Constitutive
Modelling

Cookbook

Dr. Theodore Chang

April 25, 2024

This work is licensed under the

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/
4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042,

@00

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Contents

List of Figures
List of Tables

1.

Preface

1.1. Overview

Prerequisites

Tensor Basics

2.1.
2.2.

2.3.
2.4.

Notations

Tensor Operations
Tensor Product
2.2.2. Double Contraction e
Stress Tensor Norm
Tensor Function of Stress Tensors

2.2.1.

Plasticity Basics
Decomposition of Strain oL oo
Yield Function . .
Flow Rule
Hardening Law . .
Consistency Conditions oL L

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

3.7.

State Determination

3.6.1.

3.7.1.
3.7.2.
3.7.3.
3.7.4.
3.7.5.
3.7.6.

1.2. Implementation
1.3. Digest

Local Iteration e
3.6.2. Consistent Tangent Stiffness.
Some Tensor Quantities e
Spherical Stress Lo
Deviatoric Stress e
Volumetric Strain e
Deviatoric Strain e

Hooke’s Law
Lode Angle

vii

w R

© g ot

10
12

13
13
14
14
14
15
15
15
16
17
17
17
18
18
18
20

iii

Contents

4.

iv

Uniaxial Models

Uniaxial Metal Models

4.1. Linear Isotropic Hardening Modelo L.
4.1.1. Theory o o i e e e
4.1.2. Formulation L
4.1.3. Implementation Lo

4.2. Combined Isotropic/Kinematic Hardening Model
4.2.1. Theory o e e
4.2.2. Formulation L
4.2.3. Implementation

4.3. Armstrong-Fredrick Hardening Model
4.3.1. Theory o e
4.3.2. Formulationo Lo
4.3.3. Implementation

4.4. Uniaxial Model for BRB Steel
4.4.1. Theory e
4.4.2. Formulationo
4.4.3. Implementation L

4.5. VAFCRPID o e
4.5.1. Theory
4.5.2. Formulationo
4.5.3. Implementationo

Uniaxial Phenomenological Models

5.1. Ramberg—Osgood Model
5.1.1. Theory o o o e
5.1.2. Formulation e
5.1.3. Implementation

5.2. MPF Steel Model e
5.2.1. Theory o o e e
5.2.2. Formulation
5.2.3. Implementation e

5.3. Bouc—Wen Model e
5.3.1. Theory e
5.3.2. Formulation e
5.3.3. Implementation L

5.4. General Framework for Hysteresis Models
5.4.1. Theory o . e e
5.4.2. Implementation L

Uniaxial Plasticity Models (Other Materials)

6.1. K4 Concrete. e e e
6.1.1. Theory e
6.1.2. Formulation
6.1.3. Implementation e

23

25
25
25
26
28
29
29
30
31
31
32
33
35
38
38
39
40
42
42
44
45

47
47
47
47
48
49
49
49
49
51
o1
51
51
52
52
53

Contents

I1l. 2D/3D Models 69
7. Metal 71
7.1. von Mises Framework 71
7.1.1. Theory . . . o o o 71

7.1.2. Formulation Lo 73

7.1.3. Implementation e 75

7.1.4. Closing Remarks 76

7.2. Hoffman J2 Model 78
7.2.1. Theory o . e 78

7.2.2. Formulation L 79

7.2.3. Implementation Lo 82

8. Timber 85
8.1. TimberPD e e 85
8.1.1. Damage e e e 85

8.1.2. Consistent Tangent Stiffness oL 86

8.1.3. Implementation 86

9. Concrete 89
9.1. Concrete Damage Plasticity Model, 89
9.1.1. Plasticity Theory 89

9.1.2. Damage Theory e 92

9.1.3. Plasticity Formulation 92

9.1.4. Damage Formulation 0oL 94

9.1.5. Consistent Tangent Stiffness., 94

9.1.6. Implementation L L 96

9.2. CDPM2 Model e 100
9.2.1. Plasticity o 101

9.2.2. Damage e e 103

9.2.3. Formulation o 106

9.2.4. TImplementation L Lo 106
10.Rubber 117
10.1. Mooney—Rivlin Model 117
10.1.1. Theory o o o e e e e 117

10.1.2. Formulationo 117

10.1.3. Implementation Lo 117

10.2. Blatz—Ko Model 118
10.2.1. Theory o o e e e e 118

10.2.2. Formulation 118

10.2.3. Implementation 118

10.3. Yeoh Model o e 119
10.3.1. Theory o e 119

10.3.2. Formulation 119

10.3.3. Implementation 119

Contents

11. Geomaterial

11.1. Drucker—Prager Model L
11.1.1. Theory o e e e e e e
11.1.2. Formulation e
11.1.3. Implementation Lo

11.2. Modified Cam Clay Model o
11.2.1. Theory o e e e e e e
11.2.2. Formulation e
11.2.3. Implementation

11.3. Simple Sand Model oL
11.3.1. Theory e e
11.3.2. Formulation e
11.3.3. Implementation L

11.4. Dafalias—Manzari Sand Model
11.4.1. Theory o o o e e
11.4.2. Formulation L
11.4.3. Implementation

11.5. Duncan Soil Model
11.5.1. Theory o o o o e
11.5.2. Formulation L
11.5.3. Implementation L

12.Viscoplasticity

12.1. VAFCRP Model e
12.1.1. Theory o e e e e
12.1.2. Formulation e
12.1.3. Implementation Lo

12.2. Maxwell Model e
12.2.1. Background
12.2.2. Modified Power-law Viscosity
12.2.3. Extension to Maxwell Model
12.2.4. Formulation e
12.2.5. Implementation

13.0ther

vi

13.1. Gurson Model
13.1.1. Theory« . o e
13.1.2. Formulation L L
13.1.3. Implementation L

13.2. The N-M Frame Element
13.2.1. Preliminaries e
13.2.2. Generalised Plasticity Framework
13.2.3. Discrete System Lo
13.2.4. Summary of The Proposed Model
13.2.5. Implementation Lo

121
121
121
122
123
124
125
126
128
130
130
132
135
137
137
140
144
151
151
153
155

161
161
161
162
165
167
167
168
170
171
177

List of Figures

3.1. idealisation of a typical elasto-plastic model 13
5.1. schematic illustration a generalised hysteresis model 53
11.1. Uélﬂt determined by Mohr’s circle oL 153
12.1. rheology model of the Maxwell model with inelastic spring 170
13.1. deformation and resistance of a 2D beam 182
13.2. mixed evolution of an example N-M interaction surface 187
13.3. definition of nodal equivalent plastic deformation of 2D beam 188
13.4. bounded evolution of nodal back resistance of a 2D beam 190

vii

List of Tables

13.1. summary of key expressions and parameters L. 195

ix

1. Preface

Most books/papers present constitutive models analytically, leaving the implementation to
readers to address.

This book aims to provide practical guidance to numerical implementation of plasticity mod-
els.

Readers are expected to have undergraduate level background of linear algebra, numerical
analysis, elasticity and some programming knowledge.

1.1. Overview

The book presents a collection of constitutive models covering both uniaxial and triaxial and a
wide range of common materials used in engineering. The implementation details are derived
for each model.

The ultimate target is to provide an easy—to—follow, error and confusion free reference for
readers who are interested in implementing constitutive models under the modern plasticity
framework.

However, a wide range of different constitutive models are covered in this book, not only
formulations but also implementations, some of which are very lengthy. There are a huge
amount of symbols and formulae.

1.2. Implementation

For scientific computation that involves a significant amount of linear algebra operations, in
my opinion, operator overloading is essential. Lengthy implementation is almost inevitable
if the language does not support operator overloading. In this sense, account for perfor-
mance, C++ is perhaps the first choice. However, Rust may be another candidate in the
future.

Python and MATLAB, in the author’s opinion, are ideal for experimenting. Due to perfor-
mance related issues, they are not ready for production development.

© 00 N R W N

NN N NN NN R e e e e 2 e
S0 R W N R O © NG AW N = O

1. Preface

For models only involve scalar operations, such as most uniaxial models, C/Fortran can be
equivalently chosen. All variables can be grouped into structs and a typical state determination
interface in C may look like this.

struct State
{
double strain;
double stress;
double stiffness;
// more history wvariables
double elastic_modulus;
// more model constants and parameters

int update_state(const struct State *const current, struct State *const trial){
// update trial state
trial->stress = 2.;

return O;

}

int main()

{
struct State current, trial;
// set trial strain
trial.strain = 1.;
// call state determination
int err = update_state(¤t, &trial);
// handle error

}

In all the state determination algorithms presented in this book, by default it is assumed all
local iteraions eventually converge. Thus the handling of failure of convergence is not presented
for brevity. One shall always bear in mind that not all algorithms converge, and for robust,
practical algorithms, more numerical processes are required.

1.3. Digest

As the title indicates, this book is drafted as a reference book on constitutive modelling, it
shall be self-complete in terms of theoretical part. For practical implementation, algorithms
in pseudo code are given for most models. Core CPP implementations are also provided as
references/comparisons for readers who are familiar with CPP and scientific computation with
relevant tools. The code snippets are taken from the implementations from suanPan [1]. In
this regard, this book can also be used as the program manual.

Part |I.

Prerequisites

2. Tensor Basics

In engineering, often tensors are defined in Euclidean spaces and belong to Cartesian ten-
sor (type). Transformation between covariant and contravariant bases, thus raising/lowering
indices, is somehow not emphasised (but implied). The most likely reason is that, often
orthonormal bases are used so that covariant and contravariant bases lead to the same coor-
dinates. Thus, only subscripts (¢, j, k, [, etc.) are used to represent tensor indices, implying
that contravariant bases are used. Furthermore, scalars are denoted by normal symbols such
as A while vectors and tensors are not distinguished, all denoted by boldface symbols such as

A.

2.1. Notations

Let A € R? x R? denote a second order tensor with contravariant bases e' and e?. With that,
A has four components that can be arranged in the following matrix.

2.1
Ag1 Ao (2.1)

; ; A A
A:Aije’@)ej:l 11 12‘|‘
The tensor notation of A is the notation with indices, which refers to coordinates A;;. The
matrix representation refers to the 2D matrix of size two. The operator ® stands for tensor
product which will be introduced later. In some literature, it is omitted for simplicity, resulting

m
A= Az-jeiej. (22)

This notation will be used in this book. In this case, e’e’ does not represent the dot product
of two vectors. Rather, the operator - shall be explicitly shown as e’ - e’ to avoid potential
confusion.

The Einstein summation convention is adopted, that is, in each single term, if the same index
appears exactly twice, the summation of that term over all values of that index. In this
example, 7,j = {1,2}. Thus,

2
A= Aijeiej = Z Aijeiej = Allelel + A126162 + A2162€1 + A22€2€2. (23)
i=1

Since indices only act as placeholders, it does not matter which symbol is used. The following

2. Tensor Basics

expressions are equivalent.

A= Aijeiej = Aje'e’ = Ajiejei = Ajkejek = Apefel = Akjekej. (2.4)
But it is not equivalent to

A # Ajelel = Ajjejej = Agpeler. (2.5)

If A represents a symmetric stress tensor o, it can be expressed in both matrix and vector
representations such as

i lon o Oy T . .
o =ojjelel = | T2 = | T matrix representation, (2.6)
021 022 Tey Oy
Og J11

o= |o,| = 022 Voigt notation, (2.7)

| Txy 012 = 021 |

Og J11

oc=| oy | = 022 Mandel notation. (2.8)

_\/isz V2012 = V209

Readers shall be familiar with the Voigt notation as it is widely used due to simplicity. The
Mandel notation is an alternative that provides convenience when it comes to some tensor
algebra operations. Examples will be shown later. It shall be noted that different vector /matrix
representations of a tensor may have different components.

If A represents a symmetric strain tensor €, then its matrix and vector representations are

1
. € =7
e =¢je'el = il 1 T2 patrix representation, (2.9)
€21 €22 2 c
2%1; Y
[Ex €11
e=|¢gy | = €99 Voigt notation, (2.10)
| Vay 2e12 = 2e21
cx €11
€= \/gy = €99 Mandel notation. (2.11)
|5 ey V2e12 = V29

In above, v,y = 2e12 = 2¢21 is commonly known as the engineering shear strain.

[2] presents a great discussion on compressed matrix representation covering both second order
and fourth order tensors.

2.2. Tensor Operations

2.2. Tensor Operations

2.2.1. Tensor Product
Definition

The tensor product is also called dyadic product, which is an operation to construct high order
tensor from low order tensors. Let A = A;e’ and B = B;e’ be two first order tensors (vectors),
then tensor product of A and B gives a second order tensor C'

C=AB=A4€® Bjej = AiBjei Rel = Cijei ® e’ (2.12)
The simplified notation can also be adopted

C = AB = Ae'B;je’ = A;Bje'e’ = Cjje'e’. (2.13)
The components of C can be expressed as

Cij = A;Bj. (2.14)
IfA= Aijeiej and B = Bijeiej are two second order tensors, then the result is a fourth order
tensor

C=AB= A,-jeiejBklekel = A,-jBkleiejekel = C’ijkleiejekel (2.15)

with components Cjji; = A;jBi. 1f both A and B are symmetric tensors, then C' possesses
major symmetry

Cijkt = Chiij (2.16)
and minor symmetry

Cijki = Cjiri = Cijig- (2.17)

Vector/Matrix Representation

Let A = A;e' € R? and B = Bje' € R? be two first order tensors. Their column vector
representations can be expressed as

. T . T
A=Al = [Al AQ} , B=Dpe = [Bl Bg} . (2.18)

2. Tensor Basics

The tensor product Eq. (2.13) gives a second order tensor C' € R? x R? that can be represented
by a matrix as shown in Eq. (2.1), which is

(2.19)

C=C ool — [011 012]
= Cy —

A1 By
Co1 Ca

A1By
Ao By ’

A2B2

Now if tensor C'is treated as a matrix while tensors A and B are treated as column vectors, the
tensor product is exactly the outer product between A and B. That is,

C=A® B=AB s

tensor product between tensors

(2.20)

C = AB"T.
N—————

vector/matrix representation

Now let A = Aijeiej €R3 xR3? and B = Bijeiej € R3 x R? be two symmetric second order
stress tensors, adopting the Voigt notation, their column vector representation can be shown
as
Qg T
A = A,-je e’ = [AH A22 A33 A12 A23 Agl} s (221)

.. T
B:BijeleJ:[Bu BQQ Bg3 312 ng Bgl} . (2.22)

The tensor product Eq. (2.15) between A and B gives the fourth order tensor C € R3 x
R3 x R? x R? which can be arranged in a 2D matrix accounting for both major and minor

symmetries.
[Ci111 Cri22 Chrizz Chiiiz Crizz Chaist]
Ca11 Ca222 Ca233 (o212 (2223 Ca231
_ i ikt |Cs311 Cszaa Cszzz Csziz Cszaz Cssan
C =Cjjpe'ele’e = (2.23)
Ci211 Ci222 Cra33 Chi2i2 Ci22z3 Chi231
Ca311 Cazoa Cazzz Coziz Cazaz Cazzn
1C3111 C3122 C3133 C3112 C3123 C3131]

It can be observed Eq. (2.20) still applies since Cjji = A;jBy. It is thus convenient to adopt
the Voigt notation to perform tensor product between stress tensors.

However, if A and B are strain tensors, the Voigt notation leads to the following result of the

outer product

[Cii11 Cri22
C2211 C2202

- Cs3311 C3322
2C1211 2C1222
209311 209322
12C3111 203192

C1133
C2233
C3333
2C1233
2C9333
2C3133

201112 2C1123 2C1131]
209212 209203 209231
2C3312 2073323 2C73331
4C1212 4C1223 4C1231
402312 4C2323 409331
4C3112 4C3123 4C3131]

(2.24)

Fundamentally, different base tensors are used for stress tensors (contravariant) and strain

tensors (covariant).

2.2. Tensor Operations

With the compressed matrix representations, one must be clear about such difference and
apply proper scaling vectors/matrices when necessary.

2.2.2. Double Contraction
Definition

The double contraction, also known as the double dot product, is a tensor operation to con-
struct low order tensors from high order tensors. Let A = A;e’ and B = B;e' be two first
order tensors (vectors), then dot product of A and B gives a zeroth order tensor (scalar) C
as

C=A-B=Ae' Bje =A;Bje' e =6;A,B; = A;B;, (2.25)
where 0;; is the Kronecker delta which equals 1 if 7 = j or 0 otherwise.

IfA= Aijeiej and B = Bijeiej are two second order tensors, then the double contraction
performs dot product twice on different indices, resulting in a zeroth order tensor (scalar)
as

C=A:B=Aee: BePel = AijBr(e" - e*)(e - € (2.26)
= 6,0, A4 B = Ay Byj. '

Vector/Matrix Representation

Let A = Aijeiej eR3xR3and B = Bijeiej € R? x R3 be two symmetric second order stress
tensors. According to Eq. (2.26), the double contraction of two gives

C=A:B=A;jB;j = Au1B11 + A2 B2y + A33Bs3
+ A12B12 + A13B13 + A21 Bog + Aoz Bas + A31B31 + AsaBsa. (2.27)

It can be expressed via column vector representations (in the Voigt notation) of A and B
as

CZATSB:[AH Agy Asz App Ao Agl} (2.28)

2. Tensor Basics

Its derivative reads

A BTS, STC; = ATS. (2.29)

However, if the Mandel notation is adopted, it is simply

- By

B
B

C=A"B= A1 Ay A3 V2413 V24 \/§A31] \/533312 : (2.30)

V2Bas

[V2B31

If A and B represent strain tensors, a similar expression can be obtained with a different
scaling matrix S using the Voigt notation.

11 1
S=diag(1 1 1 - - -). 2.31
lag< 2 3 2) (2:31)

With the Mandel notation, again no additional scaling matrix is required, C' = AT B.

The Mandel notation is constructed on top of orthonormal basis of second order tensors. The
advantage in obvious: there is no need to handle covariant and contravariant representations.
However, it is not widely used as its physical meaning is not that obvious. In this book, the
Voigt notation is used by default.

2.3. Stress Tensor Norm

The double contraction between a second order tensor A and itself results in a scalar that can
be used to characterise the norm of A. In this sense, double contraction of second order tensors
can be deemed as an equivalent version of dot product of vectors.

Let o € R?xR3 denote the symmetric stress tensor, define its Euclidean norm as

lo|| = Vo :o

(2.32)
= \/0'%1 + 039 + 033 + 207, + 2033 + 20%;.
Accordingly, its normalised version
o
n=_—:. (2.33)
o]

10

2.3. Stress Tensor Norm

The derivative of ||o|| can be computed accordingly via the chain rule.

dlo| 120:1

do 2o in tensor notation, (2.34)

where I is the fourth order identity tensor. It shall be noted Eq. (2.34) is shown in ten-
sor notation. For column vector representation in the Voigt notation, it shall be expressed
as

7[20‘11 20’22 20’33 40’12 40’23 40‘31:|

:<”Z‘>Tdiag(<1 1122 2))

1 (2.35)

I
3)-

011 022 033 012 023 031} 9

2

It is clear that with the Voigt notation, the vector/matrix representation differs from the cor-
responding tensor representation. However, with the Mandel notation,

d||e 1
MZ*{UH o2 033 V2012 V2093 \@031], (2.36)
do |

which matches the tensor notation.
Now we proceed to compute the derivative of n with respect to o.
dfjo]]
g 1

dn 357" " %44 i i
— I-n®n) in tensor notation. (2.37)
do |2 o

With the Voigt notation, it can be computed as follows.

2

011023 0922023 023033 2012023 2053 2023031
2

011031 022031 031033 2012031 2023031 203,

1 0, o11022 011033 2011012 2011023 2011031

1 011022 03y 022033 2012020 20930923 2022031
dn 1 diag 1 1 |o11033 022033 033 2012033 2023033 2031033 (2.38)
do |o] 1 ||0-H3 011012 012022 012033 20%, 2012023 2012031 '

1

1

11

2. Tensor Basics

It is essentially

dn 1 1
— =" |I-nnT 2.39
do ol nn 2 ’ ()

where I is the identity matrix of size 6.

2.4. Tensor Function of Stress Tensors

Some tensor—valued functions of stress tensors are frequently used in the analysis of plasticity.
Let B8 = f (o, o) denote a tensor-valued function of the stress tensor o and some other tensors
denoted by a. Let the tensor—valued function v = g (3) be the normalised version of 3, that
is

_ B __ B
=8l T VBB (2:40)

The partial derivative can be expressed as

0 oy O 1
Oy Oy 0B _ 1 I-—vy®7): %6 in tensor notation. (2.41)

o 9B o9 |8

Depending on the form of 3, the compressed vector/matrix representation would differ. This
will be dealt in specific context.

12

3. Plasticity Basics

Here we present a general framework of plasticity.

The idealisation of a typical elasto-plastic model can be represented by a frictional device
as shown in Fig. 3.1. The device consists of an elastic spring element that deforms in an
elastic manner, the deformation of which can be fully recovered when applied external force
becomes zero, and a friction element, which deforms when deformation exceeds a certain
limit and its deformation cannot be recovered even when applied external force becomes
ZEro.

Most plastic models are formulated in stress space, or equivalently, strain driven. The task
is to determine stress response based on strain input.

O AW O

Figure 3.1.: idealisation of a typical elasto-plastic model

3.1. Decomposition of Strain

With the above model, it is clear that total strain € can be decomposed into two parts, namely
recoverable elastic strain € and unrecoverable plastic strain eP.

e =¢e+e’. (3.1)
The elastic part obeys Hooke’s law,
oc=D:e*=D:(e—¢€"), (3.2)

where D is the elastic stiffness moduli.

13

3. Plasticity Basics

3.2. Yield Function

To be able to determine whether a given stress state is admissible, the yield function is in-
troduced as the criterion. It is often a scaler—valued function of stress o and some additional
internal variables q, viz.,

f=F(o,q). (3.3)

By convention, it is defined so that all admissible stress states would lead to f < 0 while f > 0
is not allowed by any means. If f is deemed as a surface in stress space, all admissible stress
states shall fall in the volume bounded by f. Thus yield function is also called yield surface
in some literature, it may further evolve (change of size, location, etc.) with the development
of plasticity. Sometimes it is further classified into two types: initial yield surface (when
plasticity has not occurred) and subsequent yield surface (when plasticity has developed and
is developing).

The internal variables q are called history variables.

3.3. Flow Rule

As plastic strain may evolve during the loading/unloading process, it is necessary to know how
it evolves, the flow rule is defined as follows.

& =y (o, q). (3.4)

where v is a non-negative scalar called the consistency parameter, » = r (o, q) is a tensor—
valued function that indicates the direction of plastic flow.
In the context of plasticity, since time ¢ is often not explicitly involved, the dot symbol ()

.o
above a quantity denotes its increment () = QAt for brevity.

ot

3.4. Hardening Law

In order to allow yield function to evolve, internal variables shall be governed by some function,
which is defined as hardening law.

q=1h(o, q), (3.5)

where h = h (o, q) is another tensor—valued function that indicates the type of hardern-
ing.

14

3.5. Consistency Conditions

3.5. Consistency Conditions

Since f # 0 and v £ 0, the number of admissible situations is limited:
e f < 0 — elastic loading/unloading
e f=0and f <0 — elastic unloading from yield surface

e f=0and f =0and v >0 — plastic loading

f=0and f =0 and v = 0 — neutral loading on current yield surface

The above lengthy list can be elegantly characterised by the consistency conditions:

vf=0 and ~yf=0. (3.6)

3.6. State Determination

The yield function, flow rule and hardening law are three elements that complete most plastic
models.

For a given strain input Ae and initial conditions, a general algorithm would possess the
following structure.

Algorithm 1 general state determination algorithm of plastic models

freeze plasticity (assume elastic loading/unloading)
compute yield function f
if f > 0 then

plasticity must develop

compute plastic response

update internal variables
else

elastic loading/unloading

compute elastic response

no need to update internal variables
. end if

—_ =
= o

3.6.1. Local lteration

If plasticity must develop, noting that f = 0, with the assist of Eq. (3.2), o can be equivalently
represented by P, there are three unknown variables «, e and g to be solved subjected to the

15

3. Plasticity Basics

following three equations.

Q: f (€p7 q) s
e’ =r(e?, q), (3.7)
q=h(e’, q).

Often the above system is nonlinear by construction and needs to be solved with an itera-
tive method. It can be rewritten in a more nonlinear—flavoured style. Let & = ['y eP q]

denote the local variable vector, and R (v, €P, q) denote the residual of the nonlinear sys-
tem

f(e?, q),
R={ e’ —qr(e?, q), (3.8)
q - 'Yh (€p7 Q) .

The target is to find the solution & to R = 0 for a prescribed total strain €. The Newton—
OR
Raphson method can be adopted with the help of Jacobian e It shall be noted that partial

T
derivatives are used here since fundamentally € enters the system. It is also a variable which
is held constant only at local iteration level.

3.6.2. Consistent Tangent Stiffness

To compute the consistent tangent stiffness, one can start from Eq. (3.2),

oo OeP

Noting that at equilibrium, local residual shall be zero, viz., R = 0. Taking full differentiation
leads to

OR OROx

— +——=0 1

de " omoe (3.10)
thus

ox OR\ ' OR

- (22 by 11

Oe <8m) Oe (3.11)

p
The term ai can be extracted from a—w
Oe Oe

Although not in the closed—form, the above procedure provides a universal approach to compute
the consistent tangent stiffness in a highly efficient manner which can be applied to a wide
range of plastic models.

Readers who are interested in plasticity theory please refer to [3] for more formal mathematical

16

formulations.

3.7. Some Tensor Quantities

Here we present some frequently used tensor quantities defined in 3D space.

3.7.1. Spherical Stress

3.7. Some Tensor Quantities

The spherical stress of a stress tensor o refers to the portion corresponds to an isotropic

hydrostatic pressure p,

1

1
p = —trace (o) = =0j; = =

3 3

The corresponding spherical stress in the Voigt notation is then

1
5 (

plz[p p p 0 0 O}T.

3.7.2. Deviatoric Stress

o11 + 022 + 033) .

The remaining portion is often known the deviatoric stress, denoted by s.

s=dev(o)=0—pl

In which, 1 is the unit second order tensor. In tensor notation,

s=19":¢q.

By simple comparison, one can immediately find

M2
3

—
Lol

Wl
Wl

Lol

Hdev

W[—=wo|—=

wlNo

(011 — D]

022 — P

033 — P
012
023

031

Wl

|0l

[N
Lol Wl

||

Wi

1031

011
022
033
012
023

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

17

3. Plasticity Basics

is the matrix representation of the fourth order deviatoric operator 19V, It must be noted
that due to the adoption of the Voigt notation, the matrix representation of 14V is not
unique.

3.7.3. Volumetric Strain

It is possible to define the volumetric strain ¥ to be
e’ = trace () = &4 = €11 + €22 + €33. (3.17)
In tensor notation, it is

'=1:e. (3.18)

3.7.4. Deviatoric Strain

Similarly, the remaining portion of strain is called the deviatoric strain e.

€11 — %_ (2 —3 —% 1 [e11]

€2 — % -3 % -3 €22

d e’ €33 — é —i -1 2 €33
e=¢c’=dev(e)=e— 1= 3| =1 3 3 3) 3.19
(&) 3 2e12 1 Y12 (3:19)

2e93 1 Y23

2e31 | L 1] Lvs1d

In tensor notation,

e=ecl =1 ¢ (3.20)

3.7.5. Hooke’s Law

The spherical part and deviatoric part are governed by two material parameters: bulk modulus
K and shear modulus G, in tensor notation,

p=Ke", s =2Ge?. (3.21)

Please note the latter in component form reads

S11 S12 831 8?1 Ecllg €§l1
S$12 S92 S23| = 2G €c1l2 8%2 €g3 . (3.22)
$31 S23 S33 5%1 553 5?3[3

s ed

18

3.7. Some Tensor Quantities

The corresponding compressed matrix representation shall be expressed as

[511] [1 17t R —% 1 [en]
522 1 Eg2 _% % -3 £992
533 1 &4 -3 -3 3 €33
—2G 1 Bloog|s 58
512 5 2512 5 2812
S23 % 25§l3 % 2e93
1531 L %_ _25%1_ L %_ _2631_
~—— ~—— N——
S I ed Tdev g
(3.23)
In this case, the matrix representation of I changes its form since it links strain with stress.
After some manipulations, total stress can be expressed by total strain as follows.
o=s5+pl
=2Ge? + Ke¥1
.24
=2G1 e+ K1®1:¢ (3:24)
= (261" + K1@1) :e.
Thus,
1
D:2GHdeV+K1®1:2GH—2G§1®1+K1®1. (3.25)
In matrix representation,
r2 _1 _1 T
BT | 111 1
P59
A B
D:2G'-'§--+K_":::. (3.26)
1
2
B . . -1

Here one may observe 19V appears in a different form. This inconsistency is caused by the
Voigt notation, as here the operand is strain tensor while the result is stress tensor. One can
again refer to [2] for detailed explanation.

19

3. Plasticity Basics

2
Using Lamé’s constant A = K —gG , D can be alternatively expressed as

(A +2G A A]
A A+2G A .

% A A f2G (3.27)

3.7.6. Lode Angle

For some material models, the Haigh—Westergaard stress space may be used. The lode angle
is often used to define some parameter that alters the yield surface which may have a special
shape on the m-plane. The lode angle 6 can be defined as

Jz [3\
sy P33 3.28
cos (30) 5 <J2) ; (3.28)
where
Jy = 1trace (s2) = 1||3”2 J3 = ltrace (83> = det s (3.29)
9 9) 3 3 :

are the invariants of the deviatoric stress tensor s.

Eq. (3.28) can be equivalently expressed as

1.5 d t
cos (30) = 6—% = \/574675 = /54 det ——. (3.30)
2 s Il I8l

By the chain rule, the derivative of Eq. (3.28) can be expressed as

oon () 1 (30030 iy a1
ds 2\ ds 4 J25 ds’ '
With the assist of
dJs dJs 2
&2 ek R 32
P s %S 3J2 , (3.32)
Eq. (3.31) becomes
1 L5 9 2.5
o) 1Y (20 8
ds 2 \ 7 3 1 J3
o (3.33)
_\/5(3) ' <S. _2J2]__3JS>
2 37 2470

20

3.7. Some Tensor Quantities
2J
Denoting s = ?2, then

M — \/58_1'5 (s -8 —s1— J38> . (3‘34)
ds $

21

Part Il.

Uniaxial Models

23

4. Uniaxial Metal Models

In this chapter, several models suitable for modelling metals are presented. We shall start
from simple von Mises criterion based models, to more advanced uniaxial models suitable for
modelling buckling restrained bracing members.

4.1. Linear Isotropic Hardening Model

4.1.1. Theory

For uniaxial models, the constitutive equation Eq. (3.2) simplifies to
o=F(—¢P) (4.1)

where F is Young’s modulus.

Yield Function

The (probably) most simplest yield function is
f=lo| - o (42)

where 0¥ = oY (0, q) is the yield stress which is a function of internal variable ¢ thus would
evolve.

For example, a linear function can be chosen so that
oY =o' + Kq, (4.3)

where o' is the initial yield stress (non-negative) and K is the isotropic hardening modulus
(either positive for hardening or negative for softening).

25

4. Uniaxial Metal Models
Flow Rule

It is reasonable to define that the direction of plastic flow coincides with the direction of stress,
that is

eP = v sign (). (4.4)

Physically, it simply states plastic strain evolves towards the direction of stress. If stress is
positive, plastic strain increases and vice versa.

0
Noting that 8—f = sign (o), the flow rule can also be expressed as
o

. af
P =y, 4.5
=75 (4.5)
In 3D space, such a flow rule is often called the associative rule.
Hardening Law
For the internal hardening variable ¢, the simplest case would be
= |er| = 1. (4.6)

Thus ¢ characterises the accumulated magnitude of plastic strain. Given that v > 0, it is clear
that ¢ is a non-decreasing (strictly increasing) function.

We are ready to formulate and implement our first plastic model.

4.1.2. Formulation

In this book, subscript (-),, is adopted to indicate initial conditions (current state or converged
state) and subscript (-),,,; is adopted to indicate solution (new state or trial state). Sometimes
(‘)41 is omitted for simplicity.

The summation of this simple isotropic hardening model is listed as follows.

Constitutive Law o = FE (¢ — eP)
Yield Function f = |o| — (0% + Kq)
Flow Rule &P = ~ sign (o)
Hardening Law ¢ =1

For this example, the initial conditions are stress oy, total strain &,, plastic strain €/ and

26

4.1. Linear Isotropic Hardening Model

hardening variable ¢,. For a given £,41, the model shall compute new o,41, €h 41 and
gn+1-

Elastic Loading/Unloading
By freezing plasticity, one can first check if the new state is elastic. Since it may not be the final
new state, we denote the computed stress and trial stress. According to

o — B (ep41 — D). (4.7)
or equivalently,

a;rjrall =opn+ FE(ent1 —€n), (4.8)
the yield function becomes

ftrial _ rial

— 0¥ = Blenys —eh| = (o' + Kan) (49)

s
o — 0¥ = |o, + B (ent1 — &n)| — (0" + Kan) - (4.10)

ftrial — ’ rial

If ftial < 0, indicating elastic loading/unloading, the new state is simply e 11 = &b, Gnt1l = Gn

and 0,41 = ot

Plastic Evolution

Otherwise the new state consists of new evolution of plasticity. In this case,

Ont1 =FE (eny1 —€b) . (4.11)
The yield function is

f=lol=0¥=Bleny1 —hiy| = (o + Kguya) = 0. (4.12)
The flow rule and hardening law shall be expressed as

Epy1 = h +eP = &b+ sign (on41), (4.13)
Int1 = qn + 4= G+ 7. (4.14)

Noting that

Ont1 =0t — Be? — o1+ By sign (0n41) = o) (4.15)
— (lon41| + E) sign (op41) = ‘Ugﬂl sign (U%riaf) : .

27

4. Uniaxial Metal Models

since both F and «y are non-negative, sign (0,,+1) = sign (Ug’fﬁl) and |op41|+Ey = ‘U;rjrall . Thus
inserting the above expressions into the yield function, one can obtain

’Ufffll — E~ sign (af;if})’ — (Ui + K (qn + ’y)) =0. (4.16)
After some manipulations, it is

’ﬁﬁf*Evfcﬁ+Kﬁ%+vD=0- (4.17)
The above expression holds since ’U,tfif‘ll — Ev = |op41] is non-negative.
The consistency parameter can be solved as

’oﬁfjﬁl — (o' + Kgqy) porial

T E+ K TE+ K (4.18)

It is easy to further compute
al E (4.19)

Oenp1 E+ K’

4.1.3. Implementation

The implementation is quite straightforward for such a simple model. Algorithm 2 summarised
the state determination algorithm for the above isotropic hardening model.

Algorithm 2 state determination of uniaxial isotropic hardening model

Parameter: F, K
Input: €,11, €p, €2, on, qn
Output: E, .1, 5{;4_1; On+1, gn+1
compute otrial gand ftrial
if fial > (0 then
ftrial
E+ K
7. b, =¢b 4+ sign (Jffff)
8: Gn+1 = qn + 7Y
9: Ont+1l = Uﬁlrjrall — By sign (afffll)
E? _ EK
" E+K E+K

6: v =

10: En+1 = E

11: else

: P _
12: Epnt1 = €N
13: qn+1 = qn)
14: O'n+1 = O’:Lrj-a%

15: En+1 == E

28

4.2. Combined Isotropic/Kinematic Hardening Model

16: end if

4.2. Combined Isotropic/Kinematic Hardening Model

Isotropic hardening controls the size of yield surface without changing its location. Kine-
matic hardening, on contrary, changes yield surface location but does not touch its size.
Combining isotropic hardening and kinematic hardening allows flexible response to be mod-
elled.

4.2.1. Theory
Yield Function

Since o¥ characterises the size of yield surface, a natural approach to allow yield surface to
move around is to introduce the explicit location of its centre.

f=n-o, (4.20)

with n = ¢ — « is defined to be the shifted stress with a denoting the back stress. The
additional stress quantity « characterises the centre of yield surface.

Flow Rule

Assuming associative rule, the flow rule shall be updated as

. 15) .
eP = 7% = v sign (n). (4.21)

Hardening Law

The additional internal variable « shall evolve as well. It can take a similar form as fol-
lows.

& = HeP = vyH sign (). (4.22)

in which H denotes the kinematic hardening modulus. The existing hardening law for ¢ does
not altered.

29

4. Uniaxial Metal Models

4.2.2. Formulation

The summation of this combined isotropic/kinematic hardening model is listed as follows.

Constitutive Law o = FE (¢ — eP)
Yield Function f=|o—a|— (gi + Kq)
Flow Rule &P = v sign (0 —)
Hardening Law ¢ =1
& = vH sign (0 —)

The algorithm aims to compute new o1, &> 11> Qny1 and gp41 based on current oy, €p, &),
Qn, ¢n and New €p41.

Elastic Loading/Unloading

The trial stress can be computed following Eq. (4.8). Then by denoting n'"al = g%1al _q, the
yield function becomes
ftrial — ’ntrial . (O’i + an)) (424)

Plastic Evolution

With new state variables, let 1,+1 = op4+1—an+1, compute the yield function as follows.
f=lont1 — ans1| — (Ui + KQn+1)
= ’offjrall — Ery sign (yp41) — oy — H7y sign (nn+1)’ — (Ui + Kqp, + K’y) (4.25)
— ’n;rj_all — (E + H)~ sign (77“+1)‘ - (Ji + Kq, + K’y) =0.

Similar to Eq. (4.15), it can be derived that

sign (i) = sign (ms1), 0| = w4+ (B + H) . (4.26)
Thus,
f:’ngj_all —(E—I—H)'y—(ai—i-an—l-K'y) =0. (4.27)
From which 7 can be solved.
_ ’n;;lrjrall — (0 4+ Kqp) _ frial | (428)
E+H+ K E+H+K

30

4.3. Armstrong—Fredrick Hardening Model

4.2.3. Implementation

The state determination algorithm resembles the previous one for isotropic hardening model.

Algorithm 3 state determination of uniaxial combined isotropic/kinematic hardening model
Parameter: E, H, K
Input: €41, €p, €8, O, an, qn
Output: E, i1, €)1, Ontl, Onils Gntl
compute 0_‘51ria17 ntrial and ftrial
if ftial > (0 then
ftrial
E+H+K
7: eb | = &b+ sign (nﬁfjﬁl)
: Gn+1 = Gn +

9: Qpt1 = ap + Hy sign (n}fjfll)
10: onsr = ot — By sign (ni)

E? _ E(H+K)
E+H+K E+H+K

6: v =

11: En+1 - E

12: else

13: b =¢b
14: dn+1 = Qn
15: Qpi1 = Qp
16: On+1 = U;Elr_i,'_all
17: Eppn=F
18: end if

4.3. Armstrong—Fredrick Hardening Model

So far, two simple models has been introduced. The linear isotropic/kinematic hardening law
is adopted so that the local residual is a linear function which can be solved within one step.
However, linear hardening has limited applications.

To allow more versatile applications, in this section, a metal model incorporating Armstrong—

Fredrick type kinematic hardening [1] and Voce type isotropic hardening [5] is introduced.
Both hardening types are nonlinear.

31

4. Uniaxial Metal Models
4.3.1. Theory
Yield Function and Flow Rule

The same yield function and flow rule used in the previous combined isotropic/kinematic
hardening model are adopted.

f=ll=ov, (4.29)
P = 7% = yn = v sign (1), (4.30)

in which n = 0 — « is the shifted stress, & = « (q) is the back stress, 0¥ = 0¥ (¢) is the isotropic
hardening stress and n = sign (7).

Hardening Law

The same hardening law for ¢ is adopted as well.

i=|er| = . (4.31)

Isotropic Hardening Instead of using a simple linear function, a Voce type function is adopted
for o¥.

0oV =0'+ Kqg+o°(1—e ™), (4.32)

in which K denotes the linear hardening modulus, ¢® is the satuated stress that denotes the
size of additional yield stress caused by exponential hardening and m is a model parameter
that controls the rate of exponential part of hardening.

If K =0, it can be seen that
lim 0¥ = o' 4 o*, lim 0¥ = o' (4.33)

pP—00 p—0

Kinematic Hardening A multiplicative formulation [6] for back stress is adopted with the
Armstrong—Fredrick type hardening rule. The back stress is defined to be the summation of sev-
eral back stresses that evolve independently with different rates. That is,

a=> (4.34)

i=1
with

Oll' = aiép - blalq (435)

32

4.3. Armstrong—Fredrick Hardening Model

where a; and b; are two sets of model parameters. In terms of ~, it is

a; = a;yn — bjoyry. (4.36)

4.3.2. Formulation

The summation of this AF model is listed as follows.

Constitutive Law o = F (e — £P)
Yield Function f = |0 —a| — (0! + Kp+ o® (1 — e ™))
Flow Rule &P =« sign (0 — «)
Hardening Law ¢ =1~
=3l q

i = aiyn — bioyy

Elastic Loading/Unloading

The trial stress can be computed following Eq. (4.8). Then by denoting n'"a! = gtial o, the
yield function becomes

trial trial
= ‘77

— (o' + Kpo+0* (1= 7). (4.37)

Plastic Evolution

It is now clear that nonlinearity is introduced since a; = g (o, - - -) is a function of a; and other
variables. Various first order numerical methods can be applied. For example,

o explicit/forward Euler method

Qi1 = in+g(Qin,), (4.38)

« implicit/backward Euler method

Qipt1 = Qi + g (Xint1,), (4.39)

e mid-point method

g (@in,---) +29 (@ipt1,---) (4.40)

Qin+l = Qipn +

33

4. Uniaxial Metal Models

We mainly use the implicit Euler method in our plastic models, although it is significantly
more complex than the explicit one.

Then «; 41 can be expressed as

Qi+l = Qi + 0 = QG + a;yn — bioy py17y. (4.41)
Thus,
o g+ a;yn
Qi1 = 1"+7bj (4.42)
(3
Then,

QG T+ a;YN

The shifted stress can be then computed as

. O n +a;iyn
Ml = Ont1 — Opy1 = 0 — Eym —) % (4.44)
(2

Rearranging leads to

_aiymn trial Qi
+ Evyn + E =0 — E —_— 4.45
n+1 Y 1+ by - 1+ biv ()

Given that n = sign (n,4+1) and v > 0,

, s , s

+ Ev+) n= oW N B0} gjon (0“1&1 — L > . (4.46

(sl + 2+ 120 > e s ¥))
Thus,

s . trial Qin
= = — 4.47
n = sign (n,+1) = sign <0 E T bm) , ()
a;”y trial A4n
+ Evy + E =|o — E ’ ‘ 4.48

With the above expressions, the yield function can be evaluated as
[= |77n+1| - (Ui + Kqpy1 + o’ (1 _ e*anJrl))

ria Q; a7y i s —m(qn
= ot 1_21+b7 Evy— Zl_i_bﬂ—a—an—K’y—a (1—6 (qJ”))
=0.

(4.49)

The Newton—Raphson method shall be used to solve this nonlinear equation. The Jacobian

34

4.3. Armstrong—Fredrick Hardening Model

reads

=y A T biinl = G _ g s emmiantn), (4.50)
1+m7

The tangent modulus shall be computed via the chain rule.

o o trial o o
Intl _ 9% pn P — B4 En)
Oent1 Ocn+1 Oeny1 Oent1

(4.51)

Following the general procedure Eq. (3.10), at equilibrium, the full differentiation of yield
function is

of of
Oeny1 07 O0enga

= 0. (4.52)

Thus,

N ::-(af)_l of (4.53)

8€n+1 87’}’ aEn—f—l .
In which,
of

a5n+1
of

and == should have been computed when local iteration converges.

oy

= nE, (4.54)

Finally, the tangent stiffness is

0ony1

_ oy 8f>_1 2
&Ml_E+E%%H—E+(E2. (4.55)

4.3.3. Implementation

The state determination algorithm of this AF model is given in Algorithm 4.

Algorithm 4 state determination of uniaxial AF steel model

1: Parameter: F, K, 0%, m, a;, b;
2: Input: En+1, En, El?w On, ai,Tw dn
3: Output: Epya, 5%.5.17 On+1, Qi n+1, dnt1
. o
4: compute O.tr1a17 ntrlal and ftrlal n = sign <o_tr1al . Z 2N)
‘ 14 by

if ftial > (0 then

¥=0

while true do

compute f and gf > Eq. (4.49) and Eq. (4.50)
Y

35

4. Uniaxial Metal Models

SNOR

9
10:
11: if |Av| < tolerance then
12: break
13: end if
14: v+ v— Ay
15: end while
16: eb =¢eb4+n
17: Gn+1 = Gn + 7
18 g = ntanm
’ 1+ by
19: On+1 = Uf{jfll — Evyn
-1
200 Epp1=FE+ <8f) E?
Oy
21: else
22: e 1=¢b
23: dn+1 = Qdn
24: Qin+l = Qin
25: Ont+1 = aflrj_all
26: En+1 =F
27: end if

So far it is clear that for both simple and complex models, the structure of state determi-
nation algorithm remains more or less the same. The core formulation only differs due to
different yield function, flow rule and hardening law. Nevertheless, some simplifications are

12
13
14
15
16
17
18
19
20
21

often possible.

int ArmstrongFredericklD: :update_trial_status(const vec& t_strain) {

36

incre_strain = (trial_strain = t_strain) - current_

if (norm(incre_strain) <= tolerance) return SUANPAN_

trial_stress = current_stress + (trial_stiffness =

trial_history = current_history;
auto& p = trial_history(size);

auto yield_func = fabs(trial_stress(0) - accu(trial_history.head(size))) - std::max(0.,

strain;
SUCCESS;

initial_stiffness) * incre_strain;

— yield + hardening * p + saturated * (1. - exp(-m * p)));

if (yield_func < 0.) return SUANPAN_SUCCESS;

auto gamma = O.;
double xi, jacobian;

unsigned counter = 0;
while(true) {
if (max_iteration == ++counter) {
suanpan_error ("ArmstrongFredericklD cannot
< max_iteration);

converge in %u iterations.\n",

4.3. Armstrong—Fredrick Hardening Model

22 return SUANPAN_FAIL;

23 }

24

25 const auto exp_term = saturated * exp(-m * p);

26

27 auto k = yield + saturated + hardening * p - exp_term;

28 auto dk = hardening + m * exp_term;

29 if(k < 0.) k = dk = 0.

30

31 auto sum_a = 0., sum_b = 0.;

32 for(unsigned I = 0; I < size; ++I) {

33 const auto denom = 1. + b(I) * gamma;

34 sum_a += trial_history(I) / denom;

35 sum_b += a(I) / denom;

36 }

37

38 yield_func = fabs(xi = trial_stress(0) - sum_a) - (elastic_modulus + sum_b) * gamma -
— k;

39

40 jacobian = -elastic_modulus - dk;

41

42 if(xi > 0.) for(unsigned I = 0; I < size; ++I) jacobian += (b(I) * trial_history(I) -
— a(I)) * pow(l. + b(I) * gamma, -2.);

43 else for(unsigned I = 0; I < size; ++I) jacobian -= (b(I) * trial_history(I) + a(I))
— * pow(l. + b(I) * gamma, -2.);

44

45 const auto incre = yield_func / jacobian;

46 suanpan_extra_debug("ArmstrongFrederickiD local iterative loop error: %.5E.\n",
— fabs(incre));

47 if (fabs(incre) <= tolerance) break;

48

49 gamma -= incre;

50 p —= incre;

51 }

52

53 if(xi > 0.) {

54 for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) + a(I) *
< gamma) / (1. + b(I) * gamma);

55

56 trial_stress -= elastic_modulus * gamma;

57 }

58 else {

59 for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) - a(I) *
< gamma) / (1. + b(I) * gamma);

60

61 trial_stress += elastic_modulus * gamma;

62 }

63

64 trial_stiffness += elastic_modulus / jacobian * elastic_modulus;

65

66 return SUANPAN_SUCCESS;

67 X

37

4. Uniaxial Metal Models

4.4. Uniaxial Model for BRB Steel

The previous models show symmetric behaviour regardless under tension or compression. For
some application such as buckling restrained braces, buckling under compression would result
in lower strength. In this section, a model [7] suitable for BRB steel is presented with a neat
implementation.

4.4.1. Theory

To distinguish different responses in tension and compression, one set of flow rule and hard-
ening law is not sufficient. Instead, tension and compression shall be treated separately.
Here superscripts (-)* and ()~ are used to denote tension and compression governing equa-
tions.

Plasticity Activation

The model adopts a different approach. The activation of plasticity is decided based on the
product o¢. When loading towards tension (compression), as long as o is in tension (compres-
sion), plasticity evolves. In mathematical language,

éo >0, plasticity develops
éo <0, elastic unloading

(4.56)

In other words, loading is always plastic while only unloading can be elastic.

Flow Rule

The increment of plastic strain is defined to be a portion of the increment of total strain,

o — KeP . . .
T €, tension evolution
. o
e = ol (4.57)
o — KeP) . .
— €. compression evolution
o
y

The term KeP defines the linear hardening, which serves as a baseline, given than yield stress

o (0,) defines the boundary, the fraction is always smaller than unity.

Oy

38

4.4. Uniaxial Model for BRB Steel

Hardening Law

The yield stress follows a Voce type rule.

a;' =00+ (o*j — 00) (1 — exp (—i))
=0l — (0: — Ug) exp (—;r) ,
- _ - _ _ _9
o, =00+ (05 —00) (1 exp(n‘))

=0, — (05 —o00)exp (_nq) .

(4.58)

(4.59)

In which n* and n™ are two factors controlling the speed of evolution of yield stress while o}
and o, are two saturated stresses. By setting different values, tension response can differ from

compression response.

4.4.2. Formulation

The governing equations are summarised as follows.

Constitutive Law ¢ = E (¢ — €P)

+
(0%
o — KeP) . .
—— | ¢, tension evolution,
. o
Flow Rule &P = Y o
o— KeP . . .
— €, compression evolution.
o
Yy

Hardening Law ¢ = |P|
q
of =of — (oF —00) exp <_n+>

L q
o, =0, — (05 — 0p) exp <>

n

The state determination is based on the flow rule. Rearranging it gives

with superscript ()jE covering both tension and compression, whichever suits.

It can be further expanded as

+
. - |
. E (ept1 —€b —eP) — Keb — KeP |~ |
R=¢P — T E.
Ty

(4.60)

(4.61)

39

4. Uniaxial Metal Models

Denoting "' = F (g,,11 — e) — keb, it is

at

otrial _ pep _ Kep

T
Oy

R=¢pr— E.

The corresponding derivative is

. da’i

i Y : * + trial : . y

Ok _ 4 ot gtriel — per — Fer|* (B4 K)oy + (J * *Eep*K6p> der
OeP Uét g;t (otial — Eep — Kep)

It can be validated the above derivative holds for both positive and negative fraction.

The derivative of yield function can be computed as

For tangent stiffness, the following expression will be used.

. . . j:
OR _ _|o™ - Ber — Ker|" () N atél
Oeni1 agjt otrial — Pep — Kep |

4.4.3. Implementation

(4.62)

(4.63)

(4.64)

(4.65)

A clear and concise implementation is presented as follows. Compared with other existing

bloated implementations, the following one is significantly simpler.

Algorithm 5 state determination of uniaxial BRB steel model

Parameter: F, K, g, of, 07, n", n™, at, a”
Input: €,41, €n, €8, on, qn

Output: E,41, 5173L+1, On+1, gn+1

€= €n+l —En

assuming elastic response 0,11 = 05, + E (ep41 — €n)

if op41€ < 0. then

else

—
= o

determine tension/compression plastic loading

ep = —¢

—
[\V]

while true do
b)
Epy1 = Ep TP

—_

40

> elastic

> plastic

19
20
21
22
23
24
25
26
27

4.4. Uniaxial Model for BRB Steel

15: Gnt1 = qn + |€7]
16: On+1 = FE (5n+1 — Eﬁil)
o
17: compute aff and d—.@; using the proper function
2
R
18: compute R and) > Eq. (4.62) and Eq. (4.63)
5
OR\ !
(8&‘1")
20: if |A] < tolerance then
21: break
22: end if
23: eP el + A
24: end while .
OR\™" OR
i * (aﬁp) Oeny1
26: end if

The idea of the above steel BRB model is fairly straightforward. Given that the target is to gen-
erate different response under tension/compression, one can simply adopt two sets of flow rule
and hardening law to fulfil this task. For each case, the overall structure of algorithm remains
the same, one can switch between two sets of model parameters.

The CPP implementation of the state determination algorithm is shown as follows.

int SteelBRB::update_trial_status(const vec& t_strain) {

incre_strain = (trial_strain = t_strain) - current_strain;
if (fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
trial_stress = current_stress + (trial_stiffness = elastic_modulus) * incre_strain;

trial_history = current_history;
const auto& current_accumulated_strain = current_history(0); // u

const auto& current_plastic_strain = current_history(1l); // \delta_1
auto& accumulated_strain = trial_history(0); // u
auto& plastic_strain = trial_history(1); // \delta_1

if (trial_stress(0) / incre_strain(0) < 0.) return SUANPAN_SUCCESS;

const auto tension_flag = incre_strain(0) >= 0.;

const auto& exponent = tension_flag 7 t_exponent : c_exponent;

const auto compute_stress = tension_flag 7 std::mem_fn(&SteelBRB::compute_t_yield_stress)
— @ std::mem_fn(&SteelBRB: :compute_c_yield_stress);

auto incre = .5 * incre_strain(0), incre_plastic_strain = 0.;
auto counter = 0;
while(true) {
if (max_iteration == ++counter) {
suanpan_error ("SteelBRB cannot converge within %u iterations.\n", max_iteration);
return SUANPAN_FAIL;

41

28
29
30
31
32
33

34
35
36
37
38

39
40
41
42
43
44
45
46

47
48
49
50
51

4. Uniaxial Metal Models

incre_plastic_strain += incre;

plastic_strain = current_plastic_strain + incre_plastic_strain;
trial_stress = elastic_modulus * (trial_strain - plastic_strain);

const auto sigma_y = compute_stress(this, accumulated_strain =

< current_accumulated_strain + fabs(incre_plastic_strain));

const auto numerator = trial_stress(0) - plastic_modulus * plastic_strain;
const auto fraction = numerator / sigma_y(0);

const auto pow_term = pow(fabs(fraction), exponent);

auto residual = -incre_strain(0) * pow_term;
const auto jacobian = 1. + exponent / numerator * residual * (s_modulus - fraction *
— (incre_plastic_strain >= 0. ? sigma_y(1) : -sigma_y(1)));

residual += incre_plastic_strain;
const auto error = fabs(incre = -residual / jacobian);
suanpan_debug("SteelBRB local iteration error: 7%.5E.\n", error);
if (error <= tolerance) {
trial_stiffness *= 1. - (pow_term + incre_strain(0) * elastic_modulus * exponent

— * pow_term / numerator) / jacobian;

return SUANPAN_SUCCESS;

4.5. VAFCRP1D

Finally, an extension of Armstrong—Fredrick model is presented to close this chapter. A 3D
version will be introduced later.

4.5.1. Theory
Yield Function

A von Mises yielding function is used.

f=lnll = &, (4.66)

in which 7 = o — 3 is the shifted stress, § is the back stress and k = k (q) is the isotropic
hardening stress.

42

4.5. VAFCRP1D

Flow Rule

The associated plasticity flow is adopted. The plastic strain rate is then

. 0
e = vi =n =1 sign(n), (4.67)
do
wheren = ﬁ = sign (n). The corresponding accumulated plastic strain rate is
n

Hardening Law

An exponential function with a linear component is used for isotropic hardening stress.
k=oy+kp+ks—kse ", (4.69)

The corresponding derivative is

dk
- = ki + ksme™"P. (4.70)

The rate form of back stress g = Z (% is defined as
G = aiér — b,

In terms of =, it is ﬂ’ = a’yn — b'3%y. The incremental form is thus

. ﬁz —|-aifyn
B = p, +a'yn —b'G'y, B = W (4.71)
Plastic Multiplier
The rate of plastic multiplier is defined as
1
YL (lnl) €
A= LAl -1, 4.72
== (5 (472)
in which i and € are two material constants. Equivalently, it is
At ¢
— | —k=0. 4.73
Il (575) (4.73

43

4. Uniaxial Metal Models
4.5.2. Formulation
Incremental Form

The shifted stress can be computed as

BL + naty

4.74
1+ biy ()

n:O—_IB:E(gtrial_gg_,yn)_5:O_trial nE7 Z

with otal = F (etrial — 5{’1). Knowing that « is positive, the following can be obtained by
splitting the summation into two parts,

<unu+Ev+sz,)

7

t 1
ria Zl+b2

trial /B;L’L
T
where u = 5 7. This expression is equivalent to n = u and
otrial _ n_
2 1+ by

trial B’L
7 _Zl+bl By - Zl+bz> s (475)

X

The reason to find such an identity is that u is only a function of v, the derivative of which can
be easily computed. Similar derivations can also be seen in the 3D version, leading to the con-
clusion that the direction of back stress is aligned with some direction.

The corresponding derivatives are

9||n|| I||n|l b Byu— a'
N g, A _ 5 OPaUT4
aEtr1a1 uts, 3’}/ Z (1 + bzfy)Z

Scalar Equation Iteration

With the above expression, it is possible to establish the local residual based on the creep rule,
which is

]

trial ﬁz At ‘
7 _Z1+bz - _Zl—Hﬂ)(AtJr/w)

— oy + ki (pn+) + ks (1= e 0)) - (4.76)

44

N O ok W

[ed]

10
11
12
13
14
15
16
17
18
19
20
21

The corresponding derivatives are then

OR uE(At)
Hetrial - At + Wy ’

OR Zbiﬂ%u—a"_E_ iyl (At)e_dk
oy (1 + biy)2 At + pry | \At+ py dy’

Consistent Tangent Stiffness

trial

For stiffness, ¢ is now varying, then

OR OR dy dry <8R)1 OR

8€trial 8,7 dgtrial =Y d&-trial = 87 8€trial'

Since the stress can be written as

o= E(&.trial . Ep) _ E(gtrial o E;Z . A&.p) — E(Etrial _ 8;2) _ E’yu

The derivative is

do dy) <0R>1< At >
= —E-FBu—t =E+E?(— =)
dstrlal udgtmal + 8,7 At + wy

4.5.3. Implementation

4.5. VAFCRP1D

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

int VAFCRP1D::update_trial_status(const vec& t_strain) {

trial_stress = current_stress + (trial_stiffness = initial_stiffness) * (incre_strain =

— (trial_strain = t_strain) - current_strain);

trial_history = current_history;
auto& p = trial_history(size);

if (fabs(trial_stress(0) - accu(trial_history.head(size))) < std::max(0., yield +
< hardening * p + saturated * (1. - exp(-m * p)))) return SUANPAN_SUCCESS;

auto gamma = O.;
double xi, jacobian, exp_gamma;

unsigned counter = 0;
while(true) {
if (max_iteration == ++counter) {

suanpan_error ("VAFCRP1D cannot converge in ju iterations.\n", max_iteration);

return SUANPAN_FAIL;
¥

const auto exp_term = saturated * exp(-m * p);

auto k = yield + saturated + hardening * p - exp_term;

45

22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38

39

40
41
42
43
44
45
46
47
48
49
50

56
57
58
59
60
61
62
63

4. Uniaxial Metal Models

auto dk = hardening + m * exp_term;
if(k < 0.) k = dk = 0.

auto sum_a = 0., sum_b = 0.;

for(unsigned I = 0; I < size; ++I) {
const auto denom = 1. + b(I) * gamma;
sum_a += trial_history(I) / denom;
sum_b += a(I) / denom;

}
const auto q = fabs(xi = trial_stress(0) - sum_a) - (elastic_modulus + sum_b) *
< gamma;

exp_gamma = pow(*incre_time / (*incre_time + mu * gamma), epsilon);
jacobian = -elastic_modulus - epsilon * mu * q / (*incre_time + mu * gamma) ;

if(xi > 0.) for(unsigned I = 0; I < size; ++I) jacobian += (b(I) * trial_history(I) -
— a(I)) * pow(l. + b(I) * gamma, -2.);

else for(unsigned I = 0; I < size; ++I) jacobian -= (b(I) * trial_history(I) + a(I))
— % pow(l. + b(I) * gamma, -2.);

const auto incre = (q * exp_gamma - k) / ((jacobian *= exp_gamma) -= dk);
suanpan_extra_debug("VAFCRP1D local iterative loop error: %.5E.\n", fabs(incre));
if (fabs(incre) <= tolerance) break;

gamma -= incre;
p —= incre;

}

if(xi > 0.) {
for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) + a(I) *
— gamma) / (1. + b(I) * gamma);

trial_stress -= elastic_modulus * gamma;
}
else {
for(unsigned I = 0; I < size; ++I) trial_history(I) = (trial_history(I) - a(I) *
— gamma) / (1. + b(I) * gamma);
trial_stress += elastic_modulus * gamma;
}

trial_stiffness += elastic_modulus / jacobian * elastic_modulus * exp_gamma;

return SUANPAN_SUCCESS;

46

5. Uniaxial Phenomenological Models

In this chapter, we present a number of uniaxial phenomenological models. Due to their phe-
nomenological nature, some models may violate Ilyushin’s postulate.

5.1. Ramberg—0Osgood Model

5.1.1. Theory

The Ramberg—Osgood relation is nonlinear function that defines
= = s = \n-1
e=2 4102 (f’) , (5.1)

where « and n are two model constants. To account for cyclic response, strain and stress are
not directly used in the above expression.

T T
10 - 8
I}
5 L |
O | | | | | | | |
0O 02 04 06 038 1 1.2 14 1.6
3
5.1.2. Formulation
The residual equation is formulated as
6_ n—1
R=6+ac () B, (5.2)
oY

47

5. Uniaxial Phenomenological Models

its derivative with regard to o is

— \n—1
G =1+na <£‘y> . (5.3)

o o
Once € and ¢¥ are determined, 6 can be iteratively computed.

For cyclic loads, it is necessary to record the location of reversing point, denoted by €” and o”.
Then,

gE=le—¢£", og=lo—od"| (5.4)

It simply means € and & are the absolute strain and stress measured from the reversing
point.

The yield stress is taken as
a¥=ac"¥+|0"|. (5.5)

where ¢V is the initial yield stress. This definition is fine for large cycle loads, but not sufficient
for small cycle loads. For which, the previous reversing point shall be used, let " and oP"
denote its strain and stress, then for small cycles, |o?"| > |o"|,

GY = |o?" — o7, (5.6)
To wrap up,

max (o¥ + |o"],|oP" — o"|), if o?" =0 or |oP"| < |o"],
|oP" — o™, otherwise.

5.1.3. Implementation

The CPP implementation can be found as follows.

int RambergOsgood: :update_trial_status(const vec& t_strain) {
incre_strain = (trial_strain = t_strain) - current_strain;

if (fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;

trial_history = current_history;

auto& load_sign = trial_history(0);

auto& reverse_strain = trial_history(1);
auto& reverse_stress = trial_history(2);
auto& p_reverse_strain = trial_history(3);
auto& p_reverse_stress = trial_history(4);

if (const auto trial_load_sign = suanpan::sign(incre_strain(0));
< !suanpan::approx_equal(trial_load_sign, load_sign)) {

48

14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

31
32
33
34
35

36
37
38
39
40
41
42
43
44

5.2. MPF Steel Model

if (!suanpan: :approx_equal (load_sign, 0.)) {
p_reverse_strain = reverse_strain;
p_reverse_stress = reverse_stress;
reverse_strain = current_strain(0);
reverse_stress = current_stress(0);

}
load_sign = trial_load_sign;
const auto elastic_predictor = elastic_modulus * fabs(trial_strain(0) - reverse_strain);
const auto norm_yield_stress = std::max(datum::eps, 0. == p_reverse_stress ||
— fabs(p_reverse_stress) < fabs(reverse_stress) 7 std::max(fabs(reverse_stress -
< p_reverse_stress), yield_stress + fabs(reverse_stress)) : fabs(reverse_stress -
< p_reverse_stress));

const auto pow_a = pow(norm_yield_stress, nm);

auto norm_stress = fabs(current_stress(0) - reverse_stress);

unsigned counter
while(true) {
const auto pow_b = offset * pow(norm_stress, nm);
const auto jacobian = pow_a + n * pow_b;
const auto incre = (norm_stress * (pow_a + pow_b) - elastic_predictor * pow_a) /

0;

— jacobian;
const auto error = fabs(incre) / yield_stress;
suanpan_debug("RambergOsgood local iteraton error: %.5E.\n", error);
if (error <= tolerance || max_iteration == ++counter) {
trial_stress = load_sign * norm_stress + reverse_stress;
trial_stiffness = elastic_modulus * pow_a / jacobian;
return SUANPAN_SUCCESS;
}

norm_stress -= incre;

5.2. MPF Steel Model

5.2.1. Theory

5.2.2. Formulation

5.2.3. Implementation

The CPP implementation can be found as follows.

49

22
23
24

26
27
28

29

30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53

5. Uniaxial Phenomenological Models

int MPF::update_trial_status(const vec& t_strain) {
incre_strain = (trial_strain = t_strain) - current_strain;

if (fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;

trial_history = current_history;

auto& reverse_stress = trial_history(0);
auto& reverse_strain = trial_history(1);
auto& inter_stress = trial_history(2);
auto& inter_strain = trial_history(3);
auto& pre_inter_strain = trial_history(4);
auto& max_strain = trial_history(5);

auto& load_sign = trial_history(6);

auto shift_stress = 0.;

if (isotropic_hardening) {
shift_stress = std::max(0., A3 * yield_stress * (max_strain / yield_strain - A4));
max_strain = std::max(max_strain, fabs(trial_strain(0)));

}

if (const auto trial_load_sign = suanpan::sign(incre_strain(0));
— !suanpan::approx_equal(trial_load_sign, load_sign)) {
if (!suanpan: :approx_equal(load_sign, 0.)) {

reverse_stress = current_stress(0);
reverse_strain = current_strain(0);
pre_inter_strain = inter_strain;
inter_strain = yield_stress * hardening ratio - yield_stress - shift_stress;
if (trial_load_sign > 0.) inter_strain = -inter_strain;

inter_strain = (inter_strain + elastic_modulus * reverse_strain - reverse_stress)

— / (elastic_modulus - hardening ratio * elastic_modulus);
inter_stress = elastic_modulus * (inter_strain - reverse_strain) +
< reverse_stress;

}

else if(trial_load_sign > 0.) {
inter_stress = yield_stress;
inter_strain = yield_strain;

}
else {
inter_stress = -yield_stress;
inter_strain = -yield_strain;
}

load_sign = trial_load_sign;

auto radius = RO;

if (! constant_radius) {
// update radius
const auto xi = fabs(reverse_strain - pre_inter_strain) / yield_strain;
radius -= A1 * xi / (A2 + xi);

const auto gap_strain = inter_strain - reverse_strain;

const auto gap_stress = inter_stress - reverse_stress;

const auto normal_strain = std::max(datum::eps, (trial_strain(0) - reverse_strain) /
< gap_strain);

const auto factor_a = 1. + pow(normal_strain, radius);

const auto factor_b (1. - hardening_ratio) * pow(factor_a, -1. / radius);

20

54
55

56
57
58
59

trial_stress = (hardening ratio + factor_b) * normal_strain * gap_stress +

< reverse_stress;

trial_stiffness = gap_stress / gap_strain * (hardening ratio + factor_b / factor_a);

return SUANPAN_SUCCESS;

5.3. Bouc—Wen Model

5.3. Bouc—Wen Model

5.3.1. Theory

5.3.2. Formulation

5.3.3. Implementation

int BoucWen::update_trial_status(const vec& t_strain) {
incre_strain = (trial_strain = t_strain) - current_strain;

if (fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;
const auto n_strain = incre_strain(0) / yield_strain;

trial_history = current_history;

23
24
25
26
27
28
29

const auto& current_z = current_history(0); // z

auto& z = trial_history(0);

auto incre = .5 * n_strain;
unsigned counter = 0;
while(true) {

if (max_iteration == ++counter) {
suanpan_error ("BoucWen cannot converge within ju iterations.\n", max_iteration);

return SUANPAN_FAIL;

z += incre;

const auto p_term = (gamma + (z * n_strain >= 0.
— pow(std::max(datum: :eps, fabs(z)), n);
const auto t_term = n_strain * p_term;

const auto residual = z - current_z + t_term - n_strain;
z + n * t_term;

const auto jacobian

const auto error = fabs(incre

-residual * z / jacobian);

30
31
32
33
34

35
36
37
38
39

5. Uniaxial Phenomenological Models

suanpan_debug("BoucWen local iteration error: 7.5E.\n", error);

if (error <= tolerance) {
trial_stress = modulus_a * trial_strain + modulus_b * z;
trial_stiffness = modulus_a + modulus_b / yield_strain * (1. - p_term) * z /
— Jjacobian;

return SUANPAN_SUCCESS;

5.4. General Framework for Hysteresis Models

5.4.1. Theory

The general framework consists of three main elements:
1. backbone curve — compression/tension envelope, blue curves in Fig. 5.1

2. unloading curve — unload from backbone to the corresponding residual point (with zero
stress), curves in Fig. 5.1

3. reloading curve — loading from residual point to backbone curve on the opposite side,
purple curves in Fig. 5.1

Each of those three curves can be either linear/nonlinear or piece-wise linear/nonlinear and
may depend on other internal variables.

Accordingly, at least four points are essential to control the response of the model, namely,
the tension unloading point, the tension residual point, the compression unloading point, the
compression residual point. A schematic illustration is given in Fig. 5.1. Some complex models
may consist of more control points, such as reloading points that connect reloading curves with
backbones.

With the above definition, it is clear that any given current state £, and o, shall on one
of three curves. With prescribed strain increment Ae, the determination of stress o,11 is
equivalent to computing the new point on one of three curves. As the current state (e,,0,)
has to be on one of three curves, it is easy to determine whether ¢,,1 = &, + Ac is on
unloading/reloading /backbone curve by simply comparing the magnitudes of £,,4; and that of
unloading/residual strain, which are stored as history variables.

The state determination algorithm can be cast in a branching programming style. In the

52

5.4. General Framework for Hysteresis Models

stress
tension
unloading
compression
residual
@ ~O .
tension strain
residual
compression
unloading

Figure 5.1.: schematic illustration a generalised hysteresis model

following procedure, e, is compression residual strain, ., is compression unloading strain, €¢,
is tension residual strain, ey, is tension unloading strain.

Algorithm 6 state determination of general hysteresis model

Parameter: necessary model parameters

Input: €,41, €n, 0y and other relevant history variables

Output: E, 41, ont1 and other relevant history variables

get strain values of four control points

En+l = En + Ac

determine which curve the new state is on based on the curve the current state is on and
the magnitudes of €,41, €cry Ecus Etry Etu

7: call corresponding methods to compute the new state (£,4+1,0,+1) based on relevant two
control points and history variables, if any

5.4.2. Implementation

By using two flags, it is easy to track which curve each point is on.

enum class Status { NONE, CBACKBONE, TBACKBONE, CINNER, TINNER };

Status trial_flag = Status::NONE, current_flag = Status::NONE;

The implementation presented uses a nested structure to simply the procedure. The top
level determines whether the new state is on the backbone, if not, the second level determines
whether the new state is on the corresponding unloading curve or reloading curve and computes
the response accordingly.

93

29

30
31

5. Uniaxial Phenomenological Models

For each curve, a universal interface can be provided such that each takes €,41 as the input
and returns op41 and E,11 in an array.

[[nodiscard]] virtual podarray<double> compute_compression_backbone(double) const = 0;
[[nodiscard]] virtual podarray<double> compute_tension_backbone(double) const = 0;
[[nodiscard]] podarray<double> compute_compression_inner (double) const;

[[nodiscard]] podarray<double> compute_tension_inner (double) const;

The control points can be updated on the demand with some auxiliary methods.

[[nodiscard]] virtual podarray<double> compute_compression_initial_reverse() const = 0;
[[nodiscard]] virtual podarray<double> compute_tension_initial_reverse() const = 0;
[[nodiscard]] virtual double compute_compression_residual(double, double) const = 0;
[[nodiscard]] virtual double compute_tension_residual(double, double) const = 0;

The following CPP code snippet shows a working implementation of such a state determination
procedure.

int SimpleHysteresis::update_trial_status(const vec& t_strain) {

54

incre_strain = (trial_strain = t_strain) - current_strain;
if (fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;

if (current_history.is_empty() || !any(current_history)) {
current_history.zeros(8);
auto point = compute_compression_initial_reverse();
current_history(2) = point(0);
current_history(3) = point(1);
point = compute_tension_initial_reverse();
current_history(4) = point(0);
current_history(5) = point(1);
initial_history = current_history;

}

else if(current_history.size() != 8) {
current_history.resize(8);
initial_history = current_history;

trial_history = current_history;

auto& max_c_strain = trial_history(0); // mazimum compression strain recorded
auto& max_t_strain = trial_history(l); // mazimum tension strain recorded

auto& reverse_c_strain = trial_history(2); // unloading point strain compression side
auto& reverse_c_stress = trial_history(3); // unloading point stress compression side
auto& reverse_t_strain = trial_history(4); // unloading point strain tension side
auto& reverse_t_stress = trial_history(5); // unloading point stress tension side
auto& residual_c_strain = trial_history(6); // residual strain in compression unloading
— path

auto& residual_t_strain = trial_history(7); // restidual strain in compression unloading
— path

podarray<double> response;

32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50

52
53

55
56
57
58

60
61
62

63
64

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

86

5.4. General Framework for Hysteresis Models

if (Status::NONE == current_flag) {
if (incre_strain(0) > 0.) {
trial_flag = Status::TBACKBONE;
response = compute_tension_backbone (max_t_strain = trial_strain(0));

}
else {

trial_flag = Status::CBACKBONE;

response = compute_compression_backbone(max_c_strain = trial_strain(0));
}

}
else if(Status::CBACKBONE == current_flag) {
if (incre_strain(0) > 0.) {
residual_c_strain = compute_compression_residual (reverse_c_strain =
— current_strain(0), reverse_c_stress = current_stress(0));
if (trial_strain(0) > reverse_t_strain) {
trial_flag = Status::TBACKBONE;
response = compute_tension_backbone(max_t_strain = trial_strain(0));

}
else {
trial_flag = Status::CINNER;
response = compute_compression_inner(trial_strain(0));
}
}
else {
trial_flag = Status::CBACKBONE;
response = compute_compression_backbone(max_c_strain = trial_strain(0));
}

}
else if(Status::TBACKBONE == current_flag) {
if (incre_strain(0) < 0.) {
residual_t_strain = compute_tension_residual (reverse_t_strain =
— current_strain(0), reverse_t_stress = current_stress(0));
if (trial_strain(0) < reverse_c_strain) {
trial_flag = Status::CBACKBONE;
response = compute_compression_backbone(max_c_strain = trial_strain(0));

}
else {
trial_flag = Status::TINNER;
response = compute_tension_inner(trial_strain(0));
}
}
else {
trial_flag = Status::TBACKBONE;
response = compute_tension_backbone(max_t_strain = trial_strain(0));
}

}
else if(Status::CINNER == current_flag) {
if (trial_strain(0) > reverse_t_strain) {
trial_flag = Status::TBACKBONE;
response = compute_tension_backbone(max_t_strain = trial_strain(0));
}
else if(trial_strain(0) < reverse_c_strain) {
trial_flag = Status::CBACKBONE;
response = compute_compression_backbone(max_c_strain = trial_strain(0));
}
else {

95

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107

109

110

111
112

5. Uniaxial Phenomenological Models

trial_flag = Status::CINNER;
response = compute_compression_inner(trial_strain(0));

}
else if(Status::TINNER == current_flag) {
if (trial_strain(0) > reverse_t_strain) {
trial_flag = Status::TBACKBONE;
response = compute_tension_backbone(max_t_strain = trial_strain(0));
}
else if(trial_strain(0) < reverse_c_strain) {
trial_flag = Status::CBACKBONE;
response = compute_compression_backbone(max_c_strain = trial_strain(0));

}
else {

trial_flag = Status::TINNER;

response = compute_tension_inner(trial_strain(0));
}

trial_stress = response(0);
trial_stiffness = response(l);

suanpan_debug([&] () { if(!trial_stress.is_finite() || !trial_stiffness.is_finite()) throw
< 1invalid_argument("infinite number detected.\n"); });

return SUANPAN_SUCCESS;

Remarks

A lot of hysteresis models can be reformulated in the above framework. For example, by
fixing residual points to origin, all unloading paths (either linear or nonlinear) converge to
origin, which correspond to a class of models that are often called origin—oriented. Alterna-
tively, the reloading curve can be defined in a way so that it always loads back to the peak
point on the backbone curve on the opposite side. This is often known as peak—oriented
model.

Some complex models suitable for concrete can be formulated accordingly, in which the curves
are nonlinear and depend on other internal variables as well. Given that tension response and
compression response are independent from each other, some asymmetric models can also be

defined.
Noting that the top level branching does not care about history variables, the updating of

them are solely handled in the corresponding methods. The presented framework provides a
flexible container so that a wide range of models can be defined.

o6

6. Uniaxial Plasticity Models (Other Materials)

6.1. K4 Concrete

In this section, we introduce a uniaxial model for concrete that is formulated within the classic
plasticity framework. The model is named as K4 model in this book as the four authors’
surnames all start with letter ‘K’. However, the model presented in the original paper adopts
a linear degradation, leading to inevitable sudden zero stiffness after exceeding certain strain
limit. Numerical models do not prefer exact zeros, thus, it is revised to adopt an exponentially
decaying function instead. It shall be pointed out that the original formulation [%] contains
some mistakes, in the event of any discrepancy or inconsistency, we prefer the formulation
discussed in this section.

There are quite a number of phenomenological models for concrete. Since they are phenomeno-
logical, it is relatively flexible to define different loading/unloading response. Such kind of
flexibility makes the corresponding model easier for engineers to understand and extrapolate,
however, they may violate thermodynamic principles.

6.1.1. Theory

The classic plasticity framework does not support definition of stiffness degradation, the elastic
loading /unloading paths always follow the gradient of initial stiffness. It is a common practice
to combine plasticity and damage [9] together so that the apparent stiffness can gradually
degrade.

The apparent stress o is conventionally expressed as
c=(1-d)a, (6.1)

where d is the damage factor ranging from zero to unity and & is the effective stress. With such
a formulation, damage and plasticity apply to d and & respectively.

Just like other plasticity models, the additive decomposition applies such that

o=FE(—¢P). (6.2)

o7

6. Uniaxial Plasticity Models (Other Materials)
Yield Function

Unlike metals, there is no need to model ratcheting in concrete, as a result, convention-
ally there is only isotropic hardening, but no kinematic hardening. Thus, there is also no
need to introduce back stress into the model. The yield function F' can be simply expressed
as

F =15 - d, (6.3)

It states that plasticity evolution will be triggered whenever the magnitude of effective stress
o exceeds the backbone defined by o,, which is a function of some internal hardening vari-
able.

It becomes apparent that if only one o, is used, there is no way to differentiate tensile behaviour
from compressive one. This issue can be addressed by adopting two sets of rules, one for tension
and the other for compression.

[R, >0,
F= { F., otherwise, (6-4)

with
Fo=6—0y1, Fo=—0—0ye (6.5)

Flow Rule

For uniaxial models, the flow direction is simply the loading direction,

. OF
P — i g) = v——0. 6.6
eP =1 sign () = v (6.6)
One would find this coincide with the associative plasticity (the second equality).
Hardening Law
Any functions can be chosen as the hardening law, meaning that
oyt = Hy (k) , Oye = He (ke), (6.7)

where k; and k. are internal hardening variables.

Given that the damage theory is adopted to account for stiffness and strength degradation, of-
ten monotonically increasing functions are chosen for hardening functions.

o8

6.1. K4 Concrete

The original formulation adopts the following explicit forms.

fy + hckca kc < k()a

fy + heko + hg (ke — ko), otherwise. (6.8)

6y,t = ft + htkh 6y,c = {

In the above expression, f; and f, are crack strength (for tension, in positive) and yield strength
(for compression, in positive), h¢, he and hy are three positive moduli, and kg denotes the value
of k. at compressive crush strength. Essentially, 7, ; is a linear hardening function while oy .
is a bilinear hardening function. The above expression can be further simplified if we let f,
denote f, + hcko.

Since stiffness and strength degradation is taken care of by the damage part, here no softening
is considered such that

he, he, hyg > 0. (6.9)

The evolutions of k; and k. are tied to the plastic strain.

ky = |eP| = v for tension loading, (6.10)

ke = |eP| =~ for compression loading. (6.11)

Although the same expression is used for both, it shall be noted that for one single loading
step, only one of two yield functions will be activated, hence the plastic strain increment ~ (of
that particular step) can only contribute to either k; or k., not both.

Degradation

With the above yield function, flow rule and hardening law, we effectively have defined a very
simple plasticity model with only isotropic hardening which may have different behaviour in
tension and compression. It bears some resemblance compared with the model introduced in
§ 4.4, which adopts the same concept to differentiate tension and compression but is more
complex in terms of the specific functions chosen.

Similarly, it is desired to control degradation rate independently for tension and compression,
to this end,

) dy, 0>0,
4= { d., otherwise, (6.12)

The specific forms of tensile damage d; and compressive damage d. could vary, for example,
the original formulation [%] uses the linear degradation [10]. Here, we use a simpler exponential
function.

k ke
d;=1—exp <—et> d. =1—exp (-e) (6.13)
r,t 7,C

29

6. Uniaxial Plasticity Models (Other Materials)

The parameters e, ; and e, . are introduced to control the degradation rate.

For compression, if the original bilinear hardening function Eq. (6.8) is used, it is desired
to achieve the crush strength, thus, the damage evolution shall be delayed. The following
function

eT,C

d—1— e <_max (ke — k0,0)>

can be used such that d. stays at zero until k. becomes larger than kg.

Total Energy If linear hardening is used, say for example,
oy = ak + b. (6.14)

Here we do not distinguish between tension and compression, and use general parameters a and
b. Combining o, with damage factor gives the final stress backbone as

k
o, = (1—d) &, — exp (-C) (ak+b). (6.15)
Integration leads to

/ oy, dk = ac* + be. (6.16)
0

The initial slope is

doy

Ik =a—-. (6.17)

k=0 ¢

For it to be smaller than zero (no initial hardening, softening only), it is required that
ac < b. (6.18)
If a = 0, then no matter what value c takes, there is no initial hardening since b > 0. If ac > b,

b
implying a > 0, the backbone has a peak value at k = ¢ — =

b
It is possible to associate ¢ with b such that ¢ = — where (is a positive multiplier, then the

(E
total energy becomes
b? b a 1 9

60

6.1. K4 Concrete

The peak value for (F < a is

gfbj exp (CEG_ a) . (6.20)

If, for the reference characteristic length [, the reference (. is given, then for any characteristic
length [, if the total energy needs to stay unchanged, then

a 1 T 1 9
(@ *8) "= (gm + cp) ™ (6.21)
a 1 I, a 1
l, a? a
C—E = 2 . (6.23)

) a
Denoting r, = ok

274
L. (r2 r
14+4— (2 +-2) -1
J* l<<3+cr>

Note here we only enforce the total energy to be constant. It is not equivalent to objective
results under arbitrary magnitudes of loading.

(=

(6.24)

Crack/Gap Closing

According to Eq. (6.10), k; is the accumulated tensile plastic strain, physically, it repre-
sents the crack opening. When reloading towards compression, this opening can be gradually
closed.

To account for this crack closing mechanism, one more history variable kj is introduced to
allow additional plasticity to develop. kj tracks crack closing.

For this inner plasticity model, we adopt a simple linear model such that a fixed fraction of
strain increment contributes to plastic strain, that is

Aef = Ae (6.25)

E+hk'

Knowing that this is only activated during compressive loading (¢ < 0 and Ae < 0), then

61

6. Uniaxial Plasticity Models (Other Materials)

AeP < 0 and |AeP| = —AeP.

Aky = —AeP, (6.26)
Ag = —FEAEP. (6.27)

Such a mechanism states that, for reloading towards compression (o < 0 and Ae < 0), whenever
ky < kg, viz., crack closing is smaller than crack opening, there is net crack opening needs to
be closed. Under such a condition, the inner plasticity is activated such that part of strain
increment is converted to plastic strain (cracking closing). The following two implementation
details need to be considered to ensure a correct model.

Entering It shall be pointed out that the exact transition step from tensile stress to compres-
sive stress needs special treatment. The tensile stress needs to fully unload to zero, this part
involves no plasticity, the remaining is compressive loading which involves plasticity. Thus AeP
should be limited such that

max (an,0)> E Ae E max (G, 0)
FE E—l—hk_ E+ h; E+ hy '

AeP = <Ae + (6.28)

The above expression states that if the current effective stress 7, is positive (tensile), then we

max (G5, 0)

remove the corresponding tensile strain () from the total strain increment Ae. The

resulting AeP would be fully induced by compressive part.

Exiting Similarly, the exact transition step from not yet closed to fully closed also needs
additional attention. Noting that kj shall never exceed k;, and during the evolution of kg, k;
does not change, then

k‘k = kk,n + Akk = kk,n — AeP < kt, (6.29)
equivalently,
kipn — ki < AEP. (6.30)

If the above condition is not satisfied by the plastic strain increment computed from Eq. (6.28),
then one shall manually set Ae? = kj, ,,—k; and update kj, and o accordingly.

Remark For crack closing, the original model [3] formulates it as a plasticity model but does
not use a returning mapping algorithm in the corresponding implementation. Characterising
such a mechanism using a yield function, such as

Fy, = |5| — oy,

with o, = hiky, does not properly define the behaviour. Especially under cyclic loading, the
elastic region grows as o; would grow.

62

6.1. K4 Concrete

To correct the response, it, at least, has to be defined as
&1, = hy, (kk - k,i) : (6.31)

where k}{ is the initial ki at the beginning of current loading path, and needs to be updated
whenever load reversal occurs.

We avoid such a complex presentation as it may cause unnecessary confusions. At its core,
the crack closing mechanism tries to close the unclosed crack (k; — ki) by accumulating a

portion of strain increment to ki (Aky = |Ag|), and this mechanism is conditionally

FE
F + hk
activated.

6.1.2. Formulation
Tangent Stiffness

By the chain rule, differentiating the expression of stress

o=(1-do (6.32)
leads to
do do _dddk
P e T (6.33)
Here we use an ‘anisotropic’ damage concept, that is
_ dt? o> 07 . kt, o> 0,
= { d., else, k= { ke, else. (6.34)

Knowing that j—k is effectively (31—7 as k = 7, from the local residual (yield function) at equi-
€ €

librium,

OF 0Fdy OF
=gt =" (6.35)

one could derive

dy <8F>1 OF

- (5) o= (6.36)

63

6. Uniaxial Plasticity Models (Other Materials)

The yield function can be expressed as

F=15|-5,

= ‘&mal — vEsign (&)‘ — 0y,
then
F do do
g’y = —sign (o) Esign (o) — % =—-F— %,
F
%e = sign (o) E.
or . . :
In the above, J = r is in fact the Jacobian of the local system
Y
E
3—2 = —sign () 5

For the effective stress,

do _. —dy E?
99 _p_si Y gy
de sign (7) By T

The stiffness can be expressed as

do E? dd E
Z=(1-d) | E+= |+ |52
= >< +J>+a|

. Thus,

The explicit form of % shall be determined by the damage evolution.

6.1.3. Implementation

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

Algorithm 7 state determination of K4 concrete model

1: compute trial stress
2: if crack closing is activated then
3 apply crack closing plasticity
4: end if

5: if tension then
6 apply tensile plasticity

7 apply tensile damage

8: else

9 apply compressive plasticity
10: apply compressive damage
11: end if

64

6.1. K4 Concrete

It is straightforward to translate the above pseudo code to implementation.

int NonlinearK4::update_trial_status(const vec& t_strain) {

16
17
18

10
11
12
13

14
15
16

17
18
19
20
21
22
23

incre_strain = (trial_strain = t_strain) - current_strain;
if (fabs(incre_strain(0)) <= datum::eps) return SUANPAN_SUCCESS;

trial_history = current_history;

const auto& plastic_strain = trial_history(0);
// autoé kt = trial_history(1l);

// autof kc = trial_history(2);

const auto& current_kt = current_history(l);
const auto& current_kk = current_history(3);

trial_stress = (trial_stiffness = elastic_modulus) * (trial_strain - plastic_strain);

if (apply_crack_closing && trial_stress(0) < 0. && incre_strain(0) < 0. && current_kt >
— current_kk) compute_crack_close_branch();

return compute_plasticity();

The crack closing accounts for the aforementioned entering/exiting details.

void NonlinearK4::compute_crack_close_branch() {

auto& plastic_strain = trial_history(0);
const auto& kt = trial_history(l);
auto& kk = trial_history(3);

const auto jacobian = elastic_modulus + hardening_ k;

// account for entering

const auto net_strain = fabs(incre_strain(0)) - std::max(0., current_stress(0)) /
— elastic_modulus;

const auto dgamma = elastic_modulus / jacobian;

auto incre = net_strain * dgamma;

// physically, the temsion plastic strain ts the crack opening, closing the crack should
— mnot exceed the opening

// ensure the crack plastic strain is bounded by the tension plastic strain

if (incre > kt - kk) incre = kt - kk;

else trial_stiffness -= dgamma * elastic_modulus; // otherwise, the stiffness is degraded
— during the closing phase

const auto incre_ep = incre * suanpan::sign(trial_stress(0));
kk += incre;

plastic_strain += incre_ep;
trial_stress -= elastic_modulus * incre_ep;

65

6. Uniaxial Plasticity Models (Other Materials)

The tension and compression return mapping algorithms are almost identical except that they
update different history variables and call different functions to compute backbone and damage.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

One can unify them and use one implementation for both.

int NonlinearK4::compute_plasticity() {

66

auto& plastic_strain = trial_history(0);

const auto sign_sigma = suanpan::sign(trial_stress(0));

auto& k = sign_sigma > 0. 7 trial_history(l) : trial_history(2);

const auto backbone_handle = sign_sigma > 0. 7
— std::mem_fn(&NonlinearK4: : compute_tension_backbone)

— std::mem_fn(&NonlinearK4: : compute_compression_backbone) ;

const auto damage_handle = sign_sigma > 0. 7
< std::mem_fn(&NonlinearK4: :compute_tension_damage)

— std::mem_fn(&NonlinearK4: :compute_compression_damage) ;

auto counter = Ou;
auto ref_error = 1.;
while(true) {
if (max_iteration == ++counter) {

suanpan_error ("Cannot converge within {} iterations.\n", max_iteration);

return SUANPAN_FAIL;

backbone_handle(this, k);

const auto backbone

const auto residual = fabs(trial_stress(0)) - backbone(0);

if (1u == counter && residual <= 0.) {
if (apply_damage) {
const auto damage = damage_handle(this, k);
const auto damage_factor = 1. - damage(0);

trial_stress *= damage_factor;
trial_stiffness *= damage_factor;

return SUANPAN_SUCCESS;

const auto jacobian = elastic_modulus + backbone(1);

const auto incre = residual / jacobian;

const auto error = fabs(incre);

if (1lu == counter) ref_error = error;

suanpan_debug("Local plasticity iteration error: {:.

if (error < tolerance * ref_error || (fabs(residual)
const auto dgamma = elastic_modulus / jacobian;
trial_stiffness -= dgamma * elastic_modulus;

if (apply_damage) {
const auto damage = damage_handle(this, k);
const auto damage_factor = 1. - damage(0);

trial_stiffness *= damage_factor;
trial_stiffness -= trial_stress * damage(1)

5E}.\n", error);
< tolerance && counter > 5u)) {

* sign_sigma * dgamma;

49
50
51
52
53
54
55
56
57
58
59
60
61
62

gk W N =

© w0 N O

6.1. K4 Concrete

trial_stress *= damage_factor;

return SUANPAN_SUCCESS;

const auto incre_ep = incre * sign_sigma;

k += incre;
plastic_strain += incre_ep;
trial_stress -= elastic_modulus * incre_ep;

In the computation of damage variables, it is possible to adjust ¢ according to the previous
discussion.

double NonlinearK4::objective_scale(const double a, const double zeta) const {
if (!objective_damage) return zeta;

const auto ratio = a / zeta;
return 2. * a / (std::sqrt(l. + 4. / get_characteristic_length() * (ratio * ratio +
— ratio)) - 1.);

}

vec2 ConcreteK4::compute_tension_damage(const double k) const {
const auto e_t = f_t / objective_scale(hardening_t, zeta_t);
const auto factor = exp(-k / e_t);
return vec2{l. - factor, factor / e_t};

67

Part |Il.

2D /3D Models

69

7. Metal

In this chapter, several frameworks suitable for developing metal models are introduced. The
basic one is the von Mises framework, which is also called J2 model in some literature as it
adopts the second invariant of the deviatoric stress to characterise yield function. The in-
termediate one is the VAFCRP model, in which a Voce type nonlinear isotropic hardening,
a multiplicative Armstrong—Fredrick type kinematic hardening and a Peric type viscosity are
implemented. Thus, this model can account for dynamic effects. The third model is a general
framework developed based on the Hoffman criterion, it is suitable for orthotropic materi-
als.

7.1. von Mises Framework

Here the uniaxial combined isotropic/kinematic model introduced in § 4.2 is reformulated
in 3D space. Some difference will be observed, but the final local residual is a scalar equa-
tion.

7.1.1. Theory
Yield Function

The von Mises yield criterion is adopted,

F=lml— /2o 1)

with 7 = s — a is the shifted stress with a denoting the back stress and s = dev (o) de-

2
noting the deviatoric stress. The only purpose of the constant \/7 is to produce consistent

response under uniaxial loading compared to the uniaxial version with the same set of model
parameters. By definition, the back stress « is also a deviatoric stress, thus trace (o) =
0.

71

7. Metal
Flow Rule

Assuming associative rule, the flow rule is

of 11dev . g n

do "2 |l gl

All analytical formulations are based on tensor notation. However, compressed matrix rep-
resentation is used in implementation. One shall note the difference due to the Voigt nota-
tion.

eP11 eP1a Py nir N2 N3y
€P1g €Pyy P3| = |ni2 noa nos|, expressed in components (7.3)
€P3; €Pa3 P33 ngy N2z N33

ep n

T
We define the scaling vector ¢ = [1 11 2 2 2} and let o be the Hadamard (element—
wise) product operator, then the above expression is equivalent to

[eP11] 1 ni1
P99 1 n22
ep 1 n . . .
33 = ol Bl = vy con. expressed in the Voigt notation
2eP 19 2 n19
2ePo3 2 n23
| 2€P3 | L 2| [ns31]
—— ——
P n

(7.4)

This agrees with Eq. (2.35).

It can be observed that € has a magnitude of v while n is a unit tensor in R? x R? hyper
space. Thus n serves as a direction indicator, P evolves towards n by the amount of 7. Since
n is deviatoric, P is also deviatoric.

Hardening Law

For internal variable ¢, the hardening law takes the accumulated magnitude of e?.
2 . \/5
i =/ =leP|| = 4/ =A. 7.5
1= 21l = /2 (75)

For isotropic hardening, o¥ is defined as a general function of ¢,

o =0"(q). (7.6)

72

7.1. von Mises Framework

For kinematic hardening, the evolution law of back stress « is defined to be

&= \/an. (7.7)

in which H = H (q) is now a scalar—valued function of ¢ that controls the development of
|||, e always evolves towards n by the amount H = H (¢n+1) — H (¢n) characterising the

2
increment of H. The fraction \/> is introduced for consistent response as stated early. Since

& and n are coaxial, a stays deviatoric but may not be coaxial with all n through the loading
process.

7.1.2. Formulation

The summation of the von Mises model is listed as follows.

Constitutive Law o = D : (e — €P)

2
Yield Function f = ||n| — \/;ay
Flow Rule &P =~n

2
Hardening Law ¢ = 37

2 .
d:\/;’yHn

Elastic Loading/Unloading

The trial stress can be computed such as
o =D (g1 —€l)=0,+D:(ep11 —€n). (7.8)

In matrix representation, it is

— 3 - r T B 7 [p
olell TA42G A A fiindt| |ClLn
0'551&1 by A+ 2G A : : : €22,n+1 812)2,71
Uggal A A A+2G6 - - - €33,n41 83

trial | — G B P ’ (79)
oty . - Y12,n+1 T12,n
trial
ol . . . N C Y23,n+1 ’Ygzm
trial
_O_grlla | i . . . : : G_ LY31,n+1.] _’Ygl,n_
ial
otria D En'+1—€Z,Jl

73

7. Metal

Then n'al = dev (crtrial) — @, which gives trial yield function

B @0% (7.10)

with ¢ = 0¥ (gy,) evaluated with current g,.

trial trial
= Hn

Plastic Evolution

By default, we present the formulation with the implicit Euler method.

The yield function evaluated at the new state reads

2
= ey (@s1) — vl =y 2o,

. 2
= ||dev (o-t“al) —7v2Gn — oy — \/; (Hpy1 — Hp)m
o trial 2G~ + E(H _H) nll = z Y
=1n Y 3 Hntl n 3Un+1
2 7,
— | 2Gy + 3 (Hpy1 — Hyp) | — 3941

trial

2
- \/;Uzﬂ

(7.11)

trial

=||m

given that it can be proved that n'"'® and n are coaxial, following a similar derivation as shown

previously.

The Jacobian reads

of N 2 0Hp41 Oqn1 200} 1 Ogni1 719
L= G- y3 -3 . (712)
Oy 3 Ognt1 Oy 30gn+1 Oy
2 0 2
Since ¢pt1 = qn + g’y, qan;rl = \/g Hence,
0 2 0H, 2 0o
of — o _ 29%n+1 200041 (7.13)
oy 3 Oqni1 3 8Qn-‘rl
Consistent Tangent Stiffness
) n ntrial
From o,.1 = e"® — 42Gn, as n = W = m, the consistent tangent stiffness can be
;r’ n Il
computed via the chain rule as
B o trial 0 0 o
Tntl _ 99ntl _ gqp g 9 —D—2G(n® Ty,) (7.14)
Oent1 Oent1 En+l Oent1 Oent1

74

7.1. von Mises Framework

In which, according to Eq. (2.41),

on 1 antrial
= - I-n®n):
Oent1 ||77tr1a1H () Oent1
2G
_ 2G dev
= el (H -n® n) :

From converged local residual (yield function),

Oy 0f>1 of <8f)1
~—\oy == \5 : 7.16
Oent1 (37 Oent1 Oy 2Gn (7.16)

Thus the final expression for consistent tangent stiffness can be assembled as

0011 <8f)‘1 2G4
T =D 2G| -2G(<5) nenty—— (19 —non
O€nt1 (oy Y] ()

—1 2
= D + 4G? (8f> n®n+4G77(n®n—Hdev)

ou [|mptrial]|
-1 2
— D+ 4G2 <8f) + % nen— 4?.? pdev (7.17)
oy [|mtrial]| [[mptrial |
o 1 4Gy 4
= D + 4G? —_ nen— _1_pdev
[[mptrial| 20H,1 | 200, [[mptriad|

26+ =
3 0qny1 3 O0qnt1

It shall be noted that 19V takes the form as presented in Eq. (3.23). Readers are strongly
suggested to derive it via both tensor notation and compression matrix representation as a
practice. Both leads to identical results.

Since the local iteration is a scalar function, the closed—form of consistent tangent stiffness is
relatively easy to compute. It will be seen in more complex models that closed—forms do not

always possess simple forms.

As a general framework, the above formulation does not require explicit forms of H (¢) and
oY (q). Thus, various types of scalar—valued functions can be adopted.

7.1.3. Implementation

The state determination algorithm of this general model incorporating von Mises criterion is
given in Algorithm 8.

75

7. Metal

Algorithm 8 state determination of general von Mises model

Parameter: \, G
Input €n+1y Eny 8?),7 Op,y Oy, 4n

. p
Output: D, 1, €nt1r On+l, On+1, Gntl

compute otial ptrial ' and ftrial > Eq. (7.8) and Eq. (7.10)
if fial > (0 then
vy=0
while true do
of
compute f and P > Eq. (7.11) and Eq. (7.13)
update AH = H (¢n+1) — H (qn)
= (27
oy
if |Av| < tolerance then
break
end if
Yy — Ay >
Gn+1 = qn + \/;’Y
end while

Ontl = otrial _ v2Gn
P _
Epi1 = Ept M

2
ol | =ab + \/;AHn

compute D41 > Eq. (7.17)
else

Onil = o.trial

Efﬁ-l = el

aZH =af

dn+1 = Qqn

D, =D
end if

It shall be noted that the algorithm does not implement H (q) and o¥ (q). It is assumed those
two functions are defined somewhere else and are able to provide derivatives.

7.1.4. Closing Remarks

As the first 3D material model introduced, the von Mises framework allows beginners to get
familiar with multiaxial constitutive modelling with a relatively smooth learning curve. The
formulation is expressed in tensor notation. Readers are strongly encouraged to derive the for-
mulation from three governing equations independently in both tensor and compressed matrix
notions separately. It is a good practice to get each tiny detail correct.

76

16
17
18
19
20
21
22
23

24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

46

7.1. von Mises Framework

int NonlinearJ2::update_trial_status(const vec& t_strain) {

incre_strain = (trial_strain = t_strain) - current_strain;
if (norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;
trial_stress = current_stress + (trial_stiffness = initial_stiffness) * incre_strain;

trial_history = current_history;
auto& plastic_strain = trial_history(0);
vec back_stress(&trial_history(l), 6, false, true);

const vec rel_stress = tensor::dev(trial_stress) - back_stress;
const auto norm_rel_stress = tensor::stress::norm(rel_stress);

auto yield_func = norm_rel_stress - root_two_third * std::max(0.,
— compute_k(plastic_strain));

if (yield_func < 0.) return SUANPAN_SUCCESS;

const auto current_h = compute_h(plastic_strain);
auto gamma = 0., incre_h = 0., denom = O.;
unsigned counter = O;
while(++counter < max_iteration) {
denom = double_shear + two_third * (compute_dk(plastic_strain) +
— compute_dh(plastic_strain));
const auto incre_gamma = yield_func / denom;
const auto abs_error = fabs(incre_gamma) ;
suanpan_extra_debug("NonlinearJ2 local iteration error: %.5E.\n", abs_error);
if (abs_error <= tolerance) break;
incre_h = compute_h(plastic_strain = current_history(0) + root_two_third * (gamma +=
— incre_gamma)) - current_h;
yield_func = norm_rel_stress - double_shear * gamma - root_two_third * (std::max(0.,
— compute_k(plastic_strain)) + incre_h);

}

if (max_iteration == counter) {
suanpan_error ("NonlinearJ2 cannot converge within %u iterations.\n", max_iteration);
return SUANPAN_FAIL;

}

back_stress += root_two_third * incre_h / norm_rel_stress * rel_stress;

auto t_factor = double_shear * gamma / norm_rel_stress;
trial_stress -= t_factor * rel_stress;

t_factor *= double_shear;
trial_stiffness += (t_factor - square_double_shear / denom) / norm_rel_stress /

—» norm_rel_stress * rel_stress * rel_stress.t() - t_factor * unit_dev_tensor;

return SUANPAN_SUCCESS;

7

7. Metal

7.2. Hoffman J2 Model

Here we introduce an anisotropic model that adopts the Hoffman yielding criterion. This frame-
work resembles the isotropic von Mises model. It can be used to model orthtropic materials
such sheet steel and timber.

7.2.1. Theory
Yield Function
The yield function adopts the Hoffman criterion.
f= %O'TPO' +q'o—op, (7.18)

where P = PT and q are constant scaling matrix/vector of various forms [11] that depend on

material constants.

For example, the Hoffman criterion can be expressed as

r N+ -T3 T34T1 -1

T

2 2 - -
(flcl _ff1> [31

T 4+ Ty — T T To+T3 —T1

_t1T+f27-73 L 2+
2 2 (f2c2 *féz) T

B+ =T Ta4+T3-T T
2 2 0 (£53— fls) T
P =) q=)
4 0
s
4 0
3
1 L 0 i
1%
(7.19)
in which,
1 1 1
1= ft fc) T2 = ft fc) T3 = ft fc) (720)
11711 22722 33733

with i}; representing the yielding stress along different directions.

78

7.2. Hoffman J2 Model
Flow Rule

The associated plasticity is assumed such that the plastic potential g is identical to f. The
plastic flow direction is then

_ 99 _9of _

The flow rule can be defined as

eP = yn. (7.22)

Hardening Law

The reference yield stress o, is defined as a function of the accumulated equivalent plastic
strain e,,.

oy =H (eP). (7.23)
The evolution of ? is driven by the norm of &?.
e = ler|| = v[nll, (7.24)

where ||n||, in matrix form, can be expressed as

2
| =4/ gnTTn7 (7.25)

WithT_diag(l 11 11 1).
2 2 2

7.2.2. Formulation

To some extend, the model is even simpler than the von Mises model as there is no back stress to
support kinematic hardening. Furthermore, the yield function involves only matrix—vector op-
erations, the corresponding derivatives are relatively easy to compute.

Constitutive Law o = D : (e — €P)
1
Yield Function f = §O'TPO' +qto — 05

Flow Rule eP =~yn
Hardening Law &P = v||n/|

79

7. Metal
Elastic Loading/Unloading

Compared with the von Mises framework, there is no essential difference in terms of elastic
loading/unloading, the plasticity is frozen at the beginning of each substep, allowing one to
compute the trial stress such that

"= D ¢ (g4 €)= aa FDe o). (7.26)

One shall note that the second form is not used here. In most cases, both forms are equivalent.
However, some models may further apply damage mechanics to the result of plasticity, making
the second form incorrect (as o, may contain damage reductions).

The trial yield function can then be computed using the unchanged plastic strain.

. 1 . . .
ftrlal — 50_tmal,TI_-)a_tmal + qTo_trlal . Uz,n‘ (727)

Plastic Evolution

Since it is an anisotropic model, the local iteration may have difficulties in convergence,
especially when a high anisotropy is defined. Some implementations [12, 13] adopt line
search, which does mitigate the local convergence issue but does not address it at the global
level.

In this work, we choose another approach to alleviate the problem. Instead of the first order
accurate backward Euler method for numerical integration, the higher order accurate method is
used. In specific, the discretised evolution of plastic strain is written as

eh 1 =¢€b + AePl =€l +yny, (7.28)
where n,, is n evaluated at the middle of the substep. Since it is a linear function of
0—7

n,, = w (7.29)

One shall note that replacing n,, by n,+1 = Po,+1 + q gives the evolution formula of the
implicit Euler method.

80

7.2. Hoffman J2 Model

Local Residual

The residual is chosen as follows. For brevity, all subscripts (-),, 1 are dropped.

L T 2
R 50’ Po+q o—o0y,

o+ ’}/E’nm _ o.trial‘

(7.30)

T
By choosing « = {7 0'} as the independent variables, the Jacobian can be then computed
as

do doy, d|lng,||
20, | T -, STy
J = 88‘: — Y d[':p m Y dEp dnm (731)
En,, I+ %EP
In the above expression,
dllnm) _ 2n,T (7.32)
dn, 3|nm|’ ’

Some references would further derive a scalar local residual at the cost of complicating gradient.
Here we choose to increase the size of local system in order to express the Jacobian in a
simpler form. Performance wise, a scalar local residual does not necessarily leads to faster
state determination.

Consistent Tangent Stiffness

The consistent tangent stiffness can be directly computed from the local residual, given that
O n+1 i chosen as the variable. Differentiating R at equilibrium R = 0 gives

OR Oz OR

i =0 7.33
ox 8sn+1 8En+1 ’ ()
rearranging which gives
-1
or__ _ <8R> OR _ ;1 OR (7.34)
8€n+1 ox 8€n+1 85n+1

81

7. Metal

The right hand side

can be computed as

86n+1
R 0
— 7.35
while the left hand side contains
€n+1
v
15)
0z _ | %eni1| (7.36)
Oent1 0041
aEnJrl
Thus,
(2-7)
0011 1|0
—=J 7.37

where (-) 2=7) denotes the second to the seventh row of target quantity (+).

Unlike the von Mises framework, in which the analytical expression for the consistent tangent
stiffness matrix is derived. Here we take advantage of the fact that when the local equilibrium
is achieved, R = 0 or at least R =~ 0, allowing one to take full differentiation to obtain some
useful quantities that otherwise may be difficult to compute. If o, is directly involved as one
of the independent variables in local iteration, the consistent stiffness can be directly obtained.
Otherwise, often additional simple steps (chain rule) shall be applied to the stress update
0oni1

a€n+1.

formula to compute

This method avoid the computation of lengthy, cumbersome analytical expressions of consistent
tangent. In most cases, it is also very simple to implement as J is already available when the

local iteration converges, and often is very easy to compute. Readers shall try to grasp

En+1
the beauty of Eq. (7.33), as this method will be frequently used in the models introduced later

in this book.

7.2.3. Implementation

int NonlinearHoffman: :update_trial_status(const vec& t_strain) {
incre_strain = (trial_strain = t_strain) - current_strain;

if (norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;

trial_history = current_history;
auto& eqv_strain = trial_history(0);

82

7.2. Hoffman J2 Model

const auto& current_eqv_strain = current_history(0);
vec plastic_strain(&trial_history(1l), 6, false, true);

const vec predictor = (trial_stiffness = initial_stiffness) * (trial_strain -
— plastic_strain);

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

auto gamma =

vec incre, residual(7);
mat jacobian(7, 7);

auto counter =
while(true) {
if (max_iteration == ++counter) {
suanpan_error ("Cannot converge within {} iteratioms.\n",
return SUANPAN_FAIL;

const

vec factor_a

trial_stress = predictor;
const vec c_stress

0., ref_error

proj_a * trial_stress;

.5 * proj_a * initial_stiffness * (current_strain - plastic_strain);

max_iteration);

const vec factor_b .5 * factor_a + proj_b;

const vec n_mid = c_stress + factor_b;

const auto norm_n_mid = root_two_third * tensor::strain::norm(n_mid);

const auto k = compute_k(eqv_strain = current_eqv_strain + gamma * norm_n_mid) ;
const auto f = dot(trial_stress, factor_b) - k * k;

if (1lu == counter &% f < 0.) return SUANPAN_SUCCESS;

const rowvec dn = two_third / norm_n_mid * (n_mid 7 tensor::strain::norm_weight).t();
const auto factor_c = k * compute_dk(eqv_strain);

38
39
40
41
42
43
44
45
46
47
48

residual (sa)

residual (sb) trial_stress + gamma * initial_stiffness * n_mid - predictor;
jacobian(sa, -2. * factor_c * norm_n_mid;

jacobian(sa, factor_a.t() + proj_b.t() - factor_c * gamma * dn * proj_a;
jacobian(sb, = initial_stiffness * n_mid;

jacobian(sb,

if (!solve(incre,

eye(6, 6) + .5 * gamma * elastic_a;

jacobian, residual)) return SUANPAN_FAIL;

const auto error = norm(incre);
if (lu == counter && error > ref_error) ref_error = error;
suanpan_debug("Local plasticity iteration error: {:.5E}.\n", error / ref_error);

if (error <= tolerance * std::max(l., ref_error)) {
plastic_strain += gamma * n_mid;

55
56
57
58
59
60
61
62
63

mat left, right(7, 6, fill::zeros);
initial_stiffness;

right.rows(sb)
if (!solve(left, jacobian, right)) return SUANPAN_FAIL;

trial_stiffness

return SUANPAN_SUCCESS;

left.rows(sb);

64
65
66
67
68
69

7. Metal

}

gamma -= incre(sa);

trial_stress -

incre(sb) ;

84

8. Timber

8.1. TimberPD

Here we present a 3D model based on the Hoffman yielding criterion and damage mechanics.
It is suitable for modelling timber. The model is based on the split of the effective stress &
such that

&:&t+&07 (81)
with
3
o :Z<5i>Pi®Pi, 5c=Z(5’i— (6i)) Pi ® i, (8.2)
=1 i=1

where p; and &; are eigenvectors and eigenvalues of the second order tensor . The above
expression shall be interpreted with the tensor notation.

The effective stress o obeys the conventional hardening model using the Hoffman yielding
criterion, see § 7.2 for details. The final stress can be obtained after applying damage factors
on tensile and compressive part of &.

oc=(1-w)o+ (1 —w)oe. (8.3)
8.1.1. Damage
The damage part follows the one proposed in [I4]. The damage evolution is governed by the

equivalent stress 7.

/1
™ = i&gHN&N’ (8.4)

that covers both tensile and compressive cases. The matrix Hy is the projection matrix of
the Hill criterion, which is a special case of Eq. (7.19). For X = ¢, set f& = fL. For X = ¢,
set fL = f5. It could be noted that in either case, ¢ = 0, thus, Eq. (8.4) does not contain a
second term.

85

0w N 3 Ot s W

10

11
12
13

14
15
16
17
18
19

8. Timber

The damage variables are updated based on the maximum history of 7k, that is
R = m?x v,
and

Wt = 1— ié9’(

; 1—n+mnexp(b(rio—rt))),
t
We = B (1 _>7:J)>

The final stress is

oc=(1-w)o+ (1 —w)oe.

8.1.2. Consistent Tangent Stiffness

In the case of activation of damage evolution,

Oo (((1 —wt)I—&tdwtd”) do; | ((1 —wC)I—&C% drc) dac) do.

e dr; doy) do dr. do.) do) oe

8.1.3. Implementation

(8.6)

(8.7)

int TimberPD: :update_trial_status(const vec& t_strain) {
if (SUANPAN_SUCCESS != BilinearHoffman: :update_trial_status(t_strain)) return
— SUANPAN_FAIL;

if (norm(incre_strain) <= tolerance) return SUANPAN_SUCCESS;

vec principal_stress; // 3

mat principal_direction; // 3z3

if(leig_sym(principal_stress, principal_direction,

< tensor::stress::to_tensor(trial_stress), "std")) return SUANPAN_FAIL;

mat stiffness_t = transform::eigen_to_tensile_derivative(principal_stress,
— principal_direction);

mat stiffness_c = eye(6, 6) - stiffness_t;

const vec sigma_t = transform::eigen_to_tensile_stress(principal_stress,
< principal_direction);

const vec sigma_c = trial_stress - sigma_t;

const auto omega_t = update_damage_t(sigma_t, stiffness_t);
const auto omega_c = update_damage_c(sigma_c, stiffness_c);

trial_stress = (1. - omega_t) * sigma_t + (1. - omega_c) * sigma_c;

86

20
21
22
23
24

26
27
28
29

30
31
32
33
34
35
36

37

49

51
52
53
54
55
56

57

58

}

8.1. TimberPD

trial_stiffness = (stiffness_t + stiffness_c) * trial_stiffness;

return SUANPAN_SUCCESS;

double TimberPD::update_damage_t(const vec& sigma_t, mat& stiffness_t) {

}

auto& r_t = trial_history(7);

bool new_damage_t = false;
if (const auto eqv_stress_t = sqrt(.5 * dot(hill_t * sigma_t, sigma_t)); eqv_stress_t >
- r_t) {

new_damage_t = true;

r_t = eqv_stress_t;

const auto omega_t = compute_damage_t(r_t);
if (new_damage_t) {
const auto domega_t = ini_ r_t / r_t / r_t * ((b_t * n_t * r_t + n_t) * exp(b_t *
— (@ni_r t -r_t)) - n_t+ 1.);
stiffness_t = ((1. - omega_t) * eye(6, 6) - sigma_t * domega_t * .5 / r_t *
— sigma_t.t() * hill_t) * stiffness_t;
}

else stiffness_t *= 1. - omega_t;

return omega_t;

double TimberPD: :update_damage_c(const vec& sigma_c, mat& stiffness_c) {

}

auto& r_c = trial_history(8);

bool new_damage_c = false;
if (const auto eqv_stress_c = sqrt(.5 * dot(hill_c * sigma_c, sigma_c)); eqv_stress_c >
— 1r_c) {

new_damage_c = true;

r_c = eqv_stress_c;

const auto omega_c = compute_damage_c(r_c);

if (new_damage_c) {
const auto domega_c = m_c * ini_r_c / r_c * omega_c / (r_c - ini_r_c);
stiffness_c = ((1. - omega_c) * eye(6, 6) - sigma_c * domega_c * .5 / r_c *
— sigma_c.t() * hill_c) * stiffness_c;

}

else stiffness_c *= 1. - omega_c;

return omega_c;

double TimberPD: :compute_damage_t(const double r_t) const { return 1. - ini_r_ t / r_t * (1. -
— n_t+n_t * exp(b_t * (dni_r_t - r_t))); }

double TimberPD: :compute_damage_c(const double r_c) const { return b_c *
— pow(std::max(datum::eps, 1. - ini_r_c / r_c), m_c); }

87

0. Concrete

9.1. Concrete Damage Plasticity Model
In this section, the concrete damage plasticity model proposed by [15] is presented. A slight dif-
ferent version (with Lode angle dependency and others) is implemented in ABAQUS.

The CDP model follows Lemaitre’s damage theory [9] and is developed under the assumption
of isotropic damage. Accordingly, the final stress o can be expressed as the product of the
effective stress & and some function of damage measure.

o =h(d,d.)a, (9.1)

where h (dy,d.) is a function of two damage variables d; and d., which depend on some internal
history variables.

The effective part o fully resembles the conventional plasticity. Thus h (d¢, d.) and & can be
handled in a relatively independent manner.

9.1.1. Plasticity Theory
Yield Function

The yield function is defined as

f=ali /381 + 560 - 11— a)c. (9:2)

with I; = trace (&) is the first invariant of effective stress tensor &, 61 is the major effective

principal stress, ¢, = — f, denotes cohesion and 3 = j;c(a —1)— (a+1). The effective backbone
_ _ t

stresses (both positive) f. and f; will be defined later.

89

9. Concrete
Flow Rule

The flow potential g is chosen to be
2J2 + aplh = ||5| + trace (a,a) . (9.3)
The flow rule is accordingly defined as
. dg
sp:'ya_ ” H +apl) =7(n+opl). (9.4)
In deviatoric and spherical components,

ehp = yp, etp = Y3ap. (9.5)

Noting that

§ = g™l _ oGedp = gtial _ oG, (9.6

p= ptrlal Ketp — 25trial . ’Y3K04p,

equivalently,
sl + 726 = ||s. (9.8)
I +Y9Ka, = IiMal, (9.9)
Furthermore, s and s"#! are coaxial, thus,
= Strial
”sz = ||§malH =n. (9.10)

It simply means the flow direction is fixed for all iterations in each sub-step. And due to the
coaxiality, 5 and 52! share the same eigen space. More importantly, the eigenvectors remain
constant for each iteration. Thus,

3 §trial § étrial
—_— = = . 9.11
RN (611

where § denotes the principal stress tensor of the deviatoric stress tensor 5. As the yield
function f can be equivalently expressed with the principal stresses, in the following derivation,
7 is used to represent the unit principal deviatoric stress which has three components. The
transformation matrix T is defined as

6 =T o, $§ =T 5, (9.12)
~—~ N~ ~— N~~~
3x1 3xX66x1 3x1 3X66x1

and can be formulated from eigenanalysis.

90

9.1. Concrete Damage Plasticity Model

Hardening Law

Since concrete shows different behaviour under compression and tension, the subscript (-)y is
used to denoted either tension (-), or compression (-),.

Internal hardening parameters ky shall satisfy the following expression,
Ky = vHy, (9.13)

where Hy defines the hardening law. Different Hy shall be used for compression/tension.

H; = rﬁ (P + o), (9.14)
gt
H. = (1—r)§c(ﬁ3+ap). (9.15)

In which 711 and 713 denotes the maximum and minimum components in 72 and r is a scalar val-
ued function of the effective principal stress. In the original model, it is defined as

r(6) = (01) + {02) + {03)
|61] + 62| + |63]

(9.16)

The purpose of 7 is to characterise the proportion of tension in a multiaxial loading case.

Backbone Curve

The backbone curve fy is related to the internal parameter ry.

r = froVonr®y,
with

:1—1—@&—\/&'

Px =1+ ax (2 + ay) kx, Oy
an

The effective counterpart fy is defined as

fa= 1 iNdN = froV <Z>N‘I’iz_c“/bN,

with

dy =1 ®Q/™.

In general, the backbone curve can be customised. The main algorithm has no interested in
how the backbone curve is computed, only fy, fx and dy and their derivatives with regard to

91

9. Concrete

ky need to be provided. The exponential form adopted in the original model may encounter
some numerical difficulties, which in the author’s opinion is not ideal. One can always choose
another form, such as providing those quantities in a tabulated fashion. This is also what
ABAQUS offers.

9.1.2. Damage Theory

The damage measure takes the form
h(dy,d.) = (1 —de) (1 — sdy) (9.17)

with s = sg + (1 — s) 7 is the recovery factor.

9.1.3. Plasticity Formulation

The CDP model is driven by three quantities k¢, k. and €P. The governing equations are listed
as follows.

Yield Function f = al; + \/EHSH +6(61)—(1—a)ce
Flow Rule &P =~ <||Z|| + apl)
Hardening Law Ky = vHy

Elastic Loading/Unloading
Assuming elastic loading/unloading, the trial state of the effective part can be computed as
done in other plasticity models.

a_trial —D: (En—l-l _ E;Z) . (918)

Then by performing eigenanalysis, 62! can be computed. The trial yield function is

. . BT
ftrlal :Oé.[{rlal—l-\/;HStrlal

with 8 and c. computed by using &y, and K. If ftrial < 0, indicating elastic loading/unload-
ing, then &,,1 = 6"l the final stress is simply

+ <&§rial> - (1-a)c, (9.19)

On+l1 = (1 - dc,n) (1 - Sdt,n) a_trial. (920)

92

9.1. Concrete Damage Plasticity Model

The corresponding tangent stiffness is then

dopy1 O0opi1 O0ni
Oent1 O00py1 Ogpia

. d
= (1= dep)dyp (50— 1) & @ ——— . D+ (1 — depn) (1 — sdyp) D (9.21)
doy 1
. d
= (1 - dc,n) (dt,n (30 - 1) &trlal ® —774 + (1 - Sdt,n) H) :D.
dan+1

Plasticity Evolution

The yield function and the damage evolutions are three local equations shall be satisfied.

_ I L A _
aly + \/;Hst“al —v/6G + 3 <U'13“al —v(2Gny + 3Kap)> +(1—-a)fe,
_ fe oo
R=1{ kipn+ 'yrg— (N1 + ap) — Ky, (9.22)
t
fe .
Kem + 7 (1 —1) = (i3 + o) — Ke.
e
T §trial
By choosing © = {'y Ky /@c} as the independent variables and assuming nn = W
S Il

that is a function of €,4+1 only thus does not contain -, the Jacobian can be computed

as

_—9Kaocp —V6G — B (2Gh + 3Ka,) H (61) (61) g—’g (1 —) fl+ (61) 98 1
Kt Okec
A1+ ap or A1+ ap 4,
= = LT :
J fi - (r+vav> L fe ;
nstop (_ Or . _py s tap
I fe o (1 T 787) Y1 —r) s fe 1_

(9.23)

where H (+) is the heaviside function and

L4

op . 14
8K/c - (Oé 1) f_-tfc

93

9. Concrete

In the explicit form, if 61 > 0,

—9Kaa, — V6G — B (2GA1 +3Kap) (1 —a) fc_; fi
t
J— j it o (Tﬂ@r) py L
gt Oy gt
ity (1 e ﬂ")
L ge 8’}/
otherwise,
i 79Kaozpf\/6G 1-a)f:
R P R
g ftm-i-ozp (TJF'Y(‘;) T’ynl+apf[fl
gt Y gt
fcw(1T7?> (1—7r) fis + ap
L 9e Y dc

9.1.4. Damage Formulation

-1

, (9.24)

(9.25)

There is no local iteration required in the damage part. Once k; and k. are determined, the
effective part o can be determined. Damage measures d; and d. can be computed accord-

ingly.

9.1.5. Consistent Tangent Stiffness

In order to take derivatives with regard to trial strain, one can replace H

which yields

1 _
3Kal + V6Gn + H (57) 321 . 97
do Oepyi
8R . ft< 8ﬁ1 N d?“‘ 86’)
Oent1 791& r8€n+1 (At o) do " deni1/)’
fe (ona R dr oo
— 1 (1- — —:
ngc (7’) 8€n+1 (n3 + ap) deo 8€n+1
so that
dy
d€n+1
de | dr | <aR>—1 OR
deny1 |dent1| ox Oepi1
dk,
d€n+1

94

).

S

atrial

and Hgtrlal ’

(9.26)

(9.27)

9.1. Concrete Damage Plasticity Model

The effective stress 41 only depends on €,,41 and . The partial derivative is

86—71 0 ria prial ria
+1 = St I—QG’yW—i—(pt 1—3KOép’)/>]_
Oeny1 Oepgl | striad]]
42 (9.28)
— _ dev
=D T (H n®n> .
The full derivative is
dopyr - d trial stral trial
denyr depp (s - 2GWHSmalH " (p - 3Kap7> !
4G? 0
-D- HstriaYH (I —n@n) - (2Gn +3Ka,1) @ 5 (9-29)
n+1
a&nJrl 87
= — (2G 3Ka,1 .
8571-1—1 (n o) ® 8sn—&-l
The derivative of the damage factor can be expressed as
dh d(1—sd d(1—d.
:(1—dc)w+(l—sdt)(7)
den—i—l d€n+1 d€n+1 (9 30)
—(d—l)(s ddv | g, 98)+(sd—1) dd '
e denq1 tden—i-l ! deny1 ’
with
ddt . % dlit (9 31)
dept1 drrdenst’ '
dd, dd. dk.
- fre (9.32)
dsn-i—l dke den—i—l
ds dr doy 41
=(1- : . .
dEnJrl (80) d&n+1 d5n+1 (9 33)
The following derivatives would be useful.
ddy exan + 2 cy/by-1
— = N 9.34
dexy by 2Vr N ’ (9-34)
dfyx ag + 2
P fro NN (GN — 2y + 1) 5 (9.35)
c
o a1 ())
E = fN,O 2\/& @&N/bl‘l . (936)
Given that the stress update is computed as follows,
Ont1 = hopyt, (9.37)

95

9. Concrete

the consistent tangent stiffness is then

do, _ dh do,
U+1=0n+1® +ha+1
dep41 deni1 deny1 (9.38)
= 0w (= 1) (s i) sy = 1) o) ST
- o ¢ d5n+1 tden—i—l ! d€n+1 d5n+1 ’
which is equivalently,
d/ﬁ)t
dopi1 dd; ddc:| depq
=&, L= 1) = -1
d€n+1 On+1 @ |:S (d) d:"ﬁlt (Sdt) dl‘ic d/ic
d€n+1
dot product in vector representation
_ dr da'»,H_l
+ (dy (de — 1) (1 = 50) Fnp1 ® ——— + hI) S22t (9.39)
doy, 41 Entl1

The CDP model has no kinematic hardening, the effective part resembles the bounding surface
concept. Due to the coaxiality, the model can be constructed in the eigen space, which brings
some convenience in terms of implementation.

9.1.6. Implementation

The state determination of the CDP model is shown in Algorithm 9. Compared with the
original implementation, the presented one is much more concise and is able to avoid lengthy
computation of consistent tangent stiffness.

It is worth noting some quantities remain constant in the local iteration, for example,

R Ny + a ns + «
2Gn) + 3K ay, 1% 3T%p (9.40)
gt Ye
They can be computed as stored before entering local iteration.
Algorithm 9 state determination of the CDP model
Parameter: \, G
Input: €,1, &5, 5%; On, KRn
Oqtput: Dn+1, Ei—i—l? On+1, HN,n-ﬁ-l
ol = D (g 41 —€P)
Strial = dev (&trial)
perform eigenanalysis on &% and compute T, 52l
gtrial
. s
n= [gtrial |
compute ftrial > Eq. (9.19)

RRn+1 = RRn

96

17
18
19
20

21
22

if fiial > (0 then

9.1. Concrete Damage Plasticity Model

> plasticity evolution

compute fy, fx and dy and their derivatives > This can be an independent overridable

method.
while true do
v=0
OR
compute R and —

) ox
ORN\ ™~
A=|— R
ox
if ||A|| < tolerance then
break
end if
Y=y =0y
Ktntl & Ktntl — OF¢
Ktn4+1 < Ktn+1 — Ok
end while
Oni1 = ol — 5 (2Gn + 3Ka,1)
€nt1 =€h+7(n+apl)
compute D41

else
__ trial
Ontl = O
D _ D
€n+1 - En
compute Dy
end if

> Eq. (9.22) and Eq. (9.23)

>A= [57 0Ky 5’%]

> Eq. (9.39)
> elastic loading/unloading

> Eq. (9.21)

The CPP implementation of state determination can be found as follows.

int NonlinearCDP::update_trial_status(const vec& t_strain) {
incre_strain = (trial_strain = t_strain) - current_strain;

if (norm(incre_strain) <= datum::eps) return SUANPAN_SUCCESS;

trial_history = current_history;
auto& d_t = trial_history(0);
auto& d_c = trial_history(1l);
auto& kappa_t = trial_history(2);
auto& kappa_c = trial_history(3);

vec plastic_strain(&trial_history(4), 6, false, true);

const auto& current_kappa_t = current_history(2);
const auto& current_kappa_c = current_history(3);

trial_stress = (trial_stiffness = initial_stiffness) * (trial_strain - plastic_strain);

- // 6

vec principal_stress; // 3
mat principal_direction; // 3z3

if (leig_sym(principal_stress, principal_direction,

< tensor::stress::to_tensor(trial_stress), "std")) return SUANPAN_FAIL;

const auto trans = transform::compute_jacobian_nominal_to_principal(principal_direction);

97

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

7

9. Concrete

98

const auto

const auto norm_s = tensor::

S

= tensor::dev(trial_stress); // 6

vec n = s / norm_s;
if(!'n.is_finite()) n.zeros();

const auto ps

const vec dsigmadlambda = -double_shear * pn - three_alpha_p_bulk; // 6

const auto dgdsigma_t
const auto dgdsigma_c

auto new_stress = principal_stress;
const auto& max_stress = new_stress(2); // algebraically mazimum principal stress

const auto const_yield = alpha * accu(principal_stress) + root_three_two * norm_s;

stress::norm(s); // 1

// 6

= tensor::dev(principal_stress); // 3
const vec pn = normalise(ps); // 3

vec residual(3), incre;
mat jacobian(3, 3, fill::zeros);
mat left(3, 6);

(pn(2) + alpha_p) / g_t;
(pn(0) + alpha_p) / g_c;

podarray<double> t_para, c_para;

auto lambda 0., ref_error = 0.;
double r, beta;
vec dr;
unsigned counter = 0;
while(true) {
if (max_iteration == ++counter) {

suanpan_error ("NonlinearCDP cannot converge within %u iterations.\n",

< max_iteration);

return SUANPAN_FAIL;

t_para
Cc_para

compute_tension_backbone (kappa_t) ;
compute_compression_backbone (kappa_c);

const auto tension_flag