
Pharo by Example 8.0

Stéphane Ducasse, Sebastijan Kaplar, Gordana Rakic and Quentin Ducasse

July 7, 2021

Copyright 2017 by Stéphane Ducasse, Sebastijan Kaplar, Gordana Rakic and Quentin
Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations viii

1 Preface 1

1.1 What is Pharo? . 2

1.2 Who should read this book? . 3

1.3 A word of advice . 4

1.4 An open book . 4

1.5 The Pharo community . 5

1.6 Examples and exercises . 5

1.7 Acknowledgments . 5

1.8 Hyper special acknowledgments . 6

2 A quick tour of Pharo (to revisit - started by Gordana) 7

2.1 Installing Pharo . 7

2.2 Pharo: File Components . 8

2.3 Launching Pharo . 9

2.4 Launching Pharo Via the Command Line 10

2.5 Pharo Launcher . 11

2.6 The World Menu . 12

2.7 Interacting with Pharo . 13

2.8 Sending Messages . 13

2.9 Saving, Quitting and Restarting a Pharo Session 15

2.10 Playgrounds and Transcripts . 16

2.11 Keyboard Shortcuts . 17

2.12 Doing vs. Printing . 18

2.13 Inspect . 19

2.14 Other Operations . 19

2.15 The System Browser . 20

2.16 Opening the System Browser on a Given Method 20

2.17 Navigating Using the System Browser . 21

2.18 Finding Classes . 23

2.19 Using the Message browse . 23

2.20 Using CMD-b to Browse . 23

2.21 Using Spotter . 24

2.22 Using ’Find class’ in System Browser . 26

2.23 Finding Methods . 26

i

Contents

2.24 Finding Methods Using Examples . 27

2.25 Trying Finder . 28

2.26 Defining a New Method . 28

2.27 Defining a New Test Method . 29

2.28 Running Your Test Method . 30

2.29 Implementing the Tested Method . 31

2.30 Chapter Summary . 33

3 Developing a simple counter 35

3.1 Our use case . 35

3.2 Create your own class . 36

3.3 Create a package and class . 36

3.4 Define protocols and methods . 39

3.5 Create a method . 39

3.6 Adding a setter method . 41

3.7 Define a Test Class . 41

3.8 Saving your code on git with Iceberg . 42

3.9 Adding more messages . 46

3.10 Instance initialization method . 46

3.11 Define an initialize method . 47

3.12 Define a new instance creation method . 48

3.13 Better object description . 49

3.14 Saving your code on a remote server . 49

3.15 Conclusion . 52

4 A first application 53

4.1 The Lights Out game . 54

4.2 Creating a new Package . 54

4.3 Defining the class LOCell . 55

4.4 Creating a new class . 55

4.5 About comments . 56

4.6 Adding methods to a class . 57

4.7 Inspecting an object . 59

4.8 Defining the class LOGame . 61

4.9 Initializing our game . 62

4.10 Taking advantage of the debugger . 62

4.11 Studying the initialize method . 65

4.12 Organizing methods into protocols . 66

4.13 A typographic convention . 67

4.14 Finishing the game . 67

4.15 Final LOCell methods . 69

4.16 Using the debugger . 69

4.17 In case everything fails . 72

4.18 Saving and sharing Pharo code . 72

4.19 Iceberg: Pharo and Git . 72

4.20 Saving code in a file . 74

ii

Contents

4.21 About Setter/Getter convention . 76

4.22 On categories vs. packages . 76

4.23 Chapter summary . 77

5 Publishing your first Pharo project 79

5.1 For the impatient . 79

5.2 Basic Architecture . 80

5.3 Create a new project on Github . 80

5.4 [Optional] SSH setup: Tell Iceberg to use your keys 80

5.5 Iceberg Repositories browser . 82

5.6 Add a new project to Iceberg . 82

5.7 Repair to the rescue . 84

5.8 Create project metadata . 85

5.9 Add and commit your package using the Working copy browser 86

5.10 Conclusion . 89

6 Configure your project nicely 91

6.1 What if I did not create a remote repository 92

6.2 Defining a BaselineOf . 94

6.3 Loading from an existing repository . 95

6.4 [Optional] Add a nice .gitignore file . 95

6.5 Going further: Understanding the architecture 96

6.6 Conclusion . 96

7 Syntax in a nutshell 99

7.1 Syntactic elements . 99

7.2 Pseudo-variables . 103

7.3 Messages and message sends . 103

7.4 Sequences and cascades . 104

7.5 Method syntax . 105

7.6 Block syntax . 106

7.7 Conditionals and loops . 107

7.8 Method annotations: Primitives and pragmas 109

7.9 Chapter summary . 110

8 Understanding message syntax 113

8.1 Identifying messages . 113

8.2 Three kinds of messages . 115

8.3 Message composition . 118

8.4 Hints for identifying keyword messages . 124

8.5 Expression sequences . 126

8.6 Cascaded messages . 126

8.7 Chapter summary . 127

iii

Contents

9 The Pharo object model 129

9.1 The rules of the core model . 129

9.2 Everything is an Object . 130

9.3 Every object is an instance of a class . 130

9.4 Instance structure and behavior . 131

9.5 Every class has a superclass . 133

9.6 Everything happens by sending messages 133

9.7 Sending a message: a two-step process 135

9.8 Method lookup follows the inheritance chain 136

9.9 Method execution . 136

9.10 Message not understood . 138

9.11 About returning self . 139

9.12 Overriding and extension . 139

9.13 Self and super sends . 140

9.14 Stepping back . 142

9.15 The instance and class sides . 143

9.16 Class methods . 145

9.17 Class instance variables . 145

9.18 Example: Class instance variables and subclasses 146

9.19 Stepping back . 147

9.20 Example: Defining a Singleton . 148

9.21 Shared variables . 150

9.22 Class variables: Shared variables . 151

9.23 Pool variables . 153

9.24 Abstract methods and abstract classes . 154

9.25 Chapter summary . 156

10 Traits: reusable class fragments 157

10.1 A simple trait . 157

10.2 Self in a trait is the receiver . 159

10.3 Trait state . 159

10.4 A class can use two traits . 160

10.5 Overriding method take always precedence over traits 160

10.6 Composing a trait out of other traits . 161

10.7 Managing conflicts . 161

10.8 Conclusion . 161

11 SUnit: Tests in Pharo 163

11.1 Introduction . 163

11.2 Why testing is important . 164

11.3 What makes a good test? . 165

11.4 Step 1: Create the test class . 166

11.5 Step 2: Initialize the test context . 166

11.6 Step 3: Write some test methods . 167

11.7 Step 4: Run the tests . 167

11.8 Step 5: Interpret the results . 169

iv

Contents

11.9 The SUnit cookbook . 170

11.10 The SUnit framework . 172

11.11 Chapter summary . 175

12 Basic classes 177

12.1 Object . 177

12.2 Object printing . 178

12.3 A word about representation and self-evaluating representation. 179

12.4 Identity and equality . 180

12.5 Class membership . 181

12.6 Copying . 182

12.7 Debugging . 184

12.8 Error handling . 184

12.9 Testing . 186

12.10 Initialize . 186

12.11 Numbers . 187

12.12 Magnitude . 188

12.13 Number . 188

12.14 Float . 189

12.15 Fraction . 189

12.16 Integer . 190

12.17 Characters . 191

12.18 Strings . 192

12.19 Booleans . 193

12.20 Chapter summary . 195

13 Collections 197

13.1 Introduction . 197

13.2 The varieties of collections . 197

13.3 Collection implementations . 200

13.4 Examples of key classes . 201

13.5 Common creation protocol. 201

13.6 Array . 202

13.7 OrderedCollection . 205

13.8 Interval . 205

13.9 Dictionary . 206

13.10 IdentityDictionary . 207

13.11 Set . 208

13.12 SortedCollection . 209

13.13 String . 210

13.14 Collection iterators . 214

13.15 Some hints for using collections . 218

13.16 Chapter summary . 219

v

Contents

14 Streams 221

14.1 Two sequences of elements . 221

14.2 Streams vs. collections . 222

14.3 Streaming over collections . 223

14.4 Positioning . 224

14.5 Testing . 226

14.6 Writing to collections . 226

14.7 About String Concatenation . 228

14.8 Reading and writing at the same time . 228

14.9 Chapter summary . 231

15 Morphic 233

15.1 The history of Morphic . 233

15.2 Morphs . 235

15.3 Manipulating morphs . 236

15.4 Composing morphs . 237

15.5 Creating and drawing your own morphs 239

15.6 Mouse events for interaction . 242

15.7 Keyboard events . 243

15.8 Morphic animations . 244

15.9 Interactors . 245

15.10 Drag-and-drop . 246

15.11 A complete example . 248

15.12 More about the canvas . 253

15.13 Chapter summary . 254

16 Classes and metaclasses 255

16.1 Rules for classes . 255

16.2 Metaclasses . 256

16.3 Revisiting the Pharo object model . 256

16.4 Every class is an instance of a metaclass 258

16.5 Querying Metaclasses . 259

16.6 The metaclass hierarchy parallels the class hierarchy 259

16.7 Every metaclass inherits from Class and Behavior 262

16.8 Every metaclass is an instance of Metaclass 264

16.9 The metaclass of Metaclass is an instance of Metaclass 264

16.10 Chapter summary . 266

17 Reflection 269

17.1 Introspection . 270

17.2 Browsing code . 275

17.3 Classes, method dictionaries and methods 278

17.4 Browsing environments . 280

17.5 Accessing the run-time context . 282

17.6 Intercepting messages not understood . 285

17.7 Objects as method wrappers . 290

vi

Contents

17.8 Pragmas . 293

17.9 Chapter summary . 294

vii

Illustrations

1-1 Small example . 5

2-1 Launching pattern . 10

2-2 Launching Pharo from Linux . 10

2-3 Launching Pharo from Mac OS X . 10

2-4 Launching Pharo from Windows . 11

2-5 PharoLauncher - GUI. 11

2-6 Clicking anywhere on the Pharo window background activates the World

Menu. 12

2-7 Action Click (right click) brings the contextual menu. 13

2-8 Meta-Clicking on a window opens the Halos. 14

2-10 Executing an expression is simple with the Do itmenu item. 14

2-9 Open ProfStef in the Playground. 15

2-11 PharoTutorial is a simple interactive tutorial to learn about Pharo. 15

2-12 Executing an expresssion: displaying a string in the Transcript. 18

2-13 Inspecting a simple number using Inspect. 19

2-14 Inspecting a Morph using Inspect. 20

2-15 The System Browser showing the factorialmethod of class Integer. . . 21

2-16 The System Browser showing the printStringmethod of class Object. . 22

2-17 Opening Spotter. 24

2-18 Looking for implementors matching printString. 25

2-19 The Finder showing all classes defining a method named now. 27

2-20 Defining a test method in the class StringTest. 30

2-21 Looking at the error in the debugger. 31

2-22 Pressing the Create button in the debugger prompts you to select in

which class to create the new method. 31

2-23 The automatically created shoutmethod waiting for a real definition. 32

viii

Illustrations

3-1 Package created and class creation template. 36

3-2 Class created: It inherits from Object class and has one instance

variable named count. 38

3-3 Counter class has now a comment! Well done. 38

3-4 The method editor selected and ready to define a method. 40

3-5 The method count defined in the protocol accessing. 40

3-6 A first test is defined and it passes. 42

3-7 Iceberg Repositories browser on a fresh image indicates that if you want

to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care. 43

3-8 Add and create a project named MyCounter and with the src subfolder. . . 44

3-9 Selecting the Add package iconic button, add your package MyCounter to

your project. 44

3-10 Now Iceberg shows you that you did not commit your code. 45

3-11 Iceberg shows you the changes about to be commited. 45

3-12 Once you save your change, Iceberg shows you that 46

3-13 Class with more green tests. 47

3-14 Better description. 49

3-15 A Repository browser opened on your project. 50

3-16 GitHub HTTPS address our our project. 50

3-17 Using the GitHub HTTPS address. 51

3-18 Commits sent to the remote repository. 51

4-1 The Lights Out game board. 53

4-2 Create a Package and class template. 54

4-3 Filtering our package to work more efficiently. 55

4-4 LOCell class definition . 55

4-5 The newly-created class LOCell. 56

4-6 Initializing instance of LOCell . 57

4-7 The newly-created method initialize. 58

4-8 The inspector used to examine a LOCell object. 60

4-9 When we click on an instance variable, we inspect its value (another object). 60

4-10 An LOCell open in world. 61

4-11 Defining the LOGame class . 61

4-12 Initialize the game . 62

4-13 Declaring cells as a new instance variable. 62

4-14 Pharo detecting an unknown selector. 63

4-15 The system created a new method with a body to be defined. 64

4-16 Defining cellsPerSide in the debugger. 64

4-17 Initialize the game . 65

4-18 The callback method . 68

4-19 Drag a method to a protocol. 68

4-20 A typical setter method . 69

4-21 An event handler . 69

4-22 The debugger, with the method toggleNeighboursOfCell:at: selected. 70

4-23 Fixing the bug. 71

ix

Illustrations

4-24 Overriding mouse move actions . 71

4-25 Repositories screen. 73

4-26 Creating new repository. 73

4-27 Updated repositories screen. 74

4-28 Iceberg working copy dialog. 74

4-29 Iceberg working copy dialog. 75

4-30 File Out our PBE-LightsOut. 75

4-31 Import your code with the file browser. 76

5-1 A distributed versioning system. 80

5-2 Create a new project on Github. 81

5-3 Use Custom SSH keys settings. 81

5-4 Iceberg Repositories browser on a fresh image indicates that if you want

to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care. 82

5-5 Cloning a project hosted on Github via SSH. 83

5-6 Cloning a project hosted on Github via HTTPS. 83

5-7 Just after cloning an empty project, Iceberg reports that the project is

missing information. 84

5-8 Adding a project with some contents shows that the project is not loaded

- not that it is not found. 84

5-9 Create project metadata action and explanation. 85

5-10 Showing where the metadata will be saved and the format encodings. . . . 85

5-11 Adding a src repository for code storage. 86

5-12 Resulting situation with a src folder. 86

5-13 Details of metadata commit. 87

5-14 Adding a package to your project using the Working copy browser. 87

5-15 Iceberg indicates that your package has unsaved changes – indeed you

just added your package. 88

5-16 When you commit changes, Iceberg shows you the code about to be

committed and you can chose the code entities that will effectively be saved. 88

5-17 Once changes committed, Iceberg reflects that your project is in sync

with the code in your local repository. 88

5-18 Publishing your committed changes. 89

6-1 Creating a local repository without pre-existing remote repository. 91

6-2 Opening the repository browser let you add and browse branches as well

as remote repositories. 92

6-3 Adding a remote using the Repository browser of your project (SSH version). 93

6-4 Adding a remote using the Repository browser of your project (HTTP version). 93

6-5 Once you pushed you changes to the remote repository. 93

6-6 Added the baseline package to your project using the Working copy browser. 94

6-7 Architecture. 97

x

Illustrations

8-1 Two message sends composed of a receiver, a method selector, and a

set of arguments. 114

8-2 Two messages: Color yellow and aMorph color: Color yellow. . . . 114

8-3 Unary messages are sent first so Color yellow is sent. This returns a color

object which is passed as argument of the message aPen color:. 118

8-4 Binary messages are sent before keyword messages. 120

8-5 Decomposing Pen new go: 100 + 20. 120

8-6 Decomposing Pen new down. 122

8-7 Default execution order. 123

8-8 Changing default execution order using parentheses. 123

8-9 Equivalent messages using parentheses. 124

8-10 Equivalent messages using parentheses. 124

9-1 Sending + 4 to 3, yields the object 7. 130

9-2 Sending factorial to 20, yields a large number. 130

9-3 Distance between two points. 132

9-4 The definition of the class Point. 133

9-5 Sending message + with argument 4 to integer 3. 134

9-6 Sending message + with argument 4 to point (1@2). 134

9-7 A locally implemented method. 136

9-8 An inherited method. 136

9-9 Method lookup follows the inheritance hierarchy. 137

9-10 Another locally implemented method. 137

9-11 Message foo is not understood. 138

9-12 Explicitly returning self. 139

9-13 Super initialize. 140

9-14 A self send. 141

9-15 A self send. 141

9-16 Combining super and self sends. 141

9-17 self and super sends. 142

9-18 Browsing a class and its metaclass. 144

9-19 The class method blue (defined on the class-side). 144

9-20 Using the accessor method red (defined on the instance-side). 144

9-21 Using the accessor method blue (defined on the instance-side). 144

9-22 Dog class definition. 146

9-23 Adding a class instance variable. 146

9-24 Hyena class definition. 146

9-25 Initialize the count of dogs. 146

9-26 Keeping count of new dogs. 147

9-27 Accessing to count. 147

9-28 . 147

9-29 New state for classes. 149

9-30 Class-side accessor method uniqueInstance. 149

9-31 Instance and class methods accessing different variables. 152

9-32 Color and its class variables. 152

9-33 Using Lazy initialization. 153

xi

Illustrations

9-34 Initializing the Color class. 153

9-35 Pool dictionaries in the Text class. 154

9-36 Text>>testCR. 154

9-37 Magnitude>> <. 155

9-38 Magnitude>> >=. 155

9-39 Character>> <=. 155

10-1 A simple trait. 157

11-1 An Example Set Test class . 166

11-2 Running SUnit tests from the System Browser. 168

11-3 Running SUnit tests using the TestRunner. 168

11-4 Testing error raising . 171

11-5 The four classes representing the core of SUnit. 172

11-6 An example of a TestResource subclass . 174

12-1 printOn: redefinition. 178

12-2 Self-evaluation of Point . 180

12-3 Self-evaluation of Interval . 180

12-4 Object equality . 180

12-5 Copying objects as a template method . 183

12-6 Checking a pre-condition . 184

12-7 Signaling that a method is abstract . 185

12-8 initialize as an empty hook method 186

12-9 new as a class-side template method . 187

12-10 The number hierarchy. 187

12-11 Abstract comparison methods . 188

12-12 The String Hierarchy. 192

12-13 The Boolean Hierarchy. 194

12-14 Implementations of ifTrue:ifFalse: 194

12-15 Implementing negation . 194

13-1 Some of the key collection classes in Pharo. 198

13-2 Some collection classes categorized by implementation technique. 200

13-3 Redefining = and hash. 219

14-1 A stream positioned at its beginning. 221

14-2 The same stream after the execution of the method next: the character
a is in the past whereas b, c, d and e are in the future. 222

14-3 The same stream after having written an x. 222

14-4 A stream at position 2. 225

14-5 . 226

14-6 . 227

14-7 . 227

14-8 . 228

14-9 . 228

14-10 A new history is empty. Nothing is displayed in the web browser. 229

xii

Illustrations

14-11 The user opens to page 1. 229

14-12 The user clicks on a link to page 2. 229

14-13 The user clicks on a link to page 3. 229

14-14 The user clicks on the Back button. They are now viewing page 2 again. . . . 229

14-15 The user clicks again the back button. Page 1 is now displayed. 229

14-16 From page 1, the user clicks on a link to page 4. The history forgets pages

2 and 3. 230

14-17 . 230

14-18 . 230

14-19 . 230

14-20 . 231

14-21 . 231

14-22 . 231

14-23 . 231

15-1 Detaching a morph, here the Playgroundmenu item, to make it an

independent button. 234

15-2 Dropping the menu item on the desktop, here the Playgroundmenu

item is now an independent button. 234

15-3 Creation of a String Morph . 235

15-4 Getting a morph for an instance of Color 235

15-5 (Morph new color: Color orange) openInWorld or Color
orange asMorph openInWorld with our new method. 236

15-6 Bill and Joe after 10 moves. 237

15-7 Bill follows Joe. 238

15-8 The balloon is contained inside joe, the translucent orange morph. 238

15-9 A CrossMorph with its halo; you can resize it as you wish. 239

15-10 The center of the cross is filled twice with the color. 241

15-11 The cross-shaped morph, showing a row of unfilled pixels. 241

15-12 An input dialog. 245

15-13 Pop-up menu. 246

15-14 A ReceiverMorph and an EllipseMorph. 247

15-15 Creation of DroppedMorph and ReceiverMorph. 249

15-16 The die in Morphic . 249

15-17 Create a Die 6 . 251

15-18 A new die 6 with (DieMorph faces: 6) openInWorld 252

15-19 Result of (DieMorph faces: 6) openInWorld; dieValue: 5. 252

15-20 The die displayed with alpha-transparency 253

16-1 Sending the message class to a sorted collection 257

16-2 The metaclasses of SortedCollection and its superclasses (elided). . . . 258

16-3 The metaclass hierarchy parallels the class hierarchy (elided). 260

16-4 Message lookup for classes is the same as for ordinary objects. 261

16-5 Classes are objects too. 261

16-6 Metaclasses inherit from Class and Behavior. 262

16-7 new is an ordinary message looked up in the metaclass chain. 263

xiii

Illustrations

16-8 Every metaclass is a Metaclass. 265

16-9 All metaclasses are instances of the class Metaclass, even the

metaclass of Metaclass. 265

16-10 The class hierarchy . 266

16-11 The parallel metaclass hierarchy . 266

16-12 Instances of Metaclass . 266

16-13 Metaclass class is a Metaclass . 266

17-1 Reification and reflection. 269

17-2 Inspecting a Workspace. 271

17-3 Displaying all instance variables of a GTPlayground. 272

17-4 Browse all implementations of ifTrue:. 277

17-5 Inspector on class Point and the bytecode of its #*method. 278

17-6 Classes, method dictionaries and compiled methods 279

17-7 Finding methods . 281

17-8 Inspecting thisContext. 283

17-9 Dynamically creating accessors. 289

xiv

CHA P T E R 1
Preface

This version of the book is based on the previous version authored by: An-
drew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien
Cassou and Marcus Denker called, Pharo by Example. It is also built on the ver-
sion that was issued for Pharo 50 named Updated Pharo by Example authored
by: Stéphane Ducasse and edited by Dmitri Zagidulin, Nicolai Hess, and Dim-
itris Chloupis. The current version got many edits, modifications and up-
dates to bring the book to the current version of Pharo.

Maintaining a book to be update to date is not an easy task. This is not just
changing a 5.0 into a 8.0. This is a tedious and often boring work. Many as-
pects of Pharo from a tooling perspective have changed such as the git sup-
port with Iceberg.

• We cover briefly the new system browser, Calypso.

• This book version has two new chapters covering Iceberg and package
management (see Chapters 5 and 6) - a new book on Pharo and git is
available at http://books.pharo.org.

• We simplified the SUnit chapter, since a companion book is available
now at http://books.pharo.org/

• Altogether we revise parts of the books that were wrong such as Mor-
phic chapter, in previous editions and the current version has really
improved over Pharo by Example 5.

Pharo by Example is not magically updating itself but the result of work. This
is why I decided, as one of the original and main author over the years, to
invite Sebastijan, Gordana and Quentin to be listed as authors of Pharo by
Example8.0.

1

http://books.pharo.org
http://books.pharo.org

Preface

1.1 What is Pharo?

Pharo is a modern, open-source, dynamically-typed language supporting live
coding inspired by Smalltalk. Pharo and its ecosystems are composed of six
fundamental elements:

• A dynamically-typed language with a syntax so simple it can fit on a
postcard and yet is readable even for someone unfamiliar with it.

• A live coding environment that allows the programmer to modify code
while the code executes, without any need to slow down their work-
flow.

• A powerful IDE providing all the tools to help manage complex code
and promote good code design.

• A rich library that creates an environment so powerful that it can be
viewed even as a virtual OS, including a very fast JITing VM and full
access to OS libraries and features via its FFI.

• A culture where changes and improvements are encouraged and highly
valued.

• A community that welcomes coders from any corner of the world with
any skill and any programming languages.

Pharo strives to offer a lean, open platform for professional software devel-
opment, as well as a robust and stable platform for research and develop-
ment into dynamic languages and environments. Pharo serves as the refer-
ence implementation for the Seaside web development framework available
at http://www.seaside.st.

Pharo core contains only code that has been contributed under the MIT li-
cense. The Pharo project started in March 2008 as a fork of Squeak (a modern
implementation of Smalltalk-80), and the first 1.0 beta version was released
on July 31, 2009. Since then Pharo got a new version each year or year and an
half. The current version is Pharo 8.0, released in January 2020.

Pharo is highly portable. Pharo can run on OS X, Windows, Linux, Android,
iOS, and Raspberry Pi. Its virtual machine is written entirely in a subset of
Pharo itself, making it easy to simulate, debug, analyze, and change from
within Pharo itself. Pharo is the vehicle for a wide range of innovative projects,
from multimedia applications and educational platforms to commercial web
development environments.

There is an important principle behind Pharo: Pharo does not just copy the
past, it reinvents the essence of Smalltalk. However we realize that Big Bang
style approaches rarely succeed. Pharo instead favors evolutionary and in-
cremental changes. Rather than leaping for the final perfect solution in one
big step, a multitude of small changes keeps even the bleeding edge rela-
tively stable while experimenting with important new features and libraries.

2

http://www.seaside.st

1.2 Who should read this book?

This facilitates contributions and rapid feedback from the community, on
which Pharo relies on for its success. Finally Pharo is not read-only, Pharo
integrates changes made by the community, daily. Pharo has around 100
contributors, based all over the world. You can have an impact on Pharo too!
Check http://github.com/pharo-project/pharo.

1.2 Who should read this book?

The previous revision of this book was based on Pharo 5.0. This revision has
been liberally updated to align with Pharo 8.0. Various aspects of Pharo are
presented, starting with the basics then proceeding to intermediate topics.

An excellent MOOC (Massive online course) is freely available for Pharo at
http://mooc.pharo.org.

This book will not teach you how to program. The reader should have some
familiarity with programming languages. Some background with object-
oriented programming would also be helpful.

The current book will introduce the Pharo programming environment, the
language and the associated tools. You will be exposed to common idioms
and practices, but the focus is on the technology, not on object-oriented de-
sign. Wherever possible, we will show you lots of examples.

There are numerous other books on Smalltalk freely available on the web at
http://stephane.ducasse.free.fr/FreeBooks.html.

Further readings

This book is not alone. Here is a litle commented list of possible other read-
ings that you can find at http://books.pharo.org.

• ”Learning Object-Oriented Programming, Design and TDD with Pharo”.
This book is teaching key aspects of object design and test driven de-
velopment. If you are learning

Object-oriented programming this is a good for you.

• ”Pharo with Style”. This book is a must read. It discusses how to write
good and readable Pharo code. In one hour, you will boost your coding
standard.

• ”The Spec UI framework”. This book will show you how to develop
user interface standard applications in Pharo.

More technical books are:

• ”Managing your code with Iceberg”. This book covers with a bit more
depth how to manage your code with git.

3

http://github.com/pharo-project/pharo
http://mooc.pharo.org
http://stephane.ducasse.free.fr/FreeBooks.html
http://books.pharo.org

Preface

• ”Enterprise Pharo”. This book contains different chapters related to
web, converters, reporting documents that you need for delivering
applications.

• ”Deep into Pharo”. This book covers more advanced topics than Pharo
by Example.

Then you have books to expand your mind:

• ”A simple reflective object kernel” revisits all the fundamental points
of ”objects all the way down” by driving you in a little journey to build

a little reflective language core. It is truly excellent.

1.3 A word of advice

Do not be frustrated by parts of Pharo that you do not immediately under-
stand. You do not have to know everything! Alan Knight expresses this as
follows:

Try not to care. Beginning Pharo programmers often have trouble because
they think they need to understand all the details of how a thing works be-
fore they can use it. This means it takes quite a while before they can master
Transcript show: ’Hello World’. One of the great leaps in OO is to be able to
answer the question “How does this work?” with ”I don’t care”.

When you do not understand something, simple or complex, do not hesitate
for a second to ask us at our mailing lists (pharo-users@lists.pharo.org or
pharo-dev@lists.pharo.org), irc and Discord. We love questions and we wel-
come people of any skill.

1.4 An open book

This book is an open book in the following senses:

• The content of this book is released under the Creative Commons Attribution-
ShareAlike (by-sa) license. In short, you are allowed to freely share and
adapt this book, as long as you respect the conditions of the license
available at the following URL http://creativecommons.org/licenses/

by-sa/3.0/.

• This book just describes the core of Pharo. We encourage others to
contribute chapters on the parts of Pharo that we have not described.
If you would like to participate in this effort, please contact us. We
would like to see more books around Pharo!

• It is also possible to contribute directly to this book via Github. Just
follow the instructions there and ask any question on the mailing list.
You can find the Github repo at https://github.com/SquareBracketAssociates/

PharoByExample80

4

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/SquareBracketAssociates/PharoByExample80
https://github.com/SquareBracketAssociates/PharoByExample80

1.5 The Pharo community

Listing 1-1 Small example

3 + 4
>>> 7 "if you select 3+4 and 'print it', you will see 7"

1.5 The Pharo community

The Pharo community is friendly and active. Here is a short list of resources
that you may find useful:

• http://www.pharo.org is the main web site of Pharo.

• http://www.github.com/pharo-project/pharo is the main github account
for Pharo.

• Pharo has an active on Discord server - a platform for chat based on
IRC, just ask for an invitation on Pharo’s website http://pharo.org/community,
in the discord section. Everybody is welcomed.

• Pharoers started a wiki on Pharo https://github.com/pharo-open-documentation/

pharo-wiki

• An Awesome catalog is maintained with projects: https://github.com/

pharo-open-documentation/awesome-pharo

• If you hear about SmalltalkHub, http://www.smalltalkhub.com/ was the
equivalent of SourceForge/Github for Pharo projects for about 10 years.
Many extra packages and projects for Pharo lived there. Now the com-
munity is mainly using git repositories such as github.com, gitlab and
bitbucket.

1.6 Examples and exercises

We have tried to provide as many examples as possible. In particular, there
are many examples that show a fragment of code which can be evaluated. We
use a long arrow to indicate the result you obtain when you select an expres-
sion and from its context menu choose print it:

In case you want to play with these code snippets in Pharo, you can down-
load a plain text file with all the example code from the Resources sidebar of
the original book’s web site: http://books.pharo.org/pharo-by-example.

1.7 Acknowledgments

We would like to thank Alan Kay, Dan Ingalls and their team for making
Squeak, an amazing Smalltalk development environment, that became the
open-source project from which Pharo took roots. Pharo also would not be
possible without the incredible work of the Squeak developers.

5

http://www.pharo.org
http://www.github.com/pharo-project/pharo
http://pharo.org/community
https://github.com/pharo-open-documentation/pharo-wiki
https://github.com/pharo-open-documentation/pharo-wiki
https://github.com/pharo-open-documentation/awesome-pharo
https://github.com/pharo-open-documentation/awesome-pharo
http://www.smalltalkhub.com/
http://books.pharo.org/pharo-by-example

Preface

We would also like to thank Hilaire Fernandes and Serge Stinckwich who
allowed us to translate parts of their columns on Smalltalk, and Damien Cas-
sou for contributing the chapter on Streams. We especially thank Alexandre
Bergel, Orla Greevy, Fabrizio Perin, Lukas Renggli, Jorge Ressia and Erwann
Wernli for their detailed reviews. We thank the University of Bern, Switzer-
land, for graciously supporting this open-source project and for hosting the
web site of this book during some years.

We also thank the Pharo community for their enthusiastic support of this
book project, as well as for all the translations of the first edition of Pharo
by Example.

1.8 Hyper special acknowledgments

We want to thank the original authors of this book! Without this initial ver-
sion it would have been difficult to make this one. Pharo by Example is a cen-
tral book to welcome newcomers and it has a great value.

Thanks to Manfred Kröhnert, Markus Schlager, Werner Kassens, Michael
OKeefe, Aryeh Hoffman, Paul MacIntosh, Gaurav Singh, Jigyasa Grover, Craig
Allen, Serge Stinckwich, avh-on1, Yuriy Timchuk, zio-pietro for the typos
and feedback. Special thanks to Damien Cassou and Cyril Ferlicot for their
great help in the book update.

Finally we want to thank Inria for its steady and important financial sup-
port, and the RMoD team members for the constant energy pushing Pharo
forward.

Super special thanks to Damien Pollet for this great book template.

S. Ducasse, S. Kaplar, Gordana Rakic, and Q. Ducasse

6

CHA P T E R 2
A quick tour of Pharo (to revisit -

started by Gordana)

This chapter will take you on a high level tour of Pharo, to help you get com-
fortable with the environment. There will be plenty of opportunities to try
things out, so it would be a good idea if you have a computer handy when
you read this chapter.

In particular, you will fire up Pharo, learn about the different ways of inter-
acting with the system, and discover some of the basic tools. You will also
learn how to define a new method, create an object and send it messages.

Note: Most of the introductory material in this book will work with any Pharo
version, so if you already have one installed, you may as well continue to use
it. However, since this book is written for Pharo 8, if you notice differences
between the appearance or behaviour of your system and what is described
here, do not be surprised.

2.1 Installing Pharo

Pharo does not need to install anything in your system, as it’s perfectly capa-
ble of running standalone. As it will be explained later, Pharo consists of the
virtual machine (VM), the image, the changes and the sources.

Depending on your platform, download the appropriate .zip file, uncom-
press it in a directory of your choice and now you are ready to launch Pharo.
Pharo can be also installed via the command line.

7

A quick tour of Pharo (to revisit - started by Gordana)

Downloading Pharo

Pharo is available as a free download from http://pharo.org/download. You
can download either Pharo Launcher some of the Pharo standalone versions.

Pharo Launcher is a cross-platform application that allows easy managing of
Pharo images. Click the button for your operating system to download the
appropriate Pharo Launcher, it contains everything you need to run Pharo.

For standalone version download the appropriate .zip file. Once the file is
unzipped, it will contain everything you need to run Pharo.

Using handy scripts

http://files.pharo.org/get/ offers a collection of scripts to download specific
versions of Pharo. This is really handy to automate the process.

To download the latest 8.0 full system, use the following snippet.

wget -O- get.pharo.org/80+vm | bash

Then you can execute the following

./pharo-ui Pharo.image

2.2 Pharo: File Components

Pharo consists of four main component files. Although you do not need to
deal with them directly for the purposes of this book, it is useful to under-
stand the roles they play.

1. The virtual machine (VM) is the only component that is different for each
operating system. The VM is the execution engine (similar to a JVM). It takes
Pharo bytecode that is generated each time user compiles a piece of code,
converts it to machine code and executes it. Pharo comes with the Cog VM a
very fast JITing VM. The VM executable is named:

• Pharo.exe for Windows;

• pharo for Linux ; and

• Pharo for OSX (inside a package also named Pharo.app).

The other components below are portable across operating systems, and can
be copied and run on any appropriate virtual machine.

2. The sources file contains source code for parts of Pharo that do not change
frequently. Sources file is important because the image file format stores
only objects including compiled methods and their bytecode and not their
source code. Typically a new sources file is generated once per major release
of Pharo. For Pharo 8.0, this file is named PharoV80.sources.

8

http://pharo.org/download
http://files.pharo.org/get/

2.3 Launching Pharo

3. The changes file logs of all source code modifications (especially all the
changes you did while programming) since the .sources file was gener-
ated. Each release provides a near empty file named for the release, for ex-
ample Pharo8.0.changes. This facilitates a per method history for diffs or
reverting. It means that even if you did not manage to save the image file
on a crash or you just forgot, you can recover your changes from this file. A
changes file is always coupled with a image file. They work in pair.

4. The image file provides a frozen in time snapshot of a running Pharo sys-
tem. This is the file where all objects are stored and as such it’s a cross plat-
form format. An image file contains the live state of all objects of the system
at a given point, including classes and compiled methods since they are ob-
jects, too. An image is a virtual object container. The file is named for the
release (like Pharo8.0.image) and it is synched with the Pharo8.0.changes
file.

Image/Changes Pair

The .image and .changes files provided by a Pharo release are the start-
ing point for a live environment that you adapt to your needs. As you work
in Pharo, these files are modified, so you need to make sure that they are
writable. Pay attention to remove the changes and image files from the list
of files to be checked by anti-viruses. The .image and .changes files are
intimately linked and should always be kept together, with matching base
filenames. Never edit them directly with a text editor, as .images holds your
live object runtime memory, which indexes into the .changes files for the
source. It is a good idea to keep a backup copy of the downloaded .image
and .changes files so you can always start from a fresh image and reload
your code. However, the most efficient way for backing up code is to use a
version control system that will provide an easier and powerful way to back
up and track your changes.

Common Setup

The four main component files above can be placed in the same directory,
but it’s a common practice to put the Virtual Machine and sources file in a
separate directory where everyone has read-only access to them.

Do whatever works best for your style of working and your operating system.

2.3 Launching Pharo

To start Pharo, if you are using Pharo Launcher, select the image you wish
to use and press launch. Or if you are using standalone version do whatever
your operating system expects: drag the .image file onto the icon of the vir-

9

A quick tour of Pharo (to revisit - started by Gordana)

Listing 2-1 Launching pattern

<Pharo executable> <path to Pharo image>

Listing 2-2 Launching Pharo from Linux

./pharo shared/Pharo8.0.image

Listing 2-3 Launching Pharo from Mac OS X

Pharo8.0.app/Contents/MacOS/Pharo
Pharo8.0.app/Contents/Resources/Pharo8.0.image

tual machine, or double-click the .image file, or at the command line type the
name of the virtual machine followed by the path to the .image file.

• On OS X, double click the Pharo8.0.app bundle in the unzipped down-
load.

• On Linux, double click (or invoke from the command line) the pharo
executable Bash script from the unzipped Pharo folder.

• OnWindows, enter the unzipped Pharo folder and double click Pharo.exe.

In general, Pharo tries to ”do the right thing”. If you double click on the VM,
it looks for an image file in the default location. If you double click on an
.image file, it tries to find the nearest VM to launch it with.

If you have multiple VMs installed on your machine, the operating system
may no longer be able to guess the right one. In this case, it is safer to specify
exactly which ones you meant to launch, either by dragging and dropping
the image file onto the VM, or specifying the image on the command line
(see the next section).

2.4 Launching Pharo Via the Command Line

The general pattern for launching Pharo from a terminal is:

Linux command line.

For Linux, assuming that you’re in the unzipped pharo8.0 folder:

OS X command line.

For OS X, assuming that you’re in the directory with the unzipped Pharo8.0.app
bundle:

When using a Pharo bundle, you need to right-click on Pharo8.0.app and
select ’Show Package Contents’ to get access to the image. If you need this
often, just download a separated image/changes pair and drop that image
into the Pharo8.0.app.

10

2.5 Pharo Launcher

Listing 2-4 Launching Pharo from Windows

Pharo.exe Pharo8.0.image

Figure 2-5 PharoLauncher - GUI.

Windows command line.

For Windows, assuming that you’re in the unzipped Pharo8.0 folder:

2.5 Pharo Launcher

PharoLauncher is a tool that helps you download and manage Pharo im-
ages. It is very useful for getting new versions of Pharo (as well as updates to
the existing versions that contain important bug fixes). It also gives you ac-
cess to images preloaded with specific libraries that make it very easy to use
those tools without having to manually install and configure them.

PharoLauncher can be found on GitHub at https://github.com/pharo-project/pharo-
launcher.1 together with installation instructions and download links de-
pending on your platform. PharoLauncher is basically composed of two
columns.

After installing PharoLauncher and opening it (like you would do for any
Pharo image), you should get a GUI similar to Figure 2-5.

The right column lists images that live locally on your machine (usually in
a shared system folder). You can launch any local image directly (either by
double-clicking, or by selecting it and pressing the Launch button). A right-

1https://github.com/pharo-project/pharo-launcher

11

https://github.com/pharo-project/pharo-launcher
https://github.com/pharo-project/pharo-launcher
https://github.com/pharo-project/pharo-launcher

A quick tour of Pharo (to revisit - started by Gordana)

Figure 2-6 Clicking anywhere on the Pharo window background activates the

World Menu.

click context menu provides several useful functions like copying and re-
naming your images, as well as locating them on the file system.

The left column lists Templates, which are remote images available for down-
load. To download a remote image, select it and click the Create image but-
ton (located on the top right, next to the Refresh template list button).

You can use your own local images with PharoLauncher, in addition to
working with the images you downloaded. To do so, simply ensure that your
.image and its associated .changes files are placed in a folder (with the same
name as your image) in your default image location. You can find the loca-
tion in the PharoLauncher settings.

2.6 The World Menu

Once Pharo is running, you should see a single large window, possibly con-
taining some open playground windows (see Figure 2-6). You might notice a
menu bar, but Pharo mainly makes use of context-dependent pop-up menus.

Clicking anywhere on the background of the Pharo window will display the
World Menu, which contains many of the Pharo tools, utilities and settings.

At the top of theWorld Menu, in the Tools submenu you will see a list of
several core tools in Pharo, including the System Browser, the Playground,
the Monticello package manager, and others. We will discuss them in more
detail in the coming chapters.

12

2.7 Interacting with Pharo

Figure 2-7 Action Click (right click) brings the contextual menu.

2.7 Interacting with Pharo

Pharo offers three ways to interact with the system using a mouse or other
pointing device.

click (or left-click): this is the most often used mouse button, and is normally
equivalent to left-clicking (or clicking a single-mouse button without any
modifier key). For example, click on the background of the Pharo window to
bring up the Worldmenu (Figure 2-6).

action-click (or right-click): this is the next most used button. It is used to
bring up a contextual menu that offers different sets of actions depending
on where the mouse is pointing (see Figure 2-7). If you do not have a multi-
button mouse, then normally you will configure the control modifier key to
action-click with the mouse button.

meta-click: Finally, you may meta-click on any object displayed in the image
to activate the ”morphic halo”, an array of handles that are used to perform
operations on the on-screen objects themselves, such as inspecting or resiz-
ing them (see Figure 2-8). If you let the mouse linger over a handle, a help
balloon will explain its function. In Pharo, how you meta-click depends on
your operating system: either you must hold Shift-Ctrl or Shift-Alt (on
Windows or Linux) or Shift-Option (on OS X) while clicking.

2.8 Sending Messages

In the Pharo window, click on an open space to open theWorld Menu, and
then in the Tools submenu select the Playgroundmenu option. The Play-
ground tool will open (you may recognize it as theWorkspace tool, from
previous versions of Pharo). We can use Playground to quickly execute
Pharo code. Enter the following code in it, then right click and select Do it:

13

Figure 2-8 Meta-Clicking on a window opens the Halos.

Figure 2-10 Executing an expression is simple with the Do itmenu item.

2.9 Saving, Quitting and Restarting a Pharo Session

Listing 2-9 Open ProfStef in the Playground.
ProfStef go.

Figure 2-11 PharoTutorial is a simple interactive tutorial to learn about Pharo.

This expression will trigger the Pharo tutorial (as shown in Figure 2-11). It is
a simple and interactive tutorial that will teach you the basics of Pharo.

Congratulations, you have just sent your first message! Pharo is based on
the concept of sending messages to objects. The Pharo objects are like your
soldiers ready to obey once you send them a message they can understand.
We will see how an object can understand a message, later on.

If you talk to Pharoers for a while, you will notice that they generally do not
use expressions like call an operation or invoke a method, as developers do in
other programming languages. Instead they will say send a message. This re-
flects the idea that objects are responsible for their own actions and that the
method associated with the message is looked up dynamically. When sending
a message to an object, the object, and not the sender, selects the appropri-
ate method for responding to your message. In most cases, the method with
the same name as the message is executed.

As a user you do not need to understand how each message works, the only
thing you need to know is what the available messages are for the objects
that interest you. This way an object can hide its complexity, and coding can
be kept as simple as possible without losing flexibility.

How to find the available messages for each object is something we will ex-
plore later on.

2.9 Saving, Quitting and Restarting a Pharo Session

You can exit Pharo at any point, by closing the Pharo window as you do any
other application window. Additionally you can use theWorld Menu and

15

A quick tour of Pharo (to revisit - started by Gordana)

select either Save and quit or Quit in the Pharo submenu.

In any case, Pharo will display a prompt to ask you about saving your image.
If you do save your image and reopen it, you will see that things are exactly
as you left them. This happens because the image file stores all the objects
(edited text, window positions, added methods... of course because they are
all objects) that Pharo has loaded into your memory so that nothing is lost on
exit.

When you start Pharo for the first time, the Pharo virtual machine loads the
image file that you specified. This file contains a snapshot of a large number
of objects, including a vast amount of pre-existing code and programming
tools (all of which are objects). As you work with Pharo, you will send mes-
sages to these objects, you will create new objects, and some of these objects
will die and their memory will be reclaimed (garbage-collected).

When you quit Pharo, you will normally save a snapshot that contains all
of your objects. If you save normally, you will overwrite your old image file
with the new snapshot. Alternatively, you may save the image under a new
name.

As mentioned earlier, in addition to the .image file, there is also a .changes
file. This file contains a log of all the changes to the source code that you
have made using the standard tools. Most of the time you do not need to
worry about this file at all. As we shall see, however, the .changes file can
be very useful for recovering from errors, or replaying lost changes. More
about this later!

It may seem like the image is the key mechanism for storing and manag-
ing software projects, but that is not the case. As we shall see soon, there
are much better tools for managing code and sharing software developed
by teams. Images are very useful, but you should learn to be very cavalier
about creating and throwing away images, since versioning tools like Mon-
ticello and Iceberg offer much better ways to manage versions and share
code amongst developers. In addition, if you need to persist objects, you can
use several systems such as Fuel (a fast object binary serializer), STON (a tex-
tual object serializer) or a database.

2.10 Playgrounds and Transcripts

Let us start with some exercises:

1. Close all open windows within Pharo.

2. Open a Transcript and a Playground/workspace. (The Transcript can
be opened from the World > Tools > ... submenu.)

3. Position and resize the transcript and playground windows so that the
playground just overlaps the transcript (see Figure 2-12).

16

2.11 Keyboard Shortcuts

You can resize windows by dragging one of the corners. At any time only one
window is active; it is in front and has its border highlighted.

About Transcript.

The Transcript is an object that is often used for logging system messages.
It is a kind of system console.

About Playground.

Playgrounds are useful for typing snippets of code that you would like to ex-
periment with. You can also use playgrounds simply for typing any text that
you would like to remember, such as to-do lists or instructions for anyone
who will use your image.

Type the following text into the playground:

Transcript show: 'hello world'; cr.

Try double-clicking at various points on the text you have just typed. Notice
how an entire word, entire string, or all of the text is selected, depending on
whether you click within a word, at the end of the string, or at the end of the
entire expression. In particular, if you place the cursor before the first char-
acter or after the last character and double-click, you select the complete
paragraph.

Select the text you have typed, right click and select Do it. Notice how the
text ”hello world” appears in the transcript window (See Figure 2-12). Do it
again.

2.11 Keyboard Shortcuts

If you want to evaluate an expression, you do not always have to right click.
Instead, you can use keyboard shortcuts shown in menu items. Even though
Pharo may seem like a mouse driven enviroment it contains over 200 short-
cuts that allow you operate a variaty of tools, as well as the facility to assign
a keyboard shortcut to any of the 110000 methods contained in the Pharo im-
age. To have a look at the available shortcuts go to World Menu > System >
Keymap Browser.

Depending on your platform, you may have to press one of the modifier
keys which are Control, Alt, and Command. We will use CMD in the rest of
the book: so each time you see something like CMD-d, just replace it with the
appropriate modifier key depending on your OS. The corresponding modifier
key in Windows is CTRL, and in Linux is either ALT or CTRL, so each time you
see something like CMD-d, just replace it with the appropriate modifier key
depending on your OS.

17

A quick tour of Pharo (to revisit - started by Gordana)

Figure 2-12 Executing an expresssion: displaying a string in the Transcript.

In addition to Do it, you might have noticed Do it and go, Print it, In-
spect it and several other options in the context menu. Let’s have a quick
look at each of these.

2.12 Doing vs. Printing

Type the expression 3 + 4 into the playground. Now Do it with the key-
board shortcut.

Do not be surprised if you saw nothing happen! What you just did is send
the message + with argument 4 to the number 3. Normally the resulting 7
would have been computed and returned to you, but since the playground
did not know what to do with this answer, it simply did not show the answer.
If you want to see the result, you should Print it instead. Print it actu-
ally compiles the expression, executes it, sends the message printString to
the result, and displays the resulting string.

Select 3+4 and Print it (CMD-p). This time we see the result we expect.

3 + 4
>>> 7

We use the notation >>> as a convention in this book to indicate that a par-
ticular Pharo expression yields a given result when you Print it.

18

2.13 Inspect

Figure 2-13 Inspecting a simple number using Inspect.

2.13 Inspect

Select or place the cursor on the line of 3+4, and this time Inspect it (CMD-
i).

Now you should see a new window titled ”Inspector on a SmallInteger(7)”
as shown in Figure 2-13. The inspector is an extremely useful tool that al-
lows you to browse and interact with any object in the system. The title tells
us that 7 is an instance of the class SmallInteger. The top panel allows us
to browse the instance variables of an object and their values. The bottom
panel can be used to write expressions to send messages to the object. Type
self squared in the bottom panel of the inspector, and Print it.

The inspector presents specific tabs that will show different information and
views on the object depending on the kind of object you are inspecting. In-
spect Morph new openInWorld you should get a situation similar to the one
of Figure 2-14.

2.14 Other Operations

Other right-click options that may be used are the following:

• Do it and go additionally opens a navigable inspector on the side of
the playground. It allows us to navigate the object structure. Try with
the previous expression Morph new openInWorld and navigate the
structure.

• Basic Inspect it opens the classic inspector that offers a more min-
imal GUI and live updates of changes to the object.

19

A quick tour of Pharo (to revisit - started by Gordana)

Figure 2-14 Inspecting a Morph using Inspect.

• Debug it opens the debugger on the code.

• Profile it profiles the code with the Pharo profile tool which shows
how much time is spent for each message sent.

• Code search offers several options provided by System Browser, such
as browsing the source code of an expression, searching for senders
and implementors, and so on.

2.15 The System Browser

The System Browser, also known as ”Class Browser”, is one of the key tools
used for programming. As we shall see, there are several interesting browsers
available for Pharo, but this is the basic one you will find in any image. The
current implementation of the System Browser is called Calypso. Previous
version of the System Browser was called Nautilus.

2.16 Opening the System Browser on a Given Method

This is not the usual way that we open a browser on a method: we use more
advanced tools! But for the sake of this exercise, execute the following code
snippet:

ClyFullBrowser openOnMethod: Integer>>#factorial

It will open a system browser on the method factorial. We should get a
System Browser like in Figure 2-15. The title bar indicates that we are brows-
ing the class Integer and its method factorial. Figure 2-15 shows the dif-

20

2.17 Navigating Using the System Browser

Figure 2-15 The System Browser showing the factorialmethod of class In-
teger.

ferent entities displayed by the browser: packages, classes, protocols, meth-
ods and method definition.

In Pharo, the default System Browser is Calypso. However, it is possible to
have other System Browsers installed in the Pharo enviroment such as Alt-
Browser. Each System Browser may have its own GUI that may be very dif-
ferent from the Calypso GUI. From now on, we will use the terms Browser,
System Browser and Calypso interchangeably.

2.17 Navigating Using the System Browser

Pharo has Spotter (see below) to navigate the system. Now we just want to
show you the working flow of the System Browser. Usually with Spotter we
go directly to the class or the method.

Let us look how to find the printStringmethod defined in class Object. At
the end of the navigation, we will get the situation depicted in 2-16.

21

A quick tour of Pharo (to revisit - started by Gordana)

Figure 2-16 The System Browser showing the printStringmethod of class

Object.

Open the Browser by selecting World > Tools > System Browser.

When a new System Browser window first opens, all panes but the leftmost
are empty. This first pane lists all known packages, which contain groups of
related classes.

Filter packages.

Type part of the name of the package in the left most filter. It filters the list
of packages to be shown in the list above it. Type ’Kern’ for example.

Expand the Kernel package and select the Object element.

When we select a package, it causes the second pane to show a list of all of
the classes in the selected package. You should see the hierarchy of Pro-
toObject.

Select the Object class.

When a class is selected, the remaining two panes will be populated. The
third pane displays the protocols of the currently selected class. These are

22

2.18 Finding Classes

convenient groupings of related methods. If no protocol is selected you should
see all methods in the fourth pane.

Select the printing protocol.

You may have to scroll down to find it. You can also click on the third pane
and type pr, to typeahead-find the printing protocol. Now select it, and you
will see in the fourth pane only methods related to printing.

Select the printStringMethod.

Now we see in the bottom pane the source code of the printStringmethod,
shared by all objects in the system (except those that override it).

There are much better way to find a method and we will look at them now.

2.18 Finding Classes

There are several ways to find a class in Pharo. The first, as we have just seen
above, is to know (or guess) what package it is in, and to navigate to it using
the browser.

A second way is to send the browsemessage to the class, asking it to open a
browser on itself. Suppose we want to browse the class Point.

2.19 Using the Message browse

Type Point browse into a playground and Do it. A browser will open on
the Point class.

2.20 Using CMD-b to Browse

There is also a keyboard shortcut CMD-b (browse) that you can use in any text
pane; select the word and press CMD-b. Use this keyboard shortcut to browse
the class Point.

Notice that when the Point class is selected but no protocol or method is
selected, instead of the source code of a method, we see a class definition.
This is nothing more than an ordinary message that is sent to the parent
class, asking it to create a subclass. Here we see that the class Object is be-
ing asked to create a subclass named Point with two instance variables, class
variables, and to put the class Point in the Kernel-BasicObjects package.
If you click on the Comments button at the bottom of the class pane, you can
see the class comment in a dedicated pane.

In addition the system supports the following mouse shortcuts

23

A quick tour of Pharo (to revisit - started by Gordana)

Figure 2-17 Opening Spotter.

• CMD-Click on a word: open the definition of a class when the word is
a class name. You get also the implementors of the message when you
click on a selector that is in the body of a method.

• CMD-Shift-Click on a word: open a list browser with all the refs of
the class when the word is a class name. You get also the senders of the
message when you click on a selector that is in the body of a method.

2.21 Using Spotter

The fastest (and probably the coolest) way to find a class is to use Spotter.
Pressing Shift+Enter opens Spotter, a very powerful tool for finding classes,
methods, and many other related actions. Figure 2-17 shows that we look for
Point.

Spotter offers several possibilities as shown in Figure 2-17. You can specify
to Spotter the kind of categories you are interested in. For example, using
#class followed by the word you look for, indicates that you are interested
in classes. This is the default so you do not need to type #class.

Figure 2-18 shows how we can ask Spotter to show all the implementors of a
given messages. We do not have to type the full category name. Other Cate-
gories are menu, packages, method (#implementor), examples (#example),
pragma (#pragma), senders (#sender), class references (#reference) but

24

2.21 Using Spotter

Figure 2-18 Looking for implementors matching printString.

also playground code snippets (using #playground).You can just type the
beginning of the category to identify it i.e., #ref Point will give all the ref-
erence to the class Point.

Spotter can be used even to browse through the OS file system, and has a
history category where previous searches are stored for quickly going back
to popular searches.

Navigating Results

In addition we can use Spotter to navigate to our search results similarly to
how we use System Browser. Spotter categorizes its search results: for ex-
ample, classes are under Classes category, methods under the Implementors
category, help topics under Help Topics category, etc.

Clicking on the right arrow will take us to our selection and create a tab on
top that we can click to go back to where we were. Depending on what we
click on, we step into our selection and are exposed to more categories.

For example, if our selection is the Point class, we will dive inside a group of
categories made for instance methods, class methods, super instance meth-

25

A quick tour of Pharo (to revisit - started by Gordana)

ods etc.

The interface is fully controllable through the keyboard. The user can move
with Up/Down arrows between items or Cmd-Shift-Up/Cmd-Shift-Down
arrows (note that on Windows and Linux Cmd key is the Alt key) through
categories. At the same time, the search field has the focus, so the user can
switch seamlessly between selecting items and refining the search. Press-
ing Enter on a selection opens the System Browser on that specific selected
search result.

2.22 Using ’Find class’ in System Browser

In the SystemBrowser you can also search for a class via its name. For exam-
ple, suppose that you are looking for some unknown class that represents
dates and times.

In the System Browser, click anywhere in the package pane or the class pane,
and launch the Class Search window by typing CMD-f, or selecting Find class
from the right-click context menu. Type time in the dialog box and click OK
(or press Enter).

A list of classes is displayed, whose names contain the substring time. Choose
one (say, Time), and the browser will show it. If you want to browse one of
the others, select its name (in any text pane), and type CMD-b, or you can
choouse Brose from the right-click context menu.

2.23 Finding Methods

Sometimes you can guess the name of a method, or at least part of the name
of a method, more easily than the name of a class. For example, if you are in-
terested in the current time, you might expect that there would be a method
called ”now”, or containing ”now” as a substring. But where might it be?
Spotter and Finder can help you.

Spotter.

With Spotter you can also find methods. Either by getting a class and navi-
gating or using category such as:

• #implementor a method name will display all the methods that are
implemented and have the same name. For example you will get all the
do: methods.

• #selector a method name will display all the selectors that matches
this name

26

2.24 Finding Methods Using Examples

Figure 2-19 The Finder showing all classes defining a method named now.

With Finder.

Select World Menu > Tools > Finder. Type now in the top left search box,
click Search (or just press the Enter key). You should see a list of results
similar to the one in Figure 2-19.

The Finder will display a list of all the method names that contain the sub-
string ”now”. To scroll to now itself, move the cursor to the list and type ”n”;
this type-ahead trick works in all scrolling windows. Expanding the ”now”
item shows you the classes that implement a method with this name. Select-
ing any one of them will display the source code for the implementation in
the code pane on the bottom. It is also possible to search for the exact match,
by typing "now" in the top left search bar, using quotes you will only get the
exact match.

2.24 Finding Methods Using Examples

You can also open the Finder that is available from the World > Tools...
menu, and type part of the name of the class and change the Selectors to
Classes in the right combo box. The Finder is more useful for other types of
code searches such as find methods based on examples.

At other times, you may have a good idea that a method exists, but will have
no idea what it might be called. The Finder can still help! For example, sup-

27

A quick tour of Pharo (to revisit - started by Gordana)

pose that you would like to find a method that turns a string into upper case
(for example, transforming 'eureka' into 'EUREKA'). We can give the inputs
and expected output of a method and the Finder will try to find it for you.

The Finder has a really powerful functionality: you can give the receiver,
arguments and expected result and the finder tries to find the corresponding
message.

2.25 Trying Finder

In the Finder, select the Examplesmode using the second combo-box (the
one that shows Selectors by default).

Type 'eureka' . 'EUREKA' into the search box and press the Enter key
(don’t forget the single quotes).

The Finder will then suggest a method that does what you were looking for,
as well as display a list of classes that implement methods with the same
name. In this case, it determined that the asUppercasemethod is the one
that performed the operation that fit your example.

Click on the 'eureka' asUppercase --> 'EUREKA' expression, to show the
list of classes that implement that method.

An asterisk at the beginning of a line in the list of classes indicates that this
method is the one that was actually used to obtain the requested result.
So, the asterisk in front of String lets us know that the method asUpper-
case defined in the class String was executed and returned the result we
wanted. The classes that do not have an asterisk are just other implementors
of asUppercase, which share the method name but were not used to return
the wanted result. So the method Character>>asUppercase was not exe-
cuted in our example, because 'eureka' is not a Character instance (but is
instead a String).

You can also use the Finder to search for methods by arguments and results.
For example, if you are looking for a method that will find the greatest com-
mon factor of two integers, you might try 25 . 35 . 5 as an example. You
can also give the method finder multiple examples to narrow the search
space; the help text in the bottom pane explains how.

2.26 Defining a New Method

The advent of Test Driven Development (TDD) has changed the way we write
code. The idea behind TDD is that we write a test that defines the desired
behaviour of our code before we write the code itself. Only then do we write
the code that satisfies the test.

28

2.27 Defining a New Test Method

Suppose that our assignment is to write a method that ”says something loudly
and with emphasis”. What exactly could that mean? What would be a good
name for such a method? How can we make sure that programmers who may
have to maintain our method in the future have an unambiguous descrip-
tion of what it should do? We can answer all of these questions by giving an
example.

Our goal is to define a new method named shout in the class String. The
idea is that this message should turn a string into its uppercase version as
shown in the example below:

'No panic' shout
>>> 'NO PANIC!'

However, before creating the shoutmethod itself, we must first create a test
method! In the next section, we can use the ”No Panic” example to create
our test method.

2.27 Defining a New Test Method

How do we create a new method in Pharo? First, we have to decide which
class the method should belong to. In this case, the shoutmethod that we
are testing will go in class String, so the corresponding test will, by conven-
tion, go in a class called StringTest.

First, open a browser on the class StringTest, and select an appropriate
protocol for our method, in this case 'tests - converting'. The high-
lighted text in the bottom pane is a template that reminds you what a Pharo
method looks like. Delete this template code (remember, you can either click
on the beginning or the end of the text, or press CMD-a, to ”Select All”), and
start typing your method. We can turn our ”No Panic” code example into the
test method itself:

testShout
self assert: ('No panic' shout = 'NO PANIC!')

Once you have typed the text into the browser, notice that the right upper
corner is orange. This is a reminder that the pane contains unsaved changes.
So, select Accept (s) by right clicking in the bottom pane, or just type CMD-
s, to compile and save your method. You should see a situation similar to the
one depicted in Figure 2-20.

If this is the first time you have accepted any code in your image, you will
likely be prompted to enter your name. Since many people have contributed
code to the image, it is important to keep track of everyone who creates
or modifies methods. Simply enter your first and last names, without any
spaces.

Because there is no method called shout yet, the automatic code checker
(Quality Assitance) will inform you that the message shout is sent but not

29

A quick tour of Pharo (to revisit - started by Gordana)

Figure 2-20 Defining a test method in the class StringTest.

implemented, you will see it in the lower browser pane and on the same line
where you wrote the code. This can be quite useful if you have merely made
a typing mistake, but in this case, we really do mean shout, since that is the
method we are about to create. We confirm this by selecting the first option
from the menu of choices.

2.28 Running Your Test Method

Run your newly created test: open the Test Runner from the World Menu
(or press on the circle icon in front of the method name this is faster and
cooler).

In the Test Runner the leftmost two panes are a bit like the top panes in the
System Browser. The left pane contains a list of packages, but it’s restricted
to those packages that contain test classes.

Select CollectionsTests-Strings package, and the pane to the right will
show all of the test classes in it, which includes the class StringTest. Class
names are already selected, so click Run Selected to run all these tests.

You should see the upper right pane turn red, which indicates that there
was an error in running the tests. The list of tests that gave rise to errors is
shown in the bottom right pane. As you can see, the method StringTest>>test-
Shout is the culprit. (Note that StringTest>>testShout is the Pharo way of
identifying the testShoutmethod of the StringTest class.) If you click on
that method in the bottom right pane, the erroneous test will run again, this
time in such a way that you see the error happen: Instenace of ByteString
did not understand #shout (see Figure 2-21).

30

2.29 Implementing the Tested Method

Figure 2-21 Looking at the error in the debugger.

Figure 2-22 Pressing the Create button in the debugger prompts you to select in

which class to create the new method.

The window that opens with the error message is the Pharo debugger. We
will look at the debugger and how to use it in Chapter: The Pharo Environ-
ment.

2.29 Implementing the Tested Method

The error is, of course, exactly what we expected: running the test gener-
ates an error because we have not yet written a method that tells strings how
to shout. Nevertheless, it’s good practice to make sure that the test fails be-
cause this confirms that we have set up the testing machinery correctly and
that the new test is actually being run. Once you have seen the error, you can
Abandon the running test, which will close the debugger window.

31

A quick tour of Pharo (to revisit - started by Gordana)

Figure 2-23 The automatically created shoutmethod waiting for a real defini-

tion.

Coding in the Debugger

Instead of pressing Abandon, you can define the missing method using the
Create button right in the debugger. This will prompt you to select a class in
which to define the new method (see Figure 2-22), then prompt you to select
a protocol for that method, and finally take you to a code editor window in
the debugger, in which you can edit the code for this new method. Note that
since the system cannot implement the method for you, it creates a generic
method that is tagged as to be implemented (see Figure 2-23).

Now let’s define the method that will make the test succeed! Right inside the
debugger edit the shoutmethod with this definition:

shout
^ self asUppercase,'!'

The comma is the string concatenation operation, so the body of this method
appends an exclamation mark to an upper-case version of whatever String
object the shout message was sent to. The ^ tells Pharo that the expression
that follows is the answer to be returned from the method, in this case the
new concatenated string.

When you’ve finished implementing the method, do not forget to compile
it using CMD-s and you can press Proceed and continue with the tests. Note
that Proceed simply continues on running the test suite, and does not re-run
the failed method.

Does this method work?

Let’s run the tests and see. Click on Run Selected again in the Test Runner,
and this time you should see a green bar and text indicating that all of the

32

2.30 Chapter Summary

tests ran with no failures and no errors. When you get to a green bar, it’s a
good idea to save your work by saving the image (World Menu > Pharo >
Save), and take a break. So, do that right now!

2.30 Chapter Summary

This chapter has introduced you to the Pharo environment and shown you
how to use some of the major tools, such as the System Browser, Spotter,
the Finder, the Debugger, and the Test Runner. You have also seen a little of
Pharo’s syntax, even though you may not understand it all yet.

• A running Pharo system consists of a virtual machine, a .sources file,
and .image and .changes files. Only these last two change, as they
record a snapshot of the running system.

• When you open a Pharo image, you will find yourself in exactly the
same state (i.e., with exactly the same running objects) that you had
when you last saved that image.

• You can click on the Pharo background to bring up theWorld Menu
and launch various tools.

• A Playground is a tool for writing and evaluating snippets of code. You
can also use it to store arbitrary text.

• You can use keyboard shortcuts on text in the playground, or any
other tool, to evaluate code. The most important of these are Do it
(CMD-d), Print it (CMD-p), Inspect it (CMD-i), and Browse it (CMD-
b).

• The System Browser is the main tool for browsing Pharo code and for
developing new code.

• The Test runner is a tool for running unit tests, and aids in Test Driven
Development.

• The Debugger allows you to examine errors and exceptions (such as
errors or failures encountered when running tests). You can even cre-
ate new methods right in the debugger.

33

CHA P T E R 3
Developing a simple counter

To get started in Pharo, we invite you to implement a simple counter by fol-
lowing the steps given below. In this exercise you will learn how to create
packages classes, method, instances. You will learn how to define tests and
more. This simple tutorial covers most of the important actions that we do
when developing in Pharo. You can also watch the companion videos avail-
able in the Pharo mooc at http://mooc.pharo.org: they illustrate this tutorial
in a more lively manner.

Note that the development flow promoted by this little tutorial is traditional
in the sense that you will define a package, a class, then define its instance
variable then define its methods and finally execute it. We show also how you
can save your code on git hosting services such as github using Iceberg. Now
in Pharo, developers often follows a totally different style (that we call live
coding or Xtreme TDD) where they execute an expression that raises errors
and they code in the debugger and let the system define some instance vari-
ables and methods on the fly for them.

Once you will have finish this tutorial, you will feel more confident with
Pharo and we strongly suggest you to try the other style.

3.1 Our use case

Here is our use case: We want to be able to create a counter, increment it
twice, decrement it and check that its value is correct. It looks like this little
use case will fit perfectly a unit test - you will define one later.

35

http://mooc.pharo.org

Developing a simple counter

Figure 3-1 Package created and class creation template.

| counter |
counter := Counter new.
counter increment; increment.
counter decrement.
counter count = 1

Now we will develop all the mandatory class and methods to support this
scenario.

3.2 Create your own class

In this part, you will create your first class. In Pharo, a class is defined in a
package. You will create a package then a class. The steps we will do are the
same ones every time you create a class, so memorize them well.

3.3 Create a package and class

Using the Browser create a package. The system will ask you a name, write
MyCounter. This new package is then created and added to the list. Figure
3-1 shows the result of creating such a package.

Create a class.

Creating a class requires five steps. They consist basically in editing the class
definition template to specify the class you want to create.

• Superclass Specification. First, you should replace the word NameOf-
Superclass with the word Object. Thus, you specify the superclass of

36

3.3 Create a package and class

the class you are creating. Note that this is not always the case that
Object is the superclass, since you may to inherit behavior from a
class specializing already Object.

• Class Name. Next, you should fill in the name of your class by replac-
ing the word NameOfClass with the word Counter. Take care that the
name of the class starts with a capital letter and that you do not re-
move the #sign in front of NameOfClass. This is because the class we
want to create does not exist yet, so we have to give its name, and we
use a Symbol (a unique string in Pharo) to do so.

• Instance Variable Specification. Then, you should fill in the names
of the instance variables of this class. We need one instance variable
called count. Take care that you leave the string quotes!

• Class Variable Specification. As we do not need any class variable make
sure that the argument for the class instance variables is an empty
string classInstanceVariableNames: ''.

You should get the following class definition.

Object subclass: #Counter
instanceVariableNames: 'count'
classVariableNames: ''
package: 'MyCounter'

Now we should compile it. We now have a filled-in class definition for the
class Counter. To define it, we still have to compile it. Therefore, select the
accept menu item. The class Counter is now compiled and immediately
added to the system.

Figure 3-2 illustrates the resulting situation that the browser should show.

The tool runs automatically some code critic and some of them are just inac-
curate, so do not care for now.

As we are disciplined developers, we add a comment to Counter class by
clicking Comment button. You can write the following comment:

Counter is a simple concrete class which supports incrementing and
decrementing a counter.

Its API is
- decrement, increment
- count
Its creation API is message startingAt:

Select menu item ’accept’ to store this class comment in the class.

Figure 3-3 shows the class with its comment.

37

Figure 3-2 Class created: It inherits from Object class and has one instance

variable named count.

Figure 3-3 Counter class has now a comment! Well done.

3.4 Define protocols and methods

3.4 Define protocols and methods

In this part you will use the browser to learn how to add protocols and meth-
ods.

The class we have defined has one instance variable named count. You should
remember that in Pharo, (1) everything is an object, (2) that instance vari-
ables are private to the object, and (3) that the only way to interact with an
object is by sending messages to it.

Therefore, there is no other mechanism to access the instance variable val-
ues from outside an object than sending a message to the object. What you
can do is to define messages that return the value of the instance variable.
Such methods are called accessors, and it is a common practice to always de-
fine and use them. We start to create an accessor method for our instance
variable count.

A method is usually sorted into a protocol. These protocols are just a group
of methods without any language semantics, but convey important naviga-
tion information for the reader of your class. Although protocols can have
any name, Pharo programmers follow certain conventions for naming these
protocols. If you define a method and are not sure what protocol it should be
in, first go through existing code and try to find a fitting name.

3.5 Create a method

Now let us create the accessor methods for the instance variable count. Start
by selecting the class Counter in a browser, and make sure the you are edit-
ing the instance side of the class (i.e., we define methods that will be sent to
instances) by deselecting the Class side radio button.

Click on the instance method tab and define your method.

Figure 3-4 shows the method editor ready to define a method.

As a general hint, double click at the end of or beginning of the text and start
typing your method: this automatically replace your Replace the template
with the following method definition:

count
^ count

This defines a method called count, taking no arguments, having a method
comment and returning the instance variable count. Then choose accept in
the menu to compile the method. The method is automatically categorized in
the protocol accessing.

Figure 3-5 shows the state of the system once the method is defined.

39

Figure 3-4 The method editor selected and ready to define a method.

Figure 3-5 The method count defined in the protocol accessing.

3.6 Adding a setter method

You can now test your new method by typing and evaluating the next ex-
pression in a Playground, or any text editor.

Counter new count
>>> nil

This expression first creates a new instance of Counter, and then sends the
message count to it. It retrieves the current value of the counter. This should
return nil (the default value for non-initialised instance variables). After-
wards we will create instances with a reasonable default initialisation value.

3.6 Adding a setter method

Another method that is normally used besides the accessor method is a so-
called setter method. Such a method is used to change the value of an in-
stance variable from a client. For example, the expression Counter new
count: 7 first creates a new Counter instance and then sets its value to 7:

The snippets shows that the counter effectively contains its value.

| c |
c := Counter new count: 7.
c count
>>> 7

This setter method does not currently exist, so as an exercise write the method
count: such that, when invoked on an instance of Counter, instance vari-
able is set to the argument given to the message. Test your method by typing
and evaluating the expression above.

3.7 Define a Test Class

Writing tests is an important activity that will support the evolution of your
application. Remember that a test is written once and executed million times.
For example if we have turned the expression above into a test we could have
checked automatically that our new method is correctly working.

To define a test case we will define a class that inherits from TestCase. There-
fore define a class named CounterTest as follows:

TestCase subclass: #CounterTest
instanceVariableNames: ''
classVariableNames: ''
package: 'MyCounter'

Now we can write a first test by defining one method. Test methods should
start with text to be automatically executed by the TestRunner or when you
press on the icon of the method. Now to make sure that you understand in
which class we define the method we prefix the method body with the class

41

Developing a simple counter

Figure 3-6 A first test is defined and it passes.

name and >>. CounterTest>>means that the method is defined in the class
CounterTest.

Figure 3-6 shows the definition of the method testCountIsSetAndRead in
the class CounterTest.

Define the following method. It first creates an instance, sets its value and
verifies that the value is correct. The message assert:equals: is a special
message verifying if the test passed or not.

CounterTest >> testCountIsSetAndRead
| c |
c := Counter new.
c count: 7.
self assert: c count equals: 7

Verify that the test passes by executing either pressing the icon in front of
the method (as shown by Figure 3-6) or using the TestRunner available in the
Tools menus (selecting your package). Since you have a first green test. This
is a good moment to save your work.

3.8 Saving your code on git with Iceberg

With Iceberg, we will show you how to save your code locally then later we
will push it to GitHub.

42

3.8 Saving your code on git with Iceberg

Figure 3-7 Iceberg Repositories browser on a fresh image indicates that if you

want to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care.

Open Iceberg.

You should the situation depicted by Figure 3-7 which shows the top level
Iceberg pane. It shows that for now you do not have defined nor loaded any
project. It shows the Pharo project and indicates that it could not find its
local repository by displaying ’Local repository missing’. You do not have to
worry about the Pharo project or repository if you do not want to contribute
to Pharo. So just go ahead. Since you do not plan to modify and version the
Pharo system code, you do not have to worry.

Add and configure a project.

Press the iconic button Add to create a new project. Pick up ’New Reposi-
tory’ and you should get a configuration pane similar to the one of Figure
3-8. Here we define the Project named ’MyCounter’, give a directory on our
disk and we indicate that the source should be in the subfolder src.

Add your package to the project.

Once added, Iceberg Working copy browser should show you an empty pane
because you did not add any package to your project. Click on the Add pack-
age iconic button and select the package MyCounter as shown by Figure 3-9.

Commit your changes.

Once you package is added, Iceberg shows you that you did not commit your
code as shown in Figure 3-11. Press the Commit iconic button. Iceberg will
show you all the changes that are about to be saved (Figure 3-11). Enter a
commit message and commit

Code saved.

Once you have commited, Iceberg indicates that your system and local repos-
itory are in sync.

43

Figure 3-8 Add and create a project named MyCounter and with the src sub-

folder.

Figure 3-9 Selecting the Add package iconic button, add your package My-

Counter to your project.

Figure 3-10 Now Iceberg shows you that you did not commit your code.

Figure 3-11 Iceberg shows you the changes about to be commited.

Developing a simple counter

Figure 3-12 Once you save your change, Iceberg shows you that .

3.9 Adding more messages

Before implementing the following messages we define first a test. We define
one test for the method increment as follows:

CounterTest >> testIncrement
| c |
c := Counter new.
c count: 0 ; increment; increment.
self assert: c count equals: 2

• Propose a definition for the method increment.

• Define a test and method for the method decrement.

• Implement the following methods increment and decrement in the
protocol ’operation’.

• Implement also a new test method for the method decrement.

Counter >> increment
count := count + 1

Counter >> decrement
count := count - 1

Run your tests they should pass (as shown in Figure 3-13). Again this is a
good moment to save your work. Saving at point where tests are green is
always a good process. To save your changes, you just have to commit them.

3.10 Instance initialization method

Right now the initial value of our counter is not set as the following expres-
sion shows it.

Counter new count
>>> nil

46

3.11 Define an initialize method

Figure 3-13 Class with more green tests.

Let us write a test checking that a newly created instance has 0 as a default
value.

CounterTest >> testInitialize
self assert: Counter new count equals: 0

If you run it, it will turn yellow indicating a failure (a situation that you an-
ticipated but that is not correct) - by opposition to an error which is an antic-
ipated situation leading to failed assertion.

3.11 Define an initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. However, as we mentioned the initializemes-
sage is sent to the newly created instance. This means that the initialize
method should be defined at the instance side as any method that is sent to
an instance of Counter (like increment) and decrement. The initialize
method is responsible to set up the instance variable default values.

Therefore at the instance side, you should create a protocol initializa-
tion, and create the following method (the body of this method is left blank.
Fill it in!).

Counter >> initialize
"set the initial value of the value to 0"
...
Fill me please!!!

47

Developing a simple counter

Now create a new instance of class Counter. Is it initialized by default? The
following code should now work without problem:

Counter new increment count
>>> 1

and the following one should return 2

Counter new increment; increment; count
>>> 2

But better write a test since we will execute it all the time.

TestCounter >> testCounterWellInitialized
self
assert: (Counter new increment; increment; count)
equals: 2

Again save your work before starting the next step.

3.12 Define a new instance creation method

We would like to show you the difference between an instance method (i.e.
sent to instances) and a class method (i.e., to a class). In fact the only differ-
ence is the place to define them. An instance method is defined in the in-
stance side of Code Browser while class methods are defined on the class side
(Pressing the button Class).

Define a different instance creation method named startingAt:. This method
receives an integer as argument and returns an instance of Counter with the
specified value.

Let us define a test:

TestCounter >> testCounterStartingAt5
self assert: (Counter startingAt: 5) count equals: 5

Here the message startingAt: is sent to the class Counter itself.

Your implementation should look like

Counter class >> startingAt: anInteger
^ self new count: anInteger.

Note that self in such method refers to the class Counter itself.

Let us write another test to check that everything is working.

CounterTest >> testAlternateCreationMethod
self assert: ((Counter startingAt: 19) increment ; count) equals:

20

48

3.13 Better object description

Figure 3-14 Better description.

3.13 Better object description

When you open an inspect (putting a self halt inside a method definition)
you obtain an inspector or when you select the expression Counter new and
print its result (using the Print it menu of the editor) you obtain a simple
string 'a Counter'.

Counter new
>>> a Counter

We would like to get a much richer information for example knowing the
counter value. Implement the following methods in the protocol printing

Counter >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' with value: ', count printString.

Note that the method printOn: is used when you print an object using print
it (See Figure 3-14) or click on self in an inspector.

We let you define a method for this method. A tip send the message printString
to Counter new to get its string representation.

Counter new printString
>>> a Counter with value: 0

3.14 Saving your code on a remote server

Up until now you saved your code on your local disc. We will now show how
you can save your code on a remote repository such as the one you can cre-
ate on GitHub http://github.com or Gitlab.

Create a project on the remote server.

First you should create a project with the same name than the one of your
project.

49

http://github.com

Developing a simple counter

Figure 3-15 A Repository browser opened on your project.

Figure 3-16 GitHub HTTPS address our our project.

Add a remote repository in HTTPS access.

Clicking on the Repository iconic button of the Working copy browser, you get
access to the Repository browser open on your project as show in Figure 3-15.

Then you just have to add a remote repository using the Add remote iconic
button of the Repository browser. For this we will use the project identifica-
tion address given by the remote browser. Since we decided to use HTTPS
we use https://github.com/Ducasse/MyCounter.git as address as shown in
Figure 3-16 and Figure 3-17.

50

3.14 Saving your code on a remote server

Figure 3-17 Using the GitHub HTTPS address.

Figure 3-18 Commits sent to the remote repository.

Push.

As soon as you add a valid server address, Iceberg will show a little red indi-
cation on the Push iconic button. This shows that you have changes in your
local repository that have not being pushed to your remote repository. Now
you just have to press the Push iconic button. Iceberg will show you the com-
mits that will be pushed to the server as shown in Figure 3-18.

Now you fully saved your code and you will be able to reload from another
machine or location. This will enable you to work remotely and collabo-
rately.

51

Developing a simple counter

3.15 Conclusion

In this tutorial you learned how to define packages, classes, methods, and
define tests. The flow of programming that we chose for this first tutorial is
similar to most of programming languages. In Pharo you can use a different
flow that is based on defining a test first, executing it and when the execu-
tion raises error to define the corresponding classes, methods, and instance
variable often from inside the debugger. We suggest you now to redo the ex-
ercise following the second companion video.

52

CHA P T E R 4
A first application

In this chapter, we will develop a simple game: LightsOut (http://en.wikipedia.
org/wiki/Lights_Out_(game)). Along the way we will show most of the tools that
Pharo programmers use to construct and debug their programs, and show
how programs are shared with other developers. We will see the browser,
the object inspector, the debugger and the way to version code.

In Pharo you can develop in a traditional way, by defining a class, then its
instance variables, then its methods. However, in Pharo your development
flow can be much more productive than that! You can define instance vari-
ables and methods on the fly. You can also code in the debugger using the
exact context of currently executed objects. This chapter will sketch such
alternate way and show you how you can be really productive.

We will code the game but doing so we will make mistakes and we will show
you how we recover from these mistakes. So this may be a bit frustrating for
you and more boring for us to describe but this is a key aspect of program-
ming. We have to show how to handle errors and find bugs.

Figure 4-1 The Lights Out game board.

53

http://en.wikipedia.org/wiki/Lights_Out_(game)
http://en.wikipedia.org/wiki/Lights_Out_(game)

A first application

Figure 4-2 Create a Package and class template.

4.1 The Lights Out game

To show you how to use Pharo’s programming tools, we will build a simple
game called Lights Out. The game board consists of a rectangular array of
light yellow cells. When you click on one of the cells, the four surrounding
cells turn blue. Click again, and they toggle back to light yellow. The object
of the game is to turn blue as many cells as possible.

Lights Out is made up of two kinds of objects: the game board itself, and 100
individual cell objects. The Pharo code to implement the game will contain
two classes: one for the game and one for the cells. We will now show you
how to define these classes using the Pharo programming tools.

4.2 Creating a new Package

We have already seen the browser in Chapter : A Quick Tour of Pharo where
we learned how to navigate to packages, classes and methods, and saw how
to define new methods. Now we will see how to create packages and classes.

From the Worldmenu, open a System Browser. Right-click on an existing
package in the Package pane and select New package from the menu. Type
the name of the new package (we use PBE-LightsOut) in the dialog box and
click OK (or just press the return key). The new package is created, and posi-
tioned alphabetically in the list of packages (see Figure 4-2).

Hints: You can type PBE in the filter to get your package filtered out the
other ones (See Figure 4-3).

54

4.3 Defining the class LOCell

Figure 4-3 Filtering our package to work more efficiently.

Listing 4-4 LOCell class definition

SimpleSwitchMorph subclass: #LOCell
instanceVariableNames: 'mouseAction'
classVariableNames: ''
package: 'PBE-LightsOut'

4.3 Defining the class LOCell

At this point there are, of course, no classes in the new package. However,
the main editing pane displays a template to make it easy to create a new
class (see Figure 4-3).

This template shows us a Pharo expression that sends a message to a class
called Object, asking it to create a subclass called NameOfSubClass. The
new class has no variables, and should belong to the category (package) PBE-
LightsOut.

4.4 Creating a new class

We simply edit the template to create the class that we really want. Modify
the class creation template as follows:

• Replace Object with SimpleSwitchMorph.

• Replace NameOfSubClass with LOCell.

• Add mouseAction to the list of instance variables.

You should get the following class definition:

This new definition consists of a Pharo expression that sends a message to
the existing class SimpleSwitchMorph, asking it to create a subclass called

55

A first application

Figure 4-5 The newly-created class LOCell.

LOCell. (Actually, since LOCell does not exist yet, we passed the symbol
#LOCell as an argument, representing the name of the class to create.) We
also tell it that instances of the new class should have a mouseAction in-
stance variable, which we will use to define what action the cell should take
if the mouse should click on it.

At this point you still have not created anything. Note that the top right of
the panel changed to orange. This means that there are unsaved changes. To
actually send this subclass message, you must save (accept) the source code.
Either right-click and select Accept, or use the shortcut CMD-s (for ”Save”).
The message will be sent to SimpleSwitchMorph, which will cause the new
class to be compiled. You should get the situation depicted in Figure 4-5.

Once the class definition is accepted, the class is created and appears in the
class pane of the browser (see Figure 4-5). The editing pane now shows the
class definition. Below you get the Quality Assistant’s feedback: It runs auto-
matically quality rules on your code and reports them.

4.5 About comments

Pharoers put a very high value on the readability of their code, but also good
quality comments.

56

4.6 Adding methods to a class

Listing 4-6 Initializing instance of LOCell

initialize
super initialize.
self label: ''.
self borderWidth: 2.
bounds := 0 @ 0 corner: 16 @ 16.
offColor := Color paleYellow.
onColor := Color paleBlue darker.
self useSquareCorners.
self turnOff

Method comments.

People have the tendency to believe that it is not necessary to comment well
written methods: it is plain wrong and encourages sloppiness. Of course, bad
code should be renamed and refactored. Obviously commenting trivial meth-
ods makes no sense. A comment should not be the code written in english
but an explanation of what the method is doing, its context, or the rationale
behind its implementation. When reading a comment, the reader should be
comforted that his hypotheses are correct.

Class comments.

For the class comment, the Pharo class comment template gives a good idea
of a strong class comment. Read it! It is based on CRC for Class Responsibil-
ity Collaborators. So in a nutshell the comments state the responsibility of
the class in a couple of sentences and how it collaborates with other classes
to achieve this responsibilities. In addition we can state the API (main mes-
sages an object understands), give an example (usually in Pharo we define
examples as class methods), and some details about internal representation
or implementation rationale.

Select the comment button and define a class comment following this tem-
plate

4.6 Adding methods to a class

Now let’s add some methods to our class. Select the Inst. side method tab
next to the class definition tab. You will see a template for method creation
in the editing pane. Select the template text, and replace it by the following
(do not forget to compile it):

Note that the characters '' on line 3 are two separate single quotes with
nothing between them, not a double quote! '' denotes the empty string. An-
other way to create an empty string is String new. Do not forget to compile
this method Pharo using the acceptmenu item (CMD-s/Option-s).

57

A first application

Figure 4-7 The newly-created method initialize.

Initialize methods.

Notice that the method is called initialize. The name is very significant!
By convention, if a class defines a method named initialize, it is called
right after the object is created. So, when we execute LOCell new, the mes-
sage initialize is sent automatically to this newly created object. ini-
tializemethods are used to set up the state of objects, typically to set their
instance variables; this is exactly what we are doing here.

Invoking superclass initialization.

The first thing that this method does (line 2) is to execute the initialize
method of its superclass, SimpleSwitchMorph. The idea here is that any in-
herited state will be properly initialized by the initializemethod of the
superclass. It is always a good idea to initialize inherited state by sending
super initialize before doing anything else. We don’t know exactly what
SimpleSwitchMorph’s initializemethod will do (and we don’t care), but
it’s a fair bet that it will set up some instance variables to hold reasonable de-
fault values. So we had better call it, or we risk starting in an unclean state.

The rest of the method sets up the state of this object. Sending self label:
'', for example, sets the label of this object to the empty string.

58

4.7 Inspecting an object

About point and rectangle creation.

The expression 0@0 corner: 16@16 probably needs some explanation. 0@0
represents a Point object with x and y coordinates both set to 0. In fact, 0@0
sends the message @ to the number 0 with argument 0. The effect will be that
the number 0 will ask the Point class to create a new instance with coordi-
nates (0,0). Now we send this newly created point the message corner:
16@16, which causes it to create a Rectangle with corners 0@0 and 16@16.
This newly created rectangle will be assigned to the bounds variable, inher-
ited from the superclass.

Note that the origin of the Pharo screen is the top left, and the y coordinate
increases downwards.

About the rest.

The rest of the method should be self-explanatory. Part of the art of writing
good Pharo code is to pick good method names so that the code can be read
like a kind of pidgin English. You should be able to imagine the object talking
to itself and saying ”Self, use square corners!”, ”Self, turn off!”.

Notice that there is a little green arrow next to your method (see Figure 4-7).
This means the method exists in the superclass and is overridden in your
class.

4.7 Inspecting an object

You can immediately test the effect of the code you have written by creating
a new LOCell object and inspecting it: Open a Playground, type the expres-
sion LOCell new, and Inspect it (using the menu item with the same name).

The left-hand column of the inspector shows a list of instance variables and
the value of the instance variable is shown in the right column (see Figure
4-8).

If you click on an instance variable the inspector will open a new pane with
the detail of the instance variable (see Figure 4-9).

Executing expressions.

The bottom pane of the inspector is a mini-playground. It’s useful because in
this playground the pseudo-variable self is bound to the object selected.

Go to that Playground at the bottom of the pane and type the text self bounds:
(200@200 corner: 250@250) Do it. To refresh the values, click on the up-
date button (the blue little circle) at the top right of the pane. The bounds
variable should change in the inspector. Now type the text self openIn-
World in the mini-playground and Do it.

59

Figure 4-8 The inspector used to examine a LOCell object.

Figure 4-9 When we click on an instance variable, we inspect its value (another

object).

4.8 Defining the class LOGame

Figure 4-10 An LOCell open in world.

Listing 4-11 Defining the LOGame class

BorderedMorph subclass: #LOGame
instanceVariableNames: ''
classVariableNames: ''
package: 'PBE-LightsOut'

The cell should appear near the top left-hand corner of the screen (as shown
in Figure 4-10) and exactly where its bounds say that it should appear. Meta-
click on the cell to bring up the Morphic halo. Move the cell with the brown
(next to top-right) handle and resize it with the yellow (bottom-right) han-
dle. Notice how the bounds reported by the inspector also change. (You may
have to click refresh to see the new bounds value.) Delete the cell by clicking
on the x in the pink handle.

4.8 Defining the class LOGame

Now let’s create the other class that we need for the game, which we will
name LOGame.

Make the class definition template visible in the browser main window. Do
this by clicking on the package name (or right-clicking on the Class pane and
selecting Add Class). Edit the code so that it reads as follows, and Accept it.

Here we subclass BorderedMorph. Morph is the superclass of all of the graph-
ical shapes in Pharo, and (unsurprisingly) a BorderedMorph is a Morph with a

61

A first application

Listing 4-12 Initialize the game

initialize
| sampleCell width height n |
super initialize.
n := self cellsPerSide.
sampleCell := LOCell new.
width := sampleCell width.
height := sampleCell height.
self bounds: (5 @ 5 extent: (width * n) @ (height * n) + (2 * self

borderWidth)).
cells := Array2D new: n tabulate: [:i :j | self newCellAt: i at:

j]

Figure 4-13 Declaring cells as a new instance variable.

border. We could also insert the names of the instance variables between the
quotes on the second line, but for now, let’s just leave that list empty.

4.9 Initializing our game

Now let’s define an initializemethod for LOGame. Type the following into
the browser as a method for LOGame and Accept it.

Pharo will complain that it doesn’t know the meaning of cells (see Figure
4-13). It will offer you a number of ways to fix this.

Choose Declare new instance variable, because we want cells to be an
instance variable.

4.10 Taking advantage of the debugger

At this stage if you open a Playground, type LOGame new, and Do it, Pharo
will complain that it doesn’t know the meaning of some of the terms (see
Figure 4-14). It will tell you that it doesn’t know of a message cellsPer-
Side, and will open a debugger. But cellsPerSide is not a mistake; it is just
a method that we haven’t yet defined. We will do so, shortly.

Now let us do it: type LOGame new and Do it. Do not close the debugger.
Click on the button Create of the debugger, when prompted, select LOGame,

62

4.10 Taking advantage of the debugger

Figure 4-14 Pharo detecting an unknown selector.

the class which will contain the method, click on ok, then when prompted
for a method protocol enter accessing. The debugger will create the method
cellsPerSide on the fly and invoke it immediately. As there is no magic,
the created method will simply raise an exception and the debugger will stop
again (as shown in Figure 4-15) giving you the opportunity to define the be-
havior of the method.

Here you can write your method. This method could hardly be simpler: it
answers the constant 10. One advantage of representing constants as meth-
ods is that if the program evolves so that the constant then depends on some
other features, the method can be changed to calculate this value.

cellsPerSide
"The number of cells along each side of the game"
^ 10

Define the method cellsPerSide in the debugger. Do not forget to com-
pile the method definition by using Accept. You should obtain a situation
as shown by Figure 4-16. If you press the button Proceed the program will
continue its execution - here it will stop since we did not define the method
newCellAt:. We could use the same process but for now we stop to explain
a bit what we did so far. Close the debugger, and look at the class definition
once again (which you can do by clicking on LOGame on the second pane of
the System Browser), you will see that the browser has modified it to in-
clude the instance variable cells.

63

Figure 4-15 The system created a new method with a body to be defined.

Figure 4-16 Defining cellsPerSide in the debugger.

4.11 Studying the initialize method

Listing 4-17 Initialize the game

initialize
| sampleCell width height n |
super initialize.
n := self cellsPerSide.
sampleCell := LOCell new.
width := sampleCell width.
height := sampleCell height.
self bounds: (50 @ 50 extent: (width * n) @ (height * n) + (2 *

self borderWidth)).
cells := Array2D
new: n
tabulate: [:i :j | self newCellAt: i at: j]

4.11 Studying the initialize method

Let us now study the method initialize.

Line 2

At line 2, the expression | sampleCell width height n | declares 4 tem-
porary variables. They are called temporary variables because their scope
and lifetime are limited to this method. Temporary variables with explana-
tory names are helpful in making code more readable. Lines 4-7 set the value
of these variables.

How big should our game board be? Big enough to hold some integral num-
ber of cells, and big enough to draw a border around them. How many cells
is the right number? 5? 10? 100? We don’t know yet, and if we did, we would
probably change our minds later. So we delegate the responsibility for know-
ing that number to another method, which we name cellsPerSide, and
which we will write in a minute or two. Don’t be put off by this: it is actually
good practice to code by referring to other methods that we haven’t yet de-
fined. Why? Well, it wasn’t until we started writing the initializemethod
that we realized that we needed it. And at that point, we can give it a mean-
ingful name, and move on, without interrupting our flow.

Line 4

The fourth line uses this method, n := self cellsPerSide. sends the
message cellsPerSide to self, i.e., to this very object. The response, which
will be the number of cells per side of the game board, is assigned to n.

The next three lines create a new LOCell object, and assign its width and
height to the appropriate temporary variables.

65

A first application

Line 8

Line 8 sets the bounds of the new object. Without worrying too much about
the details just yet, believe us that the expression in parentheses creates a
square with its origin (i.e., its top-left corner) at the point (50,50) and its
bottom-right corner far enough away to allow space for the right number
of cells.

Last line

The last line sets the LOGame object’s instance variable cells to a newly cre-
ated Array2D with the right number of rows and columns. We do this by
sending the message new: tabulate: to the Array2D class (classes are ob-
jects too, so we can send them messages). We know that new: tabulate:
takes two arguments because it has two colons (:) in its name. The argu-
ments go right after the colons. If you are used to languages that put all of
the arguments together inside parentheses, this may seem weird at first.
Don’t panic, it’s only syntax! It turns out to be a very good syntax because
the name of the method can be used to explain the roles of the arguments.
For example, it is pretty clear that Array2D rows: 5 columns: 2 has 5
rows and 2 columns, and not 2 rows and 5 columns.

Array2D new: n tabulate: [:i :j | self newCellAt: i at: j]
creates a new n X n two dimensional array (matrix) and initializes its ele-
ments. The initial value of each element will depend on its coordinates. The
(i,j)th element will be initialized to the result of evaluating self newCellAt:
i at: j.

4.12 Organizing methods into protocols

Before we define any more methods, let’s take a quick look at the third pane
at the top of the browser. In the same way that the first pane of the browser
lets us categorize classes into packages, the protocol pane lets us catego-
rize methods so that we are not overwhelmed by a very long list of method
names in the method pane. These groups of methods are called ”protocols”.

By default, you will have instance side virtual protocol, which contains all
of the methods in the class.

If you have followed along with this example, the protocol pane may well
contain the initialization and overrides protocols. These protocols
are added automatically when you override initialize. Pharo 8 System
Browser organizes the methods automatically, and add them to the appro-
priate protocol, when possible.

How does the System Browser know that this is the right protocol? Well, in
general Pharo can’t know exactly, but for example if there is also an ini-

66

4.13 A typographic convention

tializemethod in the superclass, and it assumes that our initialize
method should go in the same protocol as the one that it overrides.

The protocol pane may contain the protocol as yet unclassified. Methods
that aren’t organized into protocols can be found here. You can right-click in
the protocol pane and select categorize all uncategorized to fix this, or you
can organize manually.

4.13 A typographic convention

Pharoers frequently use the notation Class >> method to identify the class
to which a method belongs. For example, the cellsPerSidemethod in class
LOGame would be referred to as LOGame >> cellsPerSide. Just keep in
mind that this is not Pharo syntax exactly, but merely a convenient nota-
tion to indicate ”the instance method cellsPerSide which belongs to the
class LOGame”. The corresponding notation for a class-side method would be
LOGame class >> #someClassSideMethod.

From now on, when we show a method in this book, we will write the name
of the method in this form. Of course, when you actually type the code into
the browser, you don’t have to type the class name or the >>; instead, you
just make sure that the appropriate class is selected in the class pane.

4.14 Finishing the game

Now let’s define the other method that are used by LOGame >> initialize.
Let’s define LOGame >> newCellAt: at: in the initialization protocol.

LOGame >> newCellAt: i at: j
"Create a cell for position (i,j) and add it to my on-screen

representation at the appropriate screen position. Answer the
new cell"

| c origin |
c := LOCell new.
origin := self innerBounds origin.
self addMorph: c.
c position: ((i - 1) * c width) @ ((j - 1) * c height) + origin.
c mouseAction: [self toggleNeighboursOfCellAt: i at: j].

Pay attention the previous code is not fully correct. Therefore, it will pro-
duce an error and this is on purpose.

Formatting.

As you can see there are some tabulation and empty lines. To keep the same
convention you can right-click on the method edit area and click on Format

67

A first application

Listing 4-18 The callback method

LOGame >> toggleNeighboursOfCellAt: i at: j

i > 1
ifTrue: [(cells at: i - 1 at: j) toggleState].

i < self cellsPerSide
ifTrue: [(cells at: i + 1 at: j) toggleState].

j > 1
ifTrue: [(cells at: i at: j - 1) toggleState].

j < self cellsPerSide
ifTrue: [(cells at: i at: j + 1) toggleState]

Figure 4-19 Drag a method to a protocol.

(or use CMD-Shift-f shortcut). This will format your method.

Toggle neighbours.

The method defined above created a new LOCell, initialized to position (i, j)
in the Array2D of cells. The last line defines the new cell’s mouseAction to be
the block [self toggleNeighboursOfCellAt: i at: j]. In effect, this
defines the callback behaviour to perform when the mouse is clicked. The
corresponding method also needs to be defined.

The method toggleNeighboursOfCellAt:at: toggles the state of the four
cells to the north, south, west and east of cell (i, j). The only complication is
that the board is finite, so we have to make sure that a neighboring cell exists
before we toggle its state.

Place this method in a new protocol called game logic. (Right-click in the
protocol pane to add a new protocol.) To move (re-classify) the method, you
can simply click on its name and drag it to the newly-created protocol (see
Figure 4-19).

68

4.15 Final LOCell methods

Listing 4-20 A typical setter method

LOCell >> mouseAction: aBlock
mouseAction := aBlock

Listing 4-21 An event handler

LOCell >> mouseUp: anEvent
mouseAction value

4.15 Final LOCell methods

To complete the Lights Out game, we need to define two more methods in
class LOCell this time to handle mouse events.

The method above does nothing more than set the cell’s mouseAction vari-
able to the argument, and then answers the new value. Any method that
changes the value of an instance variable in this way is called a setter method;
a method that answers the current value of an instance variable is called a
getter method.

Go to the class LOCell, define LOCell >> mouseAction: and put it in the
accessing protocol.

Finally, we need to define a method mouseUp:. This will be called automati-
cally by the GUI framework if the mouse button is released while the cursor
is over this cell on the screen. Add the LOCell >> mouseUp: method.

What this method does is to send the message value to the object stored in
the instance variable mouseAction. In LOGame >> newCellAt: i at: j we
created the block [self toggleNeighboursOfCellAt: i at: j] which is
toggling all the neighbours of a cell and we assigned this block to the mouse-
Action of the cell. Therefore sending the valuemessage causes this block to
be evaluated, and consequently the state of the cells will toggle.

4.16 Using the debugger

That’s it: the Lights Out game is complete! If you have followed all of the
steps, you should be able to play the game, consisting of just 2 classes and
7 methods. In a Playground, type LOGame new openInHand and Do it .

The game will open, and you should be able to click on the cells and see how
it works. Well, so much for theory... When you click on a cell, a debugger will
appear. In the upper part of the debugger window you can see the execution
stack, showing all the active methods. Selecting any one of them will show,
in the middle pane, the code being executed in that method, with the part
that triggered the error highlighted.

Click on the line labeled LOGame >> toggleNeighboursOfCellAt: at:
(near the top). The debugger will show you the execution context within this

69

A first application

Figure 4-22 The debugger, with the method toggleNeighboursOfCell:at:
selected.

method where the error occurred (see Figure 4-22).

At the bottom of the debugger is a variable zone. You can inspect the object
that is the receiver of the message that caused the selected method to exe-
cute, so you can look here to see the values of the instance variables. You can
also see the values of the method arguments.

Using the debugger, you can execute code step by step, inspect objects in pa-
rameters and local variables, evaluate code just as you can in a playground,
and, most surprisingly to those used to other debuggers, change the code
while it is being debugged! Some Pharoers program in the debugger almost
all the time, rather than in the browser. The advantage of this is that you see
the method that you are writing as it will be executed, with real parameters
in the actual execution context.

In this case we can see in the first line of the top panel that the toggleState
message has been sent to an instance of LOGame, while it should clearly have
been an instance of LOCell. The problem is most likely with the initializa-
tion of the cells matrix. Browsing the code of LOGame >> initialize shows
that cells is filled with the return values of newCellAt: at:, but when we
look at that method, we see that there is no return statement there! By de-
fault, a method returns self, which in the case of newCellAt: at: is indeed
an instance of LOGame. The syntax to return a value from a method in Pharo
is ^.

Close the debugger window. Add the expression ^ c to the end of the method
LOGame >> newCellAt:at: so that it returns c.

70

4.16 Using the debugger

Listing 4-23 Fixing the bug.

LOGame >> newCellAt: i at: j
"Create a cell for position (i,j) and add it to my on-screen

representation at the appropriate screen position. Answer the
new cell"

| c origin |
c := LOCell new.
origin := self innerBounds origin.
self addMorph: c.
c position: ((i - 1) * c width) @ ((j - 1) * c height) + origin.
c mouseAction: [self toggleNeighboursOfCellAt: i at: j].
^ c

Listing 4-24 Overriding mouse move actions

LOCell >> mouseMove: anEvent

Often, you can fix the code directly in the debugger window and click Pro-
ceed to continue running the application. In our case, because the bug was
in the initialization of an object, rather than in the method that failed, the
easiest thing to do is to close the debugger window, destroy the running in-
stance of the game (with the halo CMD-Alt-Shift and click), and create a
new one.

Execute LOGame new openInHand again because if you use the old game in-
stance it will still contain the block with the old logic.

Now the game should work properly... or nearly so. If we happen to move
the mouse between clicking and releasing, then the cell the mouse is over
will also be toggled. This turns out to be behavior that we inherit from Sim-
pleSwitchMorph. We can fix this simply by overriding mouseMove: to do
nothing:

Finally we are done!

About the debugger.

By default when an error occurs in Pharo, the system displays a debugger.
However, we can fully control this behavior. For example we can write the
error in a file. We can even serialize the execution stack in a file, zip and re-
open it in another image. Now when we are in development mode the debug-
ger is available to let us go as fast as possible. In production system, develop-
ers often control the debugger to hide their mistakes from their clients.

71

A first application

4.17 In case everything fails

First do not stress! It is normal to mess up and there is no point to have Sec-
ond if you do not succeed to delete the game. Try to get an inspector on any
graphical element of the game using the halos: Option-Shift+Click and choose
menu and the debug... menu and inspect Morph.

From there you can execute

• if you are inspecting the game itself: self delete.

• if you are inspect a game cell: self owner delete.

4.18 Saving and sharing Pharo code

Now that you have Lights Out working, you probably want to save it some-
where so that you can archive it and share it with your friends. Of course,
you can save your whole Pharo image, and show off your first program by
running it, but your friends probably have their own code in their images,
and don’t want to give that up to use your image. What you need is a way of
getting source code out of your Pharo image so that other programmers can
bring it into theirs.

We’ll discuss the various ways to save and share code in a subsequent chap-
ter, Chapter 5. For now, here is an overview of some of the available meth-
ods.

4.19 Iceberg: Pharo and Git

Iceberg is the new default tool for versioning your code using git and han-
dling git repositories directly from Pharo images.

Declared repositories.

Iceberg is accessible through world menu Tools > Iceberg. When opened
you will first see a Repositories screen. There you can find all git reposito-
ries managed by Iceberg. Do not care about the Pharo repository, it is there
for people that want to contribute to Pharo.

Adding a new repository.

To manage our example with git and Iceberg, we should add it first. Press
Add on the toolbar of Repositories screen. On the Figure 4-26 there are mul-
tiple options. The one we are interested in is New repository. Enter the
project name like in the Figure 4-26, and if you wish you can leave the src
blank. You can name your project PBE-LightsOut.

72

4.19 Iceberg: Pharo and Git

Figure 4-25 Repositories screen.

Figure 4-26 Creating new repository.

Adding a package.

After creating new repository you will notice that the Repositories screen
has changed. It will contain newly created repository, with the ”Not Loaded”
status, which basically means, that now your repository is empty and that
you should add packages to it (see Figure 4-27).

Now, to add packages, double click on the PBE-LightsOut repository, and in
the new dialog press Add package in the toolbar. Select checkmark before
the PBE-LightsOut package and press Add, it is also possible to add multiple
packages by selecting checkmark before the package name. The repository
now contains the added package, with the status Uncommitted changes, as
shown in Figure 4-28.

Committing changes.

One more thing remains is to actually commit those changes. Select Commit
on the toolbar to get the commit dialog. Here you can see all the files that
are beeing committed, with a green plus next to their name (Figure 4-29).
Before committing enter the meaningful message for that particular commit,

73

A first application

Figure 4-27 Updated repositories screen.

Figure 4-28 Iceberg working copy dialog.

and finally press Commit. Note that Iceberg adds some metadata about the
file format and the location of the code without the directory.

In this example, we used Iceberg to version our project using git. Have in
mind that all committed changes, are performed on your local machine. To
connect your local repository, to remote repository (e.g., GitHub) you need to
add it, you can do that by selecting Repository on the Working copy dialog
browser (Figure 4-28) and select the Add remote button on the top right.
This is covered in Chapter 5.

4.20 Saving code in a file

If you do not want to use a version control system such Git you can save the
code of a package, class, or method simply.

You can also save the code of your package by ”filing out” the code. The

74

4.20 Saving code in a file

Figure 4-29 Iceberg working copy dialog.

Figure 4-30 File Out our PBE-LightsOut.

right-click menu in the Package pane will give you the option to Extra >
File Out the whole of package PBE-LightsOut. The resulting file is more or
less human readable, but is really intended for computers, not humans. You
can email this file to your friends, and they can file it into their own Pharo
images using the file list browser.

Right-click on the PBE-LightsOut package and file out the contents (see Fig-
ure 4-30). You should now find a file named PBE-LightsOut.st in the same
folder on disk where your image is saved. Have a look at this file with a text
editor.

Open a fresh Pharo image and use the File Browser tool (Tools --> File
Browser) to file in the PBE-LightsOut.st fileout (see Figure 4-31) and fileIn.
Verify that the game now works in the new image.

75

A first application

Figure 4-31 Import your code with the file browser.

4.21 About Setter/Getter convention

If you are used to getters and setters in other programming languages, you
might expect these methods to be called setMouseAction and getMouseAc-
tion. The Pharo convention is different. A getter always has the same name
as the variable it gets, and a setter is named similarly, but with a trailing ”:”,
hence mouseAction and mouseAction:. Collectively, setters and getters are
called accessor methods, and by convention they should be placed in the ac-
cessing protocol. In Pharo, all instance variables are private to the object
that owns them, so the only way for another object to read or write those
variables is through accessor methods like this one. In fact, the instance vari-
ables can be accessed in subclasses too.

4.22 On categories vs. packages

Historically, Pharo packages were implemented as ”categories” (a group of
classes). With the newer versions of Pharo, the term category is being depre-
cated, and replaced exclusively by package.

If you use an older version of Pharo or an old tutorial, the class template will
be as follow:

SimpleSwitchMorph subclass: #LOCell
instanceVariableNames: 'mouseAction'
classVariableNames: ''
category: 'PBE-LightsOut'

It is equivalent to the one we mentioned earlier. In this book we only use
the term package. The Pharo package is also what you will be using to ver-

76

4.23 Chapter summary

sion your source code using Iceberg versioning tool: the new tool to manage
source code via Git. This book version has two new chapters covering Iceberg
and package management (see Chapters 5 and ??).

4.23 Chapter summary

In this chapter you have seen how to create packages, classes and methods.
In addition, you have learned how to use the System browser, the inspector,
the debugger and Iceberg to version your code using git.

• Packages are groups of related classes.

• A new class is created by sending a message to its superclass.

• Protocols are groups of related methods inside a class.

• A new method is created or modified by editing its definition in the
browser and then accepting the changes.

• The inspector offers a simple, general-purpose GUI for inspecting and
interacting with arbitrary objects.

• The browser detects usage of undeclared variables, and offers possible
corrections.

• The initializemethod is automatically executed after an object is
created in Pharo. You can put any initialization code there.

• The debugger provides a high-level GUI to inspect and modify the state
of a running program.

• You can share source code by filing out a package, class or method.

• Using Iceberg and git.

77

CHA P T E R 5
Publishing your first Pharo

project

In this chapter we explain how you can publish your project on Github using
Iceberg. We do not explain basic concepts like commit, push/pull, merging,
or cloning.

A strong precondition before reading this chapter is that you must be able
to publish from the command line to the git hosting service that you want
to use. If you cannot do not expect Iceberg to fix it magically for you. Now if
you have some problems with SSH configuration (which is the default with
Github) you can either use HTTPS or have a look in Manage your code with Ice-
berg booklet. Let us get started.

5.1 For the impatient

If you do not want to read everything, here is the executive summary.

• Create a project on Github or any git-based platform.

• [Optional] Configure Iceberg to use custom ssh keys.

• Add a project in Iceberg.

– Optionally but strongly recommanded, in the cloned repository,
create a directory named src on your file system. This is a good
convention.

• In Iceberg, open your project and add your packages.

• Commit your project.

79

Publishing your first Pharo project

github.com
Your PC

repository github
repository

Working Copy

remoteCommit

Figure 5-1 A distributed versioning system.

• [Optional] Add a baseline to ease loading your project.

• Push your change to your remote repository.

You are done. Now we can explain calmly.

5.2 Basic Architecture

As git is a distributed versioning system, you need a local clone of the repos-
itory and a working copy. Your working copy and local repository are usually
on your machine. This is to this local repository that your changes will be
commited to before being pushed to remote repositories (Figure 5-1). We will
see in the next Chapter that the situation is a bit more complex and that Ice-
berg is hiding the extra complexity for us.

5.3 Create a new project on Github

While you can save locally first and then later create a remote repository,
in this chapter we first create a new project on Github. Figure 5-2 shows the
creation of a project on Github. The order does not really matter. What is
different is that you should use different options when add a repository to
Iceberg as we will show later.

5.4 [Optional] SSH setup: Tell Iceberg to use your keys

To be able to commit to your git project, you should either use HTTPS or
you will need to set up valid credentials in your system. In case you use SSH
(the default way), you will need to make sure those keys are available to your
Github account and also that the shell adds them for smoother communica-
tion with the server.s

Go to settings browser, search for ”Use custom SSH keys” and enter your
data there as shown in Figure 5-3).

80

5.4 [Optional] SSH setup: Tell Iceberg to use your keys

Figure 5-2 Create a new project on Github.

Figure 5-3 Use Custom SSH keys settings.

Alternatively, you can execute the following expressions in your image play-
ground or add them to your Pharo system preference file (See Menu System
item startup):

IceCredentialsProvider useCustomSsh: true.
IceCredentialsProvider sshCredentials

publicKey: 'path\to\ssh\id_rsa.pub';
privateKey: 'path\to\ssh\id_rsa'

Note Pro Tip: this can be used too in case you have a non-default key
file. You just need to replace id_rsa with your file name.

81

Publishing your first Pharo project

Figure 5-4 Iceberg Repositories browser on a fresh image indicates that if you

want to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care.

5.5 Iceberg Repositories browser

Figure 5-4 shows the top level Iceberg pane. It shows that for now you do not
have defined nor loaded any project. It shows the Pharo project and indi-
cates that it could not find its local repository by displaying ’Local repository
missing’.

First you do not have to worry about the Pharo project or repository if you
do not want to contribute to Pharo. So just go ahead. Now if you want to un-
derstand what is happening here is the explanation. The Pharo system does
not have any idea where it should look for the git repository corresponding
to the source of the classes it contains. Indeed, the image you are executing
may have been built somewhere, patched or not many times. Now Pharo is
fully operational without having a local repository. You can browse system
classes and methods because Pharo has its own internal source management.
This warning just indicates that if you want to version Pharo system code us-
ing git then you should indicate to the system where the clone and working
copy are located on your local machine. So if you do not plan to modify and
version the Pharo system code, you do not have to worry.

5.6 Add a new project to Iceberg

The first step is then to add a project to Iceberg:

• Press the ’+’ button to the right of the Iceberg main window.

• Select the source of your project. In our example, since you did not
clone your project yet, choose the Github option.

Notice that you can either use SSH (Figure 5-5) or HTTPS (Figure 5-6).

Figure 5-5 and 5-6) instruct Iceberg to clone the repository we just created on
Github. We specify the owner, project, and physical location where the local

82

5.6 Add a new project to Iceberg

Figure 5-5 Cloning a project hosted on Github via SSH.

Figure 5-6 Cloning a project hosted on Github via HTTPS.

clone and git working copy will be on your disk.

Iceberg has now added your project to its list of managed projects and cloned
an empty repository to your disk. You will see the status of your project, as
in Figure 5-7. Here is a breakdown of what you are seeing:

• MyCoolProjectWithPharo has a star and is green. This usually means
that you have changes which haven’t been committed yet, but may also
happen in unrelated edge cases like this one. Don’t worry about this
for now.

• The Status of the project is ’No Project Found’ and this is more impor-
tant. This is normal since the project is empty. Iceberg cannot find its
metadata. We will fix this soon.

Later on, when you will have commited changes to your project and you
want to load it in another image, when you will clone again, you will see that

83

Publishing your first Pharo project

Figure 5-7 Just after cloning an empty project, Iceberg reports that the project is

missing information.

Figure 5-8 Adding a project with some contents shows that the project is not

loaded - not that it is not found.

Iceberg will just report that the project is not loaded as shown in Figure 5-8.

5.7 Repair to the rescue

Iceberg is a smart tool that tries to help you fix the problems you may en-
counter while working with git. As a general principle, each time you get
a status with red text (such as ”No Project Found” or ”Detached Working
Copy”), you should ask Iceberg to fix it using the Repair command.

Iceberg cannot solve all situations automatically, but it will propose and ex-
plain possible repair actions. The actions are ranked from most to least likely
to be right one. Each action has a displayed explanation on the situation and
the consequences of the using it. It is always a good idea to read them. Set-
ting your repository the right way makes it extremely hard to lose any piece
of code with Iceberg and Pharo is general since Pharo contains its own copy
of the code.

84

5.8 Create project metadata

Figure 5-9 Create project metadata action and explanation.

Figure 5-10 Showing where the metadata will be saved and the format encod-

ings.

5.8 Create project metadata

Iceberg reported that it could not find the project because some meta data
were missing such as the format of the code encodings and the example lo-
cation inside the repository. When we activate the repair command we get
Figure 5-9. It shows the ”Create project metadata” action and its explana-
tion.

When you choose to create the project metadata, Iceberg shows you the
filesystem of your project as well as the repository format as shown in Figure
5-10. Tonel is the preferred format for Pharo projects. It has been designed
to be Windows and file system friendly. Change it only if you know what you
are doing!

Before accepting the changes, it is a good idea to add a source (src) folder

85

Publishing your first Pharo project

Figure 5-11 Adding a src repository for code storage.

Figure 5-12 Resulting situation with a src folder.

to your repository. Do that by pressing the + icon. You will be prompted to
specify the folder for code as shown in Figure 5-11. Iceberg will show you the
exact structure of your project as shown in Figure 5-12.

After accepting the project details, Iceberg shows you the files that you will
be committing as shown in Figure 5-13

Once you have committed the metadata, Iceberg shows you that your project
has been repaired but is not loaded as shown in Figure 5-8. This is normal
since we haven’t added any packages to our project yet. You can optionally
push your changes to your remote repository.

Your local repository is ready, let’s move on to the next part.

5.9 Add and commit your package using theWorking copy

browser

Once your project contains Iceberg metadata, Iceberg will be able to manage
it easily. Double click on your project to bring a Working copy browser for
your project. It lists all the packages that compose your project. Right now
you have none. Add a package by pressing the + (Add Package) iconic button
as shown by Figure 5-14.

86

5.9 Add and commit your package using the Working copy browser

Figure 5-13 Details of metadata commit.

Figure 5-14 Adding a package to your project using the Working copy browser.

Again, Iceberg shows that your package contains changes that are not com-
mitted using the green color and the star in front of the package name as
showing in Figure 5-15.

Commit the changes

Commit the changes to your local repository using the Commit button as
shown in Figure 5-16. Iceberg lets you chose the changed entities you want
to commit. Here this is not needed but this is an important feature. Iceberg
will show the result of the commit action by removing the star and changing
the color. It now shows that the code in the image is in sync with your local
repository as shown by Figure 5-17. You can commit several times if needed.

87

Figure 5-15 Iceberg indicates that your package has unsaved changes – indeed

you just added your package.

Figure 5-16 When you commit changes, Iceberg shows you the code about to be

committed and you can chose the code entities that will effectively be saved.

Figure 5-17 Once changes committed, Iceberg reflects that your project is in sync

with the code in your local repository.

5.10 Conclusion

Figure 5-18 Publishing your committed changes.

Publish your changes to your remote

Now you are nearly done. Publish your changes from your local directory
to your remote repository using the Push button. You may be prompted for
credentials if you used HTTPS.

When you push your changes, Iceberg will show you all the commits awaiting
publication and will push them to your remote repository as shown in Figure
5-18. The figure shows the commits we are about to make to add a baseline,
which will allow you to easily load your project in other images.

Now you are basically done.

5.10 Conclusion

You now know the essential aspects of managing your code with Github. Ice-
berg has been designed to guide you so please listen to it unless you really
know what you are doing. You are now ready to use services offered around
Github to improve your code control and quality!

89

CHA P T E R 6
Configure your project nicely

Versioning code is just the first part of making sure that you and others can
reload your code. In this chapter we describe how to define a baseline, a
project map that you will use to define dependencies within your project
and dependencies to other projects. We also show how to add a good .git-
ignore file. In the next chapter we will show how to configure your project
to get more out of the services offered within the Github ecosystem such as
Travis-ci to execute automatically your tests.

We start by showing you how you can commit your code if you did not create
your remote repository first.

Figure 6-1 Creating a local repository without pre-existing remote repository.

91

Configure your project nicely

Figure 6-2 Opening the repository browser let you add and browse branches as

well as remote repositories.

6.1 What if I did not create a remote repository

In the previous chapter we started by creating a remote repository on Github.
Then we asked Iceberg to add a project by cloning it from Github. Now you
may ask yourself what is the process to publish first your project locally
without a pre-existing repository. This is actually simple.

Create a new repository.

When you add a new repository use the ’New repository’ option as shown in
6-1.

Add a remote.

If you want to commit to a remote repository, you will have to add it using
the Repository browser. You can access this browser through the associated
menu item or the icon. The Repository browser gives you access to the git
repositories associated with your project: you can access, manage branches
and also add or remove remote repositories. Figure 6-3 shows the repository
browser on our project.

Pressing on the ’Add remote’ iconic button adds a remote by filling the needed
information that you can find in your Github project. Figure 6-3 shows it for
the sample project using SSH and Figure 6-4 for HTTPS.

Push to the remote.

Now you can push your changes and versions to the remote repository using
the Push iconic button. Once you have pushed you can see that you have one
remote as shown in Figure 6-5.

92

Figure 6-3 Adding a remote using the Repository browser of your project (SSH

version).

Figure 6-4 Adding a remote using the Repository browser of your project (HTTP

version).

Figure 6-5 Once you pushed you changes to the remote repository.

Configure your project nicely

Figure 6-6 Added the baseline package to your project using the Working copy

browser.

6.2 Defining a BaselineOf

A baseline is a description of the architecture of a project. You will express
the dependencies between your packages and other projects so that all the
dependent projects are loaded without the user having to understand them
or the links between them.

A baseline is expressed as a subclass of BaselineOf and packaged in a pack-
age named 'BaselineOfXXX' (where ’XXX’ is the name of your project). So
if you have no dependencies, you can have something like this.

BaselineOf subclass: #BaselineOfMyCoolProjectWithPharo
...
package: 'BaselineOfMyCoolProjectWithPharo'

BaselineOfMyCoolProjectWithPharo >> baseline: spec
<baseline>
spec
for: #common
do: [spec package: 'MyCoolProjectWithPharo']

Once you have defined your baseline, you should add its package to your
project using the working copy browser as explained in the previous chapter.
You should obtain the following situation shown in Figure 6-6. Now, commit
it and push your changes to your remote repository.

A more elaborated web resources about baseline possibility is available at:
https://github.com/pharo-open-documentation/pharo-wiki/.

94

https://github.com/pharo-open-documentation/pharo-wiki/

6.3 Loading from an existing repository

6.3 Loading from an existing repository

Once you have a repository you committed code to and would like to load it
into a new Pharo image, there are two ways to work this out.

Manual load.

• Add the project as explained in the first chapter

• Open the working copy browser by double clicking on the project line
in the repositories browser.

• Select a package and manually load it.

Scripting the load.

The second way is to make use of Metacello. However, this will only work if
you have already created a BaselineOf. In this case, you can just execute
the following snippet:

Metacello new
baseline: 'MyCoolProjectWithPharo';
repository: 'github://Ducasse/MyCoolProjectWithPharo/src';
load

For projects with metadata, like the one we just created, that’s it. Notice that
we not only mention the Github pass but also added the code folder (here
src).

6.4 [Optional] Add a nice .gitignore file

Iceberg automatically manages files such as .gitignore.

For Pharo 70 and up
http://www.pharo.org
Since Pharo 70 all the community is moving to git.

image, changes and sources
*.changes
*.sources
*.image

Pharo Debug log file and launcher metadata
PharoDebug.log
pharo.version
meta-inf.ston

Since Pharo 70, all local cache files for Monticello package
cache, playground, epicea... are under the pharo-local

95

Configure your project nicely

/pharo-local

Metacello-github cache
/github-cache
github-*.zip

6.5 Going further: Understanding the architecture

As git is a distributed versioning system, you need a local clone of your
repository. In general you edit your working copy located on your hard-
drive and you commit to your local clone, and from there you push to remote
repositories like Github. We explain here the specificity of managing Pharo
with git.

When coding in Pharo, you should understand that you are not directly edit-
ing your local working copy, you are modifying objects that represent classes
and methods that are living in the Pharo environment. Therefore it is like
you have a double working copy: Pharo itself and the git working copy.

When you use git command lines, you have to understand that there is the
code in the image and the code in the working copy (and your local clone).To
update your image, you first have to update your git working copy and then
load code from the working copy to the image. To save your code you have to
save the code to files, add them to your git working copy and commit them
to your clone.

Now the interesting part is that Iceberg manages all this for you transpar-
ently. All the synchronization between these two working copies is done be-
hind the scene.

Figure 6-7 shows the architecture of the system.

• You have your code in the Pharo image.

• Pharo is acting as a working copy (it contains the contents of the local
git repository).

• Iceberg manages the publication of your code to the git working copy
and the git local repository.

• Iceberg manages the publication of your code to remote repositories.

• Iceberg manages the re-synchronization of your image with the git
local repository, git remote repositories and the git working copy.

6.6 Conclusion

We show how to package your code correclty. It will help you to reload it.

96

Figure 6-7 Architecture.

CHA P T E R 7
Syntax in a nutshell

Pharo adopts a syntax very close to that of its ancestor, Smalltalk. The syn-
tax is designed so that program text can be read aloud as though it were a
kind of pidgin English. The following method of the class Week shows an ex-
ample of the syntax. It checks whether DayNames already contains the argu-
ment, i.e., if this argument represents a correct day name. If this is the case,
it will assign it to the class variable StartDay.

startDay: aSymbol

(DayNames includes: aSymbol)
ifTrue: [StartDay := aSymbol]
ifFalse: [self error: aSymbol, ' is not a recognised day

name']

Pharo’s syntax is minimal. Essentially there is syntax only for sending mes-
sages (i.e., expressions). Expressions are built up from a very small number
of primitive elements (message sends, assignments, closures, returns...).
There are only 6 reserved keywords, i.e., pseudo-variables, and there are no
dedicated syntax constructs for control structures or declaring new classes.
Instead, nearly everything is achieved by sending messages to objects. For
instance, instead of an if-then-else control structure, conditionals are ex-
pressed as messages (such as ifTrue:) sent to Boolean objects. New sub-
classes are created by sending a message to their superclass.

7.1 Syntactic elements

Expressions are composed of the following building blocks:

99

Syntax in a nutshell

1. The six pseudo-variables: self, super, nil, true, false, and thisCon-
text

2. Constant expressions for literal objects including numbers, characters,
strings, symbols and arrays

3. Variable declarations

4. Assignments

5. Block closures

6. Messages

7. Method returns

We can see examples of the various syntactic elements in the table below.

Syntax expression What it represents

startPoint a variable name
Transcript a global variable name
self pseudo-variable
1 decimal integer
2r101 binary integer
1.5 floating point number
2.4e7 number in exponential notation
$a the character 'a'
'Hello' the string 'Hello'
#Hello the symbol #Hello
#(1 2 3) a literal array
{ 1 . 2 . 1 + 2 } a dynamic array
"a comment" a comment
| x y | declaration of variables x and y
x := 1 assign 1 to x
[:x | x + 2] a block that evaluates to x + 2
<primitive: 1> a method annotation (here primitive)
3 factorial unary message factorial
3 + 4 binary message +
2 raisedTo: 6 modulo: 10 keyword message raisedTo:modulo:
^ true return the value true
x := 2 . x := x + x two expressions separated by separator (.)
Transcript show: 'hello'; cr two cascade messages separated by (;)

Local variables. startPoint is a variable name, or identifier. By conven-
tion, identifiers are composed of words in ”camelCase” (i.e., each word ex-
cept the first starting with an upper case letter). The first letter of an in-
stance variable, method or block parameters, or temporary variable must be
lower case. This indicates to the reader that the variable has a private scope.

100

7.1 Syntactic elements

Shared variables. Identifiers that start with upper case letters are global
variables, class variables, pool dictionaries or class names. Transcript is a
global variable, an instance of the class ThreadSafeTranscript.

The current object. self is a pseudo-variable that refers to the object that
receives the message (that led to the execution of the method using self).
It gives us a way send messages to it. We call self ”the receiver” because
this object will receive the message that causes the method to be executed.
Finally, self is called a ”pseudo-variable” since we cannot directly change
its values or assign to it.

Integers. In addition to ordinary decimal integers like 42, Pharo also pro-
vides a radix notation. 2r101 is 101 in radix 2 (i.e., binary), which is equal to
decimal 5.

Floating point numbers. Such numbers can be specified with their base-ten
exponent: 2.4e7 is 2.4 x 10^7.

Characters. A dollar sign introduces a literal character: $a is the literal for
the character 'a'. Instances of special, non-printing characters can be ob-
tained by sending appropriately named messages to the Character class,
such as Character space and Character tab.

Strings. Single quotes ' ' are used to define a literal string. If you want a
string with a single quote inside, just double the quote, as in 'G''day'.

Symbols. Symbols are like Strings, in that they contain a sequence of char-
acters. However, unlike a string, a literal symbol is guaranteed to be globally
unique. There is only one Symbol object #Hello but there may be multiple
String objects with the value 'Hello'.

Compile-time literal arrays. are defined by #(), surrounding space-separated
literals. Everything within the parentheses must be a compile-time constant.
For example, #(27 (true) abc 1+2) is a literal array of 6 elements: the in-
teger 27, the compile-time array containing the object true (non-changeable
Boolean), the symbol #abc, the integer 1, the symbol + and the integer 2.
Note that this is the same as #(27 #(true) #abc 1 #+ 2).

Run-time dynamic arrays. Curly braces { } define a dynamic array whose
elements are expressions, separated by periods, and evaluated at run-time.
So { 1. 2. 1 + 2 } defines an array with elements 1, 2, and 3 the result of
evaluating 1+2.

Comments. are enclosed in double quotes ” ”. ”hello” is a comment, not a
string, and is ignored by the Pharo compiler. Comments may span multiple
lines but they cannot be nested.

Local variable definitions. Vertical bars | | enclose the declaration of one
or more local variables before the beginning of a method or a block body.

Assignment. := assigns an object to a variable.

101

Syntax in a nutshell

Blocks. Square brackets [] define a block, also known as a block closure or
a lexical closure, which is a first-class object representing a function. As we
shall see, blocks may take arguments ([:i | ...]) and can have local vari-
ables ([| x | ...]). Blocks also close over their definition environment,
i.e., they can refer to variables that where reachable at the time of their defi-
nition.

Pragmas and primitives. < primitive: ... > is a method annotation.
This specific one denotes the invocation of a virtual machine (VM) primitive.
In the case of a primitive the code following it, it either to explain what the
primitive is doing (for essential primitives) or is executed only if the primi-
tive fails (for optional primitive). The same syntax of a message within < > is
also used for other kinds of method annotations also called pragmas.

Unary messages. These consist of a single word (like factorial) sent to
a receiver (like 3). In 3 factorial, 3 is the receiver, and factorial is the
message selector.

Binary messages. These are messages sent to a receiver with a single argu-
ment, and whose selector looks like mathematical operator (for example: +).
In 3 + 4, the receiver is 3, the message selector is +, and the argument is 4.

Keyword messages. Their selectors consist of one or more keywords (like
raisedTo: modulo:), each ending with a colon and taking a single argu-
ment. In the expression 2 raisedTo: 6 modulo: 10, the message selector
raisedTo:modulo: takes the two arguments 6 and 10, one following each
colon. We send the message to the receiver 2.

Sequences of statements. A period or full-stop (.) is the statement separa-
tor. Putting a period between two expressions turns them into independent
statements like in x := 2. x := x + x. Here we first assign value 2 to the
variable x, and then duplicate its value by assigning a value of x + x to it.

Cascades. Semicolons (;) are used to send a cascade of messages to a single
receiver. In stream nextPutAll: ’Hello World’; close we first send the
keyword message nextPutAll: ’Hello World’ to the receiver stream, and
then we send the unary message close to the same receiver.

Method return. ^ is used to return a value from a method.

The basic classes Number, Character, String and Boolean are described in
Chapter : Basic Classes.

For the purists.

We named the language elements expressions. At the level of the compiler it
is not fully correct. For example returns are not expressions but statements.
This is a detail when learning the language and more a concern of the lan-
guage compiler and designer.

102

7.2 Pseudo-variables

7.2 Pseudo-variables

In Pharo, there are 6 pseudo-variables: nil, true, false, self, super, and
thisContext. They are called pseudo-variables because they are predefined
and cannot be assigned to. true, false, and nil are constants, while the val-
ues of self, super, and thisContext vary dynamically as code is executed.

• true and false are the unique instances of classes True and False
which are the subclasses of class Boolean. See Chapter : Basic Classes
for more details.

• self always refers to the receiver of the message and denotes the ob-
ject in which the corresponding method will be executed. Therefore,
the value of self dynamically changes during the program execution,
but can not be assigned in the code.

• super also refers to the receiver of the message too, but when you send
a message to super, the method-lookup changes so that it starts from
the superclass of the class containing the method that sends message
to super. For further details see Chapter : The Pharo Object Model.

• nil is the undefined object. It is the unique instance of the class Un-
definedObject. Instance variables, class variables and local variables
are, by default, initialized to nil.

• thisContext is a pseudo-variable that represents the top frame of the
execution stack and gives access to the current execution point. this-
Context is normally not of interest to most programmers, but it is es-
sential for implementing development tools such as the debugger, and
it is also used to implement exception handling and continuations.

7.3 Messages and message sends

As we described, there are three kinds of messages in Pharo with predefined
precedence. This distinction has been made to reduce the number of manda-
tory parentheses.

Here we give a brief overview on message kinds and ways for sending and
executing them, while more detailed description is provided in Chapter : Un-
derstanding messages.

1. Unary messages take no argument. 1 factorial sends the message
factorial to the object 1. Unary message selectors consist of alphanu-
meric characters, and start with a lower case letter.

2. Binary messages take exactly one argument. 1 + 2 sends the message
+ with argument 2 to the object 1. Binary message selectors consist of
one or more characters from the following set:

+ - / * ~ < > = @ % | & ? ,

103

Syntax in a nutshell

1. Keyword messages take an arbitrary number of arguments. 2 raisedTo:
6 modulo: 10 sends the message consisting of the message selector
raisedTo:modulo: and the arguments 6 and 10 to the object 2. Key-
word message selectors consist of a series of alphanumeric keywords,
where each keyword starts with a lower-case letter and ends with a
colon.

Message precedence.

Unary messages have the highest precedence, then binary messages, and fi-
nally keyword messages, while brackets can be used to change the evaluation
order.

Thus, in the following example we first send factorial to 3 which will give
us result 6. Afterwards we send + 6 to 1 which gives the result 7, and finally
we send raisedTo: 7 to 2.

2 raisedTo: 1 + 3 factorial
>>> 128

Precedence aside, for the messages of the same kind, execution is strictly
from left to right. Hence, as we have two binary messages, the following ex-
ample return 9 and not 7.

1 + 2 * 3
>>> 9

Parentheses must be used to alter the order of evaluation as follows:

1 + (2 * 3)
>>> 7

7.4 Sequences and cascades

All expressions may be composed in sequences separated by period, while
message sends may be also composed in cascades by semi-colons. A period
separated sequence of expressions causes each expression in the series to be
evaluated as a separate statement, one after the other.

Transcript cr.
Transcript show: 'hello world'.
Transcript cr

This will send cr to the Transcript object, then send to Transcript the mes-
sage show: 'hello world', and finally send it another cr, again.

When a series of messages is being sent to the same receiver, then this can be
expressed more succinctly as a cascade. The receiver is specified just once,
and the sequence of messages is separated by semi-colons as follows:

104

7.5 Method syntax

Transcript
cr;
show: 'hello world';
cr

This cascade has precisely the same effect as the sequence in the previous
example.

7.5 Method syntax

Whereas expressions may be evaluated anywhere in Pharo (for example, in a
playground, in a debugger, or in a browser), methods are normally defined in
a browser window, or in the debugger. Methods can also be filed in from an
external medium, but this is not the usual way to program in Pharo.

Programs are developed one method at a time, in the context of a given class.
A class is defined by sending a message to an existing class, asking it to cre-
ate a subclass, so there is no special syntax required for defining classes.

Here is the method lineCount defined in the class String. The usual conven-
tion is to refer to methods as ClassName>>methodName. Here the method is
then String>>lineCount. Note that ClassName>>methodName is not part of
the Pharo syntax just a convention used in books to clearly define a method
within a class in which it is defined.

String >> lineCount
"Answer the number of lines represented by the receiver, where

every cr adds one line."

| cr count |
cr := Character cr.
count := 1 min: self size.
self do: [:c | c == cr ifTrue: [count := count + 1]].
^ count

Syntactically, a method consists of:

1. the method pattern, containing the name (i.e., lineCount) and any
parameters (none in this example)

2. comments which may occur anywhere, but the convention is to put
one at the top that explains what the method does

3. declarations of local variables (i.e., cr and count); and

4. any number of expressions separated by dots (here there are four)

The execution of any expression preceded by a ^ (a caret or upper arrow,
which is Shift-6 for most keyboards) will cause the method to exit at that
point, returning the value of the expression that follows the ^. A method

105

Syntax in a nutshell

that terminates without explicitly returning value of some expression will
implicitly return self object.

Parameters and local variables should always start with lower case letters.
Names starting with upper-case letters are assumed to be global variables.
Class names, like Character, for example, are simply global variables refer-
ring to the object representing that class.

7.6 Block syntax

Blocks (lexical closures) provide a mechanism to defer the execution of ex-
pressions. A block is essentially an anonymous function with a definition
context. A block is executed by sending it the message value. The block an-
swers the value of the last expression in its body, unless there is an explicit
return (with ^) in which case it returns the value of the returned expression.

[1 + 2] value
>>> 3

[3 = 3 ifTrue: [^ 33]. 44] value
>>> 33

Blocks may have parameters each of which is declared with a leading colon.
A vertical bar separates the parameters declaration from the body of the
block. To evaluate a block with one parameter, you must send it the message
value: with one argument. A two-parameter block must be evaluated by
sending value:value: with two arguments, and so on, up to 4 arguments.

[:x | 1 + x] value: 2
>>> 3

[:x :y | x + y] value: 1 value: 2
>>> 3

If you have a block with more than four parameters, you must use value-
WithArguments: and pass the arguments in an array. However, a block with
a large number of parameters is often a sign of a design problem.

In blocks there may be also declared local variables, surrounded by vertical
bars, just like local variable declarations in a method. Local variables are de-
clared after arguments and vertical bar separator, and before the block body.
In the following example, x y are parameters, and z is local variable.

[:x :y |
| z |
z := x + y.
z] value: 1 value: 2

>>> 3

106

7.7 Conditionals and loops

Blocks are actually lexical closures, since they can refer to variables of the
surrounding environment. The following block refers to the variable x of its
enclosing environment:

| x |
x := 1.
[:y | x + y] value: 2
>>> 3

Blocks are instances of the class BlockClosure. This means that they are
objects, so they can be assigned to variables and passed as arguments just
like any other object.

7.7 Conditionals and loops

Pharo offers no special syntax for control constructs. Instead, these are typ-
ically expressed by sending messages to booleans, numbers and collections,
with blocks as arguments.

Some conditionals

Conditionals are expressed by sending one of the messages ifTrue:, if-
False: or ifTrue:ifFalse: to the result of a boolean expression. See Chap-
ter : Basic Classes, for more about booleans.

(17 * 13 > 220)
ifTrue: ['bigger']
ifFalse: ['smaller']

>>>'bigger'

Some loops

Loops are typically expressed by sending messages to blocks, integers or col-
lections. Since the exit condition for a loop may be repeatedly evaluated, it
should be a block rather than a boolean value. Here is an example of a very
procedural loop:

n := 1.
[n < 1000] whileTrue: [n := n*2].
n
>>> 1024

whileFalse: reverses the exit condition.

n := 1.
[n > 1000] whileFalse: [n := n*2].
n
>>> 1024

107

Syntax in a nutshell

timesRepeat: offers a simple way to implement a fixed number of iterations
through the loop body:

n := 1.
10 timesRepeat: [n := n*2].
n
>>> 1024

We can also send the message to:do: to a number which then acts as the
initial value of a loop counter. The two arguments are the upper bound, and
a block that takes the current value of the loop counter as its argument:

result := String new.
1 to: 10 do: [:n | result := result, n printString, ' '].
result
>>> '1 2 3 4 5 6 7 8 9 10 '

High-order iterators

Collections comprise a large number of different classes, many of which sup-
port the same protocol. The most important messages for iterating over
collections include do:, collect:, select:, reject:, detect: and in-
ject:into:. These messages represent high-level iterators that allow one
to write very compact code.

An Interval is a collection that lets one iterate over a sequence of numbers
from the starting point to the end. 1 to: 10 represents the interval from
1 to 10. Since it is a collection, we can send the message do: to it. The argu-
ment is a block that is evaluated for each element of the collection.

result := String new.
(1 to: 10) do: [:n | result := result, n printString, ' '].
result
>>> '1 2 3 4 5 6 7 8 9 10 '

collect: builds a new collection of the same size, transforming each ele-
ment. You can think of collect: as the Map in the MapReduce program-
ming mode).

(1 to:10) collect: [:each | each * each]
>>> #(1 4 9 16 25 36 49 64 81 100)

select: and reject: build new collections, each containing a subset of the
elements of the iterated collection that satisfies, or not, respectively, the
boolean block condition.

detect: returns the first element in the collection that satisfies the condi-
tion.

Don’t forget that strings are also collections (of characters), so you can iter-
ate over all the characters.

108

7.8 Method annotations: Primitives and pragmas

'hello there' select: [:char | char isVowel]
>>> 'eoee'

'hello there' reject: [:char | char isVowel]
>>> 'hll thr'

'hello there' detect: [:char | char isVowel]
>>> $e

Finally, you should be aware that collections also support a functional-style
fold operator in the inject:into: method. You can also think of it as the
Reduce in the MapReduce programming model. This lets you generate a cu-
mulative result using an expression that starts with a seed value and injects
each element of the collection. Sums and products are typical examples.

(1 to: 10) inject: 0 into: [:sum :each | sum + each]
>>> 55

This is equivalent to 0+1+2+3+4+5+6+7+8+9+10.

More about collections can be found in Chapter : Collections.

7.8 Method annotations: Primitives and pragmas

In Pharo methods can be annotated too. Method annotation are delimitated
by < and >. There are used for two main scenarios: execution specific meta-
data for the primitives of the language and metadata.

Primitives

In Pharo everything is an object, and everything happens by sending mes-
sages. Nevertheless, at certain points we hit rock bottom. Certain objects can
only get work done by invoking virtual machine primitives. Such primitives
are essential primitives since they cannot be expressed in Pharo.

For example, the following are all implemented as primitives: memory allo-
cation (new, new:), bit manipulation (bitAnd:, bitOr:, bitShift:), pointer
and integer arithmetic (+, -, <, >, *, /, =, ==...), and array access (at:, at:put:).

When a method with a primitive is executed, the primitive code is executed
in place of the method. A method using such a primitive may include addi-
tional Pharo code, which will be executed only if the primitive fails (for the
case the primitive is an optional one).

In the following example, we see the code for SmallInteger>>+. If the prim-
itive fails, the expression super + aNumber will be evaluated and its value
returned.

109

Syntax in a nutshell

+ aNumber
"Primitive. Add the receiver to the argument and answer with the

result
if it is a SmallInteger. Fail if the argument or the result is not

a
SmallInteger Essential No Lookup. See Object documentation

whatIsAPrimitive."

<primitive: 1>
^ super + aNumber

Pragmas.

In Pharo, the angle bracket syntax is also used for method annotations called
pragmas. Once a method has been annotated with a pragma, the annotations
can be collected using a collection (see the class PragmaCollector).

7.9 Chapter summary

• Pharo has only six reserved identifiers known as pseudo-variables:
true, false, nil, self, super, and thisContext.

• There are five kinds of literal objects: numbers (5, 2.5, 1.9e15, 2r111),
characters ($a), strings ('hello'), symbols (#hello), and arrays (#('hello'
#hi) or { 1 . 2 . 1 + 2 })

• Strings are delimited by single quotes, comments by double quotes. To
get a quote inside a string, double it.

• Unlike strings, symbols are guaranteed to be globally unique.

• Use #(...) to define a literal array at compile time. Use { ... } to
define a dynamic array at runtime. Note that #(1+2) size >>> 3, but
{12+3} size >>> 1. To observe why, compare #(12+3) inspect and
{1+2} inspect.

• There are three kinds of messages: unary (e.g., 1 asString, Array
new), binary (e.g., 3 + 4, 'hi', ' there'), and keyword (e.g., 'hi'
at: 2 put: $o)

• A cascaded message send is a sequence of messages sent to the same
target, separated by semi-colons: OrderedCollection new add:
#calvin; add: #hobbes; size >>> 2

• Local variables declarations are delimited by vertical bars. Use := for
assignment. |x| x := 1

• Expressions consist of message sends, cascades and assignments, eval-
uated left to right (and optionally grouped with parentheses). State-
ments are expressions separated by periods.

110

7.9 Chapter summary

• Block closures are expressions enclosed in square brackets. Blocks may
take arguments and can contain temporary variables. The expressions
in the block are not evaluated until you send the block a value message
with the correct number of arguments. [:x | x + 2] value: 4

• There is no dedicated syntax for control constructs, just messages
whose sends conditionally evaluate blocks.

111

CHA P T E R 8
Understanding message syntax

Although Pharo’s message syntax is extremely simple, it is unconventional
and can take some time getting used to. This chapter offers some guidance to
help you get acclimatized to the syntax for sending messages. If you already
feel comfortable with the syntax, you may choose to skip this chapter, or
come back to it later. The Pharo’s syntax is closed to the one of Smalltalk, so
Smalltalk programmers can be familiar with Pharo’s syntax.

8.1 Identifying messages

In Pharo, except for the syntactic elements listed in Chapter 7 (:= ^ . ; # ()
{} [: |]), everything is a message send. You can define operators like + for
your own classes, but all operators, existing and defined ones, have the same
precedence. In fact, in Pharo there is no operators! Just messages of a given
kind: unary, binary or keywords. Moreover, you cannot change the arity of a
message selector. The selector - is always the selector of a binary message;
there is no way to have a unary - for unary messages.

In Pharo, the order in which messages are sent is determined by the kind of
message. There are just three kinds of messages: unary, binary, and keyword
messages. Unary messages are always sent first, then binary messages and
finally keyword ones. As in most languages, parentheses are used to change
the execution order. These rules make Pharo code as easy to read as possible.
And most of the time you do not have to think about the rules.

As most computation in Pharo is done by message passing, correctly identify-
ing messages is crucial. The following terminology will help us:

• A message is composed of a message selector and optional message ar-
guments.

113

Understanding message syntax

Figure 8-1 Two message sends composed of a receiver, a method selector, and a

set of arguments.

Figure 8-2 Two messages: Color yellow and aMorph color: Color yel-
low.

• A message is sent to a receiver.

• The combination of a message and its receiver is called a message send
as shown in Figure 8-1.

A message is always sent to a receiver, which can be a single literal, a block
or a variable or the result of evaluating another message. To help you iden-
tify the receiver of a message, we will underline it for you. We will also sur-
round each message send with an ellipse and number message sends starting
from the first one that will be sent to help you see the order in which mes-
sages are sent.

Figure 8-2 represents two message sends, Color yellow and aMorph color:
Color yellow, hence there are two ellipses. The message send Color yel-
low is executed first so its ellipse is numbered 1. There are two receivers:
aMorph which receives the message color: ... and Color which receives
the message yellow. Both receivers are underlined.

A receiver can be the first element of a message, such as 100 in the message
send 100 + 200 or Color in the message send Color yellow. However, a

114

8.2 Three kinds of messages

receiver can also be the result of other messages. For example in the mes-
sage Pen new go: 100, the receiver of the message go: 100 is the object
returned by the message send Pen new. In all the cases, a message is sent
to an object called the receiver which may be the result of another message
send.

Message send Message type Result

Color yellow unary Creates color yellow.
aPen go: 100 keyword The pen moves forward

100 pixels.
100 + 20 binary 100 is increased by 20
Browser open unary Opens a new browser.
Pen new go: 100 unary and Creates and moves a pen

keyword 100 pixels forward.
aPen go: 100 + 20 keyword and The pen moves forward

binary 120 pixels.

The table shows several examples of message sends. You should note that:

• Not all message sends have arguments. Unary messages like open do
not have arguments.

• Single keyword and binary messages like go: 100 and + 20 each have
one argument.

• There are also simple messages and composed ones. Color yellow
and 100 + 20 are simple: a message is sent to an object, while the
message send aPen go: 100 + 20 is composed of two messages: +
20 is sent to 100 and go: is sent to aPen with the argument being the
result of the first message.

• A receiver can be an expression (such as an assignment, a message
send or a literal) which returns an object. In Pen new go: 100, the
message go: 100 is sent to the object that results from the execution
of the message send Pen new.

8.2 Three kinds of messages

Pharo defines a few simple rules to determine the order in which the mes-
sages are sent. These rules are based on the distinction between 3 different
kinds of messages:

• Unary messages are messages that are sent to an object without any
other information. For example in 3 factorial, factorial is a unary
message. A sent unary message may execute a basic unary operation or
an arbitrary functionality, but it is always sent without arguments.

• Binary messages are messages consisting of operators (often arithmetic)
and executing basic binary operations.

115

Understanding message syntax

They are binary because they always involve only two objects: the receiver
and the argument object. For example in 10 + 20, + is a binary message sent
to the receiver 10 with argument 20.

• Keyword messages are messages consisting of one or more keywords,
each ending with a colon (:) and taking an argument. For example in
anArray at: 1 put: 10, the keyword at: takes the argument 1 and
the keyword put: takes the argument 10.

It is important to note that:

• There are no keyword messages that are sent without arguments. All
messages that are sent without arguments are unary ones.

• There is a difference between keyword messages that are sent with
exactly one argument and binary ones - a keyword message send may
execute an arbitrary functionality.

Unary messages

Unary messages are messages that do not require any argument. They fol-
low the syntactic template: receiver messageName. The selector is sim-
ply made up of a succession of characters not containing : (e.g., factorial,
open, class).

89 sin
>>> 0.860069405812453

3 sqrt
>>> 1.732050807568877

Float pi
>>> 3.141592653589793

'blop' size
>>> 4

true not
>>> false

Object class
>>> Object class "The class of Object is Object class (BANG)"

Important Unary messages follow the syntactic template: receiver se-
lector

Binary messages

Binary messages are messages that require exactly one argument and whose
selector consists of a sequence of one or more characters from the set: +, -,
*, /, &, =, >, |, <, ~, and @. Note that -- is not allowed for parsing reasons.

116

8.2 Three kinds of messages

100@100
>>> 100@100 "creates a Point object"

3 + 4
>>> 7

10 - 1
>>> 9

4 <= 3
>>> false

(4/3) * 3 == 4
>>> true "equality is just a binary message, and Fractions are

exact"

(3/4) == (3/4)
>>> false "two equal Fractions are not the same object"

Important Binary messages follow the syntactic template: receiver se-
lector argument

Keyword messages

Keyword messages are messages that require one or more arguments and
whose selector consists of one or more keywords each ending in :.

In the following example, message between:and: is composed of two key-
words: between: and and:. The full message is between:and: and it is sent
to number.

2 between: 0 and: 10
>>> true

Each keyword takes an argument. Hence r:g:b: is a message with three ar-
guments, playFileNamed: and at: are messages with one argument, and
at:put: is a message with two arguments. To create an instance of the class
Color one can use the message r:g:b: as in Color r: 1 g: 0 b: 0, which
creates the color red. Note that the colons are part of the selector.

Color r: 1 g: 0 b: 0
>>> Color red "creates a new color"

In a Java like syntax, the Pharo message send Color r: 1 g: 0 b: 0 would
correspond to a method invocation written as Color.rgb(1,0,0).

1 to: 10
>>> (1 to: 10) "creates an interval"

| nums |
nums := Array newFrom: (1 to: 5).
nums at: 1 put: 6.
nums

117

Understanding message syntax

Figure 8-3 Unary messages are sent first so Color yellow is sent. This returns a

color object which is passed as argument of the message aPen color:.

>>> #(6 2 3 4 5)

Important Keyword messages follow the syntactic template: receiver
selectorWordOne: argumentOne wordTwo: argumentTwo ... wordN:
argumentN

8.3 Message composition

The three kinds of messages each have different precedence, which allows
them to be composed in an elegant way.

• Unary messages are always sent first, then binary messages and finally
keyword messages.

• Messages in parentheses are sent prior to any kind of messages.

• Messages of the same kind are evaluated from left to right.

These rules lead to a very natural reading order. Now if you want to be sure
that your messages are sent in the order that you want you can always put
more parentheses as shown in Figure 8-3. In this figure, the message yellow
is an unary message and the message color: a keyword message, therefore
the message send Color yellow is sent first. However as message sends in
parentheses are sent first, putting (unnecessary) parentheses around Color
yellow just emphasizes that it will be sent first. The rest of the section illus-
trates each of these points.

Unary > Binary > Keywords

Unary messages are sent first, then binary messages, and finally keyword
messages. We also say that unary messages have a higher priority over the
other kinds of messages.

Important Unary > Binary > Keyword

As these examples show, Pharo’s syntax rules generally ensure that message
sends can be read in a natural way:

118

8.3 Message composition

1000 factorial / 999 factorial
>>> 1000

2 raisedTo: 1 + 3 factorial
>>> 128

Unfortunately the rules are a bit too simplistic for arithmetic message sends,
so you need to introduce parentheses whenever you want to impose a prior-
ity over binary operators:

1 + 2 * 3
>>> 9

1 + (2 * 3)
>>> 7

We will dedicate a section to arithmetic inconsistencies.

The following example, which is a bit more complex (!), offers a nice illustra-
tion that even complicated expressions can be read in a natural way:

[:aClass | aClass methodDict keys select: [:aMethod |
(aClass>>aMethod) isAbstract]] value: Boolean

>>> an IdentitySet(#or: #| #and: #& #ifTrue: #ifTrue:ifFalse:
#ifFalse: #not #ifFalse:ifTrue:)

Here we want to know which methods of the Boolean class are abstract. We
ask some argument class, aClass, for the keys of its method dictionary, and
select those methods of that class that are abstract. Then we bind the ar-
gument aClass to the concrete value Boolean. We need parentheses only
to send the binary message >>, which selects a method from a class, before
sending the unary message isAbstract to that method. The result shows us
which methods must be implemented by Boolean’s concrete subclasses True
and False.

In fact, we could also have written the equivalent but simpler expression:
Boolean methodDict select: [:each | each isAbstract] thenCol-
lect: [:each | each selector].

Example. In the message aPen color: Color yellow, there is one unary
message yellow sent to the class Color and a keyword message color: sent
to aPen. Unary messages are sent first so the message send Color yellow is
sent (1). This returns a color object which is passed as argument of the mes-
sage aPen color: aColor (2). Figure 8-3 shows graphically how messages
are sent.

Decomposing the execution of aPen color: Color yellow
aPen color: Color yellow

(1) Color yellow "unary message is sent first"
>>> aColor

(2) aPen color: aColor "keyword message is sent next"

119

Understanding message syntax

Figure 8-4 Binary messages are sent before keyword messages.

Figure 8-5 Decomposing Pen new go: 100 + 20.

Example. In the message aPen go: 100 + 20, there is a binary message +
20 and a keyword message go:. Binary messages are sent prior to keyword
messages so 100 + 20 is sent first (1): the message + 20 is sent to the object
100 and returns the number 120. Then the message aPen go: 120 is sent
with 120 as argument (2). The following example shows how the message
send is executed.

aPen go: 100 + 20
(1) 100 + 20 "binary message first"

>>> 120
(2) aPen go: 120 "then keyword message"

Example. As an exercise we let you decompose the execution of the mes-
sage send Pen new go: 100 + 20 which is composed of one unary, one key-
word and one binary message (see Figure 8-5).

Parentheses first

Parenthesised messages are sent prior to other messages.

Important (Msg) > Unary > Binary > Keyword

Here are some examples.

The first example shows that parentheses are not needed when the order is
the one we want, i.e. that result is the same if we write this with or without
parentheses. Here we compute tangent of 1.5, then we round it and convert
it as a string.

120

8.3 Message composition

1.5 tan rounded asString = (((1.5 tan) rounded) asString)
>>> true

The second example shows that factorial is executed prior to the sum and
if we want to first perform the sum of 3 and 4 we should use parentheses as
shown below.

3 + 4 factorial
>>> 27 "(not 5040)"

(3 + 4) factorial
>>> 5040

Similarly in the following example, we need the parentheses to force sending
lowMajorScaleOn: before play.

(FMSound lowMajorScaleOn: FMSound clarinet) play
"(1) send the message clarinet to the FMSound class to create a

clarinet sound.
(2) send this sound to FMSound as argument to the lowMajorScaleOn:

keyword message.
(3) play the resulting sound."

Example. The message send (65@325 extent: 134@100) center returns
the center of a rectangle whose top left point is (65, 325) and whose size is
134*100. The following example shows how the message is decomposed and
sent. First the message between parentheses is sent: it contains two binary
messages 65@325 and 134@100 that are sent first and return points, and a
keyword message extent: which is then sent and returns a rectangle. Fi-
nally the unary message center is sent to the rectangle and a point is re-
turned. Evaluating the message without parentheses would lead to an error
because the object 100 does not understand the message center.

Example of Parentheses.
(65@325 extent: 134@100) center

(1) 65@325
"binary"
>>> aPoint

(2) 134@100
"binary"

>>> anotherPoint
(3) aPoint extent: anotherPoint "keyword"

>>> aRectangle
(4) aRectangle center "unary"

>>> 132@375

From left to right

Now we know how messages of different kinds or priorities are handled. The
final question to be addressed is how messages with the same priority are

121

Understanding message syntax

Figure 8-6 Decomposing Pen new down.

sent. They are sent from the left to the right. Note that you already saw this
behaviour in the example 1.5 tan rounded asString where all unary
messages are sent from left to right which is equivalent to (((1.5 tan)
rounded) asString).

Important When the messages are of the same kind, the order of execu-
tion is from left to right.

Example. In the message sends Pen new down all messages are unary mes-
sages, so the leftmost one, Pen new, is sent first. This returns a newly cre-
ated pen to which the second message down is sent, as shown in Figure 8-6.

Arithmetic inconsistencies

The message composition rules are simple. There is no notion of mathemat-
ical precedence because arithmetic messages are just messages as any other
ones. So their result may look in inconsistent when executed them. Here we
see the common situations where extra parentheses are needed.

3 + 4 * 5
>>> 35 "(not 23) Binary messages sent from left to right"

3 + (4 * 5)
>>> 23

1 + 1/3
>>> (2/3) "and not 4/3"

1 + (1/3)
>>> (4/3)

1/3 + 2/3
>>> (7/9) "and not 1"

(1/3) + (2/3)
>>> 1

Example. In the message sends 20 + 2 * 5, there are only binary mes-
sages + and *. However in Pharo there is no specific priority for the opera-
tions + and *. They are just binary messages, hence * does not have priority

122

8.3 Message composition

Figure 8-7 Default execution order.

Figure 8-8 Changing default execution order using parentheses.

over +. Here the leftmost message + is sent first (1) and then the * is sent to
the result as shown in below.

"As there is no priority among binary messages, the leftmost message
+ is evaluated first even if by the rules of arithmetic the *
should be sent first."

20 + 2 * 5
(1) 20 + 2 >>> 22
(2) 22 * 5 >>> 110

As shown in the previous example the result of this message send is not 30
but 110. This result is perhaps unexpected but follows directly from the
rules used to send messages. This is the price to pay for the simplicity of the
model. To get the correct result, we should use parentheses. When messages
are enclosed in parentheses, they are evaluated first. Hence the message
send 20 + (2 * 5) returns the result as shown.

Decomposing 20 + (2 * 5)
"The messages surrounded by parentheses are evaluated first

therefore * is sent prior
to + which produces the correct behaviour."

20 + (2 * 5)
(1) (2 * 5) >>> 10
(2) 20 + 10 >>> 30

Important In Pharo, arithmetic operators such as + and * do not have
different priority. + and * are just binary messages, therefore * does not
have priority over +. Use parentheses to obtain the desired result.

To do is this a ”caption” of the table? Figures around move and sepa-
rate it from the table...

Table : Message sends and their fully parenthesized equivalents

123

Understanding message syntax

Figure 8-9 Equivalent messages using parentheses.

Figure 8-10 Equivalent messages using parentheses.

Implicit precedence Explicitly parenthesized equivalent

aPen color: Color yellow aPen color: (Color yellow)
aPen go: 100 + 20= Pen go: (100 + 20)
aPen penSize: aPen penSize + 2 aPen penSize: ((aPen penSize) + 2)
2 factorial + 4 (2 factorial) + 4

Note that the first rule stating that unary messages are sent prior to binary
and keyword messages avoids the need to put explicit parentheses around
them. Table above shows message sends written following the rules and
equivalent message sends if the rules would not exist. Both message sends
result in the same effect or return the same value.

8.4 Hints for identifying keyword messages

Often beginners have problems understanding when they need to add paren-
theses. Let’s see how keywords messages are recognized by the compiler.

Parentheses or not?

The characters [,], (and) delimit distinct areas. Within such an area, a key-
word message is the longest sequence of words terminated by : that is not
cut by the characters ., or ;. When the characters [and], (and) surround
some words with colons, these words participate in the keyword message
local to the area defined.

In this example, there are two distinct keyword messages: rotatedBy:mag-
nify:smoothing: and at:put:.

aDict
at: (rotatingForm

rotateBy: angle
magnify: 2
smoothing: 1)

124

8.4 Hints for identifying keyword messages

put: 3

Hints. If you have problems with these precedence rules, you may start
simply by putting parentheses whenever you want to distinguish two mes-
sages having the same precedence.

The following piece of code does not require parentheses because the mes-
sage isNil is unary hence it is sent prior to the keyword message ifTrue:.

(x isNil)
ifTrue:[...]

The following piece of code requires parentheses because the messages in-
cludes: and ifTrue: are both keyword messages.

ord := OrderedCollection new.
(ord includes: $a)

ifTrue:[...]

Without parentheses the unknown message includes:ifTrue: would be
sent to the collection ord!

When to use [] or ()

You may also have problems understanding when to use square brackets
rather than parentheses. The basic principle is that you should use [] when
you do not know how many times, potentially zero, an expression should
be evaluated. [expression] will create block closure (i.e., an object) from
expression, which may be evaluated any number of times (possibly zero),
depending on the context. Note that an expression can either be a message
send, a variable, a literal, an assignment or a block.

Hence the conditional branches of ifTrue: or ifTrue:ifFalse: require
blocks. Following the same principle both the receiver and the argument of
a whileTrue: message require the use of square brackets since we do not
know how many times either the receiver or the argument should be evalu-
ated.

Parentheses, on the other hand, only affect the order of sending messages.
So in (expression), the expression will always be evaluated exactly once.

[x isReady] whileTrue: [y doSomething] "both the receiver and
the argument must be blocks"

4 timesRepeat: [Beeper beep] "the argument is
evaluated more than once, so must be a block"

(x isReady) ifTrue: [y doSomething] "receiver is evaluated
once, so is not a block

argument does not have
to be evaluated not even once,

so it is a block"

125

Understanding message syntax

8.5 Expression sequences

Expressions (i.e., message sends, assignments, ...) separated by periods are
evaluated in sequence. Note that there is no period between a variable dec-
laration and the following expression. The value of a sequence is the value
gained by the evaluation of the last expression in the sequence. The values
returned by all the expressions except the last one are ignored at the end.
Note that the period is a separator and not a terminator. Therefore, a final
period is optional.

| box |
box := 20@30 corner: 60@90.
box containsPoint: 40@50
>>> true

8.6 Cascaded messages

Pharo offers a way to send multiple messages to the same receiver, without
stating it multiple times, by using a semicolon separator (;). This is called
the cascade in Pharo jargon.

Syntactically a cascade is represented as follows:

aReceiverExpression msg1 ; msg2 ; msg3

Examples. You can program in Pharo without using cascades. It just forces
you to repeat the receiver of the message. The following code snippets are
equivalent:

Transcript show: 'Pharo is '.
Transcript show: 'fun '.
Transcript cr.

Transcript
show: 'Pharo is';
show: 'fun ';
cr

In fact the receiver of all the cascaded messages is the receiver of the first
message involved in a cascade. Note that the object receiving the cascaded
messages can itself be the result of a message send. In the following example,
the first cascaded message is setX:setY since it is followed by a cascade.
The receiver of the cascaded message setX:setY: is the newly created point
resulting from the execution of Point new, and not Point. The subsequent
message isZero is sent to that same receiver.

Point new setX: 25 setY: 35; isZero
>>> false

126

8.7 Chapter summary

8.7 Chapter summary

• A message is always sent to an object named the receiver which may be
the result of other message sends.

• Unary messages are messages that do not require any argument. They
are of the form: selector.

• Binary messages are messages that involve two objects, the receiver
and another object, and whose selector is composed of one or more
characters from the following list: +, -, *, /, |, &, =, >, <, ~, and @. They
are of the form: receiver selector argument

• Keyword messages are messages that involve more than one object
and that contain at least one colon character (:). They are of the form:
receiver selectorKeywordOne: argumentOne KeywordTwo: argu-
mentTwo ... KeywordN: argumentN

• Rule One. Unary messages are sent first, then binary messages, and
finally keyword messages.

• Rule Two. Messages in parentheses are sent before any others.

• Rule Three. When the messages are of the same kind, the order of exe-
cution is from left to right.

• In Pharo, traditional arithmetic operators such as + and * have the
same priority. + and * are just binary messages, therefore * does not
have priority over +. You must use parentheses to obtain a correct re-
sult.

127

CHA P T E R 9
The Pharo object model

The Pharo language model is inspired by the one of Smalltalk. It is simple
and uniform: everything is an object, and objects communicate only by send-
ing messages to each other. Instance variables are private to the object and
methods are all public and dynamically looked up (late-bound).

In this chapter, we present the core concepts of the Pharo object model. We
sorted the sections of this chapter to make sure that the most important
points appear first. We revisit concepts such as self, super and precisely
define their semantics. Then we discuss the consequences of representing
classes as objects. This will be extended in Chapter: Classes and Metaclasses.

9.1 The rules of the core model

The object model is based on a set of simple rules that are applied uniformly
and systematically without any exception. The rules are as follows:

Rule 1 Everything is an object.

Rule 2 Every object is an instance of a class.

Rule 3 Every class has a superclass.

Rule 4 Everything happens by sending messages.

Rule 5 Method lookup follows the inheritance chain.

Rule 6 Classes are objects too and follow exactly the same rules.

Let us look at each of these rules in detail.

129

The Pharo object model

Listing 9-1 Sending + 4 to 3, yields the object 7.
3 + 4
>>> 7

Listing 9-2 Sending factorial to 20, yields a large number.

20 factorial
>>> 2432902008176640000

9.2 Everything is an Object

The mantra everything is an object is highly contagious. After only a short
while working with Pharo, you will become surprised how this rule simpli-
fies everything you do. Integers, for example, are objects too, so you send
messages to them, just as you do to any other object. At the end of this chap-
ter, we added an implementation note on the object implementation for the
curious reader.

Here are two examples.

The object 7 is different than the object returned by 20 factorial. 7 is an
instance of SmallInteger while 20 factorial is an instance of LargePos-
itiveInteger. But because they are both polymorphic objects (they know
how to answer to the same set of messages), none of the code, not even the
implementation of factorial, needs to know about this.

Coming back to everything is an object rule, perhaps the most fundamental
consequence of this rule is that classes are objects too. Classes are not second-
class objects: they are really first-class objects that you can send messages
to, inspect, and change. This means that Pharo is a truly reflective system,
which gives a great deal of expressive power to developers.

Important Classes are objects too. We interact the same way with
classes and objects, simply by sending messages to them.

9.3 Every object is an instance of a class

Every object has a class and you can find out which one by sending message
class to it.

1 class
>>> SmallInteger

20 factorial class
>>> LargePositiveInteger

'hello' class
>>> ByteString

130

9.4 Instance structure and behavior

(4@5) class
>>> Point

Object new class
>>> Object

A class defines the structure of its instances via instance variables, and the
behavior of its instances via methods. Each method has a name, called its se-
lector, which is unique within the class.

Since classes are objects, and every object is an instance of a class, it follows that
classes must also be instances of classes. A class whose instances are classes
is called a metaclass. Whenever you create a class, the system automatically
creates a metaclass for you. The metaclass defines the structure and behav-
ior of the class that is its instance. You will not need to think about meta-
classes 99% of the time, and may happily ignore them. We will have a closer
look at metaclasses in Chapter : Classes and Metaclasses.

9.4 Instance structure and behavior

Now we will briefly present how we specify the structure and behavior of
instances.

Instance variables

Instance variables in Pharo are private to the instance itself. This is in con-
trast to Java and C++, which let instance variables (also known as fields or
member variables) to be accessed by any other instance that happens to be of
the same class. We say that the encapsulation boundary of objects in Java and
C++ is the class, whereas in Pharo it is the instance.

In Pharo, two instances of the same class cannot access each other’s instance
variables unless the class defines accessor methods. There is no language syn-
tax that provides direct access to the instance variables of any other object.
(Actually, a mechanism called reflection does provide a way to ask another
object for the values of its instance variables; meta-programming is intended
for writing tools like the object inspector, whose sole purpose is to look in-
side other objects.)

Instance variables can be accessed by name in any of the instance methods of
the class that defines them, and also in the methods defined in its subclasses.
This means that Pharo instance variables are similar to protected variables in
C++ and Java. However, we prefer to say that they are private, because it is
considered bad style in Pharo to access an instance variable directly from a
subclass.

131

The Pharo object model

Listing 9-3 Distance between two points.

Point >> distanceTo: aPoint
"Answer the distance between aPoint and the receiver."

| dx dy |
dx := aPoint x - x.
dy := aPoint y - y.
^ ((dx * dx) + (dy * dy)) sqrt

Instance encapsulation example

The method distanceTo: of the class Point computes the distance between
the receiver and another point. The instance variables x and y of the re-
ceiver are accessed directly by the method body. However, the instance vari-
ables of the other point must be accessed by sending it the messages x and
y.

1@1 dist: 4@5
>>> 5.0

The key reason to prefer instance-based encapsulation to class-based encap-
sulation is that it enables different implementations of the same abstraction
to coexist. For example, the method distanceTo: doesn’t need to know or
care whether the argument aPoint is an instance of the same class as the re-
ceiver. The argument object might be represented in polar coordinates, or
as a record in a database, or on another computer in a distributed system.
As long as it can respond to the messages x and y, the code of method dis-
tanceTo: (shown above) will still work.

Methods

All methods are public and virtual (i.e., dynamically looked up). There is no
static methods in Pharo. Methods can access all instance variables of the ob-
ject. Some developers prefer to access instance variables only through acces-
sors. This practice has some value, but it also clutters the interface of your
classes, and worse, exposes its private state to the world.

To ease class browsing, methods are grouped into protocols that indicate their
intent. Protocols have no semantics from the language view point. They are
just folders in which methods are stored. Some common protocol names
have been established by convention, for example, accessing for all acces-
sor methods and initialization for establishing a consistent initial state
for the object. The protocol private is sometimes used to group methods
that should not be seen from outside. Nothing, however, prevents you from
sending a message that is implemented by such a ”private” method.

132

9.5 Every class has a superclass

Listing 9-4 The definition of the class Point.
Object subclass: #Point

instanceVariableNames: 'x y'
classVariableNames: ''
package: 'Kernel-BasicObjects'

9.5 Every class has a superclass

Each class in Pharo inherits its behaviour and the description of its structure
from a single superclass. This means that Pharo offers single inheritance.

Here are some examples showing how can we navigate the hierarchy.

SmallInteger superclass
>>> Integer

Integer superclass
>>> Number

Number superclass
>>> Magnitude

Magnitude superclass
>>> Object

Object superclass
>>> ProtoObject

ProtoObject superclass
>>> nil

Traditionally the root of an inheritance hierarchy is the class Object (since
everything is an object). In Pharo, the root is actually a class called ProtoOb-
ject, but you will normally not pay any attention to this class. ProtoObject
encapsulates the minimal set of messages that all objects must have and Pro-
toObject is designed to raise as many as possible errors (to support proxy
definition). However, most classes inherit from Object, which defines many
additional messages that almost all objects understand and respond to. Un-
less you have a very good reason to do otherwise, when creating application
classes you should normally subclass Object, or one of its subclasses.

A new class is normally created by sending the message subclass: in-
stanceVariableNames: ... to an existing class as shown in 9-4. There are
a few other methods to create classes. To see what they are, have a look at
Class and its subclass creation protocol.

9.6 Everything happens by sending messages

This rule captures the essence of programming in Pharo.

133

The Pharo object model

Listing 9-5 Sending message + with argument 4 to integer 3.

3 + 4
>>> 7

Listing 9-6 Sending message + with argument 4 to point (1@2).

(1@2) + 4
>>> 5@6

In procedural programming (and in some static features of some object-
oriented languages such as Java), the choice of which piece of code to exe-
cute when a procedure is called is made by the caller. The caller chooses the
procedure to execute statically, by name. In such a case there is no lookup or
dynamicity involved.

In Pharo, we do not ”invoke methods”. Instead, we send messages. This is just
a terminology point but it is significant. It implies that this is not the respon-
sibility of the client to select the method to be executed, it is the one of the
receiver of the message.

When sending a message, we do not decide which method will be executed.
Instead, we tell an object to do something for us by sending it a message. A
message is nothing but a name and a list of arguments. The receiver then de-
cides how to respond by selecting its own method for doing what was asked.
Since different objects may have different methods for responding to the
same message, the method must be chosen dynamically, when the message is
received.

As a consequence, we can send the same message to different objects, each of
which may have its own method for responding to the message. We do not tell
the SmallInteger 3 or the Point (1@2) how to respond to the message + 4.
Each has its own method for +, and responds to + 4 accordingly.

About other computation.

Nearly everything in Pharo happens by sending messages. At some point ac-
tion must take place:

• Variable declarations are not message sends. In fact, variable declara-
tions are not even executable. Declaring a variable just causes space to
be allocated for an object reference.

• Variable accesses are just access to the value of a variable.

• Assignments are not message sends. An assignment to a variable causes
that variable name to be freshly bound in the scope of its definition.

• Returns are not message sends. A return simply causes the computed
result to be returned to the sender.

• Pragmas are not message sends. They are method annotations.

134

9.7 Sending a message: a two-step process

Other than these few exceptions, pretty much everything else does truly
happen by sending messages.

About object-oriented programming.

One of the consequences of Pharo’s model of message sending is that it en-
courages a style in which objects tend to have very small methods and del-
egate tasks to other objects, rather than implementing huge, procedural
methods that assume too much responsibility. Joseph Pelrine expresses this
principle succinctly as follows:

Note Don’t do anything that you can push off onto someone else.

Many object-oriented languages provide both static and dynamic operations
for objects. In Pharo there are only dynamic message sends. For example, in-
stead of providing static class operations, we simply send messages to classes
(which are simply objects).

In particular, since there are no public fields in Pharo, the only way to update
an instance variable of another object is to send it a message asking that it
update its own field. Of course, providing setter and getter methods for all
the instance variables of an object is not good object-oriented style. Joseph
Pelrine also states this very nicely:

Note Don’t let anyone else play with your data.

9.7 Sending a message: a two-step process

What exactly happens when an object receives a message? This is a two-step
process: method lookup and method execution.

• Lookup. First, the method having the same name as the message is
looked up.

• Method Execution. Second, the found method is applied to the re-
ceiver with the message arguments: When the method is found, the
arguments are bound to the parameters of the method, and the virtual
machine executes it.

The lookup process is quite simple:

1. The class of the receiver looks up the method to use to handle the mes-
sage.

2. If this class does not have that method defined, it asks its superclass,
and so on, up the inheritance chain.

It is essentially as simple as that. Nevertheless there are a few questions that
need some care to answer:

135

The Pharo object model

Listing 9-7 A locally implemented method.

EllipseMorph >> defaultColor
"Answer the default color/fill style for the receiver"
^ Color yellow

Listing 9-8 An inherited method.

Morph >> openInWorld
"Add this morph to the world."
self openInWorld: self currentWorld

• What happens when a method does not explicitly return a value?

• What happens when a class reimplements a superclass method?

• What is the difference between self and super sends?

• What happens when no method is found?

The rules for method lookup that we present here are conceptual; virtual
machine implementors use all kinds of tricks and optimizations to speed up
method lookup. That’s their job, but you should never be able to detect that
they are doing something different from our rules.

First let us look at the basic lookup strategy, and then consider these further
questions.

9.8 Method lookup follows the inheritance chain

Suppose we create an instance of EllipseMorph.

anEllipse := EllipseMorph new.

If we send the message defaultColor to this object now, we get the result
Color yellow.

anEllipse defaultColor
>>> Color yellow

The class EllipseMorph implements defaultColor, so the appropriate
method is found immediately.

In contrast, if we send the message openInWorld to anEllipse, the method
is not immediately found, since the class EllipseMorph does not implement
openInWorld. The search therefore continues in the superclass, Bordered-
Morph, and so on, until an openInWorldmethod is found in the class Morph
(see Figure 9-9).

9.9 Method execution

We mentioned that sending a message is a two-step process:

136

9.9 Method execution

Figure 9-9 Method lookup follows the inheritance hierarchy.

Listing 9-10 Another locally implemented method.

EllipseMorph >> closestPointTo: aPoint
^ self intersectionWithLineSegmentFromCenterTo: aPoint

• Lookup. First, the method having the same name as the message is
looked up.

• Method Execution. Second, the found method is applied to the re-
ceiver with the message arguments: When the method is found, the
arguments are bound to the parameters of the method, and the virtual
machine executes it.

Now we explain the second point: the method execution.

When the lookup returns a method, the receiver of the message is bound to
self, and the arguments of the message to the method parameters. Then
the system executes the method body. This is true wherever the method that
should be executed is found. Imagine that we send the message Ellipse-
Morph new closestPointTo: 100@100 and that the method is defined as in
Listing 9-10.

The variable self will point to the new ellipse we created and aPoint will
refer to the point 100@100.

Now exactly the same process will happen and this even if the method found
by the method lookup finds the method in a superclass. When we send the
message EllipseMorph new openInWorld. The method openInWorld is
found in the Morph class. Still the variable self is bound to the newly cre-
ated ellipse. This is why we say that self always represents the receiver of
the message and this independently of the class in which the method was
found.

137

The Pharo object model

Figure 9-11 Message foo is not understood.

This is why there are two different steps during a message send: looking
up the method within the class hierarchy of the message receiver and the
method execution on the message receiver.

9.10 Message not understood

What happens if the method we are looking for is not found?

Suppose we send the message foo to our ellipse. First the normal method
lookup will go through the inheritance chain all the way up to Object (or
rather ProtoObject) looking for this method. When this method is not found,
the virtual machine will cause the object to send self doesNotUnderstand:
#foo (See Figure 9-11).

Now, this is a perfectly ordinary, dynamic message send, so the lookup starts
again from the class EllipseMorph, but this time searching for the method
doesNotUnderstand:. As it turns out, Object implements doesNotUnder-
stand:. This method will create a new MessageNotUnderstood object which
is capable of starting a Debugger in the current execution context.

Why do we take this convoluted path to handle such an obvious error? Well,
this offers developers an easy way to intercept such errors and take alterna-
tive action. One could easily override the method Object>>doesNotUnder-
stand: in any subclass of Object and provide a different way of handling
the error.

In fact, this can be an easy way to implement automatic delegation of mes-
sages from one object to another. A Delegator object could simply delegate
all messages it does not understand to another object whose responsibility it
is to handle them, or raise an error itself!

138

9.11 About returning self

Listing 9-12 Explicitly returning self.
Morph >> openInWorld

"Add this morph to the world."
self openInWorld: self currentWorld
^ self

9.11 About returning self

Notice that the method defaultColor of the class EllipseMorph explicitly
returns Color yellow, whereas the method openInWorld of Morph does not
appear to return anything.

Actually a method always answers a message with a value (which is, of course,
an object). The answer may be defined by the ^ construct in the method,
but if execution reaches the end of the method without executing a ^, the
method still answers a value – it answers the object that received the mes-
sage. We usually say that the method answers self, because in Pharo the pseudo-
variable self represents the receiver of the message, much like the keyword
this in Java. Other languages, such as Ruby, by default return the value of
the last statement in the method. Again, this is not the case in Pharo, instead
you can imagine that a method without an explicit return ends with ^ self.

Important self always represents the receiver of the message.

This suggests that openInWorld is equivalent to openInWorldReturnSelf,
defined in Listing 9-12.

Why is explicitly writing ^ self not a so good thing to do? When you re-
turn something explicitly, you are communicating that you are returning
something of interest to the sender. When you explicitly return self, you
are saying that you expect the sender to use the returned value. This is not
the case here, so it is best not to explicitly return self. We only return self
on special case to stress that the receiver is returned.

This is a common idiom in Pharo, which Kent Beck refers to as Interesting
return value: ”Return a value only when you intend for the sender to use the value.”

Important By default (if not specified differently) a method returns the
message receiver.

9.12 Overriding and extension

If we look again at the EllipseMorph class hierarchy in Figure 9-9, we see
that the classes Morph and EllipseMorph both implement defaultColor. In
fact, if we open a new morph (Morph new openInWorld) we see that we get a
blue morph, whereas an ellipse will be yellow by default.

139

The Pharo object model

Listing 9-13 Super initialize.

BorderedMorph >> initialize
"Initialize the state of the receiver"

super initialize.
self borderInitialize

We say that EllipseMorph overrides the defaultColormethod that it inher-
its from Morph. The inherited method no longer exists from the point of view
of anEllipse.

Sometimes we do not want to override inherited methods, but rather extend
them with some new functionality, that is, we would like to be able to invoke
the overridden method in addition to the new functionality we are defining
in the subclass. In Pharo, as in many object-oriented languages that support
single inheritance, this can be done with the help of super sends.

A frequent application of this mechanism is in the initializemethod.
Whenever a new instance of a class is initialized, it is critical to also initialize
any inherited instance variables. However, the knowledge of how to do this
is already captured in the initializemethods of each of the superclass in
the inheritance chain. The subclass has no business even trying to initialize
inherited instance variables!

It is therefore good practice whenever implementing an initializemethod
to send super initialize before performing any further initialization as
shown in Listing 9-13.

We need super sends to compose inherited behaviour that would otherwise
be overridden.

Important It is a good practice that an initializemethod start by
sending super initialize.

9.13 Self and super sends

self represents the receiver of the message and the lookup of the method
starts in the class of the receiver. Now what is super? super is not the super-
class! It is a common and natural mistake to think this. It is also a mistake to
think that lookup starts in the superclass of the class of the receiver.

Important self represents the receiver of the message and the method
lookup starts in the class of the receiver.

How do self sends differ from super sends?

Like self, super represents the receiver of the message. Yes you read it
well! The only thing that changes is the method lookup. Instead of lookup

140

9.13 Self and super sends

Listing 9-14 A self send.

Morph >> fullPrintOn: aStream
aStream nextPutAll: self class name, ' new'

Listing 9-15 A self send.

Morph >> constructorString
^ String streamContents: [:s | self fullPrintOn: s].

Listing 9-16 Combining super and self sends.

BorderedMorph >> fullPrintOn: aStream
aStream nextPutAll: '('.
super fullPrintOn: aStream.
aStream

nextPutAll: ') setBorderWidth: ';
print: borderWidth;
nextPutAll: ' borderColor: ', (self colorString: borderColor)

starting in the class of the receiver, it starts in the superclass of the class of the
method where the super send occurs.

Important super represents the receiver of the message and the
method lookup starts in the superclass of the class of the method where
the super send occurs.

We shall see in the following example precisely how this works. Imagine that
we define the following three methods:

First in Listing 9-14, we define the method fullPrintOn: on class Morph
that just adds to the stream the name of the class followed by the string ’
new’ - the idea is that we could execute the resulting string and get back an
instance similar to the receiver.

Second we define the method constructorString that sends the message
fullPrintOn: (see Listing 9-15).

Finally, we define the method fullPrintOn: on the class BorderedMorph
superclass of EllipseMorph. This new method extends the superclass behav-
ior: it invokes it and adds extra behavior (see Listing 9-16).

Consider the message constructorString sent to an instance of Ellipse-
Morph:

EllipseMorph new constructorString
>>> '(EllipseMorph new) setBorderWidth: 1 borderColor: Color black'

How exactly is this result obtained through a combination of self and super
sends? First, anEllipse constructorString will cause the method con-
structorString to be found in the class Morph, as shown in Figure 9-17.

141

The Pharo object model

Figure 9-17 self and super sends.

The method constructorString of Morph performs a self send of full-
PrintOn:. The message fullPrintOn: is looked up starting in the class
EllipseMorph, and the method fullPrintOn: BorderedMorph is found in
BorderedMorph (see Figure 9-17). What is critical to notice is that the self
send causes the method lookup to start again in the class of the receiver,
namely the class of anEllipse.

At this point, the method fullPrintOn: of BorderedMorph does a super
send to extend the fullPrintOn: behaviour it inherits from its superclass.

Because this is a super send, the lookup now starts in the superclass of the
class where the super send occurs, namely in Morph. We then immediately
find and execute the method fullPrintOn: of the class Morph.

9.14 Stepping back

A self send is dynamic in the sense that by looking at the method contain-
ing it, we cannot predict which method will be executed. Indeed an instance
of a subclass may receive the message containing the self expression and
redefine the method in that subclass. Here EllipseMorph could redefine
the method fullPrintOn: and this method would be executed by method
constructorString. Note that by only looking at the method construc-
torString, we cannot predict which fullPrintOn: method (either the one
of EllipseMorph, BorderedMorph, or Morph) will be executed when execut-
ing the method constructorString, since it depends on the receiver the
constructorStringmessage.

142

9.15 The instance and class sides

Important A self send triggers a method lookup starting in the class of
the receiver. A self send is dynamic in the sense that by looking at the
method containing it, we cannot predict which method will be executed.

Note that the super lookup did not start in the superclass of the receiver.
This would have caused lookup to start from BorderedMorph, resulting in an
infinite loop!

If you think carefully about super send and Figure 9-17, you will realize that
super bindings are static: all that matters is the class in which the text of the
super send is found. By contrast, the meaning of self is dynamic: it always
represents the receiver of the currently executing message. This means that
all messages sent to self are looked up by starting in the receiver’s class.

Important A super send triggers a method lookup starting in the su-
perclass of the class of the method performing the super send. We say that su-
per sends are static because just looking at the method we know the class
where the lookup should start (the class above the class containing the
method).

9.15 The instance and class sides

Since classes are objects, they have their own instance variables and their
own methods. We call these class instance variables and class methods, but they
are really no different from ordinary instance variables and methods: They
simply operate on different objects (classes in this case). An instance variable
describes instance state and a method describes instance behavior. Similarly,
class instance variables are just instance variables defined by a metaclass (a
class whose instances are classes):

• Class instance variables describe the state of classes. An example is the
superclass instance variable that describes the superclass of a given
class.

• Class methods are just methods defined by a metaclass and that will be
executed on classes. Sending the message now to the class Date is de-
fined on the (meta)class Date class. This method is executed with the
class Date as receiver.

A class and its metaclass are two separate classes, even though the former is
an instance of the latter. However, this is largely irrelevant to you as a pro-
grammer: you are concerned with defining the behavior of your objects and
the classes that create them.

For this reason, the browser helps you to browse both class and metaclass
as if they were a single thing with two ”sides”: the instance side and the class
side, as shown in Figure 9-18.

143

The Pharo object model

Figure 9-18 Browsing a class and its metaclass.

Listing 9-19 The class method blue (defined on the class-side).

Color blue
>>> Color blue
"Color instances are self-evaluating"

Listing 9-20 Using the accessor method red (defined on the instance-side).

Color blue red
>>> 0.0

• By default, when you select a class in the browser, you’re browsing the
instance side i.e., the methods that are executed when messages are sent
to an instance of Color.

• Clicking on the Class side button switches you over to the class side:
the methods that will be executed when messages are sent to the class
Color itself.

For example, Color blue sends the message blue to the class Color. You
will therefore find the method blue defined on the class side of Color, not on
the instance side.

Listing 9-21 Using the accessor method blue (defined on the instance-side).

Color blue blue
>>> 1.0

144

9.16 Class methods

Metaclass creation.

You define a class by filling in the template proposed on the instance side.
When you compile this template, the system creates not just the class that
you defined, but also the corresponding metaclass (which you can then edit
by clicking on the Class side button). The only part of the metaclass creation
template that makes sense for you to edit directly is the list of the meta-
class’s instance variable names.

Once a class has been created, browsing its instance side lets you edit and
browse the methods that will be possessed by instances of that class (and of
its subclasses).

9.16 Class methods

Class methods can be quite useful, you can browse Color class for some
good examples: You will see that there are two kinds of methods defined on a
class: instance creation methods, like the class method blue in the class Color
class, and those that perform a utility function, like Color class>>wheel:.
This is typical, although you will occasionally find class methods used in
other ways.

It is convenient to place utility methods on the class side because they can be
executed without having to create any additional objects first. Indeed, many
of them will contain a comment designed to make it easy to execute them.

Browse method Color class>>wheel:, double-click just at the beginning of
the comment "(Color wheel: 12) inspect" and press CMD-d. You will see
the effect of executing this method.

For those familiar with Java and C++, class methods may seem similar to
static methods. However, the uniformity of the Pharo object model (where
classes are just regular objects) means that they are somewhat different:
Whereas Java static methods are really just statically-resolved procedures,
Pharo class methods are dynamically-dispatched methods. This means that
inheritance, overriding and super-sends work for class methods in Pharo,
whereas they don’t work for static methods in Java.

9.17 Class instance variables

With ordinary instance variables, all the instances of a class have the same set
of variables (though each instance has its own private set of values), and the
instances of its subclasses inherit those variables.

The story is exactly the same with class instance variables: a class is an ob-
ject instance of another class. Therefore the class instance variables are de-
fined on such classes and each class has its own private values for the class
instance variables.

145

The Pharo object model

Listing 9-22 Dog class definition.

Object subclass: #Dog
instanceVariableNames: ''
classVariableNames: ''
package: 'Example'

Listing 9-23 Adding a class instance variable.

Dog class
instanceVariableNames: 'count'

Listing 9-24 Hyena class definition.

Dog subclass: #Hyena
instanceVariableNames: ''
classVariableNames: ''
package: 'Example'

Instance variables also works. Class instance variables are inherited: A sub-
class will inherit those class instance variables, but a subclass will have its own
private copies of those variables. Just as objects don’t share instance variables,
neither do classes and their subclasses share class instance variables.

For example, you could use a class instance variable called count to keep
track of how many instances you create of a given class. However, any sub-
class would have its own count variable, so subclass instances would be
counted separately. The following section presents an example.

9.18 Example: Class instance variables and subclasses

Suppose we define the class Dog, and its subclass Hyena. Suppose that we add
a count class instance variable to the class Dog (i.e., we define it on the meta-
class Dog class). Hyena will naturally inherit the class instance variable
count from Dog.

Now suppose we define class methods for Dog to initialize its count to 0, and
to increment it when new instances are created:

Now when we create a new Dog, the count value of the class Dog is incre-
mented, and so is that of the class Hyena (but the hyenas are counted sepa-
rately).

Listing 9-25 Initialize the count of dogs.

Dog class >> initialize
count := 0.

146

9.19 Stepping back

Listing 9-26 Keeping count of new dogs.

Dog class >> new
count := count +1.
^ super new

Listing 9-27 Accessing to count.

Dog class >> count
^ count

Dog initialize.
Hyena initialize.
Dog count
>>> 0

About class initialize.

When you instantiate an object such as Dog new, initialize is called auto-
matically as part of the newmessage send (you can see for yourself by brows-
ing the method new in the class Behavior). But with classes, simply defining
them does not automatically call initialize because it is not clear to the
system if a class is fully working. So we have to call initialize explicitly
here. By default class initializemethods are automatically executed only
when classes are loaded. See also the discussion about lazy initialization, be-
low.

Hyena count
>>> 0

| aDog |
aDog := Dog new.
Dog count
>>> 1 "Incremented"

Hyena count
>>> 0 "Still the same"

9.19 Stepping back

Class instance variables are private to a class in exactly the same way that in-
stance variables are private to an instance. Since classes and their instances
are different objects, this has the following consequences:

1. A class does not have access to the instance variables of its own instances.
So, the class Color does not have access to the variables of an object instanti-
ated from it, aColorRed. In other words, just because a class was used to cre-
ate an instance (using new or a helper instance creation method like Color
red), it doesn’t give the class any special direct access to that instance’s vari-

147

The Pharo object model

ables. The class instead has to go through the accessor methods (a public
interface) just like any other object.

2. The reverse is also true: an instance of a class does not have access to the
class instance variables of its class. In our example above, aDog (an individ-
ual instance) does not have direct access to the count variable of the Dog
class (except, again, through an accessor method).

Important A class does not have access to the instance variables of its
own instances. An instance of a class does not have access to the class
instance variables of its class.

For this reason, instance initialization methods must always be defined on
the instance side, the class side has no access to instance variables, and so
cannot initialize them! All that the class can do is to send initialization mes-
sages, using accessors, to newly created instances.

Java has nothing equivalent to class instance variables. Java and C++ static
variables are more like Pharo class variables (discussed in Section 9.22), since
in those languages all of the subclasses and all of their instances share the
same static variable.

9.20 Example: Defining a Singleton

Singleton is the most misunderstood design pattern. When wrongly applied,
it favors procedural style promoting single global access. However, the Sin-
gleton pattern provides a typical example of the use of class instance vari-
ables and class methods.

Imagine that we would like to implement a class WebServer, and to use the
Singleton pattern to ensure that it has only one instance.

We define the class WebServer as follow.

Object subclass: #WebServer
instanceVariableNames: 'sessions'
classVariableNames: ''
package: 'Web'

Then, clicking on the Class side button, we add the (class) instance variable
uniqueInstance.

WebServer class
instanceVariableNames: 'uniqueInstance'

As a result, the class WebServer class will have a new instance variable (in
addition to the variables that it inherits from Behavior, such as superclass
and methodDict). It means that the value of this extra instance variable will
describe the instance of the class WebServer class i.e., the class WebServer.

148

9.20 Example: Defining a Singleton

Listing 9-29 New state for classes.

WebServer class allInstVarNames
>>> "#(#superclass #methodDict #format #layout #organization

#subclasses #name #classPool #sharedPools #environment #category
#uniqueInstance)"

Listing 9-30 Class-side accessor method uniqueInstance.
WebServer class >> uniqueInstance

uniqueInstance ifNil: [uniqueInstance := self new].
^ uniqueInstance

Point class allInstVarNames
>>> "#(#superclass #methodDict #format #layout #organization

#subclasses #name #classPool #sharedPools #environment
#category)"

We can now define a class method named uniqueInstance, as shown below.
This method first checks whether uniqueInstance has been initialized. If it
has not, the method creates an instance and assigns it to the class instance
variable uniqueInstance. Finally the value of uniqueInstance is returned.
Since uniqueInstance is a class instance variable, this method can directly
access it.

The first time that WebServer uniqueInstance is executed, an instance of
the class WebServer will be created and assigned to the uniqueInstance
variable. The next time, the previously created instance will be returned in-
stead of creating a new one. (This pattern, checking if a variable is nil in an
accessor method, and initializing its value if it is nil, is called lazy initializa-
tion).

Note that the instance creation code in the code above. Script 9-30 is written
as self new and not as WebServer new. What is the difference? Since the
uniqueInstancemethod is defined in WebServer class, you might think
that there is no difference. And indeed, until someone creates a subclass of
WebServer, they are the same. But suppose that ReliableWebServer is a
subclass of WebServer, and inherits the uniqueInstancemethod. We would
clearly expect ReliableWebServer uniqueInstance to answer a Reli-
ableWebServer. Using self ensures that this will happen, since self will
be bound to the respective receiver, here the classes WebServer and Reli-
ableWebServer. Note also that WebServer and ReliableWebServer will
each have a different value for their uniqueInstance instance variable.

A note on lazy initialization.

Do not over-use the lazy initialization pattern. The setting of initial values for
instances of objects generally belongs in the initializemethod. Putting
initialization calls only in initialize helps from a readability perspective

149

The Pharo object model

– you don’t have to hunt through all the accessor methods to see what the
initial values are. Although it may be tempting to instead initialize instance
variables in their respective accessor methods (using ifNil: checks), avoid
this unless you have a good reason.

For example, in our uniqueInstancemethod above, we used lazy initializa-
tion because users won’t typically expect to call WebServer initialize.
Instead, they expect the class to be ”ready” to return new unique instances.
Because of this, lazy initialization makes sense. Similarly, if a variable is ex-
pensive to initialize (opening a database connection or a network socket, for
example), you will sometimes choose to delay that initialization until you
actually need it.

9.21 Shared variables

Now we will look at an aspect of Pharo that is not so easily covered by our
five rules: shared variables.

Pharo provides three kinds of shared variables:

1. Globally shared variables.

2. Class variables: variables shared between instances and classes. (Not to be
confused with class instance variables, discussed earlier).

3. Pool variables: variables shared amongst a group of classes,

The names of all of these shared variables start with a capital letter, to warn
us that they are indeed shared between multiple objects.

Global variables

In Pharo, all global variables are stored in a namespace called Smalltalk
globals, which is implemented as an instance of the class SystemDictionary.
Global variables are accessible everywhere. Every class is named by a global
variable. In addition, a few globals are used to name special or commonly
useful objects.

The variable Processor names an instance of ProcessScheduler, the main
process scheduler of Pharo.

Processor class
>>> ProcessorScheduler

Other useful global variables

Smalltalk is the instance of SmalltalkImage. It contains many function-
ality to manage the system. In particular it holds a reference to the main
namespace Smalltalk globals. This namespace includes Smalltalk itself

150

9.22 Class variables: Shared variables

since it is a global variable. The keys to this namespace are the symbols that
name the global objects in Pharo code. So, for example:

Smalltalk globals at: #Boolean
>>> Boolean

Since Smalltalk is itself a global variable:

Smalltalk globals at: #Smalltalk
>>> Smalltalk

(Smalltalk globals at: #Smalltalk) == Smalltalk
>>> true

World is an instance of PasteUpMorph that represents the screen. World
bounds answers a rectangle that defines the whole screen space; all Morphs
on the screen are submorphs of World.

Undeclared is another dictionary, which contains all the undeclared vari-
ables. If you write a method that references an undeclared variable, the
browser will normally prompt you to declare it, for example as a global or as
an instance variable of the class. However, if you later delete the declaration,
the code will then reference an undeclared variable. Inspecting Undeclared
can sometimes help explain strange behaviour!

Using globals in your code

The recommended practice is to strictly limit the use of global variables. It
is usually better to use class instance variables or class variables, and to pro-
vide class methods to access them. Indeed, if Pharo were to be implemented
from scratch today, most of the global variables that are not classes would be
replaced by singletons or others.

The usual way to define a global is just to perform Do it on an assignment
to a capitalized but undeclared identifier. The parser will then offer to de-
clare the global for you. If you want to define a global programmatically, just
execute Smalltalk globals at: #AGlobalName put: nil. To remove it,
execute Smalltalk globals removeKey: #AGlobalName.

9.22 Class variables: Shared variables

Sometimes we need to share some data amongst all the instances of a class
and the class itself. This is possible using class variables. The term class vari-
able indicates that the lifetime of the variable is the same as that of the class.
However, what the term does not convey is that these variables are shared
amongst all the instances of a class as well as the class itself, as shown in
Figure 9-31. Indeed, a better name would have been shared variables since
this expresses more clearly their role, and also warns of the danger of using
them, particularly if they are modified.

151

The Pharo object model

Figure 9-31 Instance and class methods accessing different variables.

Listing 9-32 Color and its class variables.

Object subclass: #Color
instanceVariableNames: 'rgb cachedDepth cachedBitPattern alpha'
classVariableNames: 'BlueShift CachedColormaps ColorRegistry

ComponentMask ComponentMax GrayToIndexMap GreenShift
HalfComponentMask IndexedColors MaskingMap RedShift'

package: 'Colors-Base'

In Figure 9-31 we see that rgb and cachedDepth are instance variables of
Color, hence only accessible to instances of Color. We also see that super-
class, subclass, methodDict and so on are class instance variables, i.e., in-
stance variables only accessible to the Color class.

But we can also see something new: ColorRegistry and CachedColormaps
are class variables defined for Color. The capitalization of these variables
gives us a hint that they are shared. In fact, not only may all instances of
Color access these shared variables, but also the Color class itself, and any
of its subclasses. Both instance methods and class methods can access these
shared variables.

A class variable is declared in the class definition template. For example, the
class Color defines a large number of class variables to speed up color cre-
ation; its definition is shown below in Script 9-32.

The class variable ColorRegistry is an instance of IdentityDictionary
containing the frequently-used colors, referenced by name. This dictionary
is shared by all the instances of Color, as well as the class itself. It is accessi-
ble from all the instance and class methods.

152

9.23 Pool variables

Listing 9-33 Using Lazy initialization.

ColorNames ifNil: [self initializeNames].
^ ColorNames

Listing 9-34 Initializing the Color class.

Color class >> initialize
...
self initializeColorRegistry.
...

Class initialization

The presence of class variables raises the question: how do we initialize
them?

One solution is lazy initialization (discussed earlier in this chapter). This can
be done by introducing an accessor method which, when executed, initial-
izes the variable if it has not yet been initialized. This implies that we must
use the accessor all the time and never use the class variable directly. This
furthermore imposes the cost of the accessor send and the initialization test.

Another solution is to override the class method initialize (we’ve seen
this before in the Dog example).

If you adopt this solution, you will need to remember to invoke the initial-
izemethod after you define it (by evaluating Color initialize). Although
class side initializemethods are executed automatically when code is
loaded into memory (from a Monticello repository, for example), they are
not executed automatically when they are first typed into the browser and
compiled, or when they are edited and re-compiled.

9.23 Pool variables

Pool variables are variables that are shared between several classes that may
not be related by inheritance. Pool variables should be defined as class vari-
ables of dedicated classes (subclasses of SharedPool as shown below). Our
advice is to avoid them; you will need them only in rare and specific circum-
stances. Our goal here is therefore to explain pool variables just enough so
that you can understand them when you are reading code.

A class that accesses a pool variable must mention the pool in its class defini-
tion. For example, the class Text indicates that it is using the pool TextCon-
stants, which contains all the text constants such as CR and LF. TextCon-
stants defines the variables CR that is bound to the value Character cr,
i.e., the carriage return character.

This allows methods of the class Text to access the variables of the shared
pool in the method body directly. For example, we can write the following

153

The Pharo object model

Listing 9-35 Pool dictionaries in the Text class.

ArrayedCollection subclass: #Text
instanceVariableNames: 'string runs'
classVariableNames: ''
poolDictionaries: 'TextConstants'
package: 'Collections-Text'

Listing 9-36 Text>>testCR.
Text >> testCR

^ CR == Character cr

method. We see that eventhough Text does not define a variable CR, since it
declared that it uses the shared pool TextConstants, it can directly access it.

Here is how TextConstants is created. TextConstants is a special class sub-
class of SharedPool and it holds class variables.

SharedPool subclass: #TextConstants
instanceVariableNames: ''
classVariableNames: 'BS BS2 Basal Bold CR Centered Clear CrossedX

CtrlA CtrlB CtrlC
CtrlD CtrlDigits CtrlE CtrlF CtrlG CtrlH
CtrlI CtrlJ CtrlK CtrlL CtrlM CtrlN CtrlO CtrlOpenBrackets CtrlP

CtrlQ CtrlR CtrlS CtrlT
CtrlU CtrlV CtrlW CtrlX CtrlY CtrlZ Ctrla Ctrlb Ctrlc Ctrld Ctrle

Ctrlf Ctrlg Ctrlh Ctrli
Ctrlj Ctrlk Ctrll Ctrlm Ctrln Ctrlo Ctrlp Ctrlq Ctrlr Ctrls Ctrlt

Ctrlu Ctrlv Ctrlw
Ctrlx Ctrly Ctrlz DefaultBaseline DefaultFontFamilySize

DefaultLineGrid DefaultMarginTabsArray
DefaultMask DefaultRule DefaultSpace DefaultTab DefaultTabsArray

ESC EndOfRun Enter Italic
Justified LeftFlush LeftMarginTab RightFlush RightMarginTab Space

Tab TextSharedInformation'
package: 'Text-Core-Base'

Once again, we recommend that you avoid the use of pool variables and pool
dictionaries.

9.24 Abstract methods and abstract classes

An abstract class is a class that exists to be subclassed, rather than to be in-
stantiated. An abstract class is usually incomplete, in the sense that it does
not define all of the methods that it uses. The ”placeholder” methods, those
that the other methods assume to be (re)defined are called abstract methods.

Pharo has no dedicated syntax to specify that a method or a class is abstract.
Instead, by convention, the body of an abstract method consists of the ex-
pression self subclassResponsibility. This indicates that subclasses

154

9.24 Abstract methods and abstract classes

Listing 9-37 Magnitude>> <.
< aMagnitude

"Answer whether the receiver is less than the argument."

^self subclassResponsibility

Listing 9-38 Magnitude>> >=.
>= aMagnitude

"Answer whether the receiver is greater than or equal to the
argument."

^(self < aMagnitude) not

Listing 9-39 Character>> <=.
< aCharacter

"Answer true if the receiver's value < aCharacter's value."

^self asciiValue < aCharacter asciiValue

have the responsibility to define a concrete version of the method. self
subclassResponsibilitymethods should always be overridden, and thus
should never be executed. If you forget to override one, and it is executed, an
exception will be raised.

Similarly, a class is considered abstract if one of its methods is abstract. Noth-
ing actually prevents you from creating an instance of an abstract class; ev-
erything will work until an abstract method is invoked.

Example: the abstract class Magnitude

Magnitude is an abstract class that helps us to define objects that can be
compared to each other. Subclasses of Magnitude should implement the
methods <, = and hash. Using such messages, Magnitude defines other meth-
ods such as >, >=, <=, max:, min: between:and: and others for comparing
objects. Such methods are inherited by subclasses. The method Magnitude>><
is abstract, and defined as shown in the following script.

By contrast, the method >= is concrete, and is defined in terms of <.

The same is true of the other comparison methods (they are all defined in
terms of the abstract method <).

Character is a subclass of Magnitude; it overrides the <method (which, if
you recall, is marked as abstract in Magnitude by the use of self subclass-
Responsibility) with its own version (see the method definition below).

Character also explicitly defines methods = and hash; it inherits from Mag-
nitude the methods >=, <=, ~= and others.

155

The Pharo object model

9.25 Chapter summary

The object model of Pharo is both simple and uniform. Everything is an ob-
ject, and pretty much everything happens by sending messages.

• Everything is an object. Primitive entities like integers are objects, but
also classes are first-class objects.

• Every object is an instance of a class. Classes define the structure of
their instances via private instance variables and the behaviour of their
instances via public methods. Each class is the unique instance of its
metaclass. Class variables are private variables shared by the class and
all the instances of the class. Classes cannot directly access instance
variables of their instances, and instances cannot access instance vari-
ables of their class. Accessors must be defined if this is needed.

• Every class has a superclass. The root of the single inheritance hier-
archy is ProtoObject. Classes you define, however, should normally
inherit from Object or its subclasses. There is no syntax for defining
abstract classes. An abstract class is simply a class with an abstract
method (one whose implementation consists of the expression self
subclassResponsibility). Although Pharo supports only single in-
heritance, it is easy to share implementations of methods by packaging
them as traits.

• Everything happens by sending messages. We do not call methods, we
send messages. The receiver then chooses its own method for respond-
ing to the message.

• Method lookup follows the inheritance chain; self sends are dynamic
and start the method lookup in the class of the receiver, whereas su-
per sends start the method lookup in the superclass of class in which
the super send is written. From this perspective super sends are more
static than self sends.

• There are three kinds of shared variables. Global variables are acces-
sible everywhere in the system. Class variables are shared between
a class, its subclasses and its instances. Pool variables are shared be-
tween a selected set of classes. You should avoid shared variables as
much as possible.

156

CHA P T E R 10
Traits: reusable class fragments

Although Pharo does not provide multiple inheritance, it supports a mech-
anism called Traits for sharing class fragments (behaviour and state) across
unrelated classes. Traits in their simpler form are just collections of methods
that can be reused by multiple classes that are not related by inheritance.
Since Pharo 7.0, traits can also hold state. Using traits allows one to share
code between different classes without duplicating code. This makes it easy
for classes to have a unique superclass, yet still reuse useful behavior with
otherwise unrelated classes.

As we will show later, traits propose a way to compose and resolve conflicts
in disciplined manner (and not just expecting that the latest loaded method
is the correct one as this happens with language such as Groovy). The basic
principle is that the composer (be it a class or a trait) takes always prece-
dence and can decide in its context how to resolve a conflict. Methods can be
removed or accessible under a new name at composition time.

10.1 A simple trait

The following 10-1 define a trait. The uses: clauses in an empty array indi-
cating that this trait is not composed of other traits.

The trait TFlyingAbility defines a single method fly.

Listing 10-1 A simple trait.

Trait named: #TFlyingAbility
uses: {}
package: 'Traits-Example'

157

Traits: reusable class fragments

TFlyingAbility >> fly
^ 'I''m flying!'

Now we define a class called Bird that uses the trait. It means that the class
has a method called fly.

Object subclass: #Bird
uses: TFlyingAbility
instanceVariableNames: ''
classVariableNames: ''
package: 'Traits-Example'

Instances of the class Bird know how to answer to the message fly.

| b |
b := Bird new.
b fly
>>> 'I''m flying!'

Using a required method

A trait can invoke methods that are available on the class using it. Here the
method greeting of the trait TGreetable in invoking the method name that
is not defined in the trait itself. In such a case the class using the trait will
have to implement such required method.

Trait named: #TGreetable
uses: {}
package: 'Traits-Example'

TGreetable >> greeting
^ 'Hello ', self name

Notice that self in a trait represents the receiver of the message. Nothing
changes.

Object subclass: #Person
uses: TGreetable
instanceVariableNames: ''
classVariableNames: ''
package: 'Traits-Example'

Now in the class Person we define the method name and the greetingmethod
will invoke it.

Person >> name
^ 'Bob'

Person new greeting
>>> 'Hello Bob'

158

10.2 Self in a trait is the receiver

10.2 Self in a trait is the receiver

The question of the status of self in a trait may be raised. However, there
is not difference. self represents the receiver. The fact that the method is
defined in a class or a trait has no influence on self.

Trait named: #TInspector
uses: {}
package: 'Traits-Example'

TInspector >> whoAmI
^ self

Object subclass: #Foo
uses: TInspector
instanceVariableNames: ''
classVariableNames: ''
package: 'Traits-Example'

| foo |
foo := Foo new.
foo whoAmI == foo
>>> true

10.3 Trait state

Since Pharo 7.0 traits can also define instance variables.

Trait named: #TCounting
uses: {}
slots: { #count }
package: 'Traits-Example'

TCounting >> initializeTCounting
count := 0

TCounting >> increment
count := count + 1.
^ count

Object subclass: #Counter
uses: TCounting
instanceVariableNames: ''
classVariableNames: ''
package: 'Traits-Example'

Counter >> initialize
self initializeTCounting

Counter new increment; increment
>>> 2

159

Traits: reusable class fragments

10.4 A class can use two traits

Trait named: #TSpeakingAbility
uses: {}
package: 'Traits-Example'

TSpeakingAbility >> speak
^ 'I''m speaking!'

Trait named: #TSpeakingAbility
uses: {}
package: 'Traits-Example'

Object subclass: #Duck
uses: TFlyingAbility + TSpeakingAbility
instanceVariableNames: ''
classVariableNames: ''
package: 'Traits-Example'

| d |
d := Duck new.
d speak
>>> 'I''m speaking!'
d fly
>>> 'I''m flying!'

10.5 Overriding method take always precedence over traits

A method originating from a trait acts as if it would have been defined in the
class itself. Now the user of a trait (be it a class or another trait) can always
redefine the method originating from the trait and the redefinition takes
precedence in the user over the method of trait.

In the class Duck we can redefine the method speak to do something else and
for example send the message quack.

Duck >> quack
^ 'QUACK'

Duck >> speak
^ self quack

| d |
d := Duck new.
d speak
>>> 'QUACK'

160

10.6 Composing a trait out of other traits

10.6 Composing a trait out of other traits

Trait composition expressions may combine multiple traits using the + oper-
ator. In case of conflicts (i.e., if multiple traits define methods with the same
name), these conflicts can be resolved by explicitly removing these meth-
ods (with -), or by redefining these methods in the class or trait that you are
defining. It is also possible to alias methods (with @), providing a new name
for them.

10.7 Managing conflicts

10.8 Conclusion

161

CHA P T E R 11
SUnit: Tests in Pharo

SUnit is a minimal yet powerful framework that supports the creation and
deployment of tests. As might be guessed from its name, the design of SUnit
focussed on Unit Tests, but in fact it can be used for integration tests and
functional tests as well. SUnit was originally developed by Kent Beck and
subsequently extended by Joseph Pelrine and others to incorporate the no-
tion of a resource (discussed below).

This chapter is as short as possible to show you that tests are simple. For a
more in depth description of SUnit and different approaches of testing you
can read the book: Testing in Pharo available at http://books.pharo.org.

In this chapter we start by discussing why we test, and what makes a good
test. We then present a series of small examples showing how to use SUnit.
Finally, we look at the implementation of SUnit, so that you can understand
how Pharo uses the power of reflection in supporting its tools. Note that the
version documented in this chapter and used in Pharo is a modified version
of SUnit3.3.

11.1 Introduction

The interest in testing and Test Driven Development is not limited to Pharo.
Automated testing has become a hallmark of the Agile software development
movement, and any software developer concerned with improving software
quality would do well to adopt it. Indeed, developers in many languages have
come to appreciate the power of unit testing, and versions of xUnit now exist
for every programming language.

Neither testing, nor the building of test suites, is new. By now, everybody
knows that tests are a good way to catch errors. eXtreme Programming,

163

http://books.pharo.org

SUnit: Tests in Pharo

by making testing a core practice and by emphasizing automated tests, has
helped to make testing productive and fun, rather than a chore that pro-
grammers dislike. The Pharo community has a long tradition of testing be-
cause of the incremental style of development supported by its programming
environment. In traditional Pharo development, the programmer would
write tests in a playground as soon as a method was finished. Sometimes
a test would be incorporated as a comment at the head of the method that
it exercised, or tests that needed some set up would be included as exam-
ple methods in the class. The problem with these practices is that tests in a
playground are not available to other programmers who modify the code.
Comments and example methods are better in this respect, but there is still
no easy way to keep track of them and to run them automatically. Tests that
are not run do not help you to find bugs! Moreover, an example method does
not inform the reader of the expected result: you can run the example and
see the (perhaps surprising) result, but you will not know if the observed be-
haviour is correct.

SUnit is valuable because it allows us to write tests that are self-checking:
the test itself defines what the correct result should be. It also helps us to or-
ganize tests into groups, to describe the context in which the tests must run,
and to run a group of tests automatically. In less than two minutes you can
write tests using SUnit, so instead of writing small code snippets in a play-
ground, we encourage you to use SUnit and get all the advantages of stored
and automatically executable tests.

11.2 Why testing is important

Unfortunately, many developers believe that tests are a waste of their time.
After all, they do not write bugs, only other programmers do that. Most of us
have said, at some time or other: I would write tests if I had more time. If you
never write a bug, and if your code will never be changed in the future, then
indeed tests are a waste of your time. However, this most likely also means
that your application is trivial, or that it is not used by you or anyone else.
Think of tests as an investment for the future: having a suite of tests is quite
useful now, but it will be extremely useful when your application, or the envi-
ronment in which it runs, changes in the future.

Tests play several roles. First, they provide documentation of the function-
ality that they cover. This documentation is active: watching the tests pass
tells you that the documentation is up to date. Second, tests help devel-
opers to confirm that some changes that they have just made to a package
have not broken anything else in the system, and to find the parts that break
when that confidence turns out to be misplaced. Finally, writing tests dur-
ing, or even before, programming forces you to think about the functionality
that you want to design, and how it should appear to the client code, rather than
about how to implement it.

164

11.3 What makes a good test?

By writing the tests first, i.e., before the code, you are compelled to state the
context in which your functionality will run, the way it will interact with the
client code, and the expected results. Your code will improve. Try it.

We cannot test all aspects of any realistic application. Covering a complete
application is simply impossible and should not be the goal of testing. Even
with a good test suite some bugs will still creep into the application, where
they can lay dormant waiting for an opportunity to damage your system. If
you find that this has happened, take advantage of it! As soon as you uncover
the bug, write a test that exposes it, run the test, and watch it fail. Now you
can start to fix the bug: the tests will tell you when you are done.

11.3 What makes a good test?

Writing good tests is a skill that can be learned by practicing. Let us look at
the properties that tests should have to get the maximum benefit.

Tests should be repeatable. You should be able to run a test as often as you
want, and always get the same answer.

Tests should run without human intervention. You should be able to run them
unattended.

Tests should tell a story. Each test should cover one aspect of a piece of code. A
test should act as a scenario that you or someone else can read to understand
a piece of functionality.

Tests should have a change frequency lower than that of the functionality they cover.
You do not want to have to change all your tests every time you modify your
application. One way to achieve this is to write tests based on the public in-
terfaces of the class that you are testing. It is OK to write a test for a private
helper method if you feel that the method is complicated enough to need the
test, but you should be aware that such a test may have to be changed, or
thrown away entirely, when you think of a better implementation.

One consequence of such properties is that the number of tests should be
somewhat proportional to the number of functions to be tested: changing
one aspect of the system should not break all the tests but only a limited
number. This is important because having 100 tests fail should send a much
stronger message than having 10 tests fail. However, it is not always possible
to achieve this ideal: in particular, if a change breaks the initialization of an
object, or the set-up of a test, it is likely to cause all of the tests to fail.

Several software development methodologies such as eXtreme Programming
and Test-Driven Development (TDD) advocate writing tests before writing
code. This may seem to go against our deep instincts as software developers.
All we can say is: go ahead and try it. We have found that writing the tests
before the code helps us to know what we want to code, helps us know when
we are done, and helps us conceptualize the functionality of a class and to

165

SUnit: Tests in Pharo

Listing 11-1 An Example Set Test class

TestCase subclass: #MyExampleSetTest
instanceVariableNames: 'full empty'
classVariableNames: ''
package: 'MySetTest'

design its interface. Moreover, test-first development gives us the courage to
go fast, because we are not afraid that we will forget something important.

Writing tests is not difficult in itself. Now let’s write our first test, and show
you the benefits of using SUnit.

SUnit by example

Before going into the details of SUnit, we will show a step by step example.
We use an example that tests the class Set. Try entering the code as we go
along.

11.4 Step 1: Create the test class

First you should create a new subclass of TestCase called MyExampleSetTest.
Add two instance variables so that your new class looks like this:

We will use the class MyExampleSetTest to group all the tests related to the
class Set. It defines the context in which the tests will run. Here the context
is described by the two instance variables full and empty that we will use to
represent a full and an empty set.

The name of the class is not critical, but by convention it should end in Test.
If you define a class called Pattern and call the corresponding test class
PatternTest, the two classes will be alphabetized together in the browser
(assuming that they are in the same package). It is critical that your class is a
subclass of TestCase.

11.5 Step 2: Initialize the test context

The message TestCase >> setUp defines the context in which the tests will
run, a bit like an initialize method. setUp is invoked before the execution of
each test method defined in the test class.

Define the setUpmethod as follows, to initialize the empty variable to refer
to an empty set and the full variable to refer to a set containing two ele-
ments.

MyExampleSetTest >> setUp
empty := Set new.
full := Set with: 5 with: 6

166

11.6 Step 3: Write some test methods

In testing jargon the context is called the fixture for the test.

11.6 Step 3: Write some test methods

Let’s create some tests by defining some methods in the class MyExample-
SetTest. Each method represents one test. The names of the methods should
start with the string 'test' so that SUnit will collect them into test suites.
Test methods take no arguments.

Define the following test methods. The first test, named testIncludes, tests
the includes: method of Set. The test says that sending the message in-
cludes: 5 to a set containing 5 should return true. Clearly, this test relies
on the fact that the setUpmethod has already run.

MyExampleSetTest >> testIncludes
self assert: (full includes: 5).
self assert: (full includes: 6)

The second test, named testOccurrences, verifies that the number of oc-
currences of 5 in full set is equal to one, even if we add another element 5
to the set.

MyExampleSetTest >> testOccurrences
self assert: (empty occurrencesOf: 0) equals: 0.
self assert: (full occurrencesOf: 5) equals: 1.
full add: 5.
self assert: (full occurrencesOf: 5) equals: 1

Finally, we test that the set no longer contains the element 5 after we have
removed it.

MyExampleSetTest >> testRemove
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

Note the use of the method TestCase >> deny: to assert something that
should not be true. aTest deny: anExpression is equivalent to aTest as-
sert: anExpression not, but is much more readable.

11.7 Step 4: Run the tests

The easiest way to run the tests is directly from the browser. Simply click
on the icon of the class name, or on an individual test method, and select
Run tests (t) or press the icon. The test methods will be flagged green or red,
depending on whether they pass or not (as shown in 11-2).

You can also select sets of test suites to run, and obtain a more detailed log
of the results using the SUnit Test Runner, which you can open by selecting
World > Test Runner.

167

SUnit: Tests in Pharo

Figure 11-2 Running SUnit tests from the System Browser.

Figure 11-3 Running SUnit tests using the TestRunner.

The Test Runner, shown in Figure 11-3, is designed to make it easy to execute
groups of tests.

The left-most pane lists all of the packages that contain test classes (i.e., sub-
classes of TestCase). When some of these packages are selected, the test
classes that they contain appear in the pane to the right. Abstract classes
are italicized, and the test class hierarchy is shown by indentation, so sub-
classes of ClassTestCase are indented more than subclasses of TestCase.
ClassTestCase is a class offering utilities methods to compute test cover-
age.

Open a Test Runner, select the package MySetTest, and click the Run Se-
lected button.

You can also run a single test (and print the usual pass/fail result summary)

168

11.8 Step 5: Interpret the results

by executing a Print it on the following code: MyExampleSetTest run: #testRemove.

Some people include an executable comment in their test methods that al-
lows running a test method with a Do it from the browser, as shown below.

MyExampleSetTest >> testRemove
"self run: #testRemove"
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

Introduce a bug in MyExampleSetTest >> testRemove and run the tests
again. For example, change 6 to 7, as in:

MyExampleSetTest >> testRemove
full remove: 5.
self assert: (full includes: 7).
self deny: (full includes: 5)

The tests that did not pass (if any) are listed in the right-hand panes of the
Test Runner. If you want to debug one, to see why it failed, just click on the
name. Alternatively, you can execute one of the following expressions:

(MyExampleSetTest selector: #testRemove) debug

MyExampleSetTest debug: #testRemove

11.8 Step 5: Interpret the results

The method assert: is defined in the class TestAsserter. This is a super-
class of TestCase and therefore all other TestCase subclasses and is respon-
sible for all kind of test result assertions. The assert: method expects a
boolean argument, usually the value of a tested expression. When the ar-
gument is true, the test passes; when the argument is false, the test fails.

There are actually three possible outcomes of a test: passing, failing, and rais-
ing an error.

• Passing. The outcome that we hope for is that all of the assertions
in the test are true, in which case the test passes. In the test runner,
when all of the tests pass, the bar at the top turns green. However,
there are two other ways that running a test can go wrong.

• Failing. The obvious way is that one of the assertions can be false,
causing the test to fail.

• Error. The other possibility is that some kind of error occurs during
the execution of the test, such as a message not understood error or an
index out of bounds error. If an error occurs, the assertions in the test
method may not have been executed at all, so we can’t say that the test
has failed; nevertheless, something is clearly wrong!

169

SUnit: Tests in Pharo

In the test runner, failing tests cause the bar at the top to turn yellow, and are
listed in the middle pane on the right, whereas tests with errors cause the
bar to turn red, and are listed in the bottom pane on the right.

Modify your tests to provoke both errors and failures.

11.9 The SUnit cookbook

This section will give you more details on how to use SUnit. If you have used
another testing framework such as JUnit, much of this will be familiar, since
all these frameworks have their roots in SUnit. Normally you will use SUnit’s
GUI to run tests, but there are situations where you may not want to use it.

Using assert:equals:

assert:equals: that offers a better report than assert: in case of error.
For example, the two following tests are equivalent. However, the second
one will report the value that the test is expecting: this makes easier to un-
derstand the failure. In this example, we suppose that aDateAndTime is an
instance variable of the test class.

testAsDate
self assert: aDateAndTime asDate = ('February 29, 2004' asDate

translateTo: 2 hours).

testAsDate
self
assert: aDateAndTime asDate
equals: ('February 29, 2004' asDate translateTo: 2 hours).

Skipping a test

Sometimes in the middle of a development, you may want to skip a test in-
stead of removing it or renaming it to prevent it from running. You can sim-
ply invoke the TestAssertermessage skip on your test case instance. For
example, the following test uses it to define a conditional test.

OCCompiledMethodIntegrityTest >> testPragmas

| newCompiledMethod originalCompiledMethod |
(Smalltalk globals hasClassNamed: #Compiler) ifFalse: [^ self

skip].
...

This is handy to make sure that your automated execution of tests is report-
ing success.

170

11.9 The SUnit cookbook

Listing 11-4 Testing error raising

MyExampleSetTest >> testIllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #zork] raise: Error

Other assertions

In addition to assert: and deny:, there are several other methods that can
be used to make assertions.

First, TestAsserter >> assert:description: and TestAsserter >>
deny:description: take a second argument which is a message string that
describes the reason for the failure, if it is not obvious from the test itself.
These methods are described in Section ??.

Next, SUnit provides two additional methods, TestAsserter >> should:raise:
and TestAsserter >> shouldnt:raise: for testing exception propaga-
tion.

For example, you would use self should: aBlock raise: anException
to test that a particular exception is raised during the execution of aBlock.
The method below illustrates the use of should:raise:.

Try running this test. Note that the first argument of the should: and shouldnt:
methods is a block that contains the expression to be executed.

Running a single test

Normally, you will run your tests using the Test Runner or using your code
browser. If you don’t want to launch the Test Runner UI from the World
menu, you can execute TestRunner open. You can also run a single test as
follows:

MyExampleSetTest run: #testRemove
>>> 1 run, 1 passed, 0 failed, 0 errors

Running all the tests in a test class

Any subclass of TestCase responds to the message suite, which will build a
test suite that contains all the methods in the class whose names start with
the string test.

To run the tests in the suite, send it the message run. For example:

MyExampleSetTest suite run
>>> 4 run, 4 passed, 0 failed, 0 errors

171

SUnit: Tests in Pharo

Figure 11-5 The four classes representing the core of SUnit.

Must I subclass TestCase?

In JUnit you can build a TestSuite from an arbitrary class containing test*
methods. In SUnit you can do the same but you will then have to create a
suite by hand and your class will have to implement all the essential Test-
Casemethods like assert:. We recommend, however, that you not try to do
this. The framework is there: use it.

11.10 The SUnit framework

SUnit consists of four main classes: TestCase, TestSuite, TestResult, and
TestResource, as shown in Figure 11-5. The notion of a test resource repre-
sents a resource that is expensive to set-up but which can be used by a whole
series of tests. A TestResource specifies a setUpmethod that is executed
just once before a suite of tests; this is in distinction to the TestCase >>
setUpmethod, which is executed before each test.

TestCase

TestCase is an abstract class that is designed to be subclassed. Each of its
subclasses represents a group of tests that share a common context (that
is, a test suite). Each test is run by creating a new instance of a subclass of
TestCase, running setUp, running the test method itself, and then sending
the tearDown.

The context is specified by instance variables of the subclass and by the spe-
cialization of the method setUp, which initializes those instance variables.
Subclasses of TestCase can also override method tearDown, which is in-
voked after the execution of each test, and can be used to release any objects
allocated during setUp.

172

11.10 The SUnit framework

TestSuite

Instances of the class TestSuite contain a collection of test cases. An in-
stance of TestSuite contains tests, and other test suites. That is, a test suite
contains sub-instances of TestCase and TestSuite.

Both individual test cases and test suites understand the same protocol, so
they can be treated in the same way (for example, both can be run). This is
in fact an application of the Composite pattern in which TestSuite is the
composite and the test cases are the leaves.

TestResult

The class TestResult represents the results of a TestSuite execution. It
records the number of tests passed, the number of tests failed, and the num-
ber of errors signalled.

TestResource

One of the important features of a suite of tests is that they should be inde-
pendent of each other. The failure of one test should not cause an avalanche
of failures of other tests that depend upon it, nor should the order in which
the tests are run matter. Performing setUp before each test and tearDown
afterwards helps to reinforce this independence.

However, there are occasions where setting up the necessary context is just
too time-consuming for it to be done before the execution of each test. More-
over, if it is known that the test cases do not disrupt the resources used by
the tests, then it is wasteful to set them up afresh for each test. It is sufficient
to set them up once for each suite of tests. Suppose, for example, that a suite
of tests needs to query a database, or do analysis on some compiled code. In
such cases, it may make sense to set up the database and open a connection
to it, or to compile some source code, before any of the tests start to run.

Where should we cache these resources, so that they can be shared by a suite
of tests? The instance variables of a particular TestCase subclass won’t do,
because a TestCase instance persists only for the duration of a single test (as
mentioned before, the instance is created anew for each test method). A global
variable would work, but using too many global variables pollutes the name
space, and the binding between the global and the tests that depend on it will
not be explicit. A better solution is to put the necessary resources in a sin-
gleton object of some class. The class TestResource exists to be subclassed
by such resource classes. Each subclass of TestResource understands the
message current, which will answer a singleton instance of that subclass.
Methods setUp and tearDown should be overridden in the subclass to ensure
that the resource is initialized and finalized.

173

SUnit: Tests in Pharo

Listing 11-6 An example of a TestResource subclass

TestResource subclass: #MyTestResource
instanceVariableNames: ''
classVariableNames: ''
package: 'MyTestExample'

TestCase subclass: #MyTestCase
instanceVariableNames: ''
classVariableNames: ''
package: 'MyTestExample'

MyTestCase class >> resources
"Associate the resource with this class of test cases"

^ { MyTestResource }

One thing remains: somehow, SUnit has to be told which resources are asso-
ciated with which test suite. A resource is associated with a particular sub-
class of TestCase by overriding the class method resources.

By default, the resources of a TestSuite are the union of the resources of
the TestCases that it contains.

Here is an example. We define a subclass of TestResource called MyTestRe-
source. Then we associate it with MyTestCase by overriding the class method
MyTestCase class >> resources to return an array of the test resource
classes that MyTestCase will use.

Exercise

The following trace (written to the Transcript) illustrates that a global set
up is run before and after each test in a sequence. Let’s see if you can obtain
this trace yourself.

MyTestResource >> setUp has run.
MyTestCase >> setUp has run.
MyTestCase >> testOne has run.
MyTestCase >> tearDown has run.
MyTestCase >> setUp has run.
MyTestCase >> testTwo has run.
MyTestCase >> tearDown has run.
MyTestResource >> tearDown has run.

Create new classes MyTestResource and MyTestCase which are subclasses
of TestResource and TestCase respectively. Add the appropriate methods
so that the following messages are written to the Transcript when you run
your tests.

174

11.11 Chapter summary

Solution.

You will need to write the following six methods.

MyTestCase >> setUp
Transcript show: 'MyTestCase>>setUp has run.'; cr

MyTestCase >> tearDown
Transcript show: 'MyTestCase>>tearDown has run.'; cr

MyTestCase >> testOne
Transcript show: 'MyTestCase>>testOne has run.'; cr

MyTestCase >> testTwo
Transcript show: 'MyTestCase>>testTwo has run.'; cr

MyTestResource >> setUp
Transcript show: 'MyTestResource>>setUp has run'; cr

MyTestResource >> tearDown
Transcript show: 'MyTestResource>>tearDown has run.'; cr

11.11 Chapter summary

This chapter explained why tests are an important investment in the future
of your code. We explained in a step-by-step fashion how to define a few
tests for the class Set. Then we gave an overview of the core of the SUnit
framework by presenting the classes TestCase, TestResult, TestSuite and
TestResources. Finally we looked deep inside SUnit by following the execu-
tion of a test and a test suite.

• To maximize their potential, unit tests should be fast, repeatable, in-
dependent of any direct human interaction and cover a single unit of
functionality.

• Tests for a class called MyClass belong in a class named MyClassTest,
which should be introduced as a subclass of TestCase.

• Initialize your test data in a setUpmethod.

• Each test method should start with the word test.

• Use the TestCasemethods assert:, deny: and others to make asser-
tions.

• Run tests!

175

CHA P T E R 12
Basic classes

Pharo is a really simple language but powerful language. Part of its power
is not in the language but in its class libraries. To program effectively in it,
you will need to learn how the class libraries support the language and envi-
ronment. The class libraries are entirely written in Pharo, and can easily be
extended. (Recall that a package may add new functionality to a class even if
it does not define this class.)

Our goal here is not to present in tedious detail the whole of the Pharo class
library, but rather to point out the key classes and methods that you will
need to use (or subclass/override) to program effectively. In this chapter,
we will cover the basic classes that you will need for nearly every applica-
tion: Object, Number and its subclasses, Character, String, Symbol, and
Boolean.

12.1 Object

For all intents and purposes, Object is the root of the inheritance hierarchy.
Actually, in Pharo the true root of the hierarchy is ProtoObject, which is
used to define minimal entities that masquerade as objects, but we can ig-
nore this point for the time being.

Object defines almost 400 methods (in other words, every class that you de-
fine will automatically provide all those methods). Note: You can count the
number of methods in a class like so:

Object selectors size "Count the instance methods in Object"
Object class selectors size "Count the class methods"

Class Object provides default behaviour common to all normal objects, such
as access, copying, comparison, error handling, message sending, and re-

177

Basic classes

Listing 12-1 printOn: redefinition.

Color >> printOn: aStream
| name |
(name := self name).
name = #unnamed
ifFalse: [

^ aStream
nextPutAll: 'Color ';
nextPutAll: name].

self storeOn: aStream

flection. Also utility messages that all objects should respond to are defined
here. Object has no instance variables, nor should any be added. This is due
to several classes of objects that inherit from Object that have special imple-
mentations (SmallInteger and UndefinedObject for example) that the VM
knows about and depends on the structure and layout of certain standard
classes.

If we begin to browse the method protocols on the instance side of Object
we will start to see some of the key behaviour it provides.

12.2 Object printing

Every object can return a printed form of itself. You can select any expres-
sion in a textpane and select the Print itmenu item: this executes the ex-
pression and asks the returned object to print itself. In fact this sends the
message printString to the returned object. The method printString,
which is a template method, at its core sends the message printOn: to its
receiver. The message printOn: is a hook that can be specialized.

Method Object>>printOn: is very likely one of the methods that you will
most frequently override. This method takes as its argument a Stream on
which a String representation of the object will be written. The default im-
plementation simply writes the class name preceded by a or an. Object>>printString
returns the String that is written.

For example, the class OpalCompiler does not redefine the method printOn:
and sending the message printString to an instance executes the methods
defined in Object.

OpalCompiler new printString
>>> 'an OpalCompiler'

The class Color shows an example of printOn: specialization. It prints the
name of the class followed by the name of the class method used to generate
that color.

Color red printString
>>> 'Color red'

178

12.3 A word about representation and self-evaluating representation.

Note that the message printOn: is not the same as storeOn:. The message
storeOn: writes to its argument stream an expression that can be used to
recreate the receiver. This expression is executed when the stream is read
using the message readFrom:. On the other hand, the message printOn:
just returns a textual version of the receiver. Of course, it may happen that
this textual representation may represent the receiver as a self-evaluating
expression.

12.3 A word about representation and self-evaluating rep-

resentation.

In functional programming, expressions return values when executed. In
Pharo, message sends (expressions) return objects (values). Some objects
have the nice property that their value is themselves. For example, the value
of the object true is itself i.e., the object true. We call such objects self-evaluating
objects. You can see a printed version of an object value when you print the
object in a playground. Here are some examples of such self-evaluating ex-
pressions.

true
>>> true

3@4
>>> (3@4)

$a
>>> $a

#(1 2 3)
>>> #(1 2 3)

Color red
>>> Color red

Note that some objects such as arrays are self-evaluating or not depend-
ing on the objects they contain. For example, an array of booleans is self-
evaluating, whereas an array of persons is not. The following example shows
that a dynamic array is self-evaluating only if its elements are:

{10@10. 100@100}
>>> {(10@10). (100@100)}

{OpalCompiler new . 100@100}
>>> an Array(an OpalCompiler (100@100))

Remember that literal arrays can only contain literals. Hence the following
array does not contain two points but rather six literal elements.

#(10@10 100@100)
>>> #(10 #@ 10 100 #@ 100)

179

Basic classes

Listing 12-2 Self-evaluation of Point
Point >> printOn: aStream
"The receiver prints on aStream in terms of infix notation."

aStream nextPut: $(.
x printOn: aStream.
aStream nextPut: $@.
(y notNil and: [y negative])
ifTrue: [

"Avoid ambiguous @- construct"
aStream space].

y printOn: aStream.
aStream nextPut: $).

Listing 12-3 Self-evaluation of Interval
Interval >> printOn: aStream

aStream nextPut: $(;
print: start;
nextPutAll: ' to: ';
print: stop.

step ~= 1 ifTrue: [aStream nextPutAll: ' by: '; print: step].
aStream nextPut: $)

Listing 12-4 Object equality

Object >> = anObject
"Answer whether the receiver and the argument represent the same
object.
If = is redefined in any subclass, consider also redefining the
message hash."

^ self == anObject

Lots of printOn: method specializations implement self-evaluating behav-
ior. The implementations of Point>>printOn: and Interval>>printOn:
are self-evaluating.

1 to: 10
>>> (1 to: 10) "intervals are self-evaluating"

12.4 Identity and equality

In Pharo, the message = tests object equality while the message == tests object
identity. The former is used to check whether two objects represent the same
value, while the latter is used to check whether two expressions represent
the same object.

The default implementation of object equality is to test for object identity:

180

12.5 Class membership

If you override =, you should consider overriding hash. If instances of your
class are ever used as keys in a Dictionary, then you should make sure that
instances that are considered to be equal have the same hash value.

Although you should override = and hash together, you should never over-
ride ==. The semantics of object identity is the same for all classes. Message
== is a primitive method of ProtoObject.

Note that Pharo has some strange equality behaviour compared to other
Smalltalks. For example a symbol and a string can be equal. (We consider
this to be a bug, not a feature.)

#'lulu' = 'lulu'
>>> true

'lulu' = #'lulu'
>>> true

12.5 Class membership

Several methods allow you to query the class of an object.

class.

You can ask any object about its class using the message class.

1 class
>>> SmallInteger

isMemberOf:.

Conversely, you can ask if an object is an instance of a specific class:

1 isMemberOf: SmallInteger
>>> true "must be precisely this class"

1 isMemberOf: Integer
>>> false

1 isMemberOf: Number
>>> false

1 isMemberOf: Object
>>> false

Since Pharo is written in itself, you can really navigate through its structure
using the right combination of superclass and class messages (see Chapter:
Classes and Metaclasses).

181

Basic classes

isKindOf:.

Object>>isKindOf: answers whether the receiver’s class is either the same
as, or a subclass of the argument class.

1 isKindOf: SmallInteger
>>> true

1 isKindOf: Integer
>>> true

1 isKindOf: Number
>>> true

1 isKindOf: Object
>>> true

1 isKindOf: String
>>> false

1/3 isKindOf: Number
>>> true

1/3 isKindOf: Integer
>>> false

1/3 which is a Fraction is a kind of Number, since the class Number is a su-
perclass of the class Fraction, but 1/3 is not an Integer.

respondsTo:.

Object>>respondsTo: answers whether the receiver understands the mes-
sage selector given as an argument.

1 respondsTo: #,
>>> false

A note on the usage of respondsTo:. Normally it is a bad idea to query an
object for its class, or to ask it which messages it understands. Instead of
making decisions based on the class of object, you should simply send a mes-
sage to the object and let it decide (on the basis of its class) how it should
behave. This concept is sometimes referred to as duck typing.

12.6 Copying

Copying objects introduces some subtle issues. Since instance variables are
accessed by reference, a shallow copy of an object would share its references
to instance variables with the original object:

a1 := { { 'harry' } }.
a1
>>> #(#('harry'))

182

12.6 Copying

Listing 12-5 Copying objects as a template method

Object >> copy
"Answer another instance just like the receiver.
Subclasses typically override postCopy;
they typically do not override shallowCopy."

^ self shallowCopy postCopy

a2 := a1 shallowCopy.
a2
>>> #(#('harry'))

(a1 at: 1) at: 1 put: 'sally'.
a1
>>> #(#('sally'))

a2
>>> #(#('sally')) "the subarray is shared!"

Object>>shallowCopy is a primitive method that creates a shallow copy of
an object. Since a2 is only a shallow copy of a1, the two arrays share a refer-
ence to the nested Array that they contain.

Object>>deepCopymakes an arbitrarily deep copy of an object.

a1 := { { { 'harry' } } } .
a2 := a1 deepCopy.
(a1 at: 1) at: 1 put: 'sally'.
a1
>>> #(#('sally'))

a2
>>> #(#(#('harry')))

The problem with deepCopy is that it will not terminate when applied to a
mutually recursive structure:

a1 := { 'harry' }.
a2 := { a1 }.
a1 at: 1 put: a2.
a1 deepCopy
>>> !''... does not terminate!''!

An alternate solution is to use message copy. It is implemented on Object as
follows:

Object >> postCopy
^ self

By default postCopy returns self. It means that by default copy is doing the
same as shallowCopy but each subclass can decide to customise the post-
Copymethod which acts as a hook. You should override postCopy to copy

183

Basic classes

Listing 12-6 Checking a pre-condition

Stack >> pop
"Return the first element and remove it from the stack."

self assert: [self isNotEmpty].
^ self linkedList removeFirst element

any instance variables that should not be shared. In addition there is a good
chance that postCopy should always do a super postCopy to ensure that
state of the superclass is also copied.

12.7 Debugging

halt.

The most important method here is halt. To set a breakpoint in a method,
simply insert the expression self halt at some point in the body of the
method. (Note that since halt is defined on Object you can also write 1
halt). When this message is sent, execution will be interrupted and a de-
bugger will open to this point in your program (see Chapter : The Pharo En-
vironment for more details about the debugger).

You can also use Halt once or Halt if: aCondition. Have a look at the
class Halt which is an special exception.

assert:.

The next most important message is assert:, which expects a block as its
argument. If the block evaluates to true, execution continues. Otherwise an
AssertionFailure exception will be raised. If this exception is not other-
wise caught, the debugger will open to this point in the execution. assert:
is especially useful to support design by contract. The most typical usage is to
check non-trivial pre-conditions to public methods of objects. Stack>>pop
could easily have been implemented as follows (note that this definition is
anhypothetical example and not in the Pharo 8.0 system):

Do not confuse Object>>assert: with TestCase>>assert:, which occurs
in the SUnit testing framework (see Chapter : SUnit). While the former ex-
pects a block as its argument (actually, it will take any argument that under-
stands value, including a Boolean), the latter expects a Boolean. Although
both are useful for debugging, they each serve a very different purpose.

12.8 Error handling

This protocol contains several methods useful for signaling run-time errors.

184

12.8 Error handling

Listing 12-7 Signaling that a method is abstract

Object >> subclassResponsibility
"This message sets up a framework for the behavior of the class'
subclasses.
Announce that the subclass should have implemented this message."

SubclassResponsibility signalFor: thisContext sender selector

deprecated:.

Sending self deprecated: signals that the current method should no longer
be used, if deprecation has been turned on. You can turn it on/off in the De-
bugging section using the Settings browser. The argument should describe
an alternative. Look for senders of the message deprecated: to get an idea.

doesNotUnderstand:.

doesNotUnderstand: (commonly abbreviated in discussions as DNU or
MNU) is sent whenever message lookup fails. The default implementation,
i.e., Object>>doesNotUnderstand: will trigger the debugger at this point.
It may be useful to override doesNotUnderstand: to provide some other
behaviour.

error.

Object>>error and Object>>error: are generic methods that can be used
to raise exceptions. (Generally it is better to raise your own custom excep-
tions, so you can distinguish errors arising from your code from those com-
ing from kernel classes.)

subclassResponsibility.

Abstract methods are implemented by convention with the body self sub-
classResponsibility. Should an abstract class be instantiated by accident,
then calls to abstract methods will result in Object>>subclassResponsi-
bility being executed.

Magnitude, Number, and Boolean are classical examples of abstract classes
that we shall see shortly in this chapter.

Number new + 1
>>> !''Error: Number is an abstract class. Make a concrete

subclass.''!

185

Basic classes

Listing 12-8 initialize as an empty hook method

ProtoObject >> initialize
"Subclasses should redefine this method to perform
initializations on instance creation"

shouldNotImplement.

self shouldNotImplement is sent by convention to signal that an inher-
ited method is not appropriate for this subclass. This is generally a sign that
something is not quite right with the design of the class hierarchy. Due to
the limitations of single inheritance, however, sometimes it is very hard to
avoid such workarounds.

A typical example is Collection>>remove: which is inherited by Dictio-
nary but flagged as not implemented. (A Dictionary provides removeKey:
instead.)

12.9 Testing

The testingmethods have nothing to do with SUnit testing! A testing method
is one that lets you ask a question about the state of the receiver and returns
a Boolean.

Numerous testing methods are provided by Object. There are isArray, is-
Boolean, isBlock, isCollection and so on. Generally such methods are to
be avoided since querying an object for its class is a form of violation of en-
capsulation. Instead of testing an object for its class, one should simply send
a request and let the object decide how to handle it.

Nevertheless some of these testing methods are undeniably useful. The most
useful are probably ProtoObject>>isNil and Object>>notNil (though the
Null Object design pattern can obviate the need for even these methods).

12.10 Initialize

A final key method that occurs not in Object but in ProtoObject is ini-
tialize.

The reason this is important is that in Pharo, the default newmethod de-
fined for every class in the system will send initialize to newly created
instances.

This means that simply by overriding the initialize hook method, new
instances of your class will automatically be initialized. The initialize
method should normally perform a super initialize to establish the class
invariant for any inherited instance variables.

186

12.11 Numbers

Listing 12-9 new as a class-side template method

Behavior >> new
"Answer a new initialized instance of the receiver (which is a
class) with no indexable
variables. Fail if the class is indexable."
^ self basicNew initialize

Figure 12-10 The number hierarchy.

12.11 Numbers

Numbers in Pharo are not primitive data values but true objects. Of course
numbers are implemented efficiently in the virtual machine, but the Number
hierarchy is as perfectly accessible and extensible as any other portion of the
class hierarchy.

The abstract root of this hierarchy is Magnitude, which represents all kinds
of classes supporting comparison operators. Number adds various arithmetic
and other operators as mostly abstract methods. Float and Fraction rep-
resent, respectively, floating point numbers and fractional values. Float
subclasses (BoxedFloat64 and SmallFloat64) represent Float on certain ar-
chitectures. For example BoxedFloat64 is only available for 64 bit systems.
Integer is also abstract, thus distinguishing between subclasses SmallInte-
ger, LargePositiveInteger and LargeNegativeInteger. For the most
part, users do not need to be aware of the difference between the three In-
teger classes, as values are automatically converted as needed.

187

Basic classes

Listing 12-11 Abstract comparison methods

Magnitude >> < aMagnitude
"Answer whether the receiver is less than the argument."

^ self subclassResponsibility

Magnitude >> > aMagnitude
"Answer whether the receiver is greater than the argument."

^ aMagnitude < self

12.12 Magnitude

Magnitude is the parent not only of the Number classes, but also of other
classes supporting comparison operations, such as Character, Duration
and Timespan.

Methods < and = are abstract. The remaining operators are generically de-
fined. For example:

12.13 Number

Similarly, Number defines +, -, * and / to be abstract, but all other arithmetic
operators are generically defined.

All Number objects support various converting operators, such as asFloat
and asInteger. There are also numerous shortcut constructor methods which
generate Durations, such as hour, day and week.

Numbers directly support common math functions such as sin, log, raiseTo:,
squared, sqrt and so on.

The method Number>>printOn: is implemented in terms of the abstract
method Number>>printOn:base:. (The default base is 10.)

Testing methods include even, odd, positive and negative. Unsurprisingly
Number overrides isNumber. More interestingly, isInfinite is defined to
return false.

Truncation methods include floor, ceiling, integerPart, fractionPart
and so on.

1 + 2.5
>>> 3.5 "Addition of two numbers"

3.4 * 5
>>> 17.0 "Multiplication of two numbers"

8 / 2
>>> 4 "Division of two numbers"

188

12.14 Float

10 - 8.3
>>> 1.7 "Subtraction of two numbers"

12 = 11
>>> false "Equality between two numbers"

12 ~= 11
>>> true "Test if two numbers are different"

12 > 9
>>> true "Greater than"

12 >= 10
>>> true "Greater or equal than"

12 < 10
>>> false "Smaller than"

100@10
>>> 100@10 "Point creation"

The following example works surprisingly well in Pharo:

1000 factorial / 999 factorial
>>> 1000

Note that 1000 factorial is really calculated, which in many other lan-
guages can be quite difficult to compute. This is an excellent example of au-
tomatic coercion and exact handling of a number.

To do Try to display the result of 1000 factorial. It takes more time
to display it than to calculate it!

12.14 Float

Float implements the abstract Numbermethods for floating point numbers.

More interestingly, Float class (i.e., the class-side of Float) provides meth-
ods to return the following constants: e, infinity, nan and pi.

Float pi
>>> 3.141592653589793

Float infinity
>>> Float infinity

Float infinity isInfinite
>>> true

12.15 Fraction

Fractions are represented by instance variables for the numerator and de-
nominator, which should be Integers. Fractions are normally created by

189

Basic classes

Integer division (rather than using the constructor method Fraction>>nu-
merator:denominator:):

6/8
>>> (3/4)

(6/8) class
>>> Fraction

Multiplying a Fraction by an Integer or another Fractionmay yield an
Integer:

6/8 * 4
>>> 3

12.16 Integer

Integer is the abstract parent of three concrete integer implementations.
In addition to providing concrete implementations of many abstract Number
methods, it also adds a few methods specific to integers, such as factorial,
atRandom, isPrime, gcd: and many others.

SmallInteger is special in that its instances are represented compactly —
instead of being stored as a reference, a SmallInteger is represented di-
rectly using the bits that would otherwise be used to hold a reference. The
first bit of an object reference indicates whether the object is a SmallInte-
ger or not. Now the virtual machine abstracts that from you, therefore you
cannot see this directly when inspecting the object.

The class methods minVal and maxVal tell us the range of a SmallInte-
ger, note that it varies depending on the size of your image from either (2
raisedTo: 30) - 1 for a 32-bits image or (2 raisedTo: 60) - 1 for a
64-bits one.

SmallInteger maxVal = ((2 raisedTo: 30) - 1)
>>> true

SmallInteger minVal = (2 raisedTo: 30) negated
>>> true

When a SmallInteger goes out of this range, it is automatically converted to
a LargePositiveInteger or a LargeNegativeInteger, as needed:

(SmallInteger maxVal + 1) class
>>> LargePositiveInteger

(SmallInteger minVal - 1) class
>>> LargeNegativeInteger

Large integers are similarly converted back to small integers when appropri-
ate.

190

12.17 Characters

As in most programming languages, integers can be useful for specifying it-
erative behaviour. There is a dedicated method timesRepeat: for evaluat-
ing a block repeatedly. We have already seen a similar example in Chapter :
Syntax in a Nutshell.

| n |
n := 2.
3 timesRepeat: [n := n * n].
n
>>> 256

12.17 Characters

Character is defined a subclass of Magnitude. Printable characters are rep-
resented in Pharo as $<char>. For example:

$a < $b
>>> true

Non-printing characters can be generated by various class methods. Charac-
ter class>>value: takes the Unicode (or ASCII) integer value as argument
and returns the corresponding character. The protocol accessing unty-
peable characters contains a number of convenience constructor methods
such as backspace, cr, escape, euro, space, tab, and so on.

Character space = (Character value: Character space asciiValue)
>>> true

The printOn: method is clever enough to know which of the three ways to
generate characters offers the most appropriate representation:

Character value: 1
>>> Character home

Character value: 2
>>> Character value: 2

Character value: 32
>>> Character space

Character value: 97
>>> $a

Various convenient testing methods are built in: isAlphaNumeric, isChar-
acter, isDigit, isLowercase, isVowel, and so on.

To convert a Character to the string containing just that character, send
asString. In this case asString and printString yield different results:

$a asString
>>> 'a'

191

Basic classes

Figure 12-12 The String Hierarchy.

$a
>>> $a

$a printString
>>> '$a'

Like SmallInteger, a Character is a immediate value not a object reference.
Most of the time you won’t see any difference and can use objects of class
Character like any other too. But this means, equal value characters are
always identical:

(Character value: 97) == $a
>>> true

12.18 Strings

A String is an indexed Collection that holds only Characters.

In fact, String is abstract and Pharo strings are actually instances of the
concrete class ByteString.

'hello world' class
>>> ByteString

The other important subclass of String is Symbol. The key difference is
that there is only ever a single instance of Symbol with a given value. (This
is sometimes called the unique instance property). In contrast, two separately
constructed Strings that happen to contain the same sequence of characters
will often be different objects.

192

12.19 Booleans

'hel','lo' == 'hello'
>>> false

('hel','lo') asSymbol == #hello
>>> true

Another important difference is that a String is mutable, whereas a Symbol
is immutable.

'hello' at: 2 put: $u; yourself
>>> 'hullo'

#hello at: 2 put: $u
>>> Error: symbols can not be modified.

It is easy to forget that since strings are collections, they understand the
same messages that other collections do:

#hello indexOf: $o
>>> 5

Although String does not inherit from Magnitude, it does support the usual
comparingmethods, <, = and so on. In addition, String>>match: is useful
for some basic glob-style pattern-matching:

'*or*' match: 'zorro'
>>> true

Regular expressions will be discussed in more detail in Chapter : Regular Ex-
pressions in Pharo.

Strings support a rather large number of conversion methods. Many of these
are shortcut constructor methods for other classes, such as asDate, asInte-
ger and so on. There are also a number of useful methods for converting a
string to another string, such as capitalized and translateToLowercase.

For more on strings and collections, see Chapter : Collections.

12.19 Booleans

The class Boolean offers a fascinating insight into how much of the Pharo
language has been pushed into the class library. Boolean is the abstract su-
perclass of the singleton classes True and False.

Most of the behaviour of Booleans can be understood by considering the
method ifTrue:ifFalse:, which takes two Blocks as arguments.

4 factorial > 20
ifTrue: ['bigger']
ifFalse: ['smaller']

>>> 'bigger'

193

Basic classes

Figure 12-13 The Boolean Hierarchy.

Listing 12-14 Implementations of ifTrue:ifFalse:
True >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

^ trueAlternativeBlock value

False >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
^ falseAlternativeBlock value

Listing 12-15 Implementing negation

True >> not
"Negation--answer false since the receiver is true."
^ false

False >> not
"Negation--answer true since the receiver is false."
^ true

The method ifTrue:ifFalse: is abstract in class Boolean. The implemen-
tations in its concrete subclasses are both trivial:

Each of them execute the correct block depending on the receiver of the
message. In fact, this is the essence of OOP: when a message is sent to an
object, the object itself determines which method will be used to respond.
In this case an instance of True simply executes the true alternative, while
an instance of False executes the false alternative. All the abstract Boolean
methods are implemented in this way for True and False. For example the
implementation of negation (message not) is defined the same way:

Booleans offer several useful convenience methods, such as ifTrue:, if-
False:, and ifFalse:ifTrue. You also have the choice between eager and
lazy conjunctions and disjunctions.

(1 > 2) & (3 < 4)
>>> false "Eager, must evaluate both sides"

(1 > 2) and: [3 < 4]
>>> false "Lazy, only evaluate receiver"

194

12.20 Chapter summary

(1 > 2) and: [(1 / 0) > 0]
>>> false "argument block is never executed, so no exception"

In the first example, both Boolean subexpressions are executed, since &
takes a Boolean argument. In the second and third examples, only the first is
executed, since and: expects a Block as its argument. The Block is executed
only if the first argument is true.

Try to imagine how and: and or: are implemented. Check the implementa-
tions in Boolean, True and False.

12.20 Chapter summary

• If you override = then you should override hash as well.

• Override postCopy to correctly implement copying for your objects.

• Use self halt. to set a breakpoint.

• Return self subclassResponsibility to make a method abstract.

• To give an object a String representation you should override printOn:.

• Override the hook method initialize to properly initialize instances.

• Numbermethods automatically convert between Floats, Fractions
and Integers.

• Fractions truly represent rational numbers rather than floats.

• All Characters are like unique instances.

• Strings are mutable; Symbols are not. Take care not to mutate string
literals, however!

• Symbols are unique; Strings are not.

• Strings and Symbols are Collections and therefore support the
usual Collectionmethods.

195

CHA P T E R 13
Collections

13.1 Introduction

The collection classes form a loosely-defined group of general-purpose sub-
classes of Collection and Stream. Many of these (like Bitmap, FileStream
and CompiledMethod) are special-purpose classes crafted for use in other
parts of the system or in applications, and hence not categorized as Collec-
tions by the system organization. For the purposes of this chapter, we use the
term Collection Hierarchy to mean Collection and its subclasses that are also
in the packages labelled Collections-*. We use the term Stream Hierarchy
to mean Stream and its subclasses that are also in the Collections-Streams
packages.

In this chapter we focus mainly on the subset of collection classes shown in
Figure 13-1. Streams will be discussed separately in Chapter : Streams.

13.2 The varieties of collections

To make good use of the collection classes, the reader needs at least a super-
ficial knowledge of the wide variety of collections that they implement, and
their commonalities and differences.

Programming with collections using high-order functions rather than indi-
vidual elements is an important way to raise the level of abstraction of a pro-
gram. The Lisp function map, which applies an argument function to every
element of a list and returns a new list containing the results is an early ex-
ample of this style. Following its Smalltalk root, Pharo adopts this collection-
based high-order programming as a central tenet. Modern functional pro-
gramming languages such as ML and Haskell have followed Smalltalk’s lead.

197

Collections

Figure 13-1 Some of the key collection classes in Pharo.

Why is this a good idea? Let us suppose you have a data structure containing
a collection of student records, and wish to perform some action on all of the
students that meet some criteria. Programmers raised to use an imperative
language will immediately reach for a loop, but the Pharo programmer will
write:

students
select: [:each | each gpa < threshold]

This expression returns a new collection containing precisely those elements
of students for which the block (the bracketed function) returns true. The
block can be thought of as a lambda-expression defining an anonymous func-
tion x. x gpa < threshold. This code has the simplicity and elegance of a
domain-specific query language.

The message select: is understood by all collections in Pharo. There is no
need to find out if the student data structure is an array or a linked list: the
select: message is understood by both. Note that this is quite different
from using a loop, where one must know whether students is an array or
a linked list before the loop can be set up.

In Pharo, when one speaks of a collection without being more specific about
the kind of collection, one means an object that supports well-defined pro-
tocols for testing membership and enumerating the elements. All collections
understand the testingmessages includes:, isEmpty and occurrence-
sOf:. All collections understand the enumerationmessages do:, select:,
reject: (which is the opposite of select:), collect: (which is like Lisp’s
map), detect:ifNone:, inject:into: (which performs a left fold) and many

198

13.2 The varieties of collections

more. It is the ubiquity of this protocol, as well as its variety, that makes it so
powerful.

The table below summarizes the standard protocols supported by most of the
classes in the collection hierarchy. These methods are defined, redefined,
optimized or occasionally even forbidden by subclasses of Collection.

Protocol Methods

accessing size, capacity, at:, at:put:
testing isEmpty, includes:, contains:, occurrencesOf:
adding add:, addAll:
removing remove:, remove:ifAbsent:, removeAll:
enumerating do:, collect:, select:, reject:

detect:, detect:ifNone:, inject:into:
converting asBag, asSet, asOrderedCollection, asSortedCollection,

asArray, asSortedCollection:
creation with:, with:with:, with:with:with:,

with:with:with:with:, withAll:

Beyond this basic uniformity, there are many different kinds of collections
either supporting different protocols or providing different behaviour for
the same requests. Let us briefly observe some of the key differences:

Sequenceable: Instances of all subclasses of SequenceableCollection
start from a first element and proceed in a well-defined order to
a last element. Instances of Set, Bag and Dictionary, on the other
hand, are not sequenceable.

Sortable: A SortedCollectionmaintains its elements in sort order.

Indexable: Most sequenceable collections are also indexable, that is, ele-
ments can be retrieved with message at: anIndex. Array is the famil-
iar indexable data structure with a fixed size; anArray at: n retrieves
the nth element of anArray, and anArray at: n put: v changes the
nth element to v. LinkedLists and SkipLists are sequenceable but
not indexable, that is, they understand first and last, but not the
message at:.

Keyed: Instances of Dictionary and its subclasses are accessed by keys in-
stead of indices.

Mutable: Most collections are mutable, but Intervals and Symbols are
not. An Interval is an immutable collection representing a range of
Integers. For example, 5 to: 16 by: 2 is an interval that contains
the elements 5, 7, 9, 11, 13 and 15. It is indexable with message at:
anIndex, but cannot be changed with message at: anIndex put:
aValue.

Growable: Instances of Interval and Array are always of a fixed size.
Other kinds of collections (sorted collections, ordered collections, and

199

Collections

Figure 13-2 Some collection classes categorized by implementation technique.

linked lists) can grow after creation. The class OrderedCollection is
more general than Array; the size of an OrderedCollection grows on
demand, and it defines messages addFirst: anElement and addLast:
anElement as well as messages at: anIndex and at: anIndex put:
aValue.

Accepts duplicates: A Set filters out duplicates, but a Bag does not.
Classes Dictionary, Set and Bag use the =method provided by the
elements; the Identity variants of these classes use the ==method,
which tests whether the arguments are the same object, and the Plug-
gable variants use an arbitrary equivalence relation supplied by the
creator of the collection.

Heterogeneous: Most collections will hold any kind of element. A String,
CharacterArray or Symbol, however, only holds Characters. An Ar-
ray will hold any mix of objects, but a ByteArray only holds Bytes. A
LinkedList is constrained to hold elements that conform to the Link
accessing protocol.

13.3 Collection implementations

These categorizations by functionality are not our only concern; we must
also consider how the collection classes are implemented. As shown in Figure
13-2, five main implementation techniques are employed.

• Arrays store their elements in the (indexable) instance variables of the
collection object itself; as a consequence, arrays must be of a fixed size,
but can be created with a single memory allocation.

• OrderedCollections and SortedCollections store their elements in
an array that is referenced by one of the instance variables of the col-
lection. Consequently, the internal array can be replaced with a larger
one if the collection grows beyond its storage capacity.

• The various kinds of set and dictionary also reference a subsidiary ar-
ray for storage, but use the array as a hash table. Bags use a subsidiary

200

13.4 Examples of key classes

Dictionary, with the elements of the bag as keys and the number of
occurrences as values.

• LinkedLists use a standard singly-linked representation.

• Intervals are represented by three integers that record the two end-
points and the step size.

In addition to these classes, there are also weak variants of Array, Set and of
the various kinds of dictionary. These collections hold onto their elements
weakly, i.e., in a way that does not prevent the elements from being garbage
collected. The Pharo virtual machine is aware of these classes and handles
them specially.

13.4 Examples of key classes

We present now the most common or important collection classes using sim-
ple code examples. The main protocols of collections are:

• messages at:, at:put: — to access an element,

• messages add:, remove: — to add or remove an element,

• messages size, isEmpty, include: — to get some information about
the collection,

• messages do:, collect:, select: — to iterate over the collection.

Each collection may implement (or not) such protocols, and when they do,
they interpret them to fit with their semantics. We suggest you to browse
the classes themselves in order to identify specific and more advanced proto-
cols.

We will focus on the most common collection classes: OrderedCollection,
Set, SortedCollection, Dictionary, Interval, and Array.

13.5 Common creation protocol.

There are several ways to create instances of collections. The most generic
ones use the message new: aSize and with: anElement.

• new: anInteger creates a collection of size anInteger whose ele-
ments will all be nil.

• with: anObject creates a collection and adds anObject to the created
collection.

Different collections will realize this behaviour differently.

You can create collections with initial elements using the methods with:,
with:with: etc. for up to six elements.

201

Collections

Array with: 1
>>> #(1)

Array with: 1 with: 2
>>> #(1 2)

Array with: 1 with: 2 with: 3
>>> #(1 2 3)

Array with: 1 with: 2 with: 3 with: 4
>>> #(1 2 3 4)

Array with: 1 with: 2 with: 3 with: 4 with: 5
>>> #(1 2 3 4 5)

Array with: 1 with: 2 with: 3 with: 4 with: 5 with: 6
>>> #(1 2 3 4 5 6)

You can also use message addAll: aCollection to add all elements of one
kind of collection to another kind:

(1 to: 5) asOrderedCollection addAll: '678'; yourself
>>> an OrderedCollection(1 2 3 4 5 6 7 8)

Take care that addAll: returns its argument, and not the receiver!

You can also create many collections with withAll: aCollection.

Array withAll: #(7 3 1 3)
>>> #(7 3 1 3)

OrderedCollection withAll: #(7 3 1 3)
>>> an OrderedCollection(7 3 1 3)

SortedCollection withAll: #(7 3 1 3)
>>> a SortedCollection(1 3 3 7)

Set withAll: #(7 3 1 3)
>>> a Set(7 1 3)

Bag withAll: #(7 3 1 3)
>>> a Bag(7 1 3 3)

13.6 Array

An Array is a fixed-sized collection of elements accessed by integer indices.
Contrary to the C convention in Pharo, the first element of an array is at po-
sition 1 and not 0. The main protocol to access array elements is the method
at: and at:put:.

• at: anInteger returns the element at index anInteger.

• at: anInteger put: anObject puts anObject at index anInteger.

202

13.6 Array

Arrays are fixed-size collections therefore we cannot add or remove ele-
ments at the end of an array. The following code creates an array of size 5,
puts values in the first 3 locations and returns the first element.

| anArray |
anArray := Array new: 5.
anArray at: 1 put: 4.
anArray at: 2 put: 3/2.
anArray at: 3 put: 'ssss'.
anArray at: 1
>>> 4

There are several ways to create instances of the class Array. We can use

• new:, with:,

• #() construct - literal arrays and

• { . } dynamic compact syntax.

Creation with new:

The message new: anInteger creates an array of size anInteger. Array
new: 5 creates an array of size 5.

Note The value of each element is initialized to nil.

Creation using with:

The with:*messages allow one to specify the value of the elements. The
following code creates an array of three elements consisting of the number 4,
the fraction 3/2 and the string 'lulu'.

Array with: 4 with: 3/2 with: 'lulu'
>>> {4. (3/2). 'lulu'}

Literal creation with #()

The expression #() creates literal arrays with constants or literal elements
that have to be known when the expression is compiled, and not when it is
executed. The following code creates an array of size 2 where the first ele-
ment is the (literal) number 1 and the second the (literal) string 'here'.

#(1 'here') size
>>> 2

Now, if you execute the expression #(1+2), you do not get an array with a
single element 3 but instead you get the array #(1 #+ 2) i.e., with three ele-
ments: 1, the symbol #+ and the number 2.

203

Collections

#(1+2)
>>> #(1 #+ 2)

This occurs because the construct #() does not execute the expressions it
contains. The elements are only objects that are created when parsing the
expression (called literal objects). The expression is scanned and the result-
ing elements are fed to a new array. Literal arrays contain numbers, nil,
true, false, symbols, strings and other literal arrays. During the execution
of #() expressions, there are no messages sent.

Dynamic creation with { . }

Finally, you can create a dynamic array using the construct { . }. The ex-
pression { a . b } is totally equivalent to Array with: a with: b. This
means in particular that the expressions enclosed by { and } are executed
(contrary to the case of #()).

{ 1 + 2 }
>>> #(3)

{(1/2) asFloat} at: 1
>>> 0.5

{10 atRandom. 1/3} at: 2
>>> (1/3)

Element Access

Elements of all sequenceable collections can be accessed with messages at:
anIndex and at: anIndex put: anObject.

| anArray |
anArray := #(1 2 3 4 5 6) copy.
anArray at: 3 >>> 3
anArray at: 3 put: 33.
anArray at: 3
>>> 33

Be careful: general principle is that literal arrays are not be modified! Literal
arrays are kept in compiled method literal frames (a space where literals ap-
pearing in a method are stored), therefore unless you copy the array, the sec-
ond time you execute the code your literal array may not have the value you
expect. In the example, without copying the array, the second time around,
the literal #(1 2 3 4 5 6) will actually be #(1 2 33 4 5 6)! Dynamic ar-
rays do not have this problem because they are not stored in literal frames.

204

13.7 OrderedCollection

13.7 OrderedCollection

OrderedCollection is one of the collections that can grow, and to which
elements can be added sequentially. It offers a variety of messages such as
add:, addFirst:, addLast:, and addAll:.

| ordCol |
ordCol := OrderedCollection new.
ordCol add: 'Seaside'; add: 'SmalltalkHub'; addFirst: 'GitHub'.
ordCol
>>> an OrderedCollection('GitHub' 'Seaside' 'SmalltalkHub')

Removing Elements

The message remove: anObject removes the first occurrence of an object
from the collection. If the collection does not include such an object, it raises
an error.

ordCol add: 'GitHub'.
ordCol remove: 'GitHub'.
ordCol
>>> an OrderedCollection('Seaside' 'SmalltalkHub' 'GitHub')

There is a variant of remove: named remove:ifAbsent: that allows one to
specify as second argument a block that is executed in case the element to be
removed is not in the collection.

result := ordCol remove: 'zork' ifAbsent: [33].
result
>>> 33

Conversion

It is possible to get an OrderedCollection from an Array (or any other col-
lection) by sending the message asOrderedCollection:

#(1 2 3) asOrderedCollection
>>> an OrderedCollection(1 2 3)

'hello' asOrderedCollection
>>> an OrderedCollection($h $e $l $l $o)

13.8 Interval

The class Interval represents ranges of numbers. For example, the interval
of numbers from 1 to 100 is defined as follows:

Interval from: 1 to: 100
>>> (1 to: 100)

205

Collections

The result of printString reveals that the class Number provides us with a
convenience method called to: to generate intervals:

(Interval from: 1 to: 100) = (1 to: 100)
>>> true

We can use Interval class>>from:to:by: or Number>>to:by: to specify
the step between two numbers as follow:

(Interval from: 1 to: 100 by: 0.5) size
>>> 199

(1 to: 100 by: 0.5) at: 198
>>> 99.5

(1/2 to: 54/7 by: 1/3) last
>>> (15/2)

13.9 Dictionary

Dictionaries are important collections whose elements are accessed using
keys. Among the most commonly used messages of dictionary you will find
at: aKey, at: aKey put: aValue, at: aKey ifAbsent: aBlock, keys,
and values.

| colors |
colors := Dictionary new.
colors at: #yellow put: Color yellow.
colors at: #blue put: Color blue.
colors at: #red put: Color red.
colors at: #yellow
>>> Color yellow

colors keys
>>> #(#red #blue #yellow)

colors values
>>> {Color red . Color blue . Color yellow}

Dictionaries compare keys by equality. Two keys are considered to be the
same if they return true when compared using =. A common and difficult to
spot bug is to use as key an object whose =method has been redefined but
not its hashmethod. Both methods are used in the implementation of dictio-
nary and when comparing objects.

In its implementation, a Dictionary can be seen as consisting of a set of (key
value) associations created using the message ->. We can create a Dictio-
nary from a collection of associations, or we may convert a dictionary to an
array of associations.

206

13.10 IdentityDictionary

| colors |
colors := Dictionary newFrom: { #blue->Color blue . #red->Color red

. #yellow->Color yellow }.
colors removeKey: #blue.
colors associations
>>> {#yellow->Color yellow. #red->Color red}

13.10 IdentityDictionary

While a dictionary uses the result of the messages = and hash to determine
if two keys are the same, the class IdentityDictionary uses the identity
(message ==) of the key instead of its values, i.e., it considers two keys to be
equal only if they are the same object.

Often Symbols are used as keys, in which case it is natural to use an Identi-
tyDictionary, since a Symbol is guaranteed to be globally unique. If, on the
other hand, your keys are Strings, it is better to use a plain Dictionary, or
you may get into trouble:

a := 'foobar'.
b := a copy.
trouble := IdentityDictionary new.
trouble at: a put: 'a'; at: b put: 'b'.
trouble at: a
>>> 'a'

trouble at: b
>>> 'b'

trouble at: 'foobar'
>>> 'a'

Since a and b are different objects, they are treated as different objects. In-
terestingly, the literal 'foobar' is allocated just once, so is really the same
object as a. You don’t want your code to depend on behaviour like this! A
plain Dictionary would give the same value for any key equal to 'foobar'.

Use only globally unique objects (like Symbols or SmallIntegers) as keys for
an IdentityDictionary, and Strings (or other objects) as keys for a plain
Dictionary.

Note that the expression Smalltalk globals returns an instance of Sys-
temDictionary, a subclass of IdentityDictionary, hence all its keys are
Symbols (actually, ByteSymbols, which contain only 8-bit characters).

Smalltalk globals keys collect: [:each | each class] as:Set
>>> a Set(ByteSymbol)

Here we are using collect:as: to specify the result collection to be of class
Set, that way we collect each kind of class used as a key only once.

207

Collections

13.11 Set

The class Set is a collection which behaves as a mathematical set, i.e., as a
collection with no duplicate elements and without any order. In a Set, ele-
ments are added using the message add: and they cannot be accessed using
the message at:. Objects put in a set should implement the methods hash
and =.

s := Set new.
s add: 4/2; add: 4; add:2.
s size
>>> 2

You can also create sets using Set class>>newFrom: or the conversion mes-
sage Collection>>asSet:

(Set newFrom: #(1 2 3 1 4)) = #(1 2 3 4 3 2 1) asSet
>>> true

asSet offers us a convenient way to eliminate duplicates from a collection:

{ Color black. Color white. (Color red + Color blue + Color green) }
asSet size

>>> 2

Note red + blue + green = white.

A Bag is much like a Set except that it does allow duplicates:

{ Color black. Color white. (Color red + Color blue + Color green) }
asBag size

>>> 3

The set operations union, intersection and membership test are implemented
by the Collectionmessages union:, intersection:, and includes:. The
receiver is first converted to a Set, so these operations work for all kinds of
collections!

(1 to: 6) union: (4 to: 10)
>>> a Set(1 2 3 4 5 6 7 8 9 10)

'hello' intersection: 'there'
>>> 'eh'

#Smalltalk includes: $k
>>> true

As we explain below, elements of a set are accessed using iterators (see Sec-
tion 13.14).

208

13.12 SortedCollection

13.12 SortedCollection

In contrast to an OrderedCollection, a SortedCollectionmaintains its
elements in sort order. By default, a sorted collection uses the message <=
to establish sort order, so it can sort instances of subclasses of the abstract
class Magnitude, which defines the protocol of comparable objects (<, =, >,
>=, between:and:...). (See Chapter : Basic Classes).

You can create a SortedCollection by creating a new instance and adding
elements to it:

SortedCollection new add: 5; add: 2; add: 50; add: -10; yourself.
>>> a SortedCollection(-10 2 5 50)

More usually, though, one will send the conversion message asSortedCol-
lection to an existing collection:

#(5 2 50 -10) asSortedCollection
>>> a SortedCollection(-10 2 5 50)

'hello' asSortedCollection
>>> a SortedCollection($e $h $l $l $o)

How do you get a String back from this result? asString unfortunately re-
turns the printString representation, which is not what we want:

'hello' asSortedCollection asString
>>> 'a SortedCollection($e $h $l $l $o)'

The correct answer is to either use String class>>newFrom:, String class>>with-
All: or Object>>as::

'hello' asSortedCollection as: String
>>> 'ehllo'

String newFrom: 'hello' asSortedCollection
>>> 'ehllo'

String withAll: 'hello' asSortedCollection
>>> 'ehllo'

It is possible to have different kinds of elements in a SortedCollection as
long as they are all comparable. For example, we can mix different kinds of
numbers such as integers, floats and fractions:

{ 5 . 2/ -3 . 5.21 } asSortedCollection
>>> a SortedCollection((-2/3) 5 5.21)

Imagine that you want to sort objects that do not define the method <= or
that you would like to have a different sorting criterion. You can do this by
supplying a two argument block, called a sortblock, to the sorted collection.
For example, the class Color is not a Magnitude and it does not implement

209

Collections

the method <=, but we can specify a block stating that the colors should be
sorted according to their luminance (a measure of brightness).

col := SortedCollection
sortBlock: [:c1 :c2 | c1 luminance <= c2 luminance].

col addAll: { Color red . Color yellow . Color white . Color black }.
col
>>> a SortedCollection(Color black Color red Color yellow Color

white)

13.13 String

In Pharo, a String is a collection of Characters. It is sequenceable, index-
able, mutable and homogeneous, containing only Character instances. Like
Arrays, Strings have a dedicated syntax, and are normally created by di-
rectly specifying a String literal within single quotes, but the usual collec-
tion creation methods will work as well.

'Hello'
>>> 'Hello'

String with: $A
>>> 'A'

String with: $h with: $i with: $!
>>> 'hi!'

String newFrom: #($h $e $l $l $o)
>>> 'hello'

In actual fact, String is abstract. When we instantiate a String we actually
get either an 8-bit ByteString or a 32-bit WideString. To keep things sim-
ple, we usually ignore the difference and just talk about instances of String.

While strings are delimited by single quotes, a string can contain a single
quote: to define a string with a single quote we should type it twice. Note
that the string will contain only one element and not two as shown below:

'l''idiot' at: 2
>>> $'

'l''idiot' at: 3
>>> $i

Two or more instances of String can be concatenated with a comma.

s := 'no', ' ', 'worries'.
s
>>> 'no worries'

Since a string is a mutable collection we can also change it using the message
at:put:.

210

13.13 String

s at: 4 put: $h; at: 5 put: $u.
s
>>> 'no hurries'

Note that the comma method is defined by Collection, so it will work for
any kind of collection!

(1 to: 3), '45'
>>> #(1 2 3 $4 $5)

We can also modify an existing string using replaceAll:with: or replace-
From:to:with: as shown below. Note that the number of characters and the
interval should have the same size.

s replaceAll: $n with: $N.
s
>>> 'No hurries'

s replaceFrom: 4 to: 5 with: 'wo'.
s
>>> 'No worries'

In contrast to the methods described above, the method copyReplaceAll:
creates a new string. (Curiously, here the arguments are substrings rather
than individual characters, and their sizes do not have to match.)

s copyReplaceAll: 'rries' with: 'mbats'
>>> 'No wombats'

A quick look at the implementation of these methods reveals that they are
defined not only for Strings, but for any kind of SequenceableCollection,
so the following also works:

(1 to: 6) copyReplaceAll: (3 to: 5) with: { 'three' . 'etc.' }
>>> #(1 2 'three' 'etc.' 6)

String matching

It is possible to ask whether a pattern matches a string by sending the match:
message. The pattern can use * to match an arbitrary series of characters
and # to match a single character. Note that match: is sent to the pattern
and not the string to be matched.

'Linux *' match: 'Linux mag'
>>> true

'GNU#Linux #ag' match: 'GNU/Linux tag'
>>> true

More advanced pattern matching facilities are also available in the Regex
package.

211

Collections

Substrings

For substring manipulation we can use messages like first, first:, all-
ButFirst:, copyFrom:to: and others, defined in SequenceableCollec-
tion.
'alphabet' at: 6
>>> $b

'alphabet' first
>>> $a

'alphabet' first: 5
>>> 'alpha'

'alphabet' allButFirst: 3
>>> 'habet'

'alphabet' copyFrom: 5 to: 7
>>> 'abe'

'alphabet' copyFrom: 3 to: 3
>>> 'p' (not $p)

Be aware that result type can be different, depending on the method used.
Most of the substring-related methods return String instances. But the
messages that always return one element of the String collection, return a
Character instance (for example, 'alphabet' at: 6 returns the character
$b). For a complete list of substring-related messages, browse the Sequence-
ableCollection class (especially the accessing protocol).

Some tests on strings

The following examples illustrate the use of isEmpty, includes: and anySat-
isfy: which are also messages defined not only on Strings but more gener-
ally on collections.

'Hello' isEmpty
>>> false

'Hello' includes: $a
>>> false

'JOE' anySatisfy: [:c | c isLowercase]
>>> false

'Joe' anySatisfy: [:c | c isLowercase]
>>> true

String templating

There are three messages that are useful to manage string templating: for-
mat:, expandMacros and expandMacrosWith:.

212

13.13 String

'{1} is {2}' format: {'Pharo' . 'cool'}
>>> 'Pharo is cool'

The messages of the expandMacros family offer variable substitution, using
<n> for carriage return, <t> for tabulation, <1s>, <2s>, <3s> for arguments
(<1p>, <2p>, surrounds the string with single quotes), and <1?value1:value2>
for conditional.

'look-<t>-here' expandMacros
>>> 'look- -here'

'<1s> is <2s>' expandMacrosWith: 'Pharo' with: 'cool'
>>> 'Pharo is cool'

'<2s> is <1s>' expandMacrosWith: 'Pharo' with: 'cool'
>>> 'cool is Pharo'

'<1p> or <1s>' expandMacrosWith: 'Pharo' with: 'cool'
>>> '''Pharo'' or Pharo'

'<1?Quentin:Thibaut> plays' expandMacrosWith: true
>>> 'Quentin plays'

'<1?Quentin:Thibaut> plays' expandMacrosWith: false
>>> 'Thibaut plays'

Some other utility methods

The class String offers numerous other utilities including the messages
asLowercase, asUppercase and capitalized.

'XYZ' asLowercase
>>> 'xyz'

'xyz' asUppercase
>>> 'XYZ'

'hilaire' capitalized
>>> 'Hilaire'

'Hilaire' uncapitalized
>>> 'hilaire'

'1.54' asNumber
>>> 1.54

'this sentence is without a doubt far too long' contractTo: 20
>>> 'this sent...too long'

Note that there is generally a difference between asking an object its string
representation by sending the message printString and converting it to a
string by sending the message asString. Here is an example of the differ-
ence.

213

Collections

#ASymbol printString
>>> '#ASymbol'

#ASymbol asString
>>> 'ASymbol'

A symbol is similar to a string but is guaranteed to be globally unique. For
this reason symbols are preferred to strings as keys for dictionaries, in par-
ticular for instances of IdentityDictionary. See also Chapter : Basic Classes
for more about String and Symbol.

13.14 Collection iterators

In Pharo loops and conditionals are simply messages sent to collections or
other objects such as integers or blocks (see also Chapter : Understanding
message syntax). In addition to low-level messages such as to:do: which
evaluates a block with an argument ranging from an initial to a final num-
ber, the collection hierarchy offers various high-level iterators. Using such
iterators will make your code more robust and compact.

Iterating (do:)

The method do: is the basic collection iterator. It applies its argument (a
block taking a single argument) to each element of the receiver. The follow-
ing example prints all the strings contained in the receiver to the transcript.

#('bob' 'joe' 'toto') do: [:each | Transcript show: each; cr].

Variants

There are a lot of variants of do:, such as do:without:, doWithIndex: and
reverseDo:.

For the indexed collections (Array, OrderedCollection, SortedCollec-
tion) the message doWithIndex: also gives access to the current index. This
message is related to to:do: which is defined in class Number.

#('bob' 'joe' 'toto')
doWithIndex: [:each :i | (each = 'joe') ifTrue: [^ i]]

>>> 2

For ordered collections, the message reverseDo: walks the collection in the
reverse order.

The following code shows an interesting message: do:separatedBy: which
executes the second block only in between two elements.

214

13.14 Collection iterators

| res |
res := ''.
#('bob' 'joe' 'toto')

do: [:e | res := res, e]
separatedBy: [res := res, '.'].

res
>>> 'bob.joe.toto'

Note that this code is not especially efficient since it creates intermediate
strings and it would be better to use a write stream to buffer the result (see
Chapter : Streams):

String streamContents: [:stream |
#('bob' 'joe' 'toto') asStringOn: stream delimiter: '.']

>>> 'bob.joe.toto'

Dictionaries

When the message do: is sent to a dictionary, the elements taken into ac-
count are the values, not the associations. The proper messages to use are
keysDo:, valuesDo:, and associationsDo:, which iterate respectively on
keys, values or associations.

colors := Dictionary newFrom: { #yellow -> Color yellow. #blue ->
Color blue. #red -> Color red }.

colors keysDo: [:key | Transcript show: key; cr].
colors valuesDo: [:value | Transcript show: value; cr].
colors associationsDo: [:value | Transcript show: value; cr].

Collecting results (collect:)

If you want to apply a function to the elements of a collection and get a new
collection with the results, rather than using do:, you are probably better off
using collect:, or one of the other iterator methods. Most of these can be
found in the enumerating protocol of Collection and its subclasses.

Imagine that we want a collection containing the doubles of the elements in
another collection. Using the method do: we must write the following:

| double |
double := OrderedCollection new.
#(1 2 3 4 5 6) do: [:e | double add: 2 * e].
double
>>> an OrderedCollection(2 4 6 8 10 12)

The message collect: executes its argument block for each element and
returns a new collection containing the results. Using collect: instead, the
code is much simpler:

215

Collections

#(1 2 3 4 5 6) collect: [:e | 2 * e]
>>> #(2 4 6 8 10 12)

The advantages of collect: over do: are even more important in the fol-
lowing example, where we take a collection of integers and generate as a
result a collection of absolute values of these integers:

aCol := #(2 -3 4 -35 4 -11).
result := aCol species new: aCol size.
1 to: aCol size do: [:each | result at: each put: (aCol at: each)

abs].
result
>>> #(2 3 4 35 4 11)

Contrast the above with the much simpler following expression:

#(2 -3 4 -35 4 -11) collect: [:each | each abs]
>>> #(2 3 4 35 4 11)

A further advantage of the second solution is that it will also work for sets
and bags. Generally you should avoid using do:, unless you want to send
messages to each of the elements of a collection.

Note that sending the message collect: returns the same kind of collection
as the receiver. For this reason the following code fails. (A String cannot
hold integer values.)

'abc' collect: [:ea | ea asciiValue]
>>> "error!"

Instead we must first convert the string to an Array or an OrderedCollec-
tion:
'abc' asArray collect: [:ea | ea asciiValue]
>>> #(97 98 99)

Actually collect: is not guaranteed to return a collection of exactly the
same class as the receiver, but only the same species. In the case of an Inter-
val, the species is an Array!

(1 to: 5) collect: [:ea | ea * 2]
>>> #(2 4 6 8 10)

Selecting and rejecting elements

The message select: returns the elements of the receiver that satisfy a par-
ticular condition:

(2 to: 20) select: [:each | each isPrime]
>>> #(2 3 5 7 11 13 17 19)

The message reject: does the opposite:

216

13.14 Collection iterators

(2 to: 20) reject: [:each | each isPrime]
>>> #(4 6 8 9 10 12 14 15 16 18 20)

Identifying an element with detect:

The message detect: returns the first element of the receiver that matches
block argument.

'through' detect: [:each | each isVowel]
>>> $o

The message detect:ifNone: is a variant of the method detect:. Its sec-
ond block is evaluated when there is no element matching the block.

Smalltalk globals allClasses
detect: [:each | '*cobol*' match: each asString]
ifNone: [nil]

>>> nil

Accumulating results with inject:into:

Functional programming languages often provide a higher-order function
called fold or reduce to accumulate a result by applying some binary operator
iteratively over all elements of a collection. In Pharo this is done by Collec-
tion>>inject:into:.

The first argument is an initial value, and the second argument is a two-
argument block which is applied to the result this far, and each element in
turn.

A trivial application of inject:into: is to produce the sum of a collection of
numbers. In Pharo we could write this expression to sum the first 100 inte-
gers:

(1 to: 100) inject: 0 into: [:sum :each | sum + each]
>>> 5050

Another example is the following one-argument block which computes facto-
rials:

factorial := [:n | (1 to: n) inject: 1 into: [:product :each |
product * each]].

factorial value: 10
>>> 3628800

Other messages

There are many other iterator messages. You can check the Collection
class.

217

Collections

count: The message count: returns the number of elements satisfying a
condition. The condition is represented as a boolean block.

Smalltalk globals allClasses
count: [:each | 'Collection*' match: each asString]

>>> 10

includes: The message includes: checks whether the argument is con-
tained in the collection.

| colors |
colors := {Color white . Color yellow . Color blue . Color orange}.
colors includes: Color blue.
>>> true

anySatisfy: The message anySatisfy: answers true if at least one ele-
ment of the collection satisfies the condition represented by the argument.

colors anySatisfy: [:c | c red > 0.5]
>>> true

13.15 Some hints for using collections

A common mistake with add:

The following error is one of the most frequent Smalltalk mistakes.

| collection |
collection := OrderedCollection new add: 1; add: 2.
collection
>>> 2

Here the variable collection does not hold the newly created collection but
rather the last number added. This is because the method add: returns the
element added and not the receiver.

The following code yields the expected result:

| collection |
collection := OrderedCollection new.
collection add: 1; add: 2.
collection
>>> an OrderedCollection(1 2)

You can also use the message yourself to return the receiver of a cascade of
messages:

| collection |
collection := OrderedCollection new add: 1; add: 2; yourself
>>> an OrderedCollection(1 2)

218

13.16 Chapter summary

Listing 13-3 Redefining = and hash.
Book >> = aBook

self class = aBook class ifFalse: [^ false].
^ title = aBook title and: [authors = aBook authors]

Book >> hash
^ title hash bitXor: authors hash

Removing an element of the collection you are iterating on

Another mistake you may make is to remove an element from a collection
you are currently iterating over.

| range |
range := (2 to: 20) asOrderedCollection.
range do: [:aNumber | aNumber isPrime

ifFalse: [range remove: aNumber]].
range
>>> "error!"

The solution is to copy the collection before going over it.

| range |
range := (2 to: 20) asOrderedCollection.
range copy do: [:aNumber | aNumber isPrime

ifFalse: [range remove: aNumber]].
range
>>> an OrderedCollection(2 3 5 7 11 13 17 19)

Redefining = but not hash A difficult error to spot is when you redefine =
but not hash. The symptoms are that you will lose elements that you put in
sets or other strange behaviour. One solution proposed by Kent Beck is to
use bitXor: to redefine hash. Suppose that we want two books to be consid-
ered equal if their titles and authors are the same. Then we would redefine
not only = but also hash as follows:

Another nasty problem arises if you use a mutable object, i.e., an object that
can change its hash value over time, as an element of a Set or as a key to a
Dictionary. Don’t do this unless you love debugging!

13.16 Chapter summary

The collection hierarchy provides a common vocabulary for uniformly ma-
nipulating a variety of different kinds of collections.

• A key distinction is between SequenceableCollections, which main-
tain their elements in a given order, Dictionary and its subclasses,
which maintain key-to-value associations, and Sets and Bags, which
are unordered.

219

Collections

• You can convert most collections to another kind of collection by send-
ing them the messages asArray, asOrderedCollection, etc...

• To sort a collection, send it the message asSortedCollection.

• #(...) creates arrays containing only literal objects (i.e., objects
created without sending messages). { ... } creates dynamic arrays
using a compact form.

• A Dictionary compares keys by equality. It is most useful when keys
are instances of String. An IdentityDictionary instead uses object
identity to compare keys. It is more suitable when Symbols are used as
keys, or when mapping object references to values.

• Strings also understand the usual collection messages. In addition,
a String supports a simple form of pattern-matching. For more ad-
vanced application, look instead at the RegEx package.

• The basic iteration message is do:. It is useful for imperative code,
such as modifying each element of a collection, or sending each ele-
ment a message.

• Instead of using do:, it is more common to use collect:, select:,
reject:, includes:, inject:into: and other higher-level messages
to process collections in a uniform way.

• Never remove an element from a collection you are iterating over. If
you must modify it, iterate over a copy instead.

• If you override =, remember to override hash as well!

220

CHA P T E R 14
Streams

Streams are used to iterate over sequences of elements such as sequenced
collections, files, and network streams. Streams may be either readable, or
writeable, or both. Reading or writing is always relative to the current posi-
tion in the stream. Streams can easily be converted to collections, and vice
versa.

14.1 Two sequences of elements

A good metaphor to understand a stream is the following. A stream can be
represented as two sequences of elements: a past element sequence and a fu-
ture element sequence. The stream is positioned between the two sequences.
Understanding this model is important, since all stream operations in Pharo
rely on it. For this reason, most of the Stream classes are subclasses of Po-
sitionableStream. Figure 14-1 presents a stream which contains five char-
acters. This stream is in its original position, i.e., there is no element in the
past. You can go back to this position using the message reset defined in
PositionableStream.

Reading an element conceptually means removing the first element of the
future element sequence and putting it after the last element in the past ele-

Figure 14-1 A stream positioned at its beginning.

221

Streams

Figure 14-2 The same stream after the execution of the method next: the char-
acter a is in the past whereas b, c, d and e are in the future.

Figure 14-3 The same stream after having written an x.

ment sequence. After having read one element using the message next, the
state of your stream is that shown in Figure 14-2.

Writing an element means replacing the first element of the future sequence
by the new one and moving it to the past. Figure 14-3 shows the state of the
same stream after having written an x using the message nextPut: anEle-
ment defined in Stream.

14.2 Streams vs. collections

The collection protocol supports the storage, removal and enumeration of
the elements of a collection, but does not allow these operations to be inter-
mingled. For example, if the elements of an OrderedCollection are pro-
cessed by a do: method, it is not possible to add or remove elements from
inside the do: block. Nor does the collection protocol offer ways to iterate
over two collections at the same time, choosing which collection goes for-
ward and which does not. Procedures like these require that a traversal in-
dex or position reference is maintained outside of the collection itself: this is
exactly the role of ReadStream, WriteStream and ReadWriteStream.

These three classes are defined to stream over some collection. For example,
the following snippet creates a stream on an interval, then it reads two ele-
ments.

| r |
r := ReadStream on: (1 to: 1000).
r next.
>>> 1

r next.
>>> 2

222

14.3 Streaming over collections

r atEnd.
>>> false

WriteStreams can write data to the collection:

| w |
w := WriteStream on: (String new: 5).
w nextPut: $a.
w nextPut: $b.
w contents.
>>> 'ab'

It is also possible to create ReadWriteStreams that support both the reading
and writing protocols.

The following sections present the protocols in more depth.

14.3 Streaming over collections

Streams are really useful when dealing with collections of elements, and can
be used for reading and writing those elements. We will now explore the
stream features for collections.

Reading collections

Using a stream to read a collection essentially provides you a pointer into the
collection. That pointer will move forward on reading, and you can place it
wherever you want. The class ReadStream should be used to read elements
from collections.

Messages next and next: defined in ReadStream are used to retrieve one or
more elements from the collection.

| stream |
stream := ReadStream on: #(1 (a b c) false).
stream next.
>>> 1

stream next.
>>> #(#a #b #c)

stream next.
>>> false

| stream |
stream := ReadStream on: 'abcdef'.
stream next: 0.
>>> ''

stream next: 1.
>>> 'a'

223

Streams

stream next: 3.
>>> 'bcd'

stream next: 2.
>>> 'ef'

The message peek defined in PositionableStream is used when you want to
know what is the next element in the stream without going forward.

| stream negative number |
stream := ReadStream on: '-143'.
"look at the first element without consuming it."
negative := (stream peek = $-).
negative.
>>> true

"ignores the minus character"
negative ifTrue: [stream next].
number := stream upToEnd.
number.
>>> '143'

This code sets the boolean variable negative according to the sign of the
number in the stream, and number to its absolute value. The message up-
ToEnd defined in ReadStream returns everything from the current position
to the end of the stream and sets the stream to its end. This code can be sim-
plified using the message peekFor: defined in PositionableStream, which
moves forward if the following element equals the parameter and doesn’t
move otherwise.

| stream |
stream := '-143' readStream.
(stream peekFor: $-).
>>> true

stream upToEnd
>>> '143'

peekFor: also returns a boolean indicating if the parameter equals the ele-
ment.

You might have noticed a new way of constructing a stream in the above ex-
ample: one can simply send the message readStream to a sequenceable col-
lection (such as a String) to get a reading stream on that particular collec-
tion.

14.4 Positioning

There are messages to position the stream pointer. If you have the index,
you can go directly to it using position: defined in PositionableStream.
You can request the current position using position. Please remember that

224

14.4 Positioning

Figure 14-4 A stream at position 2.

a stream is not positioned on an element, but between two elements. The
index corresponding to the beginning of the stream is 0.

You can obtain the state of the stream depicted in 14-4 with the following
code:

| stream |
stream := 'abcde' readStream.
stream position: 2.
stream peek
>>> $c

To position the stream at the beginning or the end, you can use the message
reset or setToEnd. The messages skip: and skipTo: are used to go for-
ward to a location relative to the current position: skip: accepts a number
as argument and skips that number of elements whereas skipTo: skips all
elements in the stream until it finds an element equal to its parameter. Note
that it positions the stream after the matched element.

| stream |
stream := 'abcdef' readStream.
stream next.
>>> $a "stream is now positioned just after the a"

stream skip: 3. "stream is now after the d"
stream position.
>>> 4

stream skip: -2. "stream is after the b"
stream position.
>>> 2

stream reset.
stream position.
>>> 0

stream skipTo: $e. "stream is just after the e
now"

stream next.
>>> $f

stream contents.
>>> 'abcdef'

As you can see, the letter e has been skipped.

225

Streams

| stream1 stream2 result |
stream1 := #(1 4 9 11 12 13) readStream.
stream2 := #(1 2 3 4 5 10 13 14 15) readStream.

"The variable result will contain the sorted collection."
result := OrderedCollection new.
[stream1 atEnd not & stream2 atEnd not]
whileTrue: [
stream1 peek < stream2 peek

"Remove the smallest element from either stream and add it
to the result."

ifTrue: [result add: stream1 next]
ifFalse: [result add: stream2 next]].

"One of the two streams might not be at its end. Copy whatever
remains."

result
addAll: stream1 upToEnd;
addAll: stream2 upToEnd.

result.
>>> an OrderedCollection(1 1 2 3 4 4 5 9 10 11 12 13 13 14 15)

The message contents always returns a copy of the entire stream.

14.5 Testing

Some messages allow you to test the state of the current stream: atEnd re-
turns true if and only if no more elements can be read, whereas isEmpty
returns true if and only if there are no elements at all in the collection.

Here is a possible implementation of an algorithm using atEnd that takes
two sorted collections as parameters and merges those collections into an-
other sorted collection:

14.6 Writing to collections

We have already seen how to read a collection by iterating over its elements
using a ReadStream. We’ll now learn how to create collections using WriteStreams.

WriteStreams are useful for appending a lot of data to a collection at various
locations. They are often used to construct strings that are based on static
and dynamic parts, as in this example:

This technique is used in the different implementations of the method printOn:,
for example. There is a simpler and more efficient way of creating strings if
you are only interested in the content of the stream:

226

14.6 Writing to collections

| stream |
stream := String new writeStream.
stream

nextPutAll: 'This Smalltalk image contains: ';
print: Smalltalk allClasses size;
nextPutAll: ' classes.';
cr;
nextPutAll: 'This is really a lot.'.

stream contents.
>>> 'This Smalltalk image contains: 9003 classes.
This is really a lot.'

| string |
string := String streamContents:

[:stream |
stream

print: #(1 2 3);
space;
nextPutAll: 'size';
space;
nextPut: $=;
space;
print: 3.].

string.
>>> '#(1 2 3) size = 3'

The message streamContents: defined SequenceableCollection creates a
collection and a stream on that collection for you. It then executes the block
you gave passing the stream as a parameter. When the block ends, stream-
Contents: returns the contents of the collection.

The following WriteStreammethods are especially useful in this context:

nextPut: adds the parameter to the stream;

nextPutAll: adds each element of the collection, passed as a parameter, to
the stream;

print: adds the textual representation of the parameter to the stream.

There are also convenient messages for printing useful characters to a stream,
such as space, tab and cr (carriage return). Another useful method is en-
sureASpace which ensures that the last character in the stream is a space; if
the last character isn’t a space it adds one.

227

Streams

[| temp |
temp := String new.
(1 to: 100000)
do: [:i | temp := temp, i asString, ' ']] timeToRun

>>> 0:00:01:54.758

String streamContents: [:tempStream |
(1 to: 100000)

do: [:i | tempStream nextPutAll: i asString; space]]

14.7 About String Concatenation

Using nextPut: and nextPutAll: on a WriteStream is often the best way to
concatenate characters. Using the comma concatenation operator (,) is far
less efficient:

[| temp |
temp := WriteStream on: String new.
(1 to: 100000)
do: [:i | temp nextPutAll: i asString; space].

temp contents] timeToRun
>>> 0:00:00:00.024

The reason that using a stream can be much more efficient is that using a
comma creates a new string containing the concatenation of the receiver and
the argument, so it must copy both of them. When you repeatedly concate-
nate onto the same receiver, it gets longer and longer each time, so that the
number of characters that must be copied goes up exponentially. This also
creates a lot of garbage, which must be collected. Using a stream instead of
string concatenation is a well-known optimization.

In fact, you can use the message streamContents: defined in Sequence-
ableCollection class (mentioned earlier) to help you do this:

14.8 Reading and writing at the same time

It’s possible to use a stream to access a collection for reading and writing at
the same time. Imagine you want to create a History class which will man-
age backward and forward buttons in a web browser. A history would react
as in figures 14-10 to 14-16.

This behaviour can be implemented using a ReadWriteStream.

Nothing really difficult here, we define a new class which contains a stream.
The stream is created during the initializemethod.

We need methods to go backward and forward:

228

Figure 14-10 A new history is empty. Nothing is displayed in the web browser.

Figure 14-11 The user opens to page 1.

Figure 14-12 The user clicks on a link to page 2.

Figure 14-13 The user clicks on a link to page 3.

Figure 14-14 The user clicks on the Back button. They are now viewing page 2

again.

Figure 14-15 The user clicks again the back button. Page 1 is now displayed.

Streams

Figure 14-16 From page 1, the user clicks on a link to page 4. The history forgets

pages 2 and 3.

Object subclass: #History
instanceVariableNames: 'stream'
classVariableNames: ''
package: 'PBE-Streams'

History >> initialize
super initialize.
stream := ReadWriteStream on: Array new.

History >> goBackward
self canGoBackward
ifFalse: [self error: 'Already on the first element'].

stream skip: -2.
^ stream next.

History >> goForward
self canGoForward
ifFalse: [self error: 'Already on the last element'].

^ stream next

Up to this point, the code is pretty straightforward. Next, we have to deal
with the goTo: method which should be activated when the user clicks on a
link. A possible implementation is:

This version is incomplete however. This is because when the user clicks on
the link, there should be no more future pages to go to, i.e., the forward but-
ton must be deactivated. To do this, the simplest solution is to write nil just
after, to indicate that history is at the end:

Now, only methods canGoBackward and canGoForward remain to be imple-
mented.

A stream is always positioned between two elements. To go backward, there
must be two pages before the current position: one page is the current page,
and the other one is the page we want to go to.

Let us add a method to peek at the contents of the stream:

History >> goTo: aPage
stream nextPut: aPage.

230

14.9 Chapter summary

History >> goTo: anObject
stream nextPut: anObject.
stream nextPut: nil.
stream back.

History >> canGoBackward
^ stream position > 1

History >> canGoForward
^ stream atEnd not and: [stream peek notNil]

History >> contents
^ stream contents

And the history works as advertised:

14.9 Chapter summary

Streams offer a better way (compared to collections) to incrementally read
and write a sequence of elements. There are easy ways to convert back and
forth between streams and collections.

• Streams may be either readable, writeable or both readable and write-
able.

• To convert a collection to a stream, define a stream on a collection, e.g.,
ReadStream on: (1 to: 1000), or send the messages readStream,
etc. to the collection.

• To convert a stream to a collection, send the message contents.

• To concatenate large collections, instead of using the comma operator,
it is more efficient to create a stream, append the collections to the
stream with nextPutAll:, and extract the result by sending contents.

History new
goTo: #page1;
goTo: #page2;
goTo: #page3;
goBackward;
goBackward;
goTo: #page4;
contents

>>> #(#page1 #page4 nil nil)

231

CHA P T E R 15
Morphic

Morphic is the name given to Pharo’s graphical interface. Morphic supports
two main aspects: on one hand Morphic defines all the low-level graphical
entities and related infrastructure (events, drawing,...) and on the other
hand Morphic defines all the widgets available in Pharo. Morphic is written
in Pharo, so it is fully portable between operating systems. As a consequence,
Pharo looks exactly the same on Unix, MacOS and Windows. What distin-
guishes Morphic from most other user interface toolkits is that it does not
have separate modes for composing and running the interface: all the graphi-
cal elements can be assembled and disassembled by the user, at any time. We
thank Hilaire Fernandes for permission to base this chapter on his original
article in French.

15.1 The history of Morphic

Morphic was developed by John Maloney and Randy Smith for the Self pro-
gramming language, starting around 1993. Maloney later wrote a new ver-
sion of Morphic for Squeak, but the basic ideas behind the Self version are
still alive and well in Pharo Morphic: directness and liveness. Directness means
that the shapes on the screen are objects that can be examined or changed
directly, that is, by clicking on them using a mouse. Liveness means that
the user interface is always able to respond to user actions: information on
the screen is continuously updated as the world that it describes changes. A
simple example of this is that you can detach a menu item and keep it as a
button.

Bring up the World Menu and Option-Command-Shift click once on it to
bring up its morphic halo, then repeat the operation again on a menu item
you want to detach, to bring up that item’s halo (see Figure 15-1).

233

Morphic

Figure 15-1 Detaching a morph, here the Playgroundmenu item, to make it an

independent button.

Figure 15-2 Dropping the menu item on the desktop, here the Playground
menu item is now an independent button.

Now drag that item elsewhere on the screen by grabbing the black handle
(which looks like a pliers), as shown in Figure 15-1.

Once dropped the menu item stays detached from the menu and you can in-
teract with it as if it would be in the menu (see Figurefig:detachingMenu2).

This example illustrates what we mean by directness and liveness. This gives a
lot of power when developing alternate user interface and prototyping alter-
nate interactions. Some people

234

15.2 Morphs

Listing 15-3 Creation of a String Morph

'Morph' asMorph openInWorld

Listing 15-4 Getting a morph for an instance of Color
Color >> asMorph

^ Morph new color: self

Morphic is a bit showing its age, and the Pharo community is working since
several years on a possible replacement. Replacing Morphic means to have
both a new low-level infrastructure and a new widget sets. The project is
called Bloc and got several iterations. Bloc is about the infrastructure and
Brick is a set of widgets built on top. But let us have fun with Morphic.

15.2 Morphs

All of the objects that you see on the screen when you run Pharo are Morphs,
that is, they are instances of subclasses of class Morph. The class Morph itself
is a large class with many methods; this makes it possible for subclasses to
implement interesting behaviour with little code. You can create a morph to
represent any object, although how good a representation you get depends
on the object!

To create a morph to represent a string object, execute the following code in
a Playground.

This creates a Morph to represent the string 'Morph', and then opens it
(that is, displays it) in the world, which is the name that Pharo gives to the
screen. You should obtain a graphical element (a Morph), which you can ma-
nipulate by meta-clicking.

Of course, it is possible to define morphs that are more interesting graphi-
cal representations than the one that you have just seen. The method as-
Morph has a default implementation in class Object class that just creates a
StringMorph. So, for example, Color tan asMorph returns a StringMorph
labeled with the result of Color tan printString. Let’s change this so that
we get a coloured rectangle instead.

Open a browser on the Color class and add the following method to it:

Now execute Color orange asMorph openInWorld in a Playground. In-
stead of the string-like morph, you get an orange rectangle (see Figure 15-5)!
You get the same executing (Morph new color: Color orange) openIn-
World

235

Morphic

Figure 15-5 (Morph new color: Color orange) openInWorld or Color
orange asMorph openInWorld with our new method.

15.3 Manipulating morphs

Morphs are objects, so we can manipulate them like any other object in Pharo:
by sending messages, we can change their properties, create new subclasses
of Morph, and so on.

Every morph, even if it is not currently open on the screen, has a position
and a size. For convenience, all morphs are considered to occupy a rectan-
gular region of the screen; if they are irregularly shaped, their position and
size are those of the smallest rectangular box that surrounds them, which
is known as the morph’s bounding box, or just its bounds. The position
method returns a Point that describes the location of the morph’s upper left
corner (or the upper left corner of its bounding box). The origin of the coor-
dinate system is the screen’s upper left corner, with y coordinates increas-
ing down the screen and x coordinates increasing to the right. The extent
method also returns a point, but this point specifies the width and height of
the morph rather than a location.

Type the following code into a playground and Do it:

joe := Morph new color: Color blue.
joe openInWorld.
bill := Morph new color: Color red.
bill openInWorld.

Then type joe position and then Print it. To move joe, execute joe po-
sition: (joe position + (10@3)) repeatedly (see Figure 15-6).

It is possible to do a similar thing with size. joe extent answers joe’s size;
to have joe grow, execute joe extent: (joe extent * 1.1). To change
the color of a morph, send it the color: message with the desired Color

236

15.4 Composing morphs

Figure 15-6 Bill and Joe after 10 moves.

object as argument, for instance, joe color: Color orange. To add trans-
parency, try joe color: (Color orange alpha: 0.5).

To make bill follow joe, you can repeatedly execute this code:

bill position: (joe position + (100@0))

If you move joe using the mouse and then execute this code, bill will move
so that it is 100 pixels to the right of joe. You can see the result on Figure
15-7. Nothing suprising.

15.4 Composing morphs

One way of creating new graphical representations is by placing one morph
inside another. This is called composition; morphs can be composed to any
depth. You can place a morph inside another by sending the message ad-
dMorph: to the container morph.

Try adding a morph to another one as follows:

balloon := BalloonMorph new color: Color yellow.
joe addMorph: balloon.
balloon position: joe position.

237

Morphic

Figure 15-7 Bill follows Joe.

Figure 15-8 The balloon is contained inside joe, the translucent orange morph.

The last line positions the balloon at the same coordinates as joe. Notice that
the coordinates of the contained morph are still relative to the screen, not
to the containing morph. This absolute way of positioning morph is not re-
ally good and it makes programming morphs feels a bit odd. But there are
many methods available to position a morph; browse the geometry protocol
of class Morph to see for yourself. For example, to center the balloon inside
joe, execute balloon center: joe center.

If you now try to grab the balloon with the mouse, you will find that you ac-
tually grab joe, and the two morphs move together: the balloon is embedded
inside joe. It is possible to embed more morphs inside joe. In addition to do-
ing this programmatically, you can also embed morphs by direct manipula-
tion.

238

15.5 Creating and drawing your own morphs

Figure 15-9 A CrossMorph with its halo; you can resize it as you wish.

15.5 Creating and drawing your own morphs

While it is possible to make many interesting and useful graphical represen-
tations by composing morphs, sometimes you will need to create something
completely different.

To do this you define a subclass of Morph and override the drawOn: method
to change its appearance.

The morphic framework sends the message drawOn: to a morph when it
needs to redisplay the morph on the screen. The parameter to drawOn: is
a kind of Canvas; the expected behaviour is that the morph will draw itself
on that canvas, inside its bounds. Let’s use this knowledge to create a cross-
shaped morph.

Using the browser, define a new class CrossMorph inheriting from Morph:

Morph subclass: #CrossMorph
instanceVariableNames: ''
classVariableNames: ''
package: 'PBE-Morphic'

We can define the drawOn: method like this:

CrossMorph >> drawOn: aCanvas
| crossHeight crossWidth horizontalBar verticalBar |
crossHeight := self height / 3.
crossWidth := self width / 3.
horizontalBar := self bounds insetBy: 0 @ crossHeight.
verticalBar := self bounds insetBy: crossWidth @ 0.
aCanvas fillRectangle: horizontalBar color: self color.
aCanvas fillRectangle: verticalBar color: self color

Sending the boundsmessage to a morph answers its bounding box, which is
an instance of Rectangle. Rectangles understand many messages that create
other rectangles of related geometry. Here, we use the insetBy: message
with a point as its argument to create first a rectangle with reduced height,
and then another rectangle with reduced width.

To test your new morph, execute CrossMorph new openInWorld.

239

Morphic

The result should look something like Figure 15-9. However, you will notice
that the sensitive zone — where you can click to grab the morph — is still the
whole bounding box. Let’s fix this.

When the Morphic framework needs to find out which Morphs lie under
the cursor, it sends the message containsPoint: to all the morphs whose
bounding boxes lie under the mouse pointer. So, to limit the sensitive zone
of the morph to the cross shape, we need to override the containsPoint:
method.

Define the following method in class CrossMorph:

CrossMorph >> containsPoint: aPoint
| crossHeight crossWidth horizontalBar verticalBar |
crossHeight := self height / 3.
crossWidth := self width / 3.
horizontalBar := self bounds insetBy: 0 @ crossHeight.
verticalBar := self bounds insetBy: crossWidth @ 0.
^ (horizontalBar containsPoint: aPoint) or: [verticalBar

containsPoint: aPoint]

This method uses the same logic as drawOn:, so we can be confident that
the points for which containsPoint: answers true are the same ones that
will be colored in by drawOn. Notice how we leverage the containsPoint:
method in class Rectangle to do the hard work.

There are two problems with the code in the two methods above.

The most obvious is that we have duplicated code. This is a cardinal error:
if we find that we need to change the way that horizontalBar or verti-
calBar are calculated, we are quite likely to forget to change one of the two
occurrences. The solution is to factor out these calculations into two new
methods, which we put in the private protocol:

CrossMorph >> horizontalBar
| crossHeight |
crossHeight := self height / 3.
^ self bounds insetBy: 0 @ crossHeight

CrossMorph >> verticalBar
| crossWidth |
crossWidth := self width / 3.
^ self bounds insetBy: crossWidth @ 0

We can then define both drawOn: and containsPoint: using these meth-
ods:

CrossMorph >> drawOn: aCanvas
aCanvas fillRectangle: self horizontalBar color: self color.
aCanvas fillRectangle: self verticalBar color: self color

240

15.5 Creating and drawing your own morphs

Figure 15-10 The center of the cross is filled twice with the color.

Figure 15-11 The cross-shaped morph, showing a row of unfilled pixels.

CrossMorph >> containsPoint: aPoint
^ (self horizontalBar containsPoint: aPoint) or: [self

verticalBar containsPoint: aPoint]

This code is much simpler to understand, largely because we have given
meaningful names to the private methods. In fact, it is so simple that you
may have noticed the second problem: the area in the center of the cross,
which is under both the horizontal and the vertical bars, is drawn twice. This
doesn’t matter when we fill the cross with an opaque colour, but the bug be-
comes apparent immediately if we draw a semi-transparent cross, as shown
in Figure 15-10.

Execute the following code in a playground:

241

Morphic

CrossMorph new openInWorld;
bounds: (0@0 corner: 200@200);
color: (Color blue alpha: 0.4)

The fix is to divide the vertical bar into three pieces, and to fill only the top
and bottom. Once again we find a method in class Rectangle that does the
hard work for us: r1 areasOutside: r2 answers an array of rectangles
comprising the parts of r1 outside r2. Here is the revised code:

CrossMorph >> drawOn: aCanvas
| topAndBottom |
aCanvas fillRectangle: self horizontalBar color: self color.
topAndBottom := self verticalBar areasOutside: self horizontalBar.
topAndBottom do: [:each | aCanvas fillRectangle: each color: self

color]

This code seems to work, but if you try it on some crosses and resize them,
you may notice that at some sizes, a one-pixel wide line separates the bot-
tom of the cross from the remainder, as shown in Figure 15-11. This is due to
rounding: when the size of the rectangle to be filled is not an integer, fill-
Rectangle: color: seems to round inconsistently, leaving one row of pix-
els unfilled.

We can work around this by rounding explicitly when we calculate the sizes
of the bars as shown hereafter:

CrossMorph >> horizontalBar
| crossHeight |
crossHeight := (self height / 3) rounded.
^ self bounds insetBy: 0 @ crossHeight

CrossMorph >> verticalBar
| crossWidth |
crossWidth := (self width / 3) rounded.
^ self bounds insetBy: crossWidth @ 0

15.6 Mouse events for interaction

To build live user interfaces using morphs, we need to be able to interact
with them using the mouse and keyboard. Moreover, the morphs need to be
able respond to user input by changing their appearance and position — that
is, by animating themselves.

When a mouse button is pressed, Morphic sends each morph under the mouse
pointer the message handlesMouseDown:. If a morph answers true, then
Morphic immediately sends it the mouseDown: message; it also sends the
mouseUp: message when the user releases the mouse button. If all morphs
answer false, then Morphic initiates a drag-and-drop operation. As we will
discuss below, the mouseDown: and mouseUp: messages are sent with an ar-

242

15.7 Keyboard events

gument — a MouseEvent object — that encodes the details of the mouse ac-
tion.

Let’s extend CrossMorph to handle mouse events. We start by ensuring that
all crossMorphs answer true to the handlesMouseDown: message. Add the
method to CrossMorph defined as follows:

CrossMorph >> handlesMouseDown: anEvent
^ true

Suppose that when we click on the cross, we want to change the color of the
cross to red, and when we action-click on it, we want to change the color to
yellow. We define the mouseDown: method as follows:

CrossMorph >> mouseDown: anEvent
anEvent redButtonPressed
ifTrue: [self color: Color red]. "click"

anEvent yellowButtonPressed
ifTrue: [self color: Color yellow]. "action-click"

self changed

Notice that in addition to changing the color of the morph, this method also
sends self changed. This makes sure that morphic sends drawOn: in a
timely fashion.

Note also that once the morph handles mouse events, you can no longer grab
it with the mouse and move it. Instead you have to use the halo: Option-
Command-Shift click on the morph to make the halo appear and grab either
the brown move handle or the black pickup handle at the top of the morph.

The anEvent argument of mouseDown: is an instance of MouseEvent, which
is a subclass of MorphicEvent. MouseEvent defines the redButtonPressed
and yellowButtonPressedmethods. Browse this class to see what other
methods it provides to interrogate the mouse event.

15.7 Keyboard events

To catch keyboard events, we need to take three steps.

1. Give the keyboard focus to a specific morph. For instance, we can give
focus to our morph when the mouse is over it.

2. Handle the keyboard event itself with the handleKeystroke: method.
This message is sent to the morph that has keyboard focus when the
user presses a key.

3. Release the keyboard focus when the mouse is no longer over our morph.

Let’s extend CrossMorph so that it reacts to keystrokes. First, we need to
arrange to be notified when the mouse is over the morph. This will happen if
our morph answers true to the handlesMouseOver: message.

243

Morphic

CrossMorph >> handlesMouseOver: anEvent
^ true

This message is the equivalent of handlesMouseDown: for the mouse posi-
tion. When the mouse pointer enters or leaves the morph, the mouseEnter:
and mouseLeave: messages are sent to it.

Define two methods so that CrossMorph catches and releases the keyboard
focus, and a third method to actually handle the keystrokes.

CrossMorph >> mouseEnter: anEvent
anEvent hand newKeyboardFocus: self

CrossMorph >> mouseLeave: anEvent
anEvent hand newKeyboardFocus: nil

CrossMorph >> handleKeystroke: anEvent
| keyValue |
keyValue := anEvent keyValue.
keyValue = 30 "up arrow"
ifTrue: [self position: self position - (0 @ 1)].

keyValue = 31 "down arrow"
ifTrue: [self position: self position + (0 @ 1)].

keyValue = 29 "right arrow"
ifTrue: [self position: self position + (1 @ 0)].

keyValue = 28 "left arrow"
ifTrue: [self position: self position - (1 @ 0)]

We have written this method so that you can move the morph using the
arrow keys. Note that when the mouse is no longer over the morph, the
handleKeystroke: message is not sent, so the morph stops responding
to keyboard commands. To discover the key values, you can open a Tran-
script window and add Transcript show: anEvent keyValue to the han-
dleKeystroke: method.

The anEvent argument of handleKeystroke: is an instance of Keyboard-
Event, another subclass of MorphicEvent. Browse this class to learn more
about keyboard events.

15.8 Morphic animations

Morphic provides a simple animation system with two main methods: step
is sent to a morph at regular intervals of time, while stepTime specifies the
time in milliseconds between steps. stepTime is actually the minimum time
between steps. If you ask for a stepTime of 1 ms, don’t be surprised if Pharo
is too busy to step your morph that often. In addition, startStepping turns
on the stepping mechanism, while stopStepping turns it off again. isStep-
ping can be used to find out whether a morph is currently being stepped.

Make CrossMorph blink by defining these methods as follows:

244

15.9 Interactors

Figure 15-12 An input dialog.

CrossMorph >> stepTime
^ 100

CrossMorph >> step
(self color diff: Color black) < 0.1
ifTrue: [self color: Color red]
ifFalse: [self color: self color darker]

To start things off, you can open an inspector on a CrossMorph using the de-
bug handle which look like a wrench in the morphic halo, type self start-
Stepping in the small pane at the bottom, and Do it.

You can also redefine the initializemethod as follows:

CrossMorph >> initialize
super initialize.
self startStepping

Alternatively, you can modify the handleKeystroke: method so that you
can use the + and - keys to start and stop stepping. Add the following code to
the handleKeystroke: method:

keyValue = $+ asciiValue
ifTrue: [self startStepping].

keyValue = $- asciiValue
ifTrue: [self stopStepping]

15.9 Interactors

To prompt the user for input, the UIManager class provides a large number
of ready to use dialog boxes. For instance, the request:initialAnswer:
method returns the string entered by the user (Figure 15-12).

UIManager default request: 'What''s your name?' initialAnswer: 'no
name'

To display a popup menu, use one of the various chooseFrom: methods (Fig-
ure 15-13):

245

Morphic

Figure 15-13 Pop-up menu.

UIManager default
chooseFrom: #('circle' 'oval' 'square' 'rectangle' 'triangle')
lines: #(2 4) message: 'Choose a shape'

Browse the UIManager class and try out some of the interaction methods
offered.

15.10 Drag-and-drop

Morphic also supports drag-and-drop. Let’s examine a simple example with
two morphs, a receiver morph and a dropped morph. The receiver will ac-
cept a morph only if the dropped morph matches a given condition: in our
example, the morph should be blue. If it is rejected, the dropped morph de-
cides what to do.

Let’s first define the receiver morph:

Morph subclass: #ReceiverMorph
instanceVariableNames: ''
classVariableNames: ''
package: 'PBE-Morphic'

Now define the initialization method in the usual way:

ReceiverMorph >> initialize
super initialize.
color := Color red.
bounds := 0 @ 0 extent: 200 @ 200

How do we decide if the receiver morph will accept or reject the dropped
morph? In general, both of the morphs will have to agree to the interaction.
The receiver does this by responding to wantsDroppedMorph:event:. Its
first argument is the dropped morph, and the second the mouse event, so
that the receiver can, for example, see if any modifier keys were held down

246

15.10 Drag-and-drop

Figure 15-14 A ReceiverMorph and an EllipseMorph.

at the time of the drop. The dropped morph is also given the opportunity
to check and see if it likes the morph onto which it is being dropped, by re-
sponding to the message wantsToBeDroppedInto:. The default implementa-
tion of this method (in class Morph) answers true.

ReceiverMorph >> wantsDroppedMorph: aMorph event: anEvent
^ aMorph color = Color blue

What happens to the dropped morph if the receiving morph doesn’t want
it? The default behaviour is for it to do nothing, that is, to sit on top of the
receiving morph, but without interacting with it. A more intuitive behav-
ior is for the dropped morph to go back to its original position. This can be
achieved by the receiver answering true to the message repelsMorph:event:
when it doesn’t want the dropped morph:

ReceiverMorph >> repelsMorph: aMorph event: anEvent
^ (self wantsDroppedMorph: aMorph event: anEvent) not

That’s all we need as far as the receiver is concerned.

Create instances of ReceiverMorph and EllipseMorph in a playground:

ReceiverMorph new openInWorld;
bounds: (100@100 corner: 200@200).

EllipseMorph new openInWorld.

Try to drag and drop the yellow EllipseMorph onto the receiver. It will be
rejected and sent back to its initial position.

To change this behaviour, change the color of the ellipse morph to the color
blue (by sending it the message color: Color blue; right after new). Blue
morphs should be accepted by the ReceiverMorph.

Let’s create a specific subclass of Morph, named DroppedMorph, so we can
experiment a bit more. Let us define a new kind of morph called Dropped-
Morph.

247

Morphic

Morph subclass: #DroppedMorph
instanceVariableNames: ''
classVariableNames: ''
package: 'PBE-Morphic'

DroppedMorph >> initialize
super initialize.
color := Color blue.
self position: 250 @ 100

Now we can specify what the dropped morph should do when it is rejected by
the receiver; here it will stay attached to the mouse pointer:

DroppedMorph >> rejectDropMorphEvent: anEvent
| h |
h := anEvent hand.
WorldState addDeferredUIMessage: [h grabMorph: self].
anEvent wasHandled: true

Sending the handmessage to an event answers the hand, an instance of Hand-
Morph that represents the mouse pointer and whatever it holds. Here we tell
the World that the hand should grab self, the rejected morph.

Create two instances of DroppedMorph of different colors, and then drag and
drop them onto the receiver.

ReceiverMorph new openInWorld.
morph := (DroppedMorph new color: Color blue) openInWorld.
morph position: (morph position + (70@0)).
(DroppedMorph new color: Color green) openInWorld.

The green morph is rejected and therefore stays attached to the mouse pointer.

15.11 A complete example

Let’s design a morph to roll a die. Clicking on it will display the values of all
sides of the die in a quick loop, and another click will stop the animation.

Define the die as a subclass of BorderedMorph instead of Morph, because we
will make use of the border.

BorderedMorph subclass: #DieMorph
instanceVariableNames: 'faces dieValue isStopped'
classVariableNames: ''
package: 'PBE-Morphic'

The instance variable faces records the number of faces on the die; we al-
low dice with up to 9 faces! dieValue records the value of the face that is
currently displayed, and isStopped is true if the die animation has stopped
running. To create a die instance, we define the faces: nmethod on the
class side of DieMorph to create a new die with n faces.

248

15.11 A complete example

Figure 15-15 Creation of DroppedMorph and ReceiverMorph.

Figure 15-16 The die in Morphic

DieMorph class >> faces: aNumber
^ self new faces: aNumber

The initializemethod is defined on the instance side in the usual way;
remember that new automatically sends initialize to the newly-created
instance.

DieMorph >> initialize
super initialize.
self extent: 50 @ 50.
self
useGradientFill;
borderWidth: 2;
useRoundedCorners.

self setBorderStyle: #complexRaised.

249

Morphic

self fillStyle direction: self extent.
self color: Color green.
dieValue := 1.
faces := 6.
isStopped := false

We use a few methods of BorderedMorph to give a nice appearance to the
die: a thick border with a raised effect, rounded corners, and a color gradient
on the visible face. We define the instance method faces: to check for a
valid parameter as follows:

DieMorph >> faces: aNumber
"Set the number of faces"

((aNumber isInteger and: [aNumber > 0]) and: [aNumber <= 9])
ifTrue: [faces := aNumber]

It may be good to review the order in which the messages are sent when a die
is created. For instance, if we start by evaluating DieMorph faces: 9:

• The class method DieMorph class >> faces: sends new to DieMorph
class.

• The method for new (inherited by DieMorph class from Behavior)
creates the new instance and sends it the initializemessage.

• The initializemethod in DieMorph sets faces to an initial value of
6.

• DieMorph class >> new returns to the class method DieMorph class
>> faces:, which then sends the message faces: 9 to the new in-
stance.

• The instance method DieMorph >> faces: now executes, setting the
faces instance variable to 9.

Before defining drawOn:, we need a few methods to place the dots on the
displayed face:

DieMorph >> face1
^ {(0.5 @ 0.5)}

DieMorph >> face2
^{0.25@0.25 . 0.75@0.75}

DieMorph >> face3
^{0.25@0.25 . 0.75@0.75 . 0.5@0.5}

DieMorph >> face4
^{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75}

DieMorph >> face5
^{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.5@0.5}

250

15.11 A complete example

Listing 15-17 Create a Die 6

(DieMorph faces: 6) openInWorld.

DieMorph >> face6
^{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 .

0.75@0.5}

DieMorph >> face7
^{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 .

0.75@0.5 . 0.5@0.5}

DieMorph >> face8
^{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 .

0.75@0.5 . 0.5@0.5 . 0.5@0.25}

DieMorph >> face9
^{0.25@0.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75 . 0.25@0.5 .

0.75@0.5 . 0.5@0.5 . 0.5@0.25 . 0.5@0.75}

These methods define collections of the coordinates of dots for each face.
The coordinates are in a square of size 1x1; we will simply need to scale them
to place the actual dots.

The drawOn: method does two things: it draws the die background with the
super-send, and then draws the dots as follows:

DieMorph >> drawOn: aCanvas
super drawOn: aCanvas.
(self perform: ('face', dieValue asString) asSymbol)
do: [:aPoint | self drawDotOn: aCanvas at: aPoint]

The second part of this method uses the reflective capacities of Pharo. Draw-
ing the dots of a face is a simple matter of iterating over the collection given
by the faceXmethod for that face, sending the drawDotOn:at: message for
each coordinate. To call the correct faceXmethod, we use the perform:
method which sends a message built from a string, ('face', dieValue as-
String) asSymbol.

DieMorph >> drawDotOn: aCanvas at: aPoint
aCanvas
fillOval: (Rectangle

center: self position + (self extent * aPoint)
extent: self extent / 6)

color: Color black

Since the coordinates are normalized to the [0:1] interval, we scale them to
the dimensions of our die: self extent * aPoint. We can already create a
die instance from a playground (see result on Figure 15-18):

To change the displayed face, we create an accessor that we can use as myDie
dieValue: 5:

251

Morphic

Figure 15-18 A new die 6 with (DieMorph faces: 6) openInWorld

Figure 15-19 Result of (DieMorph faces: 6) openInWorld; dieValue: 5.

DieMorph >> dieValue: aNumber
((aNumber isInteger and: [aNumber > 0]) and: [aNumber <= faces

])
ifTrue: [

dieValue := aNumber.
self changed]

Now we will use the animation system to show quickly all the faces:

DieMorph >> stepTime
^ 100

DieMorph >> step
isStopped ifFalse: [self dieValue: (1 to: faces) atRandom]

Now the die is rolling!

To start or stop the animation by clicking, we will use what we learned previ-
ously about mouse events. First, activate the reception of mouse events:

DieMorph >> handlesMouseDown: anEvent
^ true

Second, we will stop and start alternatively a roll on mouse click.

252

15.12 More about the canvas

Figure 15-20 The die displayed with alpha-transparency

DieMorph >> mouseDown: anEvent
anEvent redButtonPressed
ifTrue: [isStopped := isStopped not]

Now the die will roll or stop rolling when we click on it.

15.12 More about the canvas

The drawOn: method has an instance of Canvas as its sole argument; the
canvas is the area on which the morph draws itself. By using the graphics
methods of the canvas you are free to give the appearance you want to a
morph. If you browse the inheritance hierarchy of the Canvas class, you will
see that it has several variants. The default variant of Canvas is FormCan-
vas, and you will find the key graphics methods in Canvas and FormCanvas.
These methods can draw points, lines, polygons, rectangles, ellipses, text,
and images with rotation and scaling.

It is also possible to use other kinds of canvas, for example to obtain trans-
parent morphs, more graphics methods, antialiasing, and so on. To use these
features you will need an AlphaBlendingCanvas or a BalloonCanvas. But
how can you obtain such a canvas in a drawOn: method, when drawOn: re-
ceives an instance of FormCanvas as its argument? Fortunately, you can
transform one kind of canvas into another.

To use a canvas with a 0.5 alpha-transparency in DieMorph, redefine dra-
wOn: like this:

DieMorph >> drawOn: aCanvas
| theCanvas |
theCanvas := aCanvas asAlphaBlendingCanvas: 0.5.
super drawOn: theCanvas.
(self perform: ('face', dieValue asString) asSymbol)
do: [:aPoint | self drawDotOn: theCanvas at: aPoint]

That’s all you need to do!

253

Morphic

15.13 Chapter summary

Morphic is a graphical framework in which graphical interface elements can
be dynamically composed.

• You can convert an object into a morph and display that morph on the
screen by sending it the messages asMorph openInWorld.

• You can manipulate a morph by meta-clicking on it and using the han-
dles that appear. (Handles have help balloons that explain what they
do.)

• You can compose morphs by embedding one onto another, either by
drag and drop or by sending the message addMorph:.

• You can subclass an existing morph class and redefine key methods,
like initialize and drawOn:.

• You can control how a morph reacts to mouse and keyboard events by
redefining the methods handlesMouseDown:, handlesMouseOver:,
etc.

• You can animate a morph by defining the methods step (what to do)
and stepTime (the number of milliseconds between steps).

254

CHA P T E R 16
Classes and metaclasses

As we saw in preceding chapters, in Pharo, everything is an object, and every
object is an instance of a class. Classes are no exception: classes are objects,
and class objects are instances of other classes. This object model captures
the essence of object-oriented programming, and is lean, simple, elegant and
uniform. However, the implications of this uniformity may confuse newcom-
ers.

Note that you do not need to fully understand the implications of this uni-
formity to program fluently in Pharo. Nevertheless, the goal of this chapter
is twofold: (1) go as deep as possible and (2) show that there is nothing com-
plex, magic or special here: just simple rules applied uniformly. By following
these rules you can always understand why the situation is the way that it is.

16.1 Rules for classes

The Pharo object model is based on a limited number of concepts applied
uniformly. To refresh your memory, here are the rules of the object model
that we explored in Chapter : The Pharo Object Model.

Rule 1 Everything is an object.

Rule 2 Every object is an instance of a class.

Rule 3 Every class has a superclass.

Rule 4 Everything happens by sending messages.

Rule 5 Method lookup follows the inheritance chain.

Rule 6 Classes are objects too and follow exactly the same rules.

255

Classes and metaclasses

As we mentioned in the introduction to this chapter, a consequence of Rule
1 is that classes are objects too, so Rule 2 tells us that classes must also be in-
stances of classes. The class of a class is called a metaclass.

16.2 Metaclasses

A metaclass is created automatically for you whenever you create a class.
Most of the time you do not need to care or think about metaclasses. How-
ever, every time that you use the browser to browse the class side of a class,
it is helpful to recall that you are actually browsing a different class. A class
and its metaclass are two separate classes, even though the former is an in-
stance of the latter.

To properly explain classes and metaclasses, we need to extend the rules
from Chapter : The Pharo Object Model with the following additional rules.

Rule 7 Every class is an instance of a metaclass.

Rule 8 The metaclass hierarchy parallels the class hierarchy.

Rule 9 Every metaclass inherits from Class and Behavior.

Rule 10 Every metaclass is an instance of Metaclass.

Rule 11 The metaclass of Metaclass is an instance of Metaclass.

Together, these 11 rules complete Pharo’s object model.

We will first briefly revisit the 5 rules from Chapter : The Pharo Object Model
with a small example. Then we will take a closer look at the new rules, using
the same example.

16.3 Revisiting the Pharo object model

Rule 1. Since everything is an object, an ordered collection in Pharo is also
an object.

OrderedCollection withAll: #(4 5 6 1 2 3)
>>> an OrderedCollection(4 5 6 1 2 3)

Rule 2. Every object is an instance of a class. The class of an ordered collec-
tion is the class OrderedCollection:

(OrderedCollection withAll: #(4 5 6 1 2 3)) class
>>> OrderedCollection

Rule 3. Every class has a superclass. The superclass of OrderedCollection
is SequenceableCollection and the superclass of SequenceableCollec-
tion is Collection:

256

16.3 Revisiting the Pharo object model

Figure 16-1 Sending the message class to a sorted collection

OrderedCollection superclass
>>> SequenceableCollection

SequenceableCollection superclass
>>> Collection

Collection superclass
>>> Object

Let us take an example. When we send the message asSortedCollection,
we convert the ordered collection into a sorted collection. We verify simply
as follows:

(OrderedCollection withAll: #(4 5 6 1 2 3)) asSortedCollection class
>>> SortedCollection

Rule 4. Everything happens by sending messages, so we can deduce that
withAll: is a message to OrderedCollection and asSortedCollection
are messages sent to the ordered collection instance, and superclass is a
message to OrderedCollection and SequenceableCollection, and Col-
lection. The receiver in each case is an object, since everything is an object,
but some of these objects are also classes.

Rule 5. Method lookup follows the inheritance chain, so when we send the
message class to the result of (OrderedCollection withAll: #(4 5 6 1
2 3)) asSortedCollection, the message is handled when the correspond-
ing method is found in the class Object, as shown in Figure 16-1.

257

Classes and metaclasses

Figure 16-2 The metaclasses of SortedCollection and its superclasses

(elided).

16.4 Every class is an instance of a metaclass

As we mentioned earlier in Section 16.2, classes whose instances are them-
selves classes are called metaclasses.

Metaclasses are implicit

Metaclasses are automatically created when you define a class. We say that
they are implicit since as a programmer you never have to worry about them.
An implicit metaclass is created for each class you create, so each metaclass
has only a single instance.

Whereas ordinary classes are named, metaclasses are anonymous. However,
we can always refer to them through the class that is their instance. The
class of SortedCollection, for instance, is SortedCollection class, and
the class of Object is Object class:

SortedCollection class
>>> SortedCollection class

Object class
>>> Object class

In fact metaclasses are not truly anonymous, their name is deduced from the
one of their single instance.

SortedCollection class name
>>> 'SortedCollection class'

Figure 16-2 shows how each class is an instance of its metaclass. Note that
we only skip SequenceableCollection and Collection from the figures
and explanation due to space constraints. Their absence does not change the
overall meaning.

258

16.5 Querying Metaclasses

16.5 Querying Metaclasses

The fact that classes are also objects makes it easy for us to query them by
sending messages. Let’s have a look:

OrderedCollection subclasses
>>> {SortedCollection . ObjectFinalizerCollection .

WeakOrderedCollection . OCLiteralList . GLMMultiValue}

SortedCollection subclasses
>>> #()

SortedCollection allSuperclasses
>>> an OrderedCollection(OrderedCollection SequenceableCollection

Collection Object ProtoObject)

SortedCollection instVarNames
>>> #(#sortBlock)

SortedCollection allInstVarNames
>>> #(#array #firstIndex #lastIndex #sortBlock)

SortedCollection selectors
>>> #(#sortBlock: #add: #groupedBy: #defaultSort:to: #addAll:

#at:put: #copyEmpty #, #collect: #indexForInserting:
#insert:before: #reSort #addFirst: #join: #median #flatCollect:
#sort: #sort:to: #= #sortBlock)

16.6 The metaclass hierarchy parallels the class hierarchy

Rule 7 says that the superclass of a metaclass cannot be an arbitrary class: it
is constrained to be the metaclass of the superclass of the metaclass’s unique
instance.

SortedCollection class superclass
>>> OrderedCollection class

SortedCollection superclass class
>>> OrderedCollection class

This is what we mean by the metaclass hierarchy being parallel to the class
hierarchy. Figure 16-3 shows how this works in the SortedCollection hier-
archy.

SortedCollection class
>>> SortedCollection class

SortedCollection class superclass
>>> OrderedCollection class

SortedCollection class superclass superclass
>>> SequenceableCollection class

259

Classes and metaclasses

Figure 16-3 The metaclass hierarchy parallels the class hierarchy (elided).

SortedCollection class superclass superclass superclass superclass
>>> Object class

Uniformity between Classes and Objects

It is interesting to step back a moment and realize that there is no differ-
ence between sending a message to an object and to a class. In both cases the
search for the corresponding method starts in the class of the receiver, and
proceeds up the inheritance chain.

Thus, messages sent to classes must follow the metaclass inheritance chain.
Consider, for example, the method withAll:, which is implemented on the
class side of Collection. When we send the message withAll: to the class
OrderedCollection, then it is looked up the same way as any other mes-
sage. The lookup starts in OrderedCollection class (since it starts in the
class of the receiver and the receiver is OrderedCollection), and proceeds
up the metaclass hierarchy until it is found in Collection class (see Figure
16-4). It returns a new instance of OrderedCollection.

OrderedCollection withAll: #(4 5 6 1 2 3)
>>> an OrderedCollection (4 5 6 1 2 3)

Only one method lookup

Thus we see that there is one uniform kind of method lookup in Pharo. Classes
are just objects, and behave like any other objects. Classes have the power to
create new instances only because classes happen to respond to the message
new, and because the method for new knows how to create new instances.
Normally, non-class objects do not understand this message, but if you have
a good reason to do so, there is nothing stopping you from adding a new
method to a non-metaclass.

260

16.6 The metaclass hierarchy parallels the class hierarchy

Figure 16-4 Message lookup for classes is the same as for ordinary objects.

Figure 16-5 Classes are objects too.

Inspecting objects and classes

Since classes are objects, we can also inspect them.

Inspect OrderedCollection withAll: #(4 5 6 1 2 3) and OrderedCol-
lection.

Notice that in one case you are inspecting an instance of OrderedCollec-
tion and in the other case the OrderedCollection class itself. This can be
a bit confusing, because the title bar of the inspector names the class of the
object being inspected.

The inspector on OrderedCollection allows you to see the superclass, in-
stance variables, method dictionary, and so on, of the OrderedCollection
class, as shown in Figure 16-5.

261

Classes and metaclasses

Figure 16-6 Metaclasses inherit from Class and Behavior.

16.7 Every metaclass inherits from Class and Behavior

Every metaclass is a kind of a class (a class with a single instance), hence
inherits from Class. Class in turn inherits from its superclasses, Class-
Description and Behavior. Since everything in Pharo is an object, these
classes all inherit eventually from Object. We can see the complete picture
in Figure 16-6.

Where is new defined?

To understand the importance of the fact that metaclasses inherit from Class
and Behavior, it helps to ask where new is defined and how it is found. When
the message new is sent to a class, it is looked up in its metaclass chain and
ultimately in its superclasses Class, ClassDescription and Behavior as
shown in Figure 16-7.

The question Where is new defined? is crucial. new is first defined in the class
Behavior, and it can be redefined in its subclasses, including any of the
metaclass of the classes we define, when this is necessary. Now when a mes-
sage new is sent to a class it is looked up, as usual, in the metaclass of this
class, continuing up the superclass chain right up to the class Behavior, if it
has not been redefined along the way.

Note that the result of sending SortedCollection new is an instance of
SortedCollection and not of Behavior, even though the method is looked

262

16.7 Every metaclass inherits from Class and Behavior

Figure 16-7 new is an ordinary message looked up in the metaclass chain.

up in the class Behavior! new always returns an instance of self, the class
that receives the message, even if it is implemented in another class.

SortedCollection new class
>>> SortedCollection "not Behavior!"

Common mistake.

A common mistake is to look for new in the superclass of the receiving class.
The same holds for new:, the standard message to create an object of a given
size. For example, Array new: 4 creates an array of 4 elements. You will
not find this method defined in Array or any of its superclasses. Instead
you should look in Array class and its superclasses, since that is where the
lookup will start (See Figure 16-7).

Responsibilities of Behavior, ClassDescription, and Class

Behavior provides the minimum state necessary for objects that have in-
stances, which includes a superclass link, a method dictionary and the class
format. The class format is an integer that encodes the pointer/non-pointer
distinction, compact/non-compact class distinction, and basic size of in-
stances. Behavior inherits from Object, so it, and all of its subclasses, can
behave like objects.

Behavior is also the basic interface to the compiler. It provides methods
for creating a method dictionary, compiling methods, creating instances

263

Classes and metaclasses

(i.e., new, basicNew, new:, and basicNew:), manipulating the class hierar-
chy (i.e., superclass:, addSubclass:), accessing methods (i.e., selectors,
allSelectors, compiledMethodAt:), accessing instances and variables (i.e.,
allInstances, instVarNames...), accessing the class hierarchy (i.e., super-
class, subclasses) and querying (i.e., hasMethods, includesSelector,
canUnderstand:, inheritsFrom:, isVariable).

ClassDescription is an abstract class that provides facilities needed by
its two direct subclasses, Class and Metaclass. ClassDescription adds
a number of facilities to the base provided by Behavior: named instance
variables, the categorization of methods into protocols, the maintenance of
change sets and the logging of changes, and most of the mechanisms needed
for filing out changes.

Class represents the common behaviour of all classes. It provides a class
name, compilation methods, method storage, and instance variables. It pro-
vides a concrete representation for class variable names and shared pool
variables (addClassVarName:, addSharedPool:, initialize). Since a meta-
class is a class for its sole instance (i.e., the non-meta class), all metaclasses
ultimately inherit from Class (as shown by Figure 16-9).

16.8 Every metaclass is an instance of Metaclass

One question left is since metaclasses are objects too, they should be in-
stances of another class, but which one? Metaclasses are objects too; they are
instances of the class Metaclass as shown in Figure 16-8. The instances of
class Metaclass are the anonymous metaclasses, each of which has exactly
one instance, which is a class.

Metaclass represents common metaclass behaviour. It provides methods
for instance creation (subclassOf:), creating initialized instances of the
metaclass’s sole instance, initialization of class variables, metaclass instance,
method compilation, and class information (inheritance links, instance vari-
ables, etc.).

16.9 The metaclass of Metaclass is an instance of Meta-
class

The final question to be answered is: what is the class of Metaclass class?
The answer is simple: it is a metaclass, so it must be an instance of Meta-
class, just like all the other metaclasses in the system (see Figure 16-9).

Figure 16-9 shows how all metaclasses are instances of Metaclass, including
the metaclass of Metaclass itself. If you compare Figures 16-8 and 16-9 you
will see how the metaclass hierarchy perfectly mirrors the class hierarchy,
all the way up to Object class.

264

Figure 16-8 Every metaclass is a Metaclass.

Figure 16-9 All metaclasses are instances of the class Metaclass, even the

metaclass of Metaclass.

Classes and metaclasses

Listing 16-10 The class hierarchy

Collection superclass
>>> Object

Listing 16-11 The parallel metaclass hierarchy

Collection class superclass
>>> Object class
[[[testcase=true
Object class superclass superclass
>>> Class "NB: skip ProtoObject class"

Listing 16-12 Instances of Metaclass

Collection class class
>>> Metaclass

The following examples show us how we can query the class hierarchy to
demonstrate that Figure 16-9 is correct. (Actually, you will see that we told
a white lie — Object class superclass --> ProtoObject class, not
Class. In Pharo, we must go one superclass higher to reach Class.)

Class superclass
>>> ClassDescription

ClassDescription superclass
>>> Behavior

Behavior superclass
>>> Object

Object class class
>>> Metaclass

Behavior class class
>>> Metaclass

Metaclass superclass
>>> ClassDescription

16.10 Chapter summary

This chapter gave an in-depth look into the uniform object model, and a
more thorough explanation of how classes are organized. If you get lost or
confused, you should always remember that message passing is the key: you
look for the method in the class of the receiver. This works on any receiver.

Listing 16-13 Metaclass class is a Metaclass

Metaclass class class
>>> Metaclass

266

16.10 Chapter summary

If the method is not found in the class of the receiver, it is looked up in its
superclasses.

• Every class is an instance of a metaclass. Metaclasses are implicit. A
metaclass is created automatically when you create the class that is its
sole instance. A metaclass is simply a class whose unique instance is a
class.

• The metaclass hierarchy parallels the class hierarchy. Method lookup
for classes parallels method lookup for ordinary objects, and follows
the metaclass’s superclass chain.

• Every metaclass inherits from Class and Behavior. Every class is a
Class. Since metaclasses are classes too, they must also inherit from
Class. Behavior provides behavior common to all entities that have
instances.

• Every metaclass is an instance of Metaclass. ClassDescription pro-
vides everything that is common to Class and Metaclass.

• The metaclass of Metaclass is an instance of Metaclass. The instance-
of relation forms a closed loop, so Metaclass class class is Meta-
class.

267

CHA P T E R 17
Reflection

Pharo is a reflective programming language. In a nutshell, this means that
programs are able to reflect on their own execution and structure. More tech-
nically, this means that the metaobjects of the runtime system can be reified
as ordinary objects, which can be queried and inspected. The metaobjects
in Pharo are classes, metaclasses, method dictionaries, compiled methods,
but also the run-time stack, processes, and so on. This form of reflection is
also called introspection, and is supported by many modern programming lan-
guages.

Conversely, it is possible in Pharo to modify reified metaobjects and reflect
these changes back to the runtime system (see Figure 17-1). This is also called
intercession, and is supported mainly by dynamic programming languages,

Figure 17-1 Reification and reflection.

269

Reflection

and only to a very limited degree by static languages. So pay attention when
people say that Java is a reflective language, it is an introspective one not a
reflective one.

A program that manipulates other programs (or even itself) is a metaprogram.
For a programming language to be reflective, it should support both intro-
spection and intercession. Introspection is the ability to examine the data
structures that define the language, such as objects, classes, methods and
the execution stack. Intercession is the ability to modify these structures, in
other words to change the language semantics and the behavior of a pro-
gram from within the program itself. Structural reflection is about examining
and modifying the structures of the run-time system, and behavioural reflec-
tion is about modifying the interpretation of these structures.

In this chapter we will focus mainly on structural reflection. We will explore
many practical examples illustrating how Pharo supports introspection and
metaprogramming.

17.1 Introspection

Using the inspector, you can look at an object, change the values of its in-
stance variables, and even send messages to it.

Evaluate the following code in a playground:

w := GTPlayground openLabel: 'My Playground'.
w inspect

This will open a second playground and an inspector. The inspector shows
the internal state of this new playground, listing its instance variables on the
left (borderColor, borderWidth, bounds...) and the value of the selected
instance variable on the right. The bounds instance variable represents the
precise area occupied by the playground.

Now choose the inspector and click the playground area of the inspector
which has a comment on top and type self bounds: (Rectangle origin:
10@10 corner: 300@300) in it as shown in Figure 17-2 and then Do It like
you do with a code of a Playground.

Immediately you will see the Playground that we created will change and
resize itself.

Accessing instance variables

How does the inspector work? In Pharo, all instance variables are protected.
In theory, it is impossible to access them from another object if the class
doesn’t define any accessor. In practice, the inspector can access instance
variables without needing accessors, because it uses the reflective abilities
of Pharo. Classes define instance variables either by name or by numeric

270

17.1 Introspection

Figure 17-2 Inspecting a Workspace.

indices. The inspector uses methods defined by the Object class to access
them: instVarAt: index and instVarNamed: aString can be used to get
the value of the instance variable at position index or identified by aString,
respectively. Similarly, to assign new values to these instance variables, it
uses instVarAt:put: and instVarNamed:put:.

For instance, you can change the value of the w binding of the first workspace
by evaluating:

w instVarNamed:'bounds' put: (Rectangle origin: 10@10 corner:
500@500).

Important Caveat: Although these methods are useful for building develop-
ment tools, using them to develop conventional applications is a bad idea: these
reflective methods break the encapsulation boundary of your objects and can
therefore make your code much harder to understand and maintain.

Both instVarAt: and instVarAt:put: are primitive methods, meaning
that they are implemented as primitive operations of the Pharo virtual ma-
chine. If you consult the code of these methods, you will see the special pragma
syntax <primitive: N> where N is an integer.

Object >> instVarAt: index
"Primitive. Answer a fixed variable in an object. ..."

<primitive: 173 error: ec>
self primitiveFailed

271

Reflection

Figure 17-3 Displaying all instance variables of a GTPlayground.

Any Pharo code after the primitive declaration is executed only if the prim-
itive fails. This also allows the debugger to be started on primitive methods.
In this specific case, there is no way to implement this method, so the whole
method just fails.

Other methods are implemented on the VM for faster execution. For exam-
ple some arithmetic operations on SmallInteger :

* aNumber
"Primitive. Multiply the receiver by the argument and answer with

the
result if it is a SmallInteger. Fail if the argument or the result

is not a
SmallInteger. Essential. No Lookup. See Object documentation

whatIsAPrimitive."

<primitive: 9>
^ super * aNumber

If this primitive fails, for example if the VM does not handle the type of the
argument, the Pharo code is executed. Although it is possible to modify the
code of primitive methods, beware that this can be risky business for the
stability of your Pharo system.

Figure 17-3 shows how to display the values of the instance variables of an
arbitrary instance (w) of class GTPlayground. The method allInstVarNames

272

17.1 Introspection

returns all the names of the instance variables of a given class.

GTPlayground allInstVarNames
>>>
#(#registry #suspendAll #suspendedAnnouncemets #logger #pane #title

#titleIcon #transformation #actions #condition #implicitNotNil
#dynamicActionsBlock #color #customValidation #shouldValidate
#acceptsSelection #parentPrototype #registeredAnnouncers
#updateActions #selectionActions #selectionDynamicActionsBlock
#implicitAllNil #rawSelectionTransmissions #statusPane
#sourceLink #initializationBlock #cachedDisplayedValue
#labelActionBlock #portChangeActions #wantsSteps #stepTime
#stepCondition #wantsAutomaticRefresh #presentations
#arrangement)

w := GTPlayground someInstance.
w class allInstVarNames collect: [:each | each -> (w instVarNamed:

each)]

In the same spirit, it is possible to gather instances that have specific proper-
ties iterating over instances of a class using an iterator such as select:. For
instance, to get all objects who are directly included in the world morph (the
main root of the graphical displayed elements), try this expression:

Morph allSubInstances
select: [:each |

| own |
own := (each instVarNamed: 'owner').
own isNotNil and: [own isWorldMorph]]

>>>
OrderedCollection(a GLMSystemWindow(874014976) named: Playground a

GLMSystemWindow(365303808) named: Playground a
MenubarMorph(779936512) a HandMorph(725291008) a
TaskbarMorph(747120896))

Querying classes and interfaces

The development tools in Pharo (system browser, debugger, inspector...) all
use the reflective features we have seen so far.

Here are a few other messages that might be useful to build development
tools:

isKindOf: aClass returns true if the receiver is instance of aClass or of
one of its subclasses. For instance:

1.5 class
>>> SmallFloat64

1.5 isKindOf: Float
>>> true

273

Reflection

1.5 isKindOf: Number
>>> true

1.5 isKindOf: Integer
>>> false

respondsTo: aSymbol returns true if the receiver has a method whose se-
lector is aSymbol. For instance:

1.5 respondsTo: #floor
>>> true "since Number implements floor"

1.5 floor
>>> 1

Exception respondsTo: #,
>>> true "exception classes can be grouped"

Important Caveat:

Although these features are especially useful for implementing development
tools, they are normally not appropriate for typical applications. Asking an
object for its class, or querying it to discover which messages it understands,
are typical signs of design problems, since they violate the principle of en-
capsulation. Development tools, however, are not normal applications, since
their domain is that of software itself. As such these tools have a right to dig
deep into the internal details of code.

Code metrics

Let’s see how we can use Pharo’s introspection features to quickly extract
some code metrics. Code metrics measure aspects such as the depth of the
inheritance hierarchy, the number of direct or indirect subclasses, the num-
ber of methods or instance variables in each class, or the number of locally
defined methods or instance variables. Here are a few metrics for the class
Morph, which is the superclass of all graphical objects in Pharo, revealing
that it is a huge class, and that it is at the root of a huge hierarchy. Maybe it
needs some refactoring!

"inheritance depth"
Morph allSuperclasses size.
>>> 2

"number of methods"
Morph allSelectors size.
>>> 1346

"number of instance variables"
Morph allInstVarNames size.
>>> 6

274

17.2 Browsing code

"number of new methods"
Morph selectors size.
>>> 905

"number of new variables"
Morph instVarNames size.
>>> 6

"direct subclasses"
Morph subclasses size.
>>> 65

"total subclasses"
Morph allSubclasses size.
>>> 428

"total lines of code!"
Morph linesOfCode.
>>> 5027

One of the most interesting metrics in the domain of object-oriented lan-
guages is the number of methods that extend methods inherited from the
superclass. This informs us about the relation between the class and its su-
perclasses. In the next sections we will see how to exploit our knowledge of
the runtime structure to answer such questions.

17.2 Browsing code

In Pharo, everything is an object. In particular, classes are objects that pro-
vide useful features for navigating through their instances. Most of the mes-
sages we will look at now are implemented in Behavior, so they are under-
stood by all classes.

For example, you can obtain a random instance of a given class by sending it
the message someInstance.

Point someInstance
>>> (-1@-1)

You can also gather all the instances with allInstances, or the number of
active instances in memory with instanceCount.

ByteString allInstances
>>> #('collection' 'position' ...)

ByteString instanceCount
>>> 58514

String allSubInstances size
>>> 138962

275

Reflection

These features can be very useful when debugging an application, because
you can ask a class to enumerate those of its methods exhibiting specific
properties. Here are some more interesting and useful methods for code dis-
covery through reflection.

whichSelectorsAccess: returns the list of all selectors of methods that
read or write the instance variable named by the argument

whichSelectorsStoreInto: returns the selectors of methods that modify
the value of an instance variable

whichSelectorsReferTo: returns the selectors of methods that send a
given message

Point whichSelectorsAccess: 'x'
>>> #(#octantOf: #roundDownTo: #+ #asIntegerPoint #transposed ...)

Point whichSelectorsStoreInto: 'x'
>>> #(#fromSton: #setX:setY: #setR:degrees: #bitShiftPoint:)

Point whichSelectorsReferTo: #+
>>> #(#+)

The following messages take inheritance into account:

whichClassIncludesSelector: returns the superclass that implements
the given message

unreferencedInstanceVariables returns the list of instance variables
that are neither used in the receiver class nor any of its subclasses

Rectangle whichClassIncludesSelector: #inspect
>>> Object

Rectangle unreferencedInstanceVariables
>>> #()

SystemNavigation is a facade that supports various useful methods for
querying and browsing the source code of the system. SystemNavigation
default returns an instance you can use to navigate the system. For exam-
ple:

SystemNavigation default allClassesImplementing: #yourself
>>> an OrderedCollection(Object)

The following messages should also be self-explanatory:

SystemNavigation default allSentMessages size
>>>43985

(SystemNavigation default allUnsentMessagesIn: Object selectors) size
>>> 37

276

17.2 Browsing code

Figure 17-4 Browse all implementations of ifTrue:.

SystemNavigation default allUnimplementedCalls size
>>> 269

Note that messages implemented but not sent are not necessarily useless,
since they may be sent implicitly (e.g., using perform:). Messages sent but
not implemented, however, are more problematic, because the methods
sending these messages will fail at runtime. They may be a sign of unfinished
implementation, obsolete APIs, or missing libraries.

Point allCallsOn returns all messages sent explicitly to Point as a re-
ceiver.

All these features are integrated into the programming environment of Pharo,
in particular the code browsers. As we mentioned before, there are conve-
nient keyboard shortcuts for browsing all implementors (CMD-m) and brows-
ing senders (CMD-n) of a given message. What is perhaps not so well known
is that there are many such pre-packaged queries implemented as methods
of the SystemNavigation class in the query protocol. For example, you can
programmatically browse all implementors of the message ifTrue: by eval-
uating:

SystemNavigation default browseAllImplementorsOf: #ifTrue:

Particularly useful are the methods browseAllSelect: and browseMeth-
odsWithSourceString:matchCase:. Here are two different ways to browse
all methods in the system that perform super sends (the first way is rather
brute force, the second way is better and eliminates some false positives):

277

Reflection

Figure 17-5 Inspector on class Point and the bytecode of its #*method.

SystemNavigation default browseMethodsWithSourceString: 'super'
matchCase: true.

SystemNavigation default browseAllSelect: [:method | method
sendsToSuper].

17.3 Classes, method dictionaries and methods

Since classes are objects, we can inspect or explore them just like any other
object.

Evaluate Point inspect.

In Figure 17-5, the inspector shows the structure of class Point. You can see
that the class stores its methods in a dictionary, indexing them by their se-
lector. The selector #* points to the decompiled bytecode of Point>>*.

Let us consider the relationship between classes and methods. In Figure 17-6
we see that classes and metaclasses have the common superclass Behavior.
This is where new is defined, amongst other key methods for classes. Every
class has a method dictionary, which maps method selectors to compiled
methods. Each compiled method knows the class in which it is installed. In
Figure 17-5 we can even see that this is stored in an association in literal6.

We can exploit the relationships between classes and methods to pose queries
about the system. For example, to discover which methods are newly intro-
duced in a given class, i.e., do not override superclass methods, we can navi-
gate from the class to the method dictionary as follows:

278

17.3 Classes, method dictionaries and methods

Figure 17-6 Classes, method dictionaries and compiled methods

[:aClass| aClass methodDict keys select: [:aMethod |
(aClass superclass canUnderstand: aMethod) not]] value:

SmallInteger
>>> an IdentitySet(#threeDigitName #printStringBase:nDigits: ...)

A compiled method does not simply store the bytecode of a method. It is also
an object that provides numerous useful methods for querying the system.
One such method is isAbstract (which tells if the method sends subclass-
Responsibility). We can use it to identify all the abstract methods of an
abstract class.

[:aClass| aClass methodDict keys select: [:aMethod |
(aClass>>aMethod) isAbstract]] value: Number

>>> #(#+ #round: #adaptToInteger:andSend: #asFloat #printOn:base: #/
#adaptToFraction:andSend: #- #* #sqrt #nthRoot: #storeOn:base:)

Note that this code sends the >>message to a class to obtain the compiled
method for a given selector.

To browse the super-sends within a given hierarchy, for example within the
Collections hierarchy, we can pose a more sophisticated query:

class := Collection.
SystemNavigation default

browseMessageList: (class withAllSubclasses gather: [:each |
each methodDict associations

select: [:assoc | assoc value sendsToSuper]
thenCollect: [:assoc | RGMethodDefinition realClass: each

selector: assoc key]])
name: 'Supersends of ', class name, ' and its subclasses'

279

Reflection

Note how we navigate from classes to method dictionaries to compiled meth-
ods to identify the methods we are interested in. A RGMethodDefinition is
a lightweight proxy for a compiled method that is used by many tools. There
is a convenience method CompiledMethod>>methodReference to return the
method reference for a compiled method.

(Object>>#=) methodReference selector
>>> #=

17.4 Browsing environments

Although SystemNavigation offers some useful ways to programmatically
query and browse system code, there are more ways. The Browser, which
is integrated into Pharo, allows us to restrict the environment in which a
search is to perform.

Suppose we are interested to discover which classes refer to the class Point
but only in its own package.

Open a browser on the class Point.

Click on the top level package Kernel in the package pane and select Scoped
View radio button. Browser now shows only the package Kernel and all
classes within this package (and some classes which have extension meth-
ods from this package). Now, in this browser, select again the class Point,
Action-click on the class name and select Class refs. This will show all
methods that have references to the class Point but only those from the
package Kernel. Compare this result with the search from a Browser with-
out restricted scope.

This scope is what we call a Browsing Environment (class RBBrowserEnviron-
ment). All other searches, like senders of a method or implementors of a method
from within this browser are restricted to this environments too.

Browser environments can also be created programmatically. Here, for ex-
ample, we create a new RBBrowserEnvironment for Collection and its sub-
classes, select the super-sending methods, and browse the resulting environ-
ment.

((RBBrowserEnvironment new forClasses: (Collection
withAllSubclasses))

selectMethods: [:method | method sendsToSuper])
browse.

Note how this is considerably more compact than the earlier, equivalent ex-
ample using SystemNavigation.

Finally, we can find just those methods that send a different super message
programmatically as follows:

280

17.4 Browsing environments

Figure 17-7 Finding methods

((RBBrowserEnvironment new forClasses: (Collection
withAllSubclasses))

selectMethods: [:method |
method sendsToSuper
and: [(method parseTree superMessages includes: method selector)
not]])

browse

Here we ask each compiled method for its (Refactoring Browser) parse tree,
in order to find out whether the super messages differ from the method’s
selector. Have a look at the querying protocol of the class RBProgramNode
to see some the things we can ask of parse trees.

Instead of browsing the environment in a System Browser, we can spawn a
MessageBrower from the list of all methods in this environment.

MessageBrowser browse: ((RBBrowserEnvironment new forClasses:
(Collection withAllSubclasses))

selectMethods: [:method |
method sendsToSuper
and: [(method parseTree superMessages includes: method selector)
not]]) methods

title: 'Collection methods sending different super'

In Figure 17-7 we can see that 5 such methods have been found within the
Collection hierarchy, including Collection>>printNameOn:, which sends
super printOn:.

281

Reflection

17.5 Accessing the run-time context

We have seen how Pharo’s reflective capabilities let us query and explore
objects, classes and methods. But what about the run-time environment?

Method contexts

In fact, the run-time context of an executing method is in the virtual ma-
chine — it is not in the image at all! On the other hand, the debugger obvi-
ously has access to this information, and we can happily explore the run-
time context, just like any other object. How is this possible?

Actually, there is nothing magical about the debugger. The secret is the
pseudo-variable thisContext, which we have encountered only in passing
before. Whenever thisContext is referred to in a running method, the en-
tire run-time context of that method is reified and made available to the im-
age as a series of chained Context objects.

We can easily experiment with this mechanism ourselves.

Change the definition of Integer>>factorial by inserting the expression
thisContext inspect. self halt. as shown below:

Integer>>factorial
"Answer the factorial of the receiver."
self = 0 ifTrue: [thisContext inspect. self halt. ^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: 'Not valid for negative integers'

Now evaluate 3 factorial in a workspace. You should obtain both a debug-
ger window and an inspector, as shown in Figure 17-8.

Inspecting thisContext gives you full access to the current execution con-
text, the stack, the local tempories and arguments, the senders chain and the
receiver. Welcome to the poor man’s debugger! If you now browse the class
of the explored object (i.e., by evaluating self browse in the bottom pane of
the inspector) you will discover that it is an instance of the class Context, as
is each sender in the chain.

thisContext is not intended to be used for day-to-day programming, but it
is essential for implementing tools like debuggers, and for accessing infor-
mation about the call stack. You can evaluate the following expression to
discover which methods make use of thisContext:

SystemNavigation default browseMethodsWithSourceString:
'thisContext' matchCase: true

As it turns out, one of the most common applications is to discover the sender
of a message. Here is a typical application:

282

Figure 17-8 Inspecting thisContext.

Reflection

subclassResponsibility
"This message sets up a framework for the behavior of the class'

subclasses.
Announce that the subclass should have implemented this message."

SubclassResponsibility signalFor: thisContext sender selector

By convention, methods that send self subclassResponsibility are con-
sidered to be abstract. But how does Object>>subclassResponsibility
provide a useful error message indicating which abstract method has been
invoked? Very simply, by asking thisContext for the sender.

Intelligent breakpoints

The Pharo way to set a breakpoint is to evaluate self halt at an interesting
point in a method. This will cause thisContext to be reified, and a debugger
window will open at the breakpoint. Unfortunately this poses problems for
methods that are intensively used in the system.

Suppose, for instance, that we want to explore the execution of Morph>>open-
InWorld. Setting a breakpoint in this method is problematic.

Pay attention the following experiment will break everything! Take a fresh
image and set the following breakpoint:

Morph >> openInWorld
"Add this morph to the world."
self halt.
self openInWorld: self currentWorld

Notice how your image immediately freezes as soon as you try to open any
new Morph (Menu/Window/...)! We do not even get a debugger window. The
problem is clear once we understand that 1) Morph>>openInWorld is used by
many parts of the system, so the breakpoint is triggered very soon after we
interact with the user interface, but 2) the debugger itself sends openInWorld
as soon as it opens a window, preventing the debugger from opening! What
we need is a way to conditionally halt only if we are in a context of interest.
This is exactly what Object>>haltIf: offers.

Suppose now that we only want to halt if openInWorld is sent from, say, the
context of MorphTest>>testOpenInWorld.

Fire up a fresh image again, and set the following breakpoint:

Morph>>openInWorld
"Add this morph to the world."
self haltIf: #testOpenInWorld.
self openInWorld: self currentWorld

This time the image does not freeze. Try running the MorphTest.

MorphTest run:#testOpenInWorld.

284

17.6 Intercepting messages not understood

How does this work? Let’s have a look at Object>>haltIf:. It first calls if:
with the condition to the Exception class Halt. This method itself will check
if the condition is a symbol, which is true in this case and finally calls

Object>>haltIf: condition
<debuggerCompleteToSender>
Halt if: condition.

Halt class >> haltIfCallChain: haltSenderContext contains: aSelector
| cntxt |
cntxt := haltSenderContext.
[cntxt isNil] whileFalse: [
cntxt selector = aSelector ifTrue: [self signalIn:
haltSenderContext].
cntxt := cntxt sender]

Starting from thisContext, haltIfCallChainContains: goes up through
the execution stack, checking if the name of the calling method is the same
as the one passed as parameter. If this is the case, then it signals itself, the
exception which, by default, summons the debugger.

It is also possible to supply a boolean or a boolean block as an argument to
haltIf:, but these cases are straightforward and do not make use of this-
Context.

17.6 Intercepting messages not understood

So far we have used Pharo’s reflective features mainly to query and explore
objects, classes, methods and the run-time stack. Now we will look at how to
use our knowledge of its system structure to intercept messages and modify
behaviour at run time.

When an object receives a message, it first looks in the method dictionary of
its class for a corresponding method to respond to the message. If no such
method exists, it will continue looking up the class hierarchy, until it reaches
Object. If still no method is found for that message, the object will send itself
the message doesNotUnderstand: with the message selector as its argu-
ment. The process then starts all over again, until Object>>doesNotUnder-
stand: is found, and the debugger is launched.

But what if doesNotUnderstand: is overridden by one of the subclasses of
Object in the lookup path? As it turns out, this is a convenient way of real-
izing certain kinds of very dynamic behaviour. An object that does not un-
derstand a message can, by overriding doesNotUnderstand:, fall back to an
alternative strategy for responding to that message.

Two very common applications of this technique are 1) to implement lightweight
proxies for objects, and 2) to dynamically compile or load missing code.

285

Reflection

Lightweight proxies

In the first case, we introduce a minimal object to act as a proxy for an exist-
ing object. Since the proxy will implement virtually no methods of its own,
any message sent to it will be trapped by doesNotUnderstand:. By imple-
menting this message, the proxy can then take special action before delegat-
ing the message to the real subject it is the proxy for.

Let us have a look at how this may be implemented.

We define a LoggingProxy as follows:

ProtoObject subclass: #LoggingProxy
instanceVariableNames: 'subject invocationCount'
classVariableNames: ''
package: 'PBE-Reflection'

Note that we subclass ProtoObject rather than Object because we do not
want our proxy to inherit around 450 methods (!) from Object.

Object methodDict size
>>> 440

Our proxy has two instance variables: the subject it is a proxy for, and a
count of the number of messages it has intercepted. We initialize the two in-
stance variables and we provide an accessor for the message count. Initially
the subject variable points to the proxy object itself.

LoggingProxy >> initialize
invocationCount := 0.
subject := self.

LoggingProxy >> invocationCount
^ invocationCount

We simply intercept all messages not understood, print them to the Tran-
script, update the message count, and forward the message to the real sub-
ject.

LoggingProxy >> doesNotUnderstand: aMessage
Transcript show: 'performing ', aMessage printString; cr.
invocationCount := invocationCount + 1.
^ aMessage sendTo: subject

Here comes a bit of magic. We create a new Point object and a new Log-
gingProxy object, and then we tell the proxy to become: the point object:

point := 1@2.
LoggingProxy new become: point.

This has the effect of swapping all references in the image to the point to
now refer to the proxy, and vice versa. Most importantly, the proxy’s sub-
ject instance variable will now refer to the point!

286

17.6 Intercepting messages not understood

point invocationCount
>>> 0

point + (3@4)
>>> 4@6

point invocationCount
>>> 1

This works nicely in most cases, but there are some shortcomings:

point class
>>> LoggingProxy

Actually the method class is implemented in ProtoObject, but even if it
were implemented in Object, which LoggingProxy does not inherit from, it
isn’t actually send to the LoggingProxy or its subject. The message is directly
answered by the virtual machine. yourself is also never truly sent.

Other messages that may be directly interpreted by the VM, depending on
the receiver, include:

+- < > <= >= = ~= * / \ == @ bitShift: // bitAnd: bitOr: at:
at:put: size next nextPut: atEnd blockCopy: value value: do:
new new: x y.

Selectors that are never sent, because they are inlined by the compiler and
transformed to comparison and jump bytecodes:

ifTrue: ifFalse: ifTrue:ifFalse: ifFalse:ifTrue: and: or: while-
False: whileTrue: whileFalse whileTrue to:do: to:by:do: caseOf:
caseOf:otherwise: ifNil: ifNotNil: ifNil:ifNotNil: ifNotNil:ifNil:

Attempts to send these messages to non-boolean normally results in an ex-
ception from the VM as it can not use the inlined dispatching for non-boolean
receivers. You can intercept this and define the proper behavior by overrid-
ing mustBeBoolean in the receiver or by catching the NonBooleanReceiver
exception.

Even if we can ignore such special message sends, there is another funda-
mental problem which cannot be overcome by this approach: self-sends
cannot be intercepted:

point := 1@2.
LoggingProxy new become: point.
point invocationCount
>>> 0

point rectangle: (3@4)
>>> 1@2 corner: 3@4

point invocationCount
>>> 1

287

Reflection

Our proxy has been cheated out of two self-sends in the rectangle: method:

Point >> rectangle: aPoint
"Answer a Rectangle that encompasses the receiver and aPoint. This

is the most general infix way to create a rectangle."

^ Rectangle
point: self
point: aPoint

Although messages can be intercepted by proxies using this technique, one
should be aware of the inherent limitations of using a proxy. In Section 17.7
we will see another, more general approach for intercepting messages.

Generating missing methods

The other most common application of intercepting not understood mes-
sages is to dynamically load or generate the missing methods. Consider a
very large library of classes with many methods. Instead of loading the en-
tire library, we could load a stub for each class in the library. The stubs know
where to find the source code of all their methods. The stubs simply trap all
messages not understood, and dynamically load the missing methods on de-
mand. At some point, this behaviour can be deactivated, and the loaded code
can be saved as the minimal necessary subset for the client application.

Let us look at a simple variant of this technique where we have a class that
automatically adds accessors for its instance variables on demand:

Object subclass: #DynamicAccessors
instanceVariableNames: 'x'
classVariableNames: ''
package: 'PBE-Reflection'

DynamicAcccessors >> doesNotUnderstand: aMessage
| messageName |
messageName := aMessage selector asString.
(self class instVarNames includes: messageName)
ifTrue: [

self class compile: messageName, String cr, ' ^ ', messageName.
^ aMessage sendTo: self].

^ super doesNotUnderstand: aMessage

Any message not understood is trapped here. If an instance variable with the
same name as the message sent exists, then we ask our class to compile an
accessor for that instance variables and we re-send the message.

Suppose the class DynamicAccessors has an (uninitialized) instance variable
x but no pre-defined accessor. Then the following will generate the accessor
dynamically and retrieve the value:

288

17.6 Intercepting messages not understood

Figure 17-9 Dynamically creating accessors.

myDA := DynamicAccessors new.
myDA x
>>> nil

Let us step through what happens the first time the message x is sent to our
object (see Figure 17-9).

(1) We send x to myDA, (2) the message is looked up in the class, and (3) not
found in the class hierarchy. (4) This causes self doesNotUnderstand: #x
to be sent back to the object, (5) triggering a new lookup. This time doesNo-
tUnderstand: is found immediately in DynamicAccessors, (6) which asks
its class to compile the string 'x ^ x'. The compilemethod is looked up
(7), and (8) finally found in Behavior, which (9-10) adds the new compiled
method to the method dictionary of DynamicAccessors. Finally, (11-13) the
message is resent, and this time it is found.

The same technique can be used to generate setters for instance variables, or
other kinds of boilerplate code, such as visiting methods for a Visitor.

Note the use of Object>>perform: in step (12) which can be used to send
messages that are composed at run-time:

5 perform: #factorial
>>> 120

6 perform: ('fac', 'torial') asSymbol
>>> 720

4 perform: #max: withArguments: (Array with: 6)
>>> 6

289

Reflection

17.7 Objects as method wrappers

We have already seen that compiled methods are ordinary objects in Pharo,
and they support a number of methods that allow the programmer to query
the runtime system. What is perhaps a bit more surprising, is that any ob-
ject can play the role of a compiled method. All it has to do is respond to the
method run:with:in: and a few other important messages.

Define an empty class Demo. Evaluate Demo new answer42 and notice how
the usual Message Not Understood error is raised.

Object subclass: #Demo
instanceVariableNames: ''
classVariableNames: ''
package: 'PBE-Reflection'

Demo new answer42

Now we will install a plain object in the method dictionary of our Demo class.

Evaluate Demo methodDict at: #answer42 put: ObjectsAsMethodsEx-
ample new.

Now try again to print the result of Demo new answer42. This time we get
the answer 42.
Demo methodDict at: #answer42 put: ObjectsAsMethodsExample new.
Demo new answer42
>>> 42

If we take look at the class ObjectsAsMethodsExample we will find the fol-
lowing methods:

add: a with: b
^a + b

answer42
^42

run: oldSelector with: arguments in: aReceiver
^self perform: oldSelector withArguments: arguments

When our Demo instance receives the message answer42, method lookup
proceeds as usual, however the virtual machine will detect that in place of
a compiled method, an ordinary Pharo object is trying to play this role. The
VM will then send this object a new message run:with:in: with the original
method selector, arguments and receiver as arguments. Since ObjectsAs-
MethodsExample implements this method, it intercepts the message and
delegates it to itself.

We can now remove the fake method as follows:

Demo methodDict removeKey: #answer42 ifAbsent: []

290

17.7 Objects as method wrappers

If we take a closer look at ObjectsAsMethodsExample, we will see that its su-
perclass also implements some methods like flushcache, methodClass:
and selector:, but they are all empty. These messages may be sent to a
compiled method, so they need to be implemented by an object pretend-
ing to be a compiled method. (flushcache is the most important method
to be implemented; others may be required by some tools and depending
on whether the method is installed using Behavior>>addSelector:with-
Method: or directly using MethodDictionary>>at:put:.)

NEXT CHAPTER NEEDS A REVIEW!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Using method wrappers to perform test coverage

Method wrappers are a well-known technique for intercepting messages.
In the original implementation(http://www.squeaksource.com/Method-
Wrappers.html), a method wrapper is an instance of a subclass of Compiled-
Method. When installed, a method wrapper can perform special actions be-
fore or after invoking the original method. When uninstalled, the original
method is returned to its rightful position in the method dictionary.

In Pharo, method wrappers can be implemented more easily by implement-
ing run:with:in: instead of by subclassing CompiledMethod. In fact, there
exists a lightweight implementation of objects as method wrappers (http://www.squeak-
source.com/ObjectsAsMethodsWrap.html), but it is not part of standard
Pharo at the time of this writing.

Nevertheless, the Pharo Test Runner uses precisely this technique to evalu-
ate test coverage. Let’s have a quick look at how it works.

The entry point for test coverage is the method TestRunner>>runCoverage:

TestRunner >> runCoverage
| packages methods |
... "identify methods to check for coverage"
self collectCoverageFor: methods

The method TestRunner>>collectCoverageFor: clearly illustrates the
coverage checking algorithm:

TestRunner >> collectCoverageFor: methods
| suite link notExecuted |
suite := self
resetResult;
suiteForAllSelected.

link := MetaLink new
selector: #tagExecuted;
metaObject: #node.

[methods do: [:meth | meth ast link: link].

291

Reflection

[self runSuite: suite] ensure: [link uninstall]]
valueUnpreemptively.

notExecuted := methods reject: [:each | each ast hasBeenExecuted].
notExecuted isEmpty
ifTrue: [UIManager default inform: 'Congratulations. Your
tests cover all code under analysis.']
ifFalse: ...

CODE NOT UPDATED FROM HERE TO NEXT EXCALAMATION!!!!!!!!!!!!!!!!!!! A wrap-
per is created for each method to be checked, and each wrapper is installed.
The tests are run, and all wrappers are uninstalled. Finally the user obtains
feedback concerning the methods that have not been covered.

How does the wrapper itself work? The TestCoverage wrapper has three
instance variables, hasRun, reference and method. They are initialized as
follows:

TestCoverage class >> on: aMethodReference
^ self new initializeOn: aMethodReference

TestCoverage >> initializeOn: aMethodReference
hasRun := false.
reference := aMethodReference.
method := reference compiledMethod

The install and uninstall methods simply update the method dictionary in
the obvious way:

TestCoverage >> install
reference actualClass methodDict
at: reference selector
put: self

TestCoverage >> uninstall
reference actualClass methodDict
at: reference selector
put: method

The run:with:in: method simply updates the hasRun variable, uninstalls
the wrapper (since coverage has been verified), and resends the message to
the original method.

run: aSelector with: anArray in: aReceiver
self mark; uninstall.
^ aReceiver withArgs: anArray executeMethod: method

mark
hasRun := true

292

17.8 Pragmas

Take a look at ProtoObject>>withArgs:executeMethod: to see how a
method displaced from its method dictionary can be invoked.

That’s all there is to it!

Method wrappers can be used to perform any kind of suitable behaviour be-
fore or after the normal operation of a method. Typical applications are in-
strumentation (collecting statistics about the calling patterns of methods),
checking optional pre- and post-conditions, and memoization (optionally
cacheing computed values of methods).

CORRECTION IN THE SUMMARY AS WELL!!!!!!!!!!!!!!!!!!!!!!!!!!

17.8 Pragmas

A pragma is an annotation that specifies data about a program, but is not in-
volved in the execution of the program. Pragmas have no direct effect on
the operation of the method they annotate. Pragmas have a number of uses,
among them:

Information for the compiler: pragmas can be used by the compiler to make
a method call a primitive function. This function has to be defined by the
virtual machine or by an external plug-in.

Runtime processing: Some pragmas are available to be examined at runtime.

Pragmas can be applied to a program’s method declarations only. A method
may declare one or more pragmas, and the pragmas have to be declared
prior any Smalltalk statement. Each pragma is in effect a static message send
with literal arguments.

We briefly saw pragmas when we introduced primitives earlier in this chap-
ter. A primitive is nothing more than a pragma declaration. Consider <prim-
itive: 173 error:ec> as contained in instVarAt:. The pragma’s selector
is primitive:error: and its arguments is an immediate literal value, 173.
The variable ec is an error code, filled by the VM in case the execution of the
implementation on the VM side failed.

The compiler is probably the bigger user of pragmas. SUnit is another tool
that makes use of annotations. SUnit is able to estimate the coverage of an
application from a test unit. One may want to exclude some methods from
the coverage. This is the case of the documentationmethod in SplitJointTest
class:

293

Reflection

SplitJointTest class >> documentation
<ignoreForCoverage>
"self showDocumentation"

^ 'This package provides function.... "

By simply annotating a method with the pragma <ignoreForCoverage> one
can control the scope of the coverage.

As instances of the class Pragma, pragmas are first class objects. A compiled
method answers to the message pragmas. This method returns an array of
pragmas.

(SplitJoinTest class >> #documentation) pragmas.
>>> an Array(<ignoreForCoverage>)

(SmallFloat64>>#+) pragmas
>>> an Array(<primitive: 541>)

Methods defining a particular query may be retrieved from a class. The class
side of SplitJoinTest contains some methods annotated with <ignoreFor-
Coverage>:

Pragma allNamed: #ignoreForCoverage in: SplitJoinTest class
>>> an Array(<ignoreForCoverage> <ignoreForCoverage>)

A variant of allNamed:in: may be found on the class side of Pragma.

A pragma knows in which method it is defined (using method), the name of
the method (selector), the class that contains the method (methodClass),
its number of arguments (numArgs), about the literals the pragma has for
arguments (hasLiteral: and hasLiteralSuchThat:).

17.9 Chapter summary

Reflection refers to the ability to query, examine and even modify the metaob-
jects of the runtime system as ordinary objects.

• The Inspector uses instVarAt: and related methods to view private
instance variables of objects.

• Send Behavior>>allInstances to query instances of a class.

• The messages class, isKindOf:, respondsTo: etc. are useful for
gathering metrics or building development tools, but they should be
avoided in regular applications: they violate the encapsulation of ob-
jects and make your code harder to understand and maintain.

• SystemNavigation is a utility class holding many useful queries for
navigation and browsing the class hierarchy. For example, use Sys-
temNavigation default browseMethodsWithSourceString: 'pharo'

294

17.9 Chapter summary

matchCase:true. to find and browse all methods with a given source
string. (Slow, but thorough!)

• Every Pharo class points to an instance of MethodDictionary which
maps selectors to instances of CompiledMethod. A compiled method
knows its class, closing the loop.

• RGMethodDefinition is a leightweight proxy for a compiled method,
providing additional convenience methods, and used by many Pharo
tools.

• RBBrowserEnvironment, part of the Refactoring Browser infrastruc-
ture, offers a more refined interface than SystemNavigation for query-
ing the system, since the result of a query can be used as a the scope of
a new query. Both GUI and programmatic interfaces are available.

• thisContext is a pseudo-variable that reifies the runtime stack of the
virtual machine. It is mainly used by the debugger to dynamically con-
struct an interactive view of the stack. It is also especially useful for
dynamically determining the sender of a message.

• Intelligent breakpoints can be set using haltIf:, taking a method se-
lector as its argument. haltIf: halts only if the named method occurs
as a sender in the run-time stack.

• A common way to intercept messages sent to a given target is to use
a minimal object as a proxy for that target. The proxy implements as
few methods as possible, and traps all message sends by implementing
doesNotunderstand:. It can then perform some additional action and
then forward the message to the original target.

• Send become: to swap the references of two objects, such as a proxy
and its target.

• Beware, some messages, like class and yourself are never really
sent, but are interpreted by the VM. Others, like +, - and ifTrue:
may be directly interpreted or inlined by the VM depending on the
receiver.

• Another typical use for overriding doesNotUnderstand: is to lazily
load or compile missing methods.

• doesNotUnderstand: cannot trap self-sends.

• A more rigorous way to intercept messages is to use an object as a
method wrapper. Such an object is installed in a method dictionary in
place of a compiled method. It should implement run:with:in: which
is sent by the VM when it detects an ordinary object instead of a com-
piled method in the method dictionary. This technique is used by the
SUnit Test Runner to collect coverage data.

295

	Illustrations
	Preface
	What is Pharo?
	Who should read this book?
	Further readings

	A word of advice
	An open book
	The Pharo community
	Examples and exercises
	Acknowledgments
	Hyper special acknowledgments

	A quick tour of Pharo (to revisit - started by Gordana)
	Installing Pharo
	Downloading Pharo
	Using handy scripts

	Pharo: File Components
	Image/Changes Pair
	Common Setup

	Launching Pharo
	Launching Pharo Via the Command Line
	Linux command line.
	OS X command line.
	Windows command line.

	Pharo Launcher
	The World Menu
	Interacting with Pharo
	Sending Messages
	Saving, Quitting and Restarting a Pharo Session
	Playgrounds and Transcripts
	About Transcript.
	About Playground.

	Keyboard Shortcuts
	Doing vs. Printing
	Inspect
	Other Operations
	The System Browser
	Opening the System Browser on a Given Method
	Navigating Using the System Browser
	Open the Browser by selecting World > Tools > System Browser.
	Filter packages.
	Expand the Kernel package and select the Object element.
	Select the Object class.
	Select the printing protocol.
	Select the printString Method.

	Finding Classes
	Using the Message browse
	Using CMD-b to Browse
	Using Spotter
	Navigating Results

	Using 'Find class' in System Browser
	Finding Methods
	Spotter.
	With Finder.

	Finding Methods Using Examples
	Trying Finder
	Defining a New Method
	Defining a New Test Method
	Running Your Test Method
	Implementing the Tested Method
	Coding in the Debugger
	Does this method work?

	Chapter Summary

	Developing a simple counter
	Our use case
	Create your own class
	Create a package and class
	Create a class.

	Define protocols and methods
	Create a method
	Adding a setter method
	Define a Test Class
	Saving your code on git with Iceberg
	Open Iceberg.
	Add and configure a project.
	Add your package to the project.
	Commit your changes.
	Code saved.

	Adding more messages
	Instance initialization method
	Define an initialize method
	Define a new instance creation method
	Better object description
	Saving your code on a remote server
	Create a project on the remote server.
	Add a remote repository in HTTPS access.
	Push.

	Conclusion

	A first application
	The Lights Out game
	Creating a new Package
	Defining the class LOCell
	Creating a new class
	About comments
	Method comments.
	Class comments.

	Adding methods to a class
	Initialize methods.
	Invoking superclass initialization.
	About point and rectangle creation.
	About the rest.

	Inspecting an object
	Executing expressions.

	Defining the class LOGame
	Initializing our game
	Taking advantage of the debugger
	Studying the initialize method
	Line 2
	Line 4
	Line 8
	Last line

	Organizing methods into protocols
	A typographic convention
	Finishing the game
	Formatting.
	Toggle neighbours.

	Final LOCell methods
	Using the debugger
	About the debugger.

	In case everything fails
	Saving and sharing Pharo code
	Iceberg: Pharo and Git
	Declared repositories.
	Adding a new repository.
	Adding a package.
	Committing changes.

	Saving code in a file
	About Setter/Getter convention
	On categories vs. packages
	Chapter summary

	Publishing your first Pharo project
	For the impatient
	Basic Architecture
	Create a new project on Github
	[Optional] SSH setup: Tell Iceberg to use your keys
	Iceberg Repositories browser
	Add a new project to Iceberg
	Repair to the rescue
	Create project metadata
	Add and commit your package using the Working copy browser
	Commit the changes
	Publish your changes to your remote

	Conclusion

	Configure your project nicely
	What if I did not create a remote repository
	Create a new repository.
	Add a remote.
	Push to the remote.

	Defining a BaselineOf
	Loading from an existing repository
	Manual load.
	Scripting the load.

	[Optional] Add a nice .gitignore file
	Going further: Understanding the architecture
	Conclusion

	Syntax in a nutshell
	Syntactic elements
	For the purists.

	Pseudo-variables
	Messages and message sends
	Message precedence.

	Sequences and cascades
	Method syntax
	Block syntax
	Conditionals and loops
	Some conditionals
	Some loops
	High-order iterators

	Method annotations: Primitives and pragmas
	Primitives
	Pragmas.

	Chapter summary

	Understanding message syntax
	Identifying messages
	Three kinds of messages
	Unary messages
	Binary messages
	Keyword messages

	Message composition
	Unary > Binary > Keywords
	Parentheses first
	From left to right
	Arithmetic inconsistencies

	Hints for identifying keyword messages
	Parentheses or not?
	When to use [] or ()

	Expression sequences
	Cascaded messages
	Chapter summary

	The Pharo object model
	The rules of the core model
	Everything is an Object
	Every object is an instance of a class
	Instance structure and behavior
	Instance variables
	Instance encapsulation example
	Methods

	Every class has a superclass
	Everything happens by sending messages
	About other computation.
	About object-oriented programming.

	Sending a message: a two-step process
	Method lookup follows the inheritance chain
	Method execution
	Message not understood
	About returning self
	Overriding and extension
	Self and super sends
	How do self sends differ from super sends?

	Stepping back
	The instance and class sides
	Metaclass creation.

	Class methods
	Class instance variables
	Example: Class instance variables and subclasses
	About class initialize.

	Stepping back
	Example: Defining a Singleton
	A note on lazy initialization.

	Shared variables
	Global variables
	Other useful global variables
	Using globals in your code

	Class variables: Shared variables
	Class initialization

	Pool variables
	Abstract methods and abstract classes
	Example: the abstract class Magnitude

	Chapter summary

	Traits: reusable class fragments
	A simple trait
	Using a required method

	Self in a trait is the receiver
	Trait state
	A class can use two traits
	Overriding method take always precedence over traits
	Composing a trait out of other traits
	Managing conflicts
	Conclusion

	SUnit: Tests in Pharo
	Introduction
	Why testing is important
	What makes a good test?
	SUnit by example

	Step 1: Create the test class
	Step 2: Initialize the test context
	Step 3: Write some test methods
	Step 4: Run the tests
	Step 5: Interpret the results
	The SUnit cookbook
	Using assert:equals:
	Skipping a test
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	The SUnit framework
	TestCase
	TestSuite
	TestResult
	TestResource
	Exercise
	Solution.

	Chapter summary

	Basic classes
	Object
	Object printing
	A word about representation and self-evaluating representation.
	Identity and equality
	Class membership
	class.
	isMemberOf:.
	isKindOf:.
	respondsTo:.

	Copying
	Debugging
	halt.
	assert:.

	Error handling
	deprecated:.
	doesNotUnderstand:.
	error.
	subclassResponsibility.
	shouldNotImplement.

	Testing
	Initialize
	Numbers
	Magnitude
	Number
	Float
	Fraction
	Integer
	Characters
	Strings
	Booleans
	Chapter summary

	Collections
	Introduction
	The varieties of collections
	Collection implementations
	Examples of key classes
	Common creation protocol.
	Array
	Creation with new:
	Creation using with:
	Literal creation with #()
	Dynamic creation with { . }
	Element Access

	OrderedCollection
	Removing Elements
	Conversion

	Interval
	Dictionary
	IdentityDictionary
	Set
	SortedCollection
	String
	String matching
	Substrings
	Some tests on strings
	String templating
	Some other utility methods

	Collection iterators
	Iterating (do:)
	Variants
	Dictionaries
	Collecting results (collect:)
	Selecting and rejecting elements
	Identifying an element with detect:
	Accumulating results with inject:into:
	Other messages

	Some hints for using collections
	A common mistake with add:
	Removing an element of the collection you are iterating on

	Chapter summary

	Streams
	Two sequences of elements
	Streams vs. collections
	Streaming over collections
	Reading collections

	Positioning
	Testing
	Writing to collections
	About String Concatenation
	Reading and writing at the same time
	Chapter summary

	Morphic
	The history of Morphic
	Morphs
	Manipulating morphs
	Composing morphs
	Creating and drawing your own morphs
	Mouse events for interaction
	Keyboard events
	Morphic animations
	Interactors
	Drag-and-drop
	A complete example
	More about the canvas
	Chapter summary

	Classes and metaclasses
	Rules for classes
	Metaclasses
	Revisiting the Pharo object model
	Every class is an instance of a metaclass
	Metaclasses are implicit

	Querying Metaclasses
	The metaclass hierarchy parallels the class hierarchy
	Uniformity between Classes and Objects
	Only one method lookup
	Inspecting objects and classes

	Every metaclass inherits from Class and Behavior
	Where is new defined?
	Common mistake.

	Responsibilities of Behavior, ClassDescription, and Class

	Every metaclass is an instance of Metaclass
	The metaclass of Metaclass is an instance of Metaclass
	Chapter summary

	Reflection
	Introspection
	Accessing instance variables
	Querying classes and interfaces
	Code metrics

	Browsing code
	Classes, method dictionaries and methods
	Browsing environments
	Accessing the run-time context
	Method contexts
	Intelligent breakpoints

	Intercepting messages not understood
	Lightweight proxies
	Generating missing methods

	Objects as method wrappers
	Using method wrappers to perform test coverage

	Pragmas
	Chapter summary

