting for the arbitrariness of Φℵ, one can, for example, define
the interaction surface to be

Φℵ = 1.15
(
P − βP

hP (αℵ)

)2

+
(
M z − βMz

hMz (αℵ)

)2

+ 3.67
(
P − βP

hP (αℵ)

)2(
M z − βMz

hMz (αℵ)

)2

− c,

(13.16)

where h (αℵ) is the isotropic hardening function that satisfies the conditions h (αℵ) ⩾ 0 and
h (0) = 1.

We further express the interaction surface in its general form as

Φℵ =
n∑

i=1

ai

∏
r

(
r − βr

hr (αℵ)

)bi,r
− c, (13.17)

where n is the number of terms, ai is the constant coefficient of each product, bi,r is the order of
each bracket and r represents the specific force component r ∈ (P, Mz, My). Eq. (13.17) serves
as the formal definition of the nodalN -M interaction surface with hardening.

It is worthing noting that hP (αℵ) does not need to be the same as hMz (αℵ). Different func-
tions can be assigned to different components so that the interaction surface can change its
shape during evolution (to mimic anisotropic hardening). An example is shown in Fig. 13.2.

Flow Rule

The evolution of plastic deformation ep shall be linked to the gradient g of plastic poten-
tial, which is simply taken as f , leading to g = ∂f

∂q
. By denoting ζ = Γ (g), one can ob-

tain

ėp = γζ, (13.18)
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Mz

P

Φ =
(

P − βP

hP

)2

+
(

Mz − βMz

hM

)2

− 1

hP = 1 + α hM = 1 + 3α

initial surface
subsequent surface
change of centre

change shape and size due to
(an)isotropic hardening

change centre due to
kinematic hardening

Figure 13.2.: mixed evolution of an example N -M interaction surface

in which γ denotes the plastic multiplier. It must be noted that since f is now based on nor-
malised quantities, ėp denotes the normalised plastic deformation increment. Different options
of function Γ (·) are available. In this work, the simplest form ζ = g = ∂f

∂q
, implying the asso-

ciative flow rule, is chosen, which can be further explicitly expressed as

g =
∑

TT
ℵ
∂⟨Φℵ⟩
∂qℵ

= TT
i

∂⟨Φi⟩
∂qi

+ TT
j

∂⟨Φj⟩
∂qj

. (13.19)

It should also be emphasised that only one plastic multiplier γ is adopted in the present
formulation. Other options of ζ include

ζ = g

∥g∥
, (13.20)

which has a fixed size (unity) that is beneficial in terms of alleviating potential numerical
instability issues when computing the derivative of ζ.

Isotropic Hardening

For isotropic hardening, α̇ℵ shall be related to some scalar measure of plastic deformation ėp.
The simplest one would be

α̇ℵ =
∥∥∥ėp

ℵ

∥∥∥ =
∥∥Tℵė

p
∥∥ = γ∥Tℵζ∥. (13.21)

The above definition implies that nodal plastic deformation ėp
ℵ can be extracted from elemental

plastic deformation ėp via

ėp
ℵ = Tℵė

p. (13.22)

The elemental equivalent plastic deformation α̇ is not used in the formulation, and one must be
aware of the fact that α̇ ̸= α̇i + α̇j in general cases. Essentially, α̇ℵ is the length of projection
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of ėp (a 5D vector in deformation space) onto the 3D sub-space. An illustration of such a
projection for 2D elements is depicted in Fig. 13.3.

ep
Mz,j

ep
Mz,i

ep
P

αi history
αj history

α history characterises
the length of path

Figure 13.3.: definition of nodal equivalent plastic deformation of 2D beam

A popular isotropic hardening rule that adopts a linear hardening base and a saturation [5]
can be defined as

h (αℵ) = 1 +Hαℵ + s− se−mαℵ , (13.23)

where H is the linear isotropic hardening ratio, s is the saturation level and m controls hard-
ening speed. In absence of H, it is easy to see that

lim
αℵ→∞

h (αℵ) = 1 + s. (13.24)

Setting either s = 0 or m = 0 leads to pure linear isotropic hardening.

In this work, no anisotropic hardening is considered so that

hP (αℵ) = hMz (αℵ) = hMy (αℵ) = h (αℵ) . (13.25)

Apparent Hardening Ratio Assume the interaction surface incorporates a linear isotropic
hardening and is defined as

Φℵ = a

(
P − βP

1 +Hαℵ

)2

− c, (13.26)

which is equivalent to

Φℵ =

 P − βP√
c

a
+
√
c

a
Hαℵ


2

− 1, (13.27)
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Noting that H is the hardening ratio defined in plastic deformation–force space, the counter-
part, the apparent hardening ratioH, in deformation–force space is then [3]

H =

√
c

a
H

1 +
√
c

a
H

= H√
a

c
+H

. (13.28)

This is useful in quantitative verification of the proposed model.

Kinematic Hardening

For kinematic hardening, the rate form of back resistance β can be generally expressed as a
function of itself and the increment of plastic deformation ėp,

β̇ = Ξ
(
β, ėp

)
. (13.29)

The bounding type hardening can be achieved by implementing a proper kinematic hardening
model explained as follows. Let the size of back resistance β be bounded by a fixed size denoted
by Bs, that is∥∥∥β∥∥∥ ⩽ Bs. (13.30)

The evolution direction of β is determined by both the current position of β and that of
the corresponding projected image (onto the bounding surface), which is revolving around
the origin and can be determined by the direction of plastic flow ėp, meaning that β̇ al-

ways points to Bs
ėp∥∥ėp
∥∥ . The evolution speed is governed by how close the current β is to

the bounding limit, such a distance is denoted by D and can be characterised by, for exam-
ple,

D = 1
2 −

β

2Bs
· ėp∥∥ėp

∥∥ , (13.31)

which ranges from 0 to 1. The · operator denotes inner product.

Combing the direction and speed together, accounting for that ėp∥∥ėp
∥∥ = ζ

∥ζ∥
holds for associa-

tive plastic flow, the rate form of β can be expressed as

β̇ = γD

(
Bs

ζ

∥ζ∥
− β

)
. (13.32)

The concept is depicted in Fig. 13.4. More complex formulations of kinematic hardening of this
type are often seen in constitutive models for geomaterials and metals.

189



13. Other

Mz

P

may revolve during
evolution

Bs

β

β̇

ėp

bounding limit of
centre of Φ

current Φ
may change

size and shape

initial Φ

current projected
image of Φ

Figure 13.4.: bounded evolution of nodal back resistance of a 2D beam

Armstrong–Fredrick Type By choosing D = Ka∥ζ∥, the above bounding type hardening
rule falls back to the Armstrong–Fredrick type [4] kinematic hardening that can be expressed
as

β̇ = Kbė
p −Ka

∥∥ėp
∥∥β. (13.33)

In the above definition, Ka and Kb = KaBs are two kinematic hardening ratios. Setting
Ka = 0 with Kb ̸= 0 leads to pure linear kinematic hardening behaviour. Alternatively, a
Chaboche type multiplicative model [6] can also be used. Furthermore, similar to isotropic
hardening, different kinematic hardening rules can be assigned to axial/moment components,
see the example presented in the appendix. In this work, Eq. (13.33) is adopted accounting
for both generality and simplicity.

Apparent Hardening Ratio Assume a linear kinematic hardening is defined as

β̇ = Kėp. (13.34)

The apparent hardening ratioK observed in the deformation–force space is then [3]

K = K

1 +K
. (13.35)

This is useful in quantitative verification of the proposed model.

Loading/Unloading Conditions

Since the elemental yield function f = ∑
⟨fℵ⟩ defined in this work cannot take negative values,

f ≡ 0. The conventional Kuhn–Tucker complementarity conditions should be derived based
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on nodal surfaces accordingly [3]. In summary,

1. for all cases, γ ⩾ 0 and Φi ⩽ 0 and Φj ⩽ 0,

2. for elastic loading/unloading, γ = 0 and Φi < 0 and Φj < 0,

3. for plastic loading, γ > 0 and one of following cases:

a) node i yields: Φi = 0 and Φ̇i = 0 and Φj < 0,

b) node j yields: Φi < 0 and Φj = 0 and Φ̇j = 0,

c) both nodes yield: Φi = 0 and Φ̇i = 0 and Φj = 0 and Φ̇j = 0,

4. for neutral loading, γ = 0 and one of the same three cases above.

Following the conventional style, the Kuhn–Tucker complementarity condition and consistency
condition can be expressed as

γΦiΦj = 0 and γΦ̇iΦ̇j = 0. (13.36)

Remarks

1. There is only one elemental yield function f , which contains two nodal interaction
surfaces Φℵ.

2. The flow rule is derived from the unique elemental yield function f , thus the plastic flow
defined in Eq. (13.18) is strictly associative. This differs from the multisurface plasticity
framework. The resulting plastic deformation ep is an elemental quantity.

3. The equivalent plastic deformation αℵ is computed based on part of elemental plastic
deformation ep and may have different histories for two ends. Furthermore, in general,
α ̸= αi + αj .

4. The back resistance β is based on elemental plastic deformation ep. No matter which
end yields, the same evolution rule applies to both elemental and nodal quantities.

5. The conventional fibre based beam elements have symmetric tangent stiffness matrix.
Depending on the specific plastic flow and hardening rules used, such a symmetry is, in
general, not guaranteed for generalised plasticity based beam elements.
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13.2.3. Discrete System

The discrete local system in vectorial form is derived in this section for 3D beam elements
accounting for five elemental deformation/force components, that is equivalent to three nodal
components. In the case of 2D elements, it reduces to three elemental components and two
nodal components. The formulation is almost identical for both 2D and 3D elements, thus,
only the 3D version is presented.

Elastic Loading/Unloading

By freezing plasticity, one can compute the elemental trial state as

qtrial = qn + E (en+1 − en) , (13.37)

the nodal normalised version qtrial
ℵ can be extracted accordingly via the relationship

Tℵq
trial =

P y · ·
· My

z ·
· · My

y

 qtrial
ℵ . (13.38)

Then trial yield function can be evaluated for each node.

f trial
ℵ = Φtrial

ℵ , (13.39)

with Φtrial
ℵ = Φ

(
strial

ℵ , αℵ,n

)
in which strial

ℵ = qtrial
ℵ − βℵ,n.

If f trial = ∑
⟨f trial

ℵ ⟩ = 0, implying both Φtrial
ℵ are non-positive, indicating both ends are

undergoing elastic loading/unloading. Otherwise f trial > 0 and local return mapping is required
to determine the plastic state to meet conditions γ > 0 and f = 0.

Plasticity Evolution

For resistance and back resistance, one can obtain the following by using the implicit (backward
Euler) integration.

qn+1 = qtrial − ėp = qtrial − γζn+1, (13.40)
βn+1 = βn +Kbγζn+1 −Ka∥γζn+1∥βn+1. (13.41)

Along with Eq. (13.13), Eq. (13.18), Eq. (13.19), Eq. (13.21) and Eq. (13.23), the system is
complete.
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Local Residual

For 3D beam elements with kinematic hardening, we take

x︸︷︷︸
13

=
[

q︸︷︷︸
5

β︸︷︷︸
5

αi︸︷︷︸
1

αj︸︷︷︸
1

γ︸︷︷︸
1

]
(13.42)

as the local variable with subscript (·)n+1 omitted for brevity, the local residual is

R =



q − qtrial + γζ,

(1 +Kaγ∥ζ∥) β − βn −Kbγζ,

αi − αi,n − γ∥Tiζ∥
αj − αj,n − γ∥Tjζ∥
⟨Φi⟩+ ⟨Φj⟩,

(13.43)

Physically, plasticity evolution can be activated when either end yields, or both yield. Thus,
each end shall be considered separately (but not strictly independently due to the shared axial
force). The (plastic) deformation defined in this work can be transformed into the conventional
sense via the S matrix, see Eq. (13.5).

Jacobian

By treating ζ as an intermediate variable, the Jacobian J can be analytically expressed
as

J = ∂R

∂x
+ ∂R

∂ζ

dζ
dg

dg
dx , (13.44)

where

∂R

∂x
=



I · · · ζ

· (1 +Kaγ∥ζ∥) I · · Ka∥ζ∥β −Kbζ

· · 1 · −∥Tiζ∥

· · · 1 −∥Tjζ∥

ζT −ζT ∂⟨Φi⟩
∂αi

∂⟨Φj⟩
∂αj

·


, (13.45)
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and

∂R

∂ζ
=



γI

Kaγ

∥ζ∥
βζT −KbγI

−γ ζ
TTT

i Ti

∥Tiζ∥

−γ
ζTTT

j Tj

∥Tjζ∥
·


,

dg
dx =

[
∂g

∂q
−∂g
∂q

∂g

∂αi

∂g

∂αj
·
]
, (13.46)

Note the above expression also takes advantage of the fact that ∂

∂q
= − ∂

∂β
.

The choice of local variable is not unique. Other options are available. However, with the
above formulation, the Jacobian is greatly simplified at the cost of increasing the size of local
system to 13. In absence of back resistance β, the size reduces to 8. For 2D beams, those two
numbers are 9 and 6. The chosen scheme is believed to be a good balance between analytical
expressiveness (simplicity) and numerical performance.

Consistent Tangent Operator

Full differentiation the local residual R at equilibrium R = 0 gives

∂R

∂en+1
den+1 + ∂R

∂x
dx = 0, (13.47)

which leads to the following expression after rearrangement,

dx
den+1

= −
(
∂R

∂x

)−1 ∂R

∂en+1
,

∂R

∂en+1
=


−dqtrial

den+1
0
0
0
0


, (13.48)

with

dqtrial

den+1
= diag

(
P y My

z My
z My

y My
y

)−1
E. (13.49)
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The consistent tangent operator can then be derived via the chain rule as

dqn+1
den+1

= dqn+1
dqn+1

dqn+1
den+1

= dqn+1
dqn+1

( dx
den+1

)⟨1−5⟩

= −diag
(
P y My

z My
z My

y My
y

)(
J−1 ∂R

∂en+1

)⟨1−5⟩
,

(13.50)

in which (·)⟨1−5⟩ denotes the first five rows of target quantity (·). By further appending a S ma-
trix, the consistent tangent operator against vn+1 can be expressed as

dqn+1
dvn+1

= dqn+1
den+1

den+1
dvn+1

= dqn+1
den+1

S. (13.51)

13.2.4. Summary of The Proposed Model

The key expressions of the proposed model are listed in Table 13.1.

Table 13.1.: summary of key expressions and parameters

proposed model

nodal extraction (·)ℵ = Tℵ (·) for all nodal quantities

kinematics q = e − ep

yield surface f = ⟨Φi⟩ + ⟨Φj⟩

interaction surface Φℵ = Φℵ
(
qℵ, βℵ, αℵ

)
Φℵ =

∑n

i=1

(
ai

∏
r

(
r − βr

hr (αℵ)

)bi,r

)
− c

flow rule ėp = γζ = γ
∂f

∂q

isotropic hardening α̇ℵ =
∥∥ėp

ℵ

∥∥ =
∥∥Tℵė

p
∥∥ = γ∥Tℵζ∥

h (αℵ) = 1 + Hα + s − se−mαℵ

kinematic hardening β̇ = Kbė
p − Ka

∥∥ėp
∥∥β

An example implementation of the proposed frame element can be seen in Algorithm 15.
Additional stabilisation considerations, such as line search [42], can be accounted for to improve
numerical performance.

Algorithm 15 state determination of the proposed frame element
Input: en+1, en, qn, βn, αℵ,n

Output: En+1, qn+1, βn+1, αℵ,n+1
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qtrial = qn + E (en+1 − en) and transform qtrial to qtrial

qn+1 = qtrial, βn+1 = βn, αℵ,n+1 = αℵ,n, En+1 = E

compute f using qn+1, βn+1, αℵ,n+1 ▷ Eq. (13.39)
if f > 0 then ▷ plasticity evolution

γ = 0
while true do

check if each Φℵ yields or has yielded, assemble Φℵ, ζ and their derivatives
compute R and J ▷ Eq. (13.43) and Eq. (13.44)
∆ = (J)−1 R ▷ ∆ =

[
δq δβ δαi δαj δγ

]
if ∥∆∥ < tolerance then

break
end if
qn+1 ← qn+1 − δq
βn+1 ← βn+1 − δβ
αℵ,n+1 ← αℵ,n+1 − δαℵ

γ ← γ − δγ
end while
transform qn+1 to qn+1

compute En+1 ▷ Eq. (13.50)
end if

13.2.5. Implementation

The N -M element introduced in this section can be implemented as an element, or a section,
or a material model. A more refined implementation can split the element into two parts: 1)
an element model that handles converting global nodal quantities to local quantities Eq. (13.5)
and 2) a section model that handled the integration at two end nodes.

Element Skeleton

The following skeleton handles elemental quantities and sends them to section model to com-
pute the corresponding response.

1 int NMB21::update_status() {
2 b_trans->update_status();
3

4 if(b_section->update_trial_status(b_trans->to_local_vec(get_trial_displacement()) /
length) != SUANPAN_SUCCESS) return SUANPAN_FAIL;↪→

5

6 trial_stiffness = b_trans->to_global_stiffness_mat(b_section->get_trial_stiffness() /
length);↪→
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7 trial_resistance = b_trans->to_global_vec(b_section->get_trial_resistance());
8

9 if(nlgeom) trial_geometry =
b_trans->to_global_geometry_mat(b_section->get_trial_resistance());↪→

10

11 return SUANPAN_SUCCESS;
12 }

Section Integration

The section integration can be implemented as following. Various hardening rules can be
applied, the forms of which are not explicitly required.

1 int NonlinearNM::update_trial_status(const vec& t_deformation) {
2 const vec incre_deformation = (trial_deformation = t_deformation) - current_deformation;
3

4 if(norm(incre_deformation) <= datum::eps) return SUANPAN_SUCCESS;
5

6 trial_resistance = current_resistance + (trial_stiffness = initial_stiffness) *
incre_deformation;↪→

7

8 const vec trial_q = trial_resistance.head(d_size) / yield_diag;
9

10 const vec current_beta(&current_history(0), d_size);
11 const vec bni = current_beta(ni), bnj = current_beta(nj);
12 const auto &ani = current_history(d_size), &anj = current_history(d_size + 1llu);
13

14 if(compute_f(trial_q(ni) - bni, compute_h(ani)) <= 0. && compute_f(trial_q(nj) - bnj,
compute_h(anj)) <= 0.) return SUANPAN_SUCCESS;↪→

15

16 vec q;
17 mat jacobian;
18

19 if(SUANPAN_SUCCESS != compute_local_integration(q, jacobian)) return SUANPAN_FAIL;
20

21 if(SectionType::NM2D == section_type) {
22 trial_resistance = yield_diag % q;
23

24 mat left(g_size, 3, fill::zeros);
25 left.rows(ga) = diagmat(1. / yield_diag) * initial_stiffness;
26

27 trial_stiffness = diagmat(yield_diag) * solve(jacobian, left).eval().head_rows(3);
28 }
29 else {
30 trial_resistance.head(5) = yield_diag % q;
31

32 mat left(g_size, 5, fill::zeros);
33 left.rows(ga) = diagmat(1. / yield_diag) * initial_stiffness(0, 0, size(5, 5));
34

35 trial_stiffness(0, 0, size(5, 5)) = diagmat(yield_diag) * solve(jacobian,
left).eval().head_rows(5);↪→
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36 }
37

38 return SUANPAN_SUCCESS;
39 }

A typical implementation of computing Jacobian may look like this.

1 int VAFNM::compute_local_integration(vec& q, mat& jacobian) {
2 trial_history = current_history;
3 const vec current_beta(&current_history(0), d_size);
4 const auto &ani = current_history(d_size), &anj = current_history(d_size + 1llu);
5

6 vec beta(&trial_history(0), d_size, false, true);
7 auto &ai = trial_history(d_size), &aj = trial_history(d_size + 1llu);
8 auto &flagi = trial_history(d_size + 2llu), &flagj = trial_history(d_size + 3llu); //

yield flag↪→

9

10 const vec trial_q = q = trial_resistance.head(d_size) / yield_diag;
11

12 flagi = 0.;
13 flagj = 0.;
14

15 auto gamma = 0.;
16

17 auto counter = 0u;
18 auto ref_error = 1.;
19 while(true) {
20 if(max_iteration == ++counter) {
21 suanpan_error("VAFNM cannot converge within %u iterations.\n", max_iteration);
22 return SUANPAN_FAIL;
23 }
24

25 vec z(d_size, fill::zeros);
26 mat pzpq(d_size, d_size, fill::zeros);
27 vec pzpai(d_size, fill::zeros);
28 vec pzpaj(d_size, fill::zeros);
29 vec residual(g_size, fill::none);
30

31 jacobian.eye(g_size, g_size);
32 residual(ge).fill(0.);
33

34 {
35 const vec si = q(ni) - beta(ni), hi = compute_h(ai);
36 if(const auto fi = compute_f(si, hi); fi > 0. || static_cast<bool>(flagi)) {
37 flagi = 1.;
38 residual(ge) += fi;
39

40 const vec g = compute_df(si, hi);
41 const vec dh = -si % compute_dh(ai) / hi;
42 const mat dg = ti * compute_ddf(si, hi);
43 z(ni) += g;
44 pzpq += dg * ti.t();
45 pzpai = dg * dh;
46 jacobian(ge, gc).fill(dot(g, dh));
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47 }
48 }
49

50 {
51 const vec sj = q(nj) - beta(nj), hj = compute_h(aj);
52 if(const auto fj = compute_f(sj, hj); fj > 0. || static_cast<bool>(flagj)) {
53 flagj = 1.;
54 residual(ge) += fj;
55

56 const vec g = compute_df(sj, hj);
57 const vec dh = -sj % compute_dh(aj) / hj;
58 const mat dg = tj * compute_ddf(sj, hj);
59 z(nj) += g;
60 pzpq += dg * tj.t();
61 pzpaj = dg * dh;
62 jacobian(ge, gd).fill(dot(g, dh));
63 }
64 }
65

66 const vec m = normalise(z);
67

68 const auto norm_mi = norm(m(ni));
69 const auto norm_mj = norm(m(nj));
70

71 if(1 == counter) {
72 gamma = .5 * residual(ge(0)) / dot(m, z);
73 q -= gamma * m;
74 if(has_kinematic) {
75 beta += gamma * kin_modulus % m;
76 beta /= 1. + kin_base * gamma;
77 }
78 ai += gamma * norm_mi;
79 aj += gamma * norm_mj;
80 continue;
81 }
82

83 residual(ga) = q - trial_q + gamma * m;
84 residual(gc).fill(ai - ani - gamma * norm_mi);
85 residual(gd).fill(aj - anj - gamma * norm_mj);
86

87 jacobian(ga, ge) = m;
88 jacobian(gc, ge).fill(-norm_mi);
89 jacobian(gd, ge).fill(-norm_mj);
90 jacobian(ge, ga) = z.t();
91 jacobian(ge, ge).fill(0.);
92

93 mat prpz(g_size, d_size, fill::zeros), dzdx(d_size, g_size, fill::zeros);
94

95 prpz.rows(ga) = gamma * eye(d_size, d_size);
96 prpz.rows(gc) = -gamma * (ti * normalise(m(ni))).t();
97 prpz.rows(gd) = -gamma * (tj * normalise(m(nj))).t();
98

99 dzdx.cols(ga) = pzpq;
100 dzdx.cols(gc) = pzpai;
101 dzdx.cols(gd) = pzpaj;
102

103 if(has_kinematic) {
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104 residual(gb) = (1. + kin_base * gamma) % beta - current_beta - gamma *
kin_modulus % m;↪→

105

106 jacobian(gb, gb) += diagmat(kin_base * gamma);
107 jacobian(gb, ge) = kin_base % beta - kin_modulus % m;
108 jacobian(ge, gb) = -z.t();
109

110 prpz.rows(gb) = diagmat(-gamma * kin_modulus);
111

112 dzdx.cols(gb) = -pzpq;
113 }
114

115 const vec incre = solve(jacobian += prpz * (eye(d_size, d_size) - m * m.t()) /
norm(z) * dzdx, residual);↪→

116

117 auto error = norm(residual);
118 if(2 == counter) ref_error = std::max(1., error);
119 suanpan_debug("VAFNM local iteration error: %.5E.\n", error /= ref_error);
120 if(norm(incre) <= tolerance && error <= tolerance) return SUANPAN_SUCCESS;
121

122 q -= incre(ga);
123 if(has_kinematic) beta -= incre(gb);
124 ai -= incre(gc(0));
125 aj -= incre(gd(0));
126 gamma -= incre(ge(0));
127 }
128 }
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